NVMe™ 1.4 Features and Compliance: Everything You Need to Know

Sponsored by NVM Express™, Inc.

October 2, 2019
Speakers

Nick Adams
Platform Storage Architect

David Woolf
Senior Engineer
Data Center Technologies
Agenda

• NVMe™ Base Specification 1.4 Changes
 • Overview of New Features
 • Scope of Mandatory Changes

• Compliance Program and Tools
 • Overview and Deliverables
 • Dive into individual compliance test cases for some new NVMe features
Where do I start?

The NVM Express™ website, of course!

- https://nvmexpress.org
- Spec details at link: “Access Specification”

Great resources

- Current Spec
- Current ECNs & TPs
- Historical Specs
- Detailed change documents

https://nvmexpress.org/changes-in-nvme-revision-1-4/
NVMe™ 1.4 Specification
New Feature & Enhancement Overview
NVMe™ 1.4 Specification New Features & Enhancements*

For today’s overview
- IO Determinism
- IO Performance & Endurance Hints
- Persistent Event Log
- Namespace Write Protect
- Verify Command
- Rebuild Assist

Additional New Features for NVMe 1.4
- Persistent Memory Region
- Asymmetric Namespace Access
- NVM Sets
- Read Recovery Levels
- Endurance Groups
- Traffic Based Keep Alive
- UUIDs for Vendor Specific Information
- Administrative Controller
- Submission Queue Association

Many additional features were enhanced with New Capabilities!
IO Determinism – NVM Sets

- NVM Sets are QoS Isolated
 - Write to namespace A1 does not impact QoS associated with namespace B2

- NVM Subsystem may support one or more NVM Sets

- One or more Namespaces may be allocated to an NVM Set
IO Determinism – Predictable Latency Mode

- Service isolation region
- Increase Read IOPs and reduce tail latency
- Provides strict QoS profile
- Significantly improves P99 and P9999 for a well-behaved host
IO Performance and Endurance Hints

Created new **mechanisms** for Hosts to **optimize** their use of NVMe™ devices

- IO Performance & Endurance Hints
 - Exposes preferred Size, Granularity and Alignment for both Write and Deallocate to the Host
Namespace Write Protect

- New Feature allowing a Host to set the Write Protection Status of a Namespace
- Two supported protection states:
 - Write Protect until Power Cycle
 - Permanent Write Protect

Allowed Commands under WP

<table>
<thead>
<tr>
<th>Admin Command Set</th>
<th>NVM Command Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Self-test</td>
<td>Compare</td>
</tr>
<tr>
<td>Directive Send</td>
<td>Dataset Management</td>
</tr>
<tr>
<td>Directive Receive</td>
<td>Read</td>
</tr>
<tr>
<td>Get Features</td>
<td>Reservation Register</td>
</tr>
<tr>
<td>Get Log Page</td>
<td>Reservation Report</td>
</tr>
<tr>
<td>Identify</td>
<td>Reservation Acquire</td>
</tr>
<tr>
<td>Namespace Attachment</td>
<td>Reservation Release</td>
</tr>
<tr>
<td>Security Receive</td>
<td>Vendor Specific</td>
</tr>
<tr>
<td>Security Send</td>
<td>Flush</td>
</tr>
<tr>
<td>Set Features</td>
<td>Verify</td>
</tr>
<tr>
<td>Vendor Specific</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:
- Initial state: No Write Protect
- Transition to Write Protect
- Power Cycle: No Write Protect to Write Protect Until Power Cycle
- Transition to Permanent Write Protect
Rebuild Assist

- Host is able to configure NVMe™ Device for notifications about Unrecoverable Errors
- Establishes mechanism for early communication of two types of errors:
 - ‘Tracked LBA’ list – Blocks discovered to now be bad by Device
 - ‘Untracked LBA’ list – LBA ranges associated with a component failure
Verify Command

- New Command to check the integrity of stored data
 - Effectively acts as Read without transferring data to the Host
 - Controller reads & discards the data – while performing equivalent Protection Information checks
 - Errors are generated if data cannot be read correctly

Drive diagnostics & data scrubbing during drive operation require integrity verification, but don’t require access to the actual data.

Verify significantly increases the efficiency of this type of operation!
Enhanced Telemetry Capabilities

• The **Persistent** Event Log defines the features necessary to build a scaffolding that enables extensible debug infrastructure that is usable at scale

• Comprehensive set of events defined
 - Health Snapshot
 - Firmware Commits
 - Timestamp Changes
 - Power-on or Resets
 - Thermal Excursions
 - Vendor Specific
 - TCG-defined Events
 - Hardware Errors
 - Changed Namespace
 - Set Feature Events
 - Format NVM Start & Complete
 - Sanitize Start & Complete

Allows SSD customers to get consistent debug capabilities across vendors!

Allows SSD vendors an extensible framework for custom debug content!
NVMe™ 1.4 Specification
Required, Incompatible Changes
NVMe™ 1.4 Specification Required Changes*

• New NSID value usages
• New errors and reporting requirements
• Temperature threshold clarifications
• Controller Memory Buffer & Persistent Memory Region Enhancements
• New Sanitize requirements
• Reservation Notification Log usage
• Clarified LBA Range feature behavior
• Reservation Report command conflicts resolved
• New Abort command behavior

* Not to scale. These are categories of changes, not the full list of changes themselves
Example: Mandatory Change Controller Memory Buffer (CMB)

Overview
- Controller Memory Buffer now requires Support (CMBS) and Enable (CRE) bit usage
- Removed restrictions on the usages of the CMB – SQ, CQ & Data

Why the changes?
- Requires explicit configuration of the feature by the driver
- Hardens the Controller Memory Buffer implementation
- Relaxes the restrictions on host usage of the CMB

Impacts of inaction…
- Leaves the potential for DMA misrouting with CMB implementations

References
NVMe™ revision 1.4 section 3.1, 4.7, 4.8 & 7.3
Technical Proposal 4054
Example: Mandatory Change
NSID value - FFFFFFFFh

Overview – Namespace Identifiers
• All usages of NSID value FFFFFFFF are now well-defined
• Generally used to mean a broadcast action against all Namespaces

What are the changes?
• Clarifications in many sections: I/O Commands, Set/Get Features, Admin Commands, and Reservations
• Explicitly defines when NSID of FFFFFFFF can be used and how to use it

Why the changes?
• The specification was quiet on a number of use cases
• Need to provide consistency across Device and OS implementations
• Improve the end-user experience and ease of NVMe™ device consumption

Impacts of inaction
• Inconsistent results when using devices from various hardware vendors
Compliance
Compliance Program Overview

Coverage

- NVMe™ Base Spec, NVMe-MI™, NVMe-oF™

Timeline

- Test Specifications usually lag specification by 1-2 quarters. Test Specifications are updated twice a year and try to address any ratified TPs and ECNs since previous update.

Mandatory vs. FYI

- New tests are introduced as FYI. After the test implementation is vetted, it can be transitioned to being Mandatory. Test spec and tool call out Mandatory vs. FYI tests.

Optional Features

- Optional features are skipped if not supported. (You've don't have to do it, but if you do it, you have to do it right). Tests check for feature support first.

Test Tools

- Tests available through UNH-IOL test tools. Tools can be run in-house to check compliance on an ongoing basis. SSD vendors, Controller Vendors, Integrators, IP Houses, Datacenter companies regularly run these tools (some weekly and nightly) to ensure continued compliance.
Compliance Program Deliverables

- Test Specs
- Test Tools
- Plugfests and Private Testing
- Integrators List
Compliance Test Cases for NVMe™ 1.4 Specification

• IO Determinism
• Namespace Write Protect
• Persistent Event Log
• Verify Command
IO Determinism

Test 3.6 Case 1: Predictable Latency Mode Supported (FYI, OF-FYI)

Testing Station NVMe™ Host

Identify CNS=01h

Identify Controller Data Structure CTRATT Bit 5 Predictable Latency Mode = 0

Feature not Supported; Test not applicable

NVMe Controller
IO Determinism

Test 3.6 Case 1: Predictable Latency Mode Supported (FYI, OF-FYI)

Testing Station NVMe™ Host

NVMe™ Controller

Identify CNS=01h

Identify Controller Data Structure CTRATT Bit 5 Predictable Latency Mode = 1

Feature Supported, Test continues
IO Determinism

Test 3.6 Case 1: Predictable Latency Mode Supported (FYI, OF-FYI)

1. Get Log Page 0Ah
 "Predictable Latency Per NVM Set"
 - Log Page Typ, Max, Min
 - CQE Status Success

2. Get Log Page 0Bh
 "Predictable Latency Event Aggregate"
 - Log Page # Entries, Entry
 - CQE Status Success

Testing Station NVMe™ Host

NVMe Controller

3 of 5
IO Determinism

Test 3.6 Case 1: Predictable Latency Mode Supported (FYI, OF-FYI)

Set Feature 13h
Enable Predictable Latency Mode

CQE Status Success

Get Feature 13h
“Predictable Latency Mode Config”

PLM Enabled
CQE Status Success

Testing Station
NVMe™ Host

NVMe Controller
IO Determinism

Test 3.6 Case 1: Predictable Latency Mode Supported (FYI, OF-FYI)

Testing Station NVMe™ Host

Get Feature 14h
Predictable Latency Mode Window

CQE Status Success
PLM Enabled

PLM: Deterministic
Threshold Config.
Data Structure

NVMe Controller

5 of 5
Namespace Write Protect

Initial state

- No Write Protect
- Write Protect Until Power Cycle
- Permanent Write Protect

Power Cycle

Checking this path only
Test 3.7 Case 1: Enable and Disable Write Protection (F.Y.I., O.F.-F.Y.I.)

Testing Station
NVMe™ Host

NVMe Controller

Feature not Supported; Test not applicable

Identify Controller Data Structure CNS = 01h

Identify Controller Data Structure NWPC = 000b
Namespaces Write Protect

Test 3.7 Case 1: Enable and Disable Write Protection (FYI, OF-FYI)

Testing Station NVMe™ Host

- Identify Controller Data Structure CNS = 01h
- Identify Controller Data Structure NWPC = 001b
- Set Feature 84h NWPC = “No Write Protect” 000b
- CQE Status Success

NVMe Controller

Feature Supported, Test continues
Namespace Write Protect

Test 3.7 Case 1: Enable and Disable Write Protection (FYI, OF-FYI)

Testing Station NVMe™ Host

NVMe Controller

1. Set Feature 84h
 NWPC = “Write Protect” 001b
 CQE Status Success

2. Write Data=AAAAAAAAAh
 CQE Status Success

3. "Test passed!"
Namespace Write Protect

Test 3.7 Case 1 : Enable and Disable Write Protection (FYI, OF-FYI)
Namespace Write Protect

Test 3.7 Case 1: Enable and Disable Write Protection (FYI, OF-FYI)
Test 3.7 Case 1: Enable and Disable Write Protection (F.Y.I., OF-F.Y.I.)

Namespace Write Protect

Set Feature 84h
NWPC = “No Write Protect” 000b
CQE Status Success

Testing Station NVMe™ Host

NVMe Controller

6 of 7
Namespaces Write Protect

Test 3.7 Case 1: Enable and Disable Write Protection (FYI, OF-FYI)
Persistent Event Log
Test 1.3 Case 18 Persistent Event Log (FYI, OF-FYI)

Testing Station
NVMe™ Host

Identify Controller Data Structure CNS = 01h

Identify Controller Data Structure LPA Bit 4 = 1b

Get Log Page 0Dh Persistent Event Log

Persistent Event Log 1
CQE Status Success

NVMe Controller
Persistent Event Log

Test 1.3 Case 18 Persistent Event Log (FYI, OF-FYI)
Test 1.3 Case 18 Persistent Event Log (FYI, OF-FYI)

Persistent Event Log

Testing Station
NVMe™ Host

CSTS.RDY = 1

Get Log Page 0Dh
Persistent Event Log

Persistent Event Log 3
CQE Status Success

PEL 2 = PEL 3

NVMe Controller

3 of 3
Verify Command Basic Operation

Test 2.11 Case 1 Valid Command (FYI, OF-FYI)

Testing Station NVMe™ Host

Identify Controller Data Structure CNS = 01h

Identify Controller Data Structure ONCS Bit 7 = 1b

Verify PRACT=0

CQE Status Success

NVMe Controller

1 of 1
Verify Command PRACT=1
Test 2.11 Case 2 PRACT=1 (FYI, OF-FYI)
Verify Command – SMART/Health Log

Test 1.3 Case 19 Data Units Read Count – Verify (FYI, OF-FYI)

Testing Station NVMe™ Host

- Identify Controller Data Structure CNS = 01h
- Identify Controller Data Structure ONCS Bit 7 = 1b
- Identify Namespace Data Structure CNS = 00h
- Identify Namespace Data Structure LBADS = n

NVMe Controller

- Assume LBADS=512

1 of 4
Verify Command – SMART/Health Log
Test 1.3 Case 19 Data Units Read Count – Verify (FYI, OF-FYI)

Testing Station NVMe™ Host

NVMe Controller

Assume LBADS=512

2 of 4

Verify : size= 1x LBADS x1000

Get Log Page 02h SMART/Health Info Log

SMART/Health Info Log Data Units Read = previous value + 1 (LBADS/512)

CQE Status Success x1000

Get Log Page 02h SMART/Health Info Log

SMART/Health Info Log Data Units Read = value
Verify Command – SMART/Health Log
Test 1.3 Case 19 Data Units Read Count – Verify (FYI, OF-FYI)

Assume LBADS=512

CQE Status Success

Verify : size= 2x LBADS x1000

SMART/Health Info Log
Data Units Read = previous value + 2 (LBADS/512)

Get Log Page 02h SMART/Health Info Log

Get Log Page 02h SMART/Health Info Log

NVMe™ Host
Testing Station

NVMe Controller
Verify Command – SMART/Health Log

Test 1.3 Case 19 Data Units Read Count – Verify (FYI, OF-FYI)

Assume LBADS=512

4 of 4
Compliance for NVMe™ 1.4 Specification

- Test Tools currently supporting initial set of NVMe 1.4 features
- Download and run tools to prove compliance
- Feedback welcome