
NVM Express over Fabrics 1.0

1

NVM Express over Fabrics

Revision 1.0

June 5, 2016

Please send comments to info@nvmexpress.org

NVM Express over Fabrics 1.0

2

NVM Express over Fabrics revision 1.0 is available for download at http://nvmexpress.org. NVM Express
revision 1.0 was ratified on May 31, 2016.

SPECIFICATION DISCLAIMER

LEGAL NOTICE:

© Copyright 2007 - 2016 NVM Express, Inc. ALL RIGHTS RESERVED.

This NVM Express over Fabrics revision 1.0 specification is proprietary to the NVM Express, Inc. (also
referred to as “Company”) and/or its successors and assigns.

NOTICE TO USERS WHO ARE NVM EXPRESS, INC. MEMBERS: Members of NVM Express, Inc. have

the right to use and implement this NVM Express specification subject, however, to the Member’s
continued compliance with the Company’s Intellectual Property Policy and Bylaws and the Member’s
Participation Agreement.

NOTICE TO NON-MEMBERS OF NVM EXPRESS, INC.: If you are not a Member of NVM Express, Inc.

and you have obtained a copy of this document, you only have a right to review this document or make
reference to or cite this document. Any such references or citations to this document must acknowledge
NVM Express, Inc. copyright ownership of this document. The proper copyright citation or reference is as
follows: “© 2007 - 2016 NVM Express, Inc. ALL RIGHTS RESERVED.” When making any such

citations or references to this document you are not permitted to revise, alter, modify, make any
derivatives of, or otherwise amend the referenced portion of this document in any way without the prior
express written permission of NVM Express, Inc. Nothing contained in this document shall be deemed as
granting you any kind of license to implement or use this document or the specification described therein,
or any of its contents, either expressly or impliedly, or to any intellectual property owned or controlled by
NVM Express, Inc., including, without limitation, any trademarks of NVM Express, Inc.

LEGAL DISCLAIMER:

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN “AS IS”
BASIS. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, NVM EXPRESS, INC.
(ALONG WITH THE CONTRIBUTORS TO THIS DOCUMENT) HEREBY DISCLAIM ALL
REPRESENTATIONS, WARRANTIES AND/OR COVENANTS, EITHER EXPRESS OR IMPLIED,
STATUTORY OR AT COMMON LAW, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, VALIDITY,
AND/OR NONINFRINGEMENT.

All product names, trademarks, registered trademarks, and/or servicemarks may be claimed as the
property of their respective owners.

NVM Express Workgroup
c/o Virtual, Inc.
401 Edgewater Place, Suite 600
Wakefield, MA 01880
info@nvmexpress.org

NVM Express over Fabrics 1.0

3

Table of Contents

1 INTRODUCTION .. 5

1.1 Scope ... 5
1.2 Outside of Scope .. 5
1.3 Conventions .. 5
1.4 Definitions ... 6

1.4.1 association .. 6
1.4.2 authentication commands .. 6
1.4.3 capsule .. 6
1.4.4 Discovery controller ... 6
1.4.5 Discovery Service .. 6
1.4.6 dynamic controller .. 6
1.4.7 fabric (network fabric) .. 6
1.4.8 NVMe Transport .. 6
1.4.9 NVMe Transport binding specification .. 6
1.4.10 port (NVM subsystem port) .. 6
1.4.11 Port ID ... 6
1.4.12 property ... 6
1.4.13 static controller .. 6

1.5 Theory of Operation .. 7
1.5.1 Fabrics and Transports .. 8
1.5.2 NVM Subsystem .. 9
1.5.3 Capsules and Data Transfer .. 10
1.5.4 Command Sets .. 11
1.5.5 Properties .. 12
1.5.6 Discovery... 12
1.5.7 Connection .. 12
1.5.8 Authentication .. 13

2 CAPSULES AND DATA TRANSFERS .. 14

2.1 Command Capsules ... 14
2.2 Response Capsules .. 15

2.2.1 Status Values .. 16
2.3 Data Transfers .. 16

2.3.1 Data and SGL Locations within a Command Capsule ... 16
2.3.2 Data Transfer Examples .. 17

2.4 Queue Flow Control Mechanism... 18

3 COMMANDS .. 20

3.1 Authentication Receive Command and Response ... 20
3.2 Authentication Send Command and Response .. 21
3.3 Connect Command and Response ... 22
3.4 Property Get Command and Response .. 25
3.5 Property Set Command and Response .. 26

3.5.1 Property Definitions.. 27

4 CONTROLLER ARCHITECTURE .. 29

4.1 Identify Controller Data Structure Enhancements ... 29
4.2 Controller Model ... 29
4.3 Queue Initialization and Queue State ... 30
4.4 Initialization ... 30
4.5 Shutdown .. 32

5 DISCOVERY SERVICE .. 33

5.1 Discovery Controller Initialization .. 33
5.2 Discovery Controller Properties and Command Support .. 34

NVM Express over Fabrics 1.0

4

5.3 Discovery Log Page (Log Identifier 70h) ... 35

6 AUTHENTICATION .. 39

6.1 Fabric Secure Channel ... 39
6.2 NVMe In-band Authentication ... 39

6.2.1 NVMe In-band Authentication Protocol-Specific Requirements ... 40
6.2.1.1 NVMe In-band Authentication Requirements for the TCG Security Protocols .. 40

7 TRANSPORT DEFINITION ... 41

7.1 Transport Requirements ... 41
7.1.1 Submission Queue Head Pointer Update Optimization ... 41
7.1.2 Keep Alive ... 42

7.2 Transport Capsule and Data Binding: Fibre Channel ... 42
7.3 Transport Capsule and Data Binding: RDMA ... 42

7.3.1 Transport Overview.. 43
7.3.2 Capsules and SGLs ... 44
7.3.3 Queue Mapping ... 45
7.3.4 Capsule and Data Exchange .. 45
7.3.5 Keep Alive Settings .. 46
7.3.6 Setup and Initialization ... 46

7.3.6.1 Transport Specific Address Subtype ... 46
7.3.6.2 Fabric Dependent Settings ... 47

7.3.7 Key Management ... 48
7.3.8 Error Handling ... 49

NVM Express over Fabrics 1.0

5

1 Introduction

NVM Express (NVMe) 1.2.1 and prior revisions define a register level interface for host software to
communicate with a non-volatile memory subsystem over PCI Express (NVMe over PCIe). This
specification defines extensions to NVMe that enable operation over other interconnects (NVMe over
Fabrics). The NVM Express revision 1.2.1 specification is referred to as the NVMe Base specification.

The mapping of extensions defined in this document to a specific NVMe Transport are defined in an NVMe
Transport binding specification. This document contains an NVMe Transport binding specification for
RDMA. The NVMe Transport binding specification for Fibre Channel is defined in INCITS 540 Fibre Channel
– Non-Volatile Memory Express (FC-NVMe), refer to http://www.incits.org.

1.1 Scope

This specification defines extensions to NVMe that enable operation over a fabric other than PCI Express
(PCIe). This specification supplements the NVMe Base specification.

1.2 Outside of Scope

Functionality that is applicable only to NVMe over PCIe or to both NVMe over PCIe and NVMe over Fabrics
is defined in the NVMe Base specification.

This specification defines requirements and behaviors that are implementation agnostic. The
implementation of these requirements and behaviors are outside the scope of this specification. For
example, an NVM subsystem that follows this specification may be implemented by an SSD that attaches
directly to a fabric, a device that translates between a fabric and a PCIe NVMe SSD, or software running
on a general purpose server.

NVMe over Fabrics 1.0 is intentionally limited in scope to define essential functionality. Restrictions that
may be removed in future revisions include:

 There is a 1:1 mapping of a single Submission Queue to a single Completion Queue. NVMe over
Fabrics does not support the mapping of Multiple Submission Queues to a single Completion
Queue.

 There is no flow control for completions at the NVM Express layer. Therefore, Completion Queues
should be sized to support the maximum number of outstanding commands.

 Metadata (if supported) is transferred as a contiguous part of logical blocks. Specifically,
transferring metadata as a separate buffer of data is not supported.

Other published specifications referred to in this document, even if required for compliance, are outside the
scope of this specification; this includes published specifications for fabrics and other technologies referred
to by this document or any NVMe Transport binding specification.

1.3 Conventions

NVMe over Fabrics definition conforms to the byte, word, and Dword relationships defined in section 1.8 of
the NVMe Base specification. This includes specifying all data in little endian format unless otherwise noted.

A Discovery controller is a type of controller that supports minimal functionality required for the Discovery
Log Page to be retrieved. The use of the term “controller” in the NVMe Base specification and in this
document refers to requirements that apply to all controllers or specifically to a controller that may expose
namespaces. When a requirement applies to only a Discovery controller, the specification includes the
complete term “Discovery controller”.

NVM Express over Fabrics 1.0

6

1.4 Definitions

1.4.1 association

An exclusive communication relationship between a particular controller and a particular host that
encompasses the Admin Queue and all I/O Queues of that controller.

1.4.2 authentication commands

Used to refer to Fabrics Authentication Send or Authentication Receive commands.

1.4.3 capsule

An NVMe unit of information exchange used in NVMe over Fabrics. A capsule contains a command or
response and may optionally contain command/response data and SGLs.

1.4.4 Discovery controller

A controller that supports minimal functionality and only implements the required features that allow the
Discovery Log Page to be retrieved. A Discovery controller does not implement I/O Queues or expose
namespaces.

1.4.5 Discovery Service

An NVM subsystem that supports Discovery controllers only. A Discovery Service shall not support a
controller that exposes namespaces.

1.4.6 dynamic controller

The controller is allocated on demand with no state (e.g., Feature settings) preserved from prior
associations.

1.4.7 fabric (network fabric)

A network topology in which nodes pass data to each other through interconnecting switches.

1.4.8 NVMe Transport

A protocol layer that provides reliable delivery of data, commands, and responses between a host and an
NVM subsystem. The NVMe Transport layer is layered on top of the fabric. It is independent of the fabric
physical interconnect and low level fabric protocol layers.

1.4.9 NVMe Transport binding specification

A specification of reliable delivery of data, commands, and responses between a host and an NVM
subsystem for an NVMe Transport. The binding may exclude or restrict functionality based on the NVMe
Transport’s capabilities.

1.4.10 port (NVM subsystem port)

A collection of one or more physical fabric interfaces that together act as a single interface between the
NVM subsystem and a fabric.

1.4.11 Port ID

A 16-bit identifier that is associated with an NVM subsystem port.

1.4.12 property

The generalization of memory mapped controller registers defined for NVMe over PCIe. Properties are
used to configure low level controller attributes and obtain low level controller status.

1.4.13 static controller

The controller is pre-existing with a specific Controller ID and its state (e.g., Feature settings) is preserved
from prior associations.

NVM Express over Fabrics 1.0

7

1.5 Theory of Operation

NVMe over Fabrics builds on the architecture, command sets, and queueing interface defined in the NVMe
Base specification. A central goal of NVMe over Fabrics is to maintain consistency with the base definition
and only deviate where necessary in order to support general fabrics. Extensions defined by NVMe over
Fabrics include:

 The use of capsules for commands, responses, and optionally for data transfers.

 The extension of Scatter Gather Lists (SGLs) to support in-capsule data as well as NVMe
Transports that utilize a key/offset memory addressing architecture.

 Extensions to the queueing model that enable the use of underlying capabilities provided by some
NVMe Transports.

 A method for a host to establish a connection to a controller’s Admin or I/O Queue within a specific
NVM subsystem. This method includes an authentication procedure that may be used to
authenticate the host and controller identities.

 The generalization of controller PCI Express Memory Mapped I/O (MMIO) registers to properties
that may be accessed by a host over any type of NVMe Transport.

 A discovery mechanism for a host to determine which NVM subsystems may be accessed.

NVMe over Fabrics has the following differences from the NVMe Base specification:

 There is a one-to-one mapping between I/O Submission Queues and I/O Completion Queues.
NVMe over Fabrics does not support multiple I/O Submission Queues being mapped to a single
I/O Completion Queue.

 NVMe over Fabrics does not define an interrupt mechanism that allows a controller to generate a
host interrupt. It is the responsibility of the host fabric interface (e.g., Host Bus Adapter) to generate
host interrupts.

 NVMe over Fabrics does not use the Create I/O Completion Queue, Create I/O Submission Queue,
Delete I/O Completion Queue, and Delete I/O Submission Queue commands. NVMe over Fabrics
does not use the Admin Submission Queue Base Address (ASQ), Admin Completion Queue Base
Address (ACQ), and Admin Queue Attributes (AQA) properties (i.e., registers in PCI Express).
Queues are created using the Connect Fabrics command.

 If metadata is supported, it may only be transferred as a contiguous part of the logical block. NVMe
over Fabrics does not support transferring metadata from a separate buffer.

 NVMe over Fabrics does not support PRPs but requires use of SGLs for Admin, I/O, and Fabrics
commands. This differs from NVMe over PCIe where SGLs are not supported for Admin commands
and are optional for I/O commands.

 NVMe over Fabrics does not support Completion Queue flow control. This requires that the host
ensures there are available Completion Queue slots before submitting new commands.

While differences exist between NVMe over Fabrics and NVMe over PCIe implementations, both implement
the same architecture and command sets. The shared characteristics include:

 A scalable host controller interface

 Optimized command submission and completion paths

 Support for parallel operation that supports up to (64K – 1) I/O queues per controller with up to
(64K – 1) outstanding commands per I/O queue

 Support for Enterprise capabilities such as end-to-end data protection

 Robust error reporting and management capabilities

 Priority associated with each I/O queue with a well-defined controller queue arbitration mechanism

 Efficient and streamlined command set

 Support for multiple namespaces and namespace management

 Support for multi-path I/O and namespace sharing

NVM Express over Fabrics 1.0

8

1.5.1 Fabrics and Transports

NVMe over Fabrics requires the underlying NVMe Transport to provide reliable NVMe command and data
delivery. An NVMe Transport is an abstract protocol layer independent of any physical interconnect
properties. A taxonomy of NVMe Transports along with examples is shown in Figure 1. An NVMe Transport
may expose a memory model, a message model, or a combination of the two. A memory model is one in
which data is transferred between fabric nodes by performing explicit memory read and write operations
while a message model is one in which only messages are sent from a source node to destination node.
The only memory model NVMe Transport supported by NVMe is PCI Express, as defined in the NVMe
Base specification. Message model and message/memory model NVMe Transports are specified in this
document.

Figure 1: Taxonomy of Transports

NVMe Transports

Memory
Data &

Commands/Responses

use Shared Memory

Message
Data & Commands/

Responses use Capsules

Message and Memory
Commands/Responses use Capsules

Data uses fabric specific data transfer

mechanism

Example

PCI Express

Examples

Fibre Channel

Examples
RDMA

(InfiniBand, RoCE, iWARP)

NVMe over Fabrics utilizes the protocol layering shown in Figure 2. This specification defines core aspects
of the architecture that are independent of the NVMe Transport. An NVMe Transport binding specification
is used to describe any NVMe Transport specific specialization as well as how the services required by
NVMe are mapped onto the corresponding NVMe Transport. The native fabric communication services and
other functionality used by NVMe and NVMe Transports (e.g., the Fabric Protocol and Fabric Physical
layers in Figure 2) are outside the scope of this specification.

NVM Express over Fabrics 1.0

9

Figure 2: NVMe over Fabrics Layering

NVMe Architecture, Queuing Interface

Admin Command & I/O Command Sets,

Properties

Fabric Specific Properties,

Transport Specific Features/Specialization

NVMe Transport Binding Services

NVMe Transport

NVMe over Fabrics

Transport Binding

Specification

NVMe Transport

Fabric Protocol

(may include multiple fabric protocol layers)

Fabric

Fabric Physical

(e.g., Ethernet, InfiniBand, Fibre Channel)

1.5.2 NVM Subsystem

NVMe over Fabrics builds on the NVM subsystem architecture defined in the NVMe Base specification. An
NVM subsystem presents a collection of one to (64K - 16) controllers which are used to access
namespaces. The controllers may be associated with hosts through one to 64K NVM subsystem ports.

An NVM subsystem port (port) is a collection of one or more physical fabric interfaces that together act as
a single interface between the NVM subsystem and a fabric. When link aggregation (e.g., Ethernet) is used,
the physical ports for the group of aggregated links constitute a single NVM subsystem port.

Each NVM subsystem port has a 16-bit port identifier (Port ID). An NVM subsystem port is identified by the
NVM Subsystem NQN and Port ID. The ports of an NVM subsystem may support different NVMe
Transports. An NVM subsystem port may support multiple NVMe Transports if more than one NVMe
Transport binding specifications exist for the underlying fabric (e.g., an NVM subsystem port identified by a
Port ID may support both iWARP and RoCE). An NVM subsystem implementation may bind specific
controllers to specific ports or allow the flexible allocation of controllers between ports.

A controller is associated with exactly one host at a time. NVMe over Fabrics allows multiple hosts to
connect to different controllers in the NVM subsystem through the same port. All other aspects of NVMe
over Fabrics multi-path I/O and namespace sharing are equivalent to that defined in the NVMe Base
specification.

NVM Express over Fabrics 1.0

10

An NVM subsystem may optionally include a non-volatile storage medium, and an interface between the
controller(s) of the NVM subsystem and the non-volatile storage medium. Controllers expose this non-
volatile storage medium to hosts through namespaces. An NVM subsystem is not required to have the
same namespaces attached to all controllers. An NVM subsystem may support controllers that expose
namespaces or Discovery controllers; but it does not expose a mix of controller types. A Discovery Service
is an NVM subsystem that exposes Discovery controllers only.

An association is established between a host and a controller when the host connects to a controller’s
Admin Queue using the Fabrics Connect command. Within the Connect command, the host specifies the
Host NQN, NVM Subsystem NQN, Host Identifier, and may request a specific Controller ID or indicate that
it may accept a connection to any available controller.

The NVM subsystem may support a dynamic or static controller model. In a dynamic controller model, the
controller is allocated by the NVM subsystem on demand with no state (e.g., Feature settings) preserved
from prior associations. In a static controller model, the host may request a particular controller based on
the Controller ID where state (e.g., Feature settings) is preserved from prior associations. Refer to section
4.2.

While an association exists between a host and a controller, only that host may establish connections with
I/O Queues of that controller by presenting the same Host NQN, Host Identifier, NVM Subsystem NQN and
Controller ID in subsequent Connect command(s) using the same NVM subsystem port, NVMe Transport
type, and NVMe Transport address.

An association exists until the controller is shutdown, a Controller Level Reset, or the NVMe Transport
connection is lost between the host and controller for the Admin or any I/O Queue. There is no explicit
NVMe command that breaks the NVMe Transport connection between a host and controller. While a
controller is associated to a host the controller is busy and no other associations may be made to that
controller.

1.5.3 Capsules and Data Transfer

A capsule is an NVMe unit of information exchange used in NVMe over Fabrics. A capsule may be classified
as a command capsule or a response capsule. A command capsule contains a command (formatted as a
Submission Queue Entry) and may optionally include SGLs or data. A response capsule contains a
response (formatted as a Completion Queue Entry) and may optionally include data. Data refers to any
data transferred at an NVMe layer between a host and an NVM subsystem (e.g., logical block data or a
data structure associated with a command). A capsule is independent of any underlying NVMe Transport
unit (e.g., packet, message, or frame and associated headers and footers) and may consist of multiple such
units.

Command capsules are transferred from a host to an NVM subsystem. The SQE contains an Admin, I/O
or Fabrics command. The minimum size of a command capsule is NVMe Transport binding specific, but
shall be at least 64B in size. The maximum size of a command capsule is NVMe Transport binding specific.
The format of a command capsule is shown in Figure 3.

Figure 3: Command Capsule Format

Submission Queue Entry Data or SGLs (if present)

Byte 0 63 64 (N-1)

Command Capsule of Size N Bytes

NVM Express over Fabrics 1.0

11

Response capsules are transferred from an NVM subsystem to a host. The CQE is associated with a
previously issued Admin, I/O or Fabrics command. The size of a response capsule is NVMe Transport
binding specific, but shall be at least 16B in size. The maximum size of a response capsule is NVMe
Transport binding specific. The format of a response capsule is shown in Figure 4.

Figure 4: Response Capsule Format

Completion Queue Entry Data (if present)

Byte 0 15 16 (N-1)

Response Capsule of Size N Bytes

Message model NVMe Transports require all SGL information and data from the host to the controller
associated with a command be transferred within the command capsule and any controller to host data be
transferred in the response capsule. Message and memory model NVMe Transports may optionally support
the transfer of a portion or all SGL information and data within the command and response capsules.

NVMe over PCIe commands use PRPs and optionally SGLs to specify data transfer memory regions. NVMe
over Fabrics requires SGLs for all commands (Fabrics, Admin, and I/O). An SGL may specify the placement
of data within a capsule or the information required to transfer data using an NVMe Transport specific data
transfer mechanism (e.g., via memory transfers as in RDMA). The NVMe Transport binding specification
defines the SGLs used by a particular NVMe Transport and any capsule SGL and data placement
restrictions.

1.5.4 Command Sets

As shown in Figure 5, NVMe over Fabrics supports three Command Sets. The Fabrics Command Set is
NVMe over Fabrics specific. The Admin and I/O Command Sets are defined by the NVMe Base
specification.

Figure 5: NVMe over Fabrics Command Sets

NVMe over Fabrics Command Sets

Fabrics

Command Set

Admin

Command Set

I/O

Command Set

NVM

Cmd

Set

Rsvd

#1

Rsvd

#2

Rsvd

#7
...

Fabrics Command Set commands are used for operations specific to NVMe over Fabrics including
establishing a connection, NVMe in-band authentication, and to get or set a property. All Fabrics commands
may be submitted on the Admin Queue and some Fabrics commands may also be submitted on an I/O
Queue. Unlike Admin and I/O commands, Fabrics commands are processed by a controller regardless of
whether the controller is enabled (i.e., regardless of the state of CC.EN).

This specification assumes an SQE size of 64B and CQE size of 16B as defined by the NVM Command
Set.

NVM Express over Fabrics 1.0

12

1.5.5 Properties

Properties are the NVMe over Fabrics analog of memory mapped NVMe controller registers defined for
NVMe over PCIe. Properties are used to configure low level controller attributes and obtain low level status.

A host may obtain the value of a property by using the Property Get command and may modify the value
of a property by using the Property Set command that are part of the Fabrics Command Set. Properties are
only accessible via the Admin Queue.

Some controller registers or fields are specific to PCIe functionality (e.g., Submission Queue Doorbell
registers) and are not used in NVMe over Fabrics. As a result, a subset of controller registers and fields
defined in the NVMe Base specification map to properties in NVMe over Fabrics (refer to section 3.5.1).

1.5.6 Discovery

NVMe over Fabrics defines a discovery mechanism that a host may use to determine the NVM subsystems
the host may access. A Discovery controller supports minimal functionality and only implements the
required features that allow the Discovery Log Page to be retrieved. A Discovery controller does not
implement I/O Queues or expose namespaces. A Discovery Service is an NVM subsystem that exposes
only Discovery controllers.

The Discovery Log Page provided by a Discovery controller contains one or more entries. Each entry
specifies information necessary for the host to connect to an NVM subsystem via an NVMe Transport. An
entry may specify an NVM subsystem that exposes namespaces that the host may access, or a referral to
another Discovery Service. The maximum referral depth supported is eight levels.

The method that a host uses to obtain the information necessary to connect to the initial Discovery Service
is implementation specific. This information may be determined using a host configuration file, a hypervisor
or OS property or some other mechanism.

1.5.7 Connection

NVMe over Fabrics uses the Connect command to create controller Admin or I/O Queues. The creation of
an Admin Queue establishes an association between a host and the corresponding controller. NVMe over
Fabrics does not support the Admin Submission Queue Base Address (ASQ), Admin Completion Queue
Base Address (ACQ), and Admin Queue Attributes (AQA) properties as all information necessary to
establish an Admin Queue is contained in the Connect command. NVMe over Fabrics does not support the
Admin commands associated with I/O Queue creation and deletion (Create I/O Completion Queue, Create
I/O Submission Queue, Delete I/O Completion Queue, Delete I/O Submission Queue) defined in the NVMe
Base specification.

An NVMe Transport connection is established between a host and an NVM subsystem prior to the transfer
of any capsules or data. The mechanism used to establish an NVMe Transport connection is NVMe
Transport specific and defined by the corresponding NVMe Transport binding specification. The NVMe
Transport may require a separate NVMe Transport connection for each Admin or I/O Queue or may utilize
the same NVMe Transport connection for all Admin and I/O Queues associated with a particular controller.
An NVMe Transport may also require that NVMe layer information be passed between the host and
controller in the process of establishing an NVMe Transport connection (e.g., exchange queue size to
appropriately size send and receive buffers).

The Connect command specifies the Queue ID and type (Admin or I/O), the size of the Submission and
Completion Queues, queue attributes, Host NQN, NVM Subsystem NQN, and Host Identifier. The Connect
command may specify a particular controller if the NVM subsystem supports a static controller model. The
Connect response indicates whether the connection was successfully established as well as whether NVMe
in-band authentication is required.

NVM Express over Fabrics 1.0

13

When a Connect command successfully completes, the corresponding Submission and Completion
Queues are created. If NVMe in-band authentication is required as indicated in the Connect response, then
NVMe in-band authentication shall be performed before the queues may be used to perform other Fabrics,
Admin, or I/O commands. Once a Connect command for an Admin Queue has completed successfully (and
NVMe in-band authentication if required), only Fabrics commands may be submitted until the controller is
ready (CSTS.RDY = 1). Both Fabrics and Admin commands may be submitted to the Admin Queue while
the controller is ready. Once a Connect command for an I/O Queue has completed successfully (and NVMe
in-band authentication if required), I/O commands may be submitted to the queue.

The Connect response contains the controller ID allocated to the host. All subsequent Connect commands
that create an I/O Queue with that controller shall be from the same host, utilize the same NVMe Transport,
and have the same Host Identifier, Host NQN, and NVM Subsystem NQN; if any of these conditions do not
hold then the Connect command fails.

1.5.8 Authentication

NVMe over Fabrics supports both fabric secure channel (that includes authentication) and NVMe in-band
authentication. An NVM subsystem may require a host to use fabric secure channel, NVMe in-band
authentication, or both. The Discovery Service indicates if fabric secure channel shall be used for an NVM
subsystem. The Connect response indicates if NVMe in-band authentication shall be used with that
controller.

A controller associated with an NVM subsystem that requires a fabric secure channel shall not accept any
commands (Fabrics, Admin, or I/O) on an NVMe Transport until a secure channel is established. Following
a Connect command, a controller that requires NVMe in-band authentication shall not accept any
commands other than authentication commands until NVMe in-band authentication has completed. Refer
to section 6.

NVM Express over Fabrics 1.0

14

2 Capsules and Data Transfers

This section describes capsules and data transfer mechanisms. These mechanisms are used for Fabrics
commands, Admin commands, and I/O commands.

A capsule is an NVMe unit of information exchanged between a host and a controller. A capsule may
contain commands, responses, SGLs, and/or data. The data may include logical block data and metadata
that is transferred as a contiguous part of the logical block, and data structures associated with the
command.

The capsule size for the Admin Queue commands and responses is fixed and defined in the NVMe
Transport binding specification. The controller indicates in the Identify Controller data structure the capsule
command and response sizes that the host shall use with I/O commands.

The controller shall support SGL based data transfers for commands on both the Admin Queue and I/O
Queues. Data may be transferred within the capsule or through memory transactions based on the
underlying NVMe Transport as indicated in the SGL descriptors associated with the command capsule. The
SGL types supported by an NVMe Transport are specified in the NVMe Transport binding specification.

The value of unused and not reserved capsule fields (e.g., the capsule is larger than the command /
response and associated data) is undefined and shall not be interpreted by the recipient.

2.1 Command Capsules

A command capsule is sent from a host to a controller. It contains a Submission Queue Entry (SQE) and
may optionally contain data or SGLs. The SQE is 64 bytes in size and contains the Admin, I/O or Fabrics
command to be executed.

Figure 6: Command Capsule

Submission Queue Entry Data or SGLs (if present)

Byte 0 63 64 (N-1)

Command Capsule of Size N Bytes

The Command Identifier field in the SQE shall be unique among all outstanding commands associated with
that queue. If there is data or additional SGLs to be transferred within the capsule then the SGL descriptor
in the SQE contains a Data Block, Segment Descriptor, or Last Segment Descriptor specifying an
appropriate Offset address. The definition for the Submission Queue Entry when the command is a Fabrics
command is defined in Figure 7. The definition for the Submission Queue Entry when the command is an
Admin or I/O command is defined in section 4.2 of the NVMe Base specification, where the Metadata
Pointer field is reserved.

NVM Express over Fabrics 1.0

15

Figure 7: Fabrics Command Capsule – Submission Queue Entry Format

Byte Description

00 Opcode (OPC): Set to 7Fh to indicate a Fabrics command.

01 Reserved

03:02
Command Identifier (CID): This field specifies a unique identifier for the command. The identifier
shall be unique among all outstanding commands associated with a particular queue.

04
Fabrics Command Type (FCTYPE): This field specifies the Fabrics command transferred in the

capsule. The Fabrics command types are defined in Figure 14.

39:05 Reserved

63:40 Fabrics Command Type Specific: This field is Fabrics command type specific.

2.2 Response Capsules

A response capsule is sent from the NVM subsystem to the host. It contains a Completion Queue Entry
(CQE) and may optionally contain data. The CQE is the completion entry associated with a previously
issued command capsule.

If a command requests data and the SGL in the associated command capsule specifies a Data Block
descriptor with an Offset, the data is included in the response capsule. If the SGL(s) in the command
capsule specify a region in host memory, then data is transferred via memory transactions.

Figure 8: Response Capsule

Completion Queue Entry Data (if present)

Byte 0 15 16 (N-1)

Response Capsule of Size N Bytes

The Completion Queue Entry is 16 bytes in size and contains a two byte status field.

The definition for the Completion Queue Entry for a Fabrics command is defined in Figure 9. The definition
for the Completion Queue Entry when the command is an Admin or I/O command is defined in section 4.6
of the NVMe Base specification, where the SQ Identifier and Phase Tag fields are reserved because they
are not used in NVMe over Fabrics.

Figure 9: Fabrics Response Capsule – Completion Queue Entry Format

Byte Description

07:00 The definition of this field is Fabrics response type specific.

09:08
SQ Head Pointer (SQHD): Indicates the current Submission Queue Head pointer for the

associated Submission Queue.

11:10 Reserved

13:12 Command Identifier (CID): Indicates the identifier of the command that is being completed.

15:14

Status (STS): Specifies status for the associated Fabrics command.

Bit Definition

15:1 Status Field as defined in section 4.6.1 of the NVMe Base specification.

00 Reserved

NVM Express over Fabrics 1.0

16

2.2.1 Status Values

Fabrics commands use the status for commands defined in the NVMe Base specification. The Status Field
defined in section 4.6.1 defines the status for Fabrics, Admin, and I/O commands.

Fabrics commands use an allocation of command specific status values from 80h-BFh (refer to Figure 31
of the NVMe Base specification). Refer to Figure 10.

Figure 10: Fabrics Command Specific Status Values

Value Description Commands Affected

80h Connect Incompatible Format: The NVM subsystem does not support the

Connect Record Format specified by the host.
Connect

81h Connect Controller Busy: The controller is already associated with a host. This
value is also returned if there is no available controller.

Connect

82h Connect Invalid Parameters: One or more of the parameters (Host NQN,

Subsystem NQN, Host Identifier, Controller ID, Queue ID) specified are not valid.
Connect

83h Connect Restart Discovery: The NVM subsystem requested is not available.
The host should restart the discovery process.

Connect

84h Connect Invalid Host: The host is not allowed to establish an association to any

controller in the NVM subsystem or the host is not allowed to establish an
association to the specified controller.

Connect

85h –
8Fh

Reserved

90h Discover Restart: The snapshot of the records is now invalid or out of date. The

host should re-read the Discovery Log Page.
Get Log Page

91h Authentication Required: NVMe in-band authentication is required and the

queue has not yet been authenticated.
NOTE 1

92h –
BFh

Reserved

NOTES:
1. All commands other than Connect, Authenticate Send, and Authenticate Receive.

2.3 Data Transfers

Data may be transferred within capsules or by memory transfers. SGLs are used to specify the location of
data. If metadata is transferred, it is a contiguous part of the logical block with which it is associated. The
SGL descriptor(s) (refer to section 4.4 in the NVMe Base specification) specify whether the command’s
data is transferred through memory or within the capsule. The capsule may contain either SGLs or data
(not a mixture of both) following the SQE. If additional SGLs are required then the SGLs are included in the
capsule immediately after the SQE. If an invalid offset is specified in an SGL descriptor, then a status value
of SGL Offset Invalid shall be returned.

SGLs shall be supported within a capsule. The NVMe Transport binding specification defines the SGL
Descriptor Types and Sub Types that are supported for the corresponding NVMe Transport. The NVMe
Transport binding specification also specifies if SGLs may be supported in host memory.

2.3.1 Data and SGL Locations within a Command Capsule

The Submission Queue Entry within the command capsule includes one SGL entry. If there are additional
SGL entries to be transferred in the command capsule, then those entries shall be contiguous and located
immediately after the Submission Queue Entry.

An NVMe Transport binding specification defines the support for data as part of the command capsule. The
controller indicates the starting location of data within a command capsule via the In Capsule Data Offset
(ICDOFF) field in the Identify Controller data structure.

NVM Express over Fabrics 1.0

17

There are restrictions for SGLs that the host needs to follow:

 If ICDOFF is a non-zero value, then all the SGL descriptors following the Submission Queue Entry
shall not have a total size greater than (ICDOFF * 16); and

 the host shall not place more (Keyed) Data Block SGLs within a capsule than the maximum
indicated in the Identify Controller data structure.

The host shall start data (if present) in command capsules at byte offset (ICDOFF * 16) from the end of the
Submission Queue Entry.

Figure 11: Data and SGL Locations within a Command Capsule

Submission Queue Entry
Additional SGLs

(if present)

Byte 0 63 64

Command Capsule of Size N Bytes

(ICDOFF * 16) + 64

Submission Queue Entry Data (if present)
Undefined

(if ICDOFF > 0)

Byte 0 63 64 (N-1)

Command Capsule of Size N Bytes

Undefined

Undefined

(M-1)

(N-1)(M-1)

2.3.2 Data Transfer Examples

The data transfer examples in this section show SGL examples for a Write command where data is
transferred via a memory transaction or within the capsule. The SGL may use a key as part of the data
transfer depending on the requirements of the NVMe Transport used.

The first example shows an 8KB write where all of the data is transferred via memory transactions. In this
case, there is one SGL descriptor that is contained within the Submission Queue Entry at CMD.SGL1. The
SGL descriptor is a Keyed SGL Data Block descriptor. If more SGLs were needed to complete the
command, the additional SGLs would be contained in the command capsule.

NVM Express over Fabrics 1.0

18

Figure 12: SGL Example Using Memory Transactions

Host DRAM

Data Block A

SGL Descriptor

Address = Data Block A
Keyed Data Block descriptor

specifies to transfer 8KB

through memory

Length = 8KB

SGL Identifier = 40h

Key = Tag A

The second example shows an 8KB write where all of the data is transferred within the capsule. In this
case, the SGL descriptor is an SGL Data Block descriptor specifying an Offset of 20h based on an ICDOFF
value of 2h.

Figure 13: SGL Example Using In Capsule Data Transfer

Data Block A

Destination SGL Segment 0

Offset = 20h

SGL Data Block descriptor

specifies to transfer 8KB within the

capsule at offset 20h.
Length = 8KB

SGL Identifier = 01h

Submission Queue Entry

Byte 0

Data

63 64 (N-1)96

Undefined

2.4 Queue Flow Control Mechanism

Submission Queue flow control is facilitated by the use of the SQHD field in the Completion Queue Entry.
The controller uses the SQHD field to communicate the availability of Submission Queue slots to the host.
If the host submits a command capsule when no Submission Queue slots are available then the controller
shall stop processing commands and set the Controller Fatal Status (CSTS.CFS) bit to ‘1’.

NVM Express over Fabrics 1.0

19

Completion Queue flow control is not used in NVMe over Fabrics. The host should size each Completion
Queue to support the maximum number of commands that it has outstanding at one time for a particular
queue. The Completion Queue size may be larger than the size of the corresponding Submission Queue.
The Maximum Outstanding Commands (MAXCMD) value in the Identify Controller data structure indicates
the maximum number of commands that the controller processes at one time for a particular queue to
achieve the best performance. The host may use this value to size Completion Queues and optimize the
number of commands submitted at one time per queue.

NVMe Transports are not required to provide any additional end-to-end flow control. Specific NVMe
Transports may require low level flow control for congestion avoidance and reliability which is outside the
scope of this specification.

NVM Express over Fabrics 1.0

20

3 Commands

Fabrics commands are used to create queues and initialize a controller. Fabrics commands have an
Opcode field of 7Fh. Fabrics commands are processed regardless of the state of controller enable (CC.EN).
The Fabrics command capsule is defined in section 2.1 and the Fabrics response capsule and status is
defined in section 2.2.

Figure 14: Fabric Command Types

Command Type by Field
Combined
Command

Type
2

O/M
1
 I/O Queue

3
 Command

 (07) (06:02) (01:00)

Generic
Command Function

Data

Transfer
4

0b 000 00b 00b 00h M No Property Set

0b 000 00b 01b 01h M Yes Connect

0b 000 01b 00b 04h M No Property Get

0b 000 01b 01b 05h O Yes Authentication Send

0b 000 01b 10b 06h O Yes Authentication Receive

 Vendor Specific

1b na na C0h – FFh O Vendor specific

NOTES:
1. O/M definition: O = Optional, M = Mandatory.
2. Opcodes not listed are reserved.
3. All Fabrics commands may be submitted on the Admin Queue. The I/O Queue supports Fabrics commands as

specified in this column.
4. 00b = no data transfer; 01b = host to controller; 10b = controller to host; 11b = reserved

3.1 Authentication Receive Command and Response

The Authentication Receive command transfers the status and data result of one or more Authentication
Send commands that were previously submitted to the controller.

The association between an Authentication Receive command and previous Authentication Send
commands is dependent on the Security Protocol. The format of the data to be transferred is dependent on
the Security Protocol. Refer to SPC-4 for Security Protocol details.

Authentication Receive commands return the appropriate data corresponding to an Authentication Send
command as defined by the rules of the Security Protocol. The Authentication Receive command data shall
not be retained if there is a loss of communication between the controller and host, or if a Controller Level
Reset occurs.

Figure 15 Authentication Receive Command – Submission Queue Entry

Byte Description

00 Opcode (OPC): Set to 7Fh to indicate a Fabrics command.

01 Reserved

03:02
Command Identifier (CID): This field specifies a unique identifier for the command. Refer to

the definition in Figure 7.

04
Fabrics Command Type (FCTYPE): Set to 06h to indicate an Authentication Receive

command.

23:05 Reserved

39:24

SGL Descriptor 1 (SGL1): This field contains the first SGL descriptor for the command. If the
SGL descriptor is a (Keyed) Data Block descriptor, then it describes the entire data transfer. If
more than one SGL descriptor is needed to describe the data transfer, then the first SGL
descriptor is a Segment or Last Segment descriptor. Refer to section 4.4 of the NVMe Base
specification for the definition of SGL descriptors.

40 Reserved

NVM Express over Fabrics 1.0

21

Byte Description

41
SP Specific 0 (SPSP0): The value of this field contains bits 07:00 of the Security Protocol

Specific field as defined in SPC-4.

42
SP Specific 1 (SPSP1): The value of this field contains bits 15:08 of the Security Protocol

Specific field as defined in SPC-4.

43
Security Protocol (SECP): This field specifies the security protocol as defined in SPC-4. The
controller shall fail the command with Invalid Parameter indicated if a reserved value of the
Security Protocol is specified.

47:44
Allocation Length (AL): The value of this field is specific to the Security Protocol as defined in
SPC-4 where INC_512 is cleared to ‘0’.

63:48 Reserved

Figure 16: Authentication Receive Response

Byte Description

07:00 Reserved

09:08
SQ Head Pointer (SQHD): Indicates the current Submission Queue Head pointer for the
associated Submission Queue.

11:10 Reserved

13:12 Command Identifier (CID): Indicates the identifier of the command that is being completed.

15:14 Status (STS): Specifies status for the command.

3.2 Authentication Send Command and Response

The Authentication Send command is used to transfer security protocol data to the controller. The data
structure transferred as part of this command contains security protocol specific commands to be performed
by the controller. The data structure may contain data or parameters associated with the security protocol
specific commands. Status and data that is to be returned to the host for the security protocol specific
commands submitted by an Authentication Send command are retrieved with the Authentication Receive
command defined in section 3.1.

The association between an Authentication Send command and subsequent Authentication Receive
commands is Security Protocol field dependent as defined in SPC-4.

Figure 17: Authentication Send Command – Submission Queue Entry

Byte Description

00 Opcode (OPC): Set to 7Fh to indicate a Fabrics command.

01 Reserved

03:02
Command Identifier (CID): This field specifies a unique identifier for the command. Refer to

the definition in Figure 7.

04 Fabrics Command Type (FCTYPE): Set to 05h to indicate an Authentication Send command.

23:05 Reserved

39:24

SGL Descriptor 1 (SGL1): This field contains the first SGL descriptor for the command. If the

SGL descriptor is a (Keyed) Data Block descriptor, then it describes the entire data transfer. If
more than one SGL descriptor is needed to describe the data transfer, then the first SGL
descriptor is a Segment or Last Segment descriptor. Refer to section 4.4 of the NVMe Base
specification for the definition of SGL descriptors.

40 Reserved

41
SP Specific 0 (SPSP0): The value of this field contains bits 07:00 of the Security Protocol

Specific field as defined in SPC-4.

42
SP Specific 1 (SPSP1): The value of this field contains bits 15:08 of the Security Protocol

Specific field as defined in SPC-4.

43

Security Protocol (SECP): This field specifies the security protocol as defined in SPC-4. The

controller shall fail the command with Invalid Parameter indicated if a reserved value of the
Security Protocol is specified.

47:44
Transfer Length (TL): The value of this field is specific to the Security Protocol as defined in

SPC-4 where INC_512 is cleared to ‘0’.

NVM Express over Fabrics 1.0

22

Byte Description

63:48 Reserved

Figure 18: Authentication Send Response

Byte Description

07:00 Reserved

09:08
SQ Head Pointer (SQHD): Indicates the current Submission Queue Head pointer for the

associated Submission Queue.

11:10 Reserved

13:12 Command Identifier (CID): Indicates the identifier of the command that is being completed.

15:14 Status (STS): Specifies status for the command.

3.3 Connect Command and Response

The Connect command is used to create a Submission and Completion Queue pair. If the Admin Queue is
specified then the Connect command establishes an association between a host and a controller. The fields
for the Submission Queue Entry are defined in Figure 19 and the fields for the data portion are defined in
Figure 20.

A host that uses a single Host NQN may employ multiple Host Identifiers to designate elements of the host
that access an NVM subsystem independently of each other, e.g., physical or logical partitions of the host.
Alternatively, a host may employ multiple Host NQN values to cause each element to be treated as a
separate host by an NVM subsystem.

The NVM subsystem shall not allocate a Controller ID in the range FFF0h to FFFFh as a valid Controller
ID on completion of a Connect command. If the host is not allowed to establish an association to any
controller in the NVM subsystem, then a status of Connect Invalid Host is returned.

If the NVM subsystem supports the dynamic controller model then:

 The Controller ID of FFFFh shall be specified as the Controller ID in a Connect command for the
Admin Queue or a status value of Invalid Field in Command is returned.

 The NVM subsystem shall return any available controller to the host, indicating the Controller ID
allocated in the Connect response.

If the NVM subsystem supports the static controller model then:

 The host may request a specific controller in a Connect command for the Admin Queue. If the host
is not allowed to establish an association to the specified controller, then a status of Connect Invalid
Host is returned.

 The Controller ID of FFFEh on the Admin Queue specifies that any Controller ID may be allocated
and returned in the Connect response.

 If the host specifies a Controller ID value of FFFFh for the Admin Queue, then a status value of
Connect Invalid Parameters is returned.

The NVM subsystem may allocate specific controllers to particular hosts. If a host requests a controller that
it is not allocated to that host, then a status value of Connect Invalid Host is returned.

The host shall establish an association with a controller and enable the controller before establishing a
connection with an I/O Queue of the controller. If the host sends a Connect command specifying a Queue
ID for an I/O Queue before the controller has been enabled, then a status value of Connect Invalid
Parameters is returned.

If the Host Identifier, Host NQN, NVM Subsystem NQN, and Controller ID values specified for an I/O Queue
are not the same as the values specified for the associated Admin Queue in which the association between
the host and controller was established then a status value of Connect Invalid Parameters is returned. If
the Host NQN or NVM Subsystem NQN values do not match the values that the NVM subsystem is
configured to support, then a status value of Connect Invalid Parameters is returned. If there is a syntax

NVM Express over Fabrics 1.0

23

error in the Host NQN or NVM Subsystem NQN value (refer to section 7.9 in the NVMe Base specification),
then a status value of Connect Invalid Parameters is returned. If the Host Identifier is cleared to 0h, then a
status value of Connect Invalid Parameters is returned.

Figure 19: Connect Command – Submission Queue Entry

Byte Description

00 Opcode (OPC): Set to 7Fh to indicate a Fabrics command.

01 Reserved

03:02
Command Identifier (CID): This field specifies a unique identifier for the command. Refer to
the definition in Figure 7.

04 Fabrics Command Type (FCTYPE): Set to 01h to indicate a Connect command.

23:05 Reserved

39:24

SGL Descriptor 1 (SGL1): This field contains a (Keyed) SGL Data Block descriptor that

describes the entire data transfer. Refer to section 4.4 of the NVMe Base specification for the
definition of SGL descriptors.

41:40

Record Format (RECFMT): Specifies the format of the Connect command capsule. If a new

Connect command format is defined, this value is incremented by one. The format of the record
specified in this definition shall be 0h. If the NVM subsystem does not support the value
specified, then a status value of Connect Incompatible Format shall be returned.

43:42

Queue ID (QID): Specifies the Queue Identifier for the Admin or I/O Queue. The identifier is
used for both the Submission and Completion Queue. The Admin Submission and Completion
Queue identifier is 0. I/O Submission and Completion Queue identifiers are in the range 1 to
65534.

45:44

Submission Queue Size (SQSIZE): This field indicates the size of the Submission Queue to

be created. If the size is 0h or larger than the controller supports, then a status value of Connect
Invalid Parameters shall be returned. The maximum size of the Admin Submission Queue is
specified in the Discovery Log entry for the NVM subsystem. Refer to section 4.1.3 of the NVMe
Base specification. This is a 0’s based value.

46

Connect Attributes (CATTR): This field indicates attributes for the connection.

Bits 7:2 are reserved.

Bits 1:0 indicate the priority class to use for commands within this Submission Queue. This field
is only used when the weighted round robin with urgent priority class is the arbitration
mechanism selected, the field is ignored if weighted round robin with urgent priority class is not
used. Refer to section 4.11 of the NVMe Base specification. This field is only valid for I/O
Queues. It shall be set to 00b for Admin Queue connections.

Value Definition

00b Urgent

01b High

10b Medium

11b Low

47 Reserved

51:48

Keep Alive Timeout (KATO): This field has the same definition as the Keep Alive Timeout

defined in section 5.15.1.14 of the the NVMe Base specification. The controller shall set the
Keep Alive Timeout Feature to this value.

63:52 Reserved

NVM Express over Fabrics 1.0

24

Figure 20: Connect Command – Data

Byte Description

15:00
Host Identifier (HOSTID): This field has the same definition as the Host Identifier defined in
section 5.14.1.16 of the the NVMe Base specification. The controller shall set the Host Identifer
Feature to this value.

17:16

Controller ID (CNTLID): Specifies the controller ID requested. This field corresponds to the
Controller ID (CNTLID) value returned in the Identify Controller data structure for a particular
controller. If the NVM subsystem uses the dynamic controller model, then the value shall be
FFFFh for the Admin Queue and any available controller may be returned. If the NVM
subsystem uses the static controller model and the value is FFFEh for the Admin Queue, then
any available controller may be returned.

255:18 Reserved

511:256
NVM Subsystem NVMe Qualified Name (SUBNQN): NVMe Qualified Name (NQN) that

uniquely identifies the NVM subsystem. Refer to section 7.9 of the NVMe Base specification.

767:512
Host NVMe Qualified Name (HOSTNQN): NVMe Qualified Name (NQN) that uniquely
identifies the host. Refer to section 7.9 of the NVMe Base specification.

1023:768 Reserved

The Connect response provides status for the Connect command. If a connection is established, then the
Controller ID allocated to the host is returned. The Connect response is defined in Figure 21.

For a Connect command that fails:

 the controller shall not return a status value of Invalid Field in Command; and

 the controller shall not add an entry to the Error Information Log.

Figure 21: Connect Response

Byte Description

03:00 Status Code Specific: The value is dependent on the status returned. Refer to Figure 22.

07:04 Reserved

09:08
SQ Head Pointer (SQHD): Indicates the current Submission Queue Head pointer for the

associated Submission Queue.

11:10 Reserved

13:12 Command Identifier (CID): Indicates the identifier of the command that is being completed.

15:14
Status (STS): Specifies status for the command. Refer to section 2.2.1 for values specific to the
Connect command.

NVM Express over Fabrics 1.0

25

Figure 22: Connect Response – Dword 0 Value Based on Status Code

Status Code Definition of Dword 0

Successful
Completion

Byte Description

01:00

Controller ID (CNTLID): Specifies the controller ID allocated to the

host. If a particular controller was specified in the CNTLID field of the
Connect command, then this field shall contain the same value.

03:02

Authentication Requirements (AUTHREQ): Specifies the NVMe in-

band authentication requirements. The field is bit significant. If no bit
is set to ‘1’ then NVMe in-band authentication is not required. If a bit is
set to ‘1’, then NVMe in-band authentication using the specified
protocol is acceptable. If a bit is cleared to ‘0’, then NVMe in-band
authentication shall not use the specified protocol.

Bit Definition

15:01 Reserved

00
TCG Security Protocols (refer to TCG Storage Interface
Interactions Specification [SIIS])

Connect Invalid
Parameters

Byte Description

01:00

Invalid Parameter Offset (IPO): If an invalid parameter is reported,

then this field specifies the offset in bytes to the invalid parameter from
the start of the SQE or the data.

02

Invalid Attributes (IATTR): Specifies attributes of the invalid field
parameter.

Bits 7:1 are reserved.

Bit 0 if cleared to ‘0’ then the invalid parameter is specified from the
start of the SQE. Bit 0 if set to ‘1’ then the invalid parameter is specified
from the start of the data.

03 Reserved

All Other
Status Values

Byte Description

03:00 Reserved

3.4 Property Get Command and Response

The Property Get command is used to specify the property value to return to the host (refer to section 3.5.1).
The fields for the Property Get command are defined in Figure 23. If an invalid property or invalid offset is
specified, then a status value of Invalid Field in Command shall be returned.

NVM Express over Fabrics 1.0

26

Figure 23: Property Get Command

Byte Description

00 Opcode (OPC): Set to 7Fh to indicate a Fabrics command.

01 Reserved

03:02
Command Identifier (CID): This field specifies a unique identifier for the command. Refer to the
definition in Figure 7.

04 Fabrics Command Type (FCTYPE): Set to 04h to indicate a Property Get command.

39:05 Reserved

40

Attributes (ATTRIB): Specifies attributes for the Property Get command.

Bits 7:3 are reserved.

Bits 2:0 specifies the size of the property to return. Valid values are shown in the table below.

Value Definition

000b 4 bytes

001b 8 bytes

010b – 111b Reserved

43:41 Reserved

47:44 Offset (OFST): Specifies the offset to the property to get. Refer to section 3.5.1.

63:48 Reserved

The Property Get response is used to return the value of the property requested to the host. The Property
Get response is defined in Figure 24.

Figure 24: Property Get Response

Byte Description

07:00

Value (VALUE): Specifes the value returned for the property if the Property Get command is

successful. If the size of the property is four bytes, then the value is specified in bytes 03:00 and
bytes 07:04 are reserved.

09:08
SQ Head Pointer (SQHD): Indicates the current Submission Queue Head pointer for the

associated Submission Queue.

11:10 Reserved

13:12 Command Identifier (CID): Indicates the identifier of the command that is being completed.

15:14 Status (STS): Specifies status for the command.

3.5 Property Set Command and Response

The Property Set command is used to set the value of a property (refer to section 3.5.1). The fields for the
Property Set command are defined in Figure 25. If an invalid property or invalid offset is specified, then a
status value of Invalid Field in Command shall be returned.

Figure 25: Property Set Command

Byte Description

00 Opcode (OPC): Set to 7Fh to indicate a Fabrics command.

01 Reserved

03:02
Command Identifier (CID): This field specifies a unique identifier for the command. Refer to the

definition in Figure 7.

04 Fabrics Command Type (FCTYPE): Set to 00h to indicate a Property Set command.

39:05 Reserved

NVM Express over Fabrics 1.0

27

Byte Description

40

Attributes (ATTRIB): Specifies attributes for the Property Set command.

Bits 7:3 are reserved.

Bits 2:0 specifies the size of the property to update. Valid values are shown in the table below.

Value Definition

000b 4 bytes

001b 8 bytes

010b – 111b Reserved

43:41 Reserved

47:44 Offset (OFST): Specifies the offset to the property to set. Refer to section 3.5.1.

55:48
Value (VALUE): Specifes the value used to update the property. If the size of the property is

four bytes, then the value is specified in bytes 51:48 and bytes 55:52 are reserved.

63:56 Reserved

The Property Set response provides status for the Property Set command. The Property Set response is
defined in Figure 26.

Figure 26: Property Set Response

Byte Description

07:00 Reserved

09:08
SQ Head Pointer (SQHD): Indicates the current Submission Queue Head pointer for the

associated Submission Queue.

11:10 Reserved

13:12 Command Identifier (CID): Indicates the identifier of the command that is being completed.

15:14 Status (STS): Specifies status for the command.

3.5.1 Property Definitions

A property is a Dword, or Qword attribute of a controller. The attribute may have read, write, or read/write
access. The host shall access properties in their native width with an offset that is at the beginning of the
property. All reserved properties and all reserved bits within properties are read-only and return 0h when
read. Properties may be read with the Property Get command and may be written with the Property Set
command.

The property address range from 0h to FFFh is reserved for functionality that is equivalent to the register
functionality defined for NVMe over PCIe. The property address range from 1000h to 12FFh is reserved for
definition by NVMe over Fabrics. The doorbell registers defined for NVMe over PCIe are not supported in
NVMe over Fabrics.

Figure 27 specifies the properties that are supported by NVMe over Fabrics.

NVM Express over Fabrics 1.0

28

Figure 27: Property Definitions

Start End Symbol Description

00h 07h CAP
Controller Capabilities
Note: CAP.DSTRD shall be set to fixed value 0h.
Note: CAP.CQR shall be set to fixed value 1h.

08h 0Bh VS Version

0Ch 0Fh INTMS Reserved

10h 13h INTMC Reserved

14h 17h CC Controller Configuration

18h 1Bh Reserved Reserved

1Ch 1Fh CSTS Controller Status

20h 23h NSSR NVM Subsystem Reset (Optional)

24h 27h AQA Reserved

28h 2Fh ASQ Reserved

30h 37h ACQ Reserved

38h 3Bh CMBLOC Reserved

3Ch 3Fh CMBSZ Reserved

40h EFFh Reserved Reserved

F00h FFFh Reserved Command Set Specific

1000h 12FFh Reserved Reserved for Fabrics definition

 Vendor Specific (Optional)

NVM Express over Fabrics 1.0

29

4 Controller Architecture

NVMe over Fabrics utilizes the same controller architecture as that defined in the NVMe Base specification.
This includes using Submission and Completion Queues to execute commands between a host and a
controller.

4.1 Identify Controller Data Structure Enhancements

This section defines Identify Controller fields that are specific to NVMe over Fabrics.

Figure 28: Identify Controller Attributes

1795:1792 M

I/O Queue Command Capsule Supported Size (IOCCSZ): This field defines the

I/O command capsule size in 16 byte units. The minimum value that may be
specified is 4 corresponding to 64 bytes.

1799:1796 M

I/O Queue Response Capsule Supported Size (IORCSZ): This field defines the

I/O response capsule size in 16 byte units. The minimum value that may be specified
is 1 corresponding to 16 bytes.

1801:1800 M

In Capsule Data Offset (ICDOFF): This field defines the offset where data starts

within a capsule. This value is applicable to I/O Queues only (the Admin Queue shall
use a value of 0h).

The value is specified in 16 byte units. The offset is from the end of the Submission
Queue Entry within the command capsule (starting at 64 bytes in the command
capsule). The minimum value is 0 and the maximum value is FFFFh.

1802 M

Controller Attributes (CTRATTR): This field indicates attributes of the controller.

Bits 7:1 are reserved.

Bit 0 if cleared to ‘0’ then the NVM subsystem uses a dynamic controller model. Bit
0 if set to ‘1’ then the NVM subsystem uses a static controller model.

1803 M

Maximum SGL Data Block Descriptors (MSDBD): This field indicates the

maximum number of (Keyed) SGL Data Block descriptors that a host is allowed to
place in a capsule. A value of 0h indicates no limit.

2047:1804 Reserved

4.2 Controller Model

The NVM subsystem may support a dynamic or static controller model. All controllers in the NVM subsystem
shall follow the same controller model. A Discovery Controller shall support the dynamic controller model.

In a dynamic controller model, the controller is allocated by the NVM subsystem on demand. In this model,
all controllers allocated to a specific host have the same state including attached namespaces and Feature
settings. The host shall specify a Controller ID of FFFFh when using the Fabrics Connect command to
establish an association with an NVM subsystem using the dynamic controller model.

In a static controller model, controllers that may be allocated to a particular host may have different state.
The controllers within an NVM subsystem are distinguished by their Controller ID. The state that persists
across associations is any state that persists across a Controller Level Reset. In a static controller model,
different controllers may present different Feature settings or namespace attachments to the same host.
The NVM subsystem may allocate particular controllers to specific hosts.

While allocation of static controllers to hosts are expected to be durable (so that hosts can expect to form
associations to the same controllers repeatedly, e.g., after each host reboot), the NVM subsystem may
remove the host allocation of a controller that is not in use at any time for implementation specific reasons
(e.g., controller resource reclamation, subsystem reconfiguration).

NVM Express over Fabrics 1.0

30

The controller ID values returned in the Discover Log entries indicate whether an NVM subsystem supports
the dynamic or static controller model. The controller ID value of FFFFh is a special value used for NVM
subsystems that support the dynamic controller model indicating that any available controller may be
returned. The controller ID value of FFFEh is a special value used for NVM subsystems that support the
static controller model indicating that any available controller may be returned. An NVM subsystem supports
the dynamic controller model if Discovery Log entries use the Controller ID value of FFFFh. An NVM
subsystem supports the static controller model if Discovery Log entries use a Controller ID value that is
less than FFFFh. The Identify Controller data structure also indicates whether an NVM subsystem is
dynamic or static.

If an NVM subsystem is dynamic, then the Controller ID returned in the Discovery Log shall be FFFFh. If
an NVM subsystem is static, then multiple entries may be returned in the Discovery Log specifying different
Controller IDs. If an NVM subsystem that is static includes a Discovery Log entry that specifies a Controller
ID of FFFEh, then the host should remember the Controller ID returned from the Fabrics Connect command
and re-use the allocated Controller ID for future associations to that particular controller.

4.3 Queue Initialization and Queue State

The Authentication Requirements (AUTHREQ) field in the Connect response indicates if NVMe in-band
authentication is required. If AUTHREQ is cleared to zero, the created queue is ready for use after the
Connect command completes successfully. If AUTHREQ is set to a non-zero value, the created queue is
ready for use after NVMe in-band authentication has been performed successfully using the
Authentication Send and Authentication Receive Fabrics commands.

If a controller requires or is undergoing NVMe in-band authentication, a controller shall abort all
commands other than authentication commands with a status of Authentication Required. After the NVMe
in-band authentication has been performed successfully, a controller shall abort all authentication
commands with a status of Command Sequence Error.

When an Admin Queue is ready for use, the associated controller is disabled (i.e., CC.EN is initialized to
‘0’). A disabled controller shall abort all commands other than the Property Get and Property Set
commands on the Admin Queue with a status of Command Sequence Error. After the controller is
enabled, it should accept all supported Admin commands in addition to the Fabrics commands Property
Get and Property Set.

A created I/O queue shall abort all commands with a status of Command Sequence Error if the
associated controller is disabled.

4.4 Initialization

The host selects the NVM subsystem with which to create a host to controller association. The host first
establishes an NVMe Transport connection with the NVM subsystem. Next the host forms an association
with a controller and creates the Admin Queue using the Fabrics Connect command. Finally, the host
configures the controller and creates I/O Queues. Figure 29 is a ladder diagram that describes the queue
creation process for an Admin Queue or an I/O Queue.

NVM Express over Fabrics 1.0

31

Figure 29: Queue Creation Flow

ADMIN OR I/O QUEUE CREATED

HOST CONTROLLER

Controller ID and
AUTHREQ returned

If AUTHREQ 0

The controller initialization steps after an association is established are described below. For determining
capabilities or configuring properties, the host uses the Property Get and Property Set commands,
respectively.

1. NVMe in-band authentication is performed if required (refer to section 6.2).
2. The host determines the controller capabilities.
3. The host configures controller settings. Specific settings include:

a. The arbitration mechanism should be selected in CC.AMS.
b. The memory page size should be initialized in CC.MPS.
c. The I/O Command Set that is to be used should be selected in CC.CSS.

4. The controller should be enabled by setting CC.EN to ‘1’.
5. The host should wait for the controller to indicate it is ready to process commands. The controller

is ready to process commands when CSTS.RDY is set to ‘1’.
6. The host should determine the configuration of the controller by issuing the Identify command,

specifying the Controller data structure. The host should then determine the configuration of each
namespace by issuing the Identify command for each namespace, specifying the Namespace data
structure.

7. The host should determine the number of I/O Submission Queues and I/O Completion Queues
supported using the Set Features command with the Number of Queues feature identifier.

8. If the host desires asynchronous notification of optional events, the host should issue a Set
Features command specifying the events to enable. If the host desires asynchronous notification
of events, the host should submit an appropriate number of Asynchronous Event Request
commands. This step may be done at any point after the controller signals it is ready (i.e.,
CSTS.RDY is set to ‘1’).

NVM Express over Fabrics 1.0

32

4.5 Shutdown

To shutdown the controller, the host should set the Shutdown Notification (CC.SHN) field to 01b to indicate
a normal shutdown operation using the Property Set command. After the host specifies a shutdown, the
host may either disconnect at the NVMe Transport level or it may choose to poll CSTS.SHST to determine
when the shutdown is complete (the controller should not initiate a disconnect at the NVMe Transport level).
It is an implementation choice whether the host aborts all outstanding commands prior to the shutdown.

The CC.EN field is not used to shutdown the controller (it is used for Controller Reset).

NVM Express over Fabrics 1.0

33

5 Discovery Service

NVMe over Fabrics defines a discovery mechanism that a host uses to determine the NVM subsystems
that expose namespaces that the host may access. The Discovery Service provides a host with the
following capabilities:

 The ability to discover a list of NVM subsystems with namespaces that are accessible to the host.

 The ability to discover multiple paths to an NVM subsystem.

 The ability to discover controllers that are statically configured.

A Discovery Service is an NVM subsystem that supports only Discovery controllers. A Discovery controller
supports minimal functionality and only implements the required features that allow the Discovery Log Page
to be retrieved and does not implement I/O Queues or expose namespaces.

The host uses the well-known Discovery Service NQN (nqn.2014-08.org.nvmexpress.discovery) in the
Connect command to a Discovery Service. The method that a host uses to obtain the NVMe Transport
information necessary to connect to the well-known Discovery Service is implementation specific.

The Discovery Log Page provided by a Discovery controller contains one or more entries. Each entry
specifies information necessary for the host to connect to an NVM subsystem. An entry may be associated
with an NVM subsystem that exposes namespaces or a referral to another Discovery Service. There are
no ordering requirements for log page entries within the Discovery Log Page.

Discovery controller(s) may provide different log page contents depending on the Host NQN provided (e.g.,
different NVM subsystems may be accessible to different hosts). The Discovery Log entries should return
addresses on the same fabric as the Discovery Service.

The Keep Alive command is reserved for Discovery controllers. A transport may specify a fixed Discovery
controller activity timeout value (e.g., 2 minutes). If no commands are received by a Discovery controller
within that time period, the controller may perform the actions for Keep Alive Timer expiration defined in
section 7.1.2.

A Discovery Log Page with multiple entries for the same NVM subsystem indicates that there are multiple
fabric paths to the NVM subsystem. The host may use these paths to form multiple associations to
controllers within an NVM subsystem.

Multiple entries for the same NVM subsystem with different Port ID values indicates that the resulting NVMe
Transport connections are independent with respect to NVM subsystem port hardware failures. A host that
uses a single association should pick the first / best record to attach to an NVM subsystem. A host that
uses multiple associations should choose different ports. In NVMe over Fabrics 1.0, there is no indication
of preferred ports or active/passive port state.

5.1 Discovery Controller Initialization

The initialization process for the Discovery controller is described below:

1. NVMe in-band authentication is performed if required (refer to section 6.2).
2. The host determines the controller’s capabilities by reading the Controller Capabilities property.
3. The host configures the controller’s settings by writing the Controller Configuration property,

including setting CC.EN to ‘1’ to enable command processing.
4. The host waits for the controller to indicate it is ready to process commands. The controller is ready

to process commands when CSTS.RDY is set to ‘1’ in the Controller Status property.
5. The host determines the features and capabilities of the controller by issuing the Identify command,

specifying the Controller data structure.

After initializing the Discovery controller, the host reads the Discovery Log Page. Refer to section 5.3.

NVM Express over Fabrics 1.0

34

5.2 Discovery Controller Properties and Command Support

The supported properties for a Discovery controller are defined in Figure 30.

Figure 30: Discovery Controller – Properties

Start End Symbol Description

00h 07h CAP

Controller Capabilities
Note: CAP.MPSMAX shall be set to fixed value 0h.
Note: CAP.MPSMIN shall be set to fixed value 0h.
Note: CAP.CSS shall be set to a fixed value 1h.
Note: CAP.NSSRS shall be set to a fixed value 0h.
Note: CAP.AMS shall be set to a fixed value 0h.
Note: CAP.CQR shall be set to a fixed value 1b.

08h 0Bh VS Version

0Ch 0Fh INTMS Reserved

10h 13h INTMC Reserved

14h 17h CC

Controller Configuration
Note: CC.IOCQES is reserved.
Note: CC.IOSQES is reserved.
Note: CC.AMS shall be set to 0h.
Note: CC.MPS shall be set to 0h.
Note: CC.CSS shall be set to 0h.

18h 1Bh Reserved Reserved

1Ch 1Fh CSTS Controller Status

20h 23h NSSR Reserved

24h 27h AQA Reserved

28h 2Fh ASQ Reserved

30h 37h ACQ Reserved

38h 3Bh CMBLOC Reserved

3Ch 3Fh CMBSZ Reserved

40h FFFh Reserved Reserved

 Vendor Specific (Optional)

A Discovery Controller supports all mandatory Fabrics commands. A Discovery controller supports a subset
of Admin commands shown in Figure 31.

Figure 31: Discovery Controller – Admin Commands

Opcode by Field

Combined

Opcode
2

O/M

1

Namespace
Identifier

Used
3

Command
 (07) (06:02) (01:00)

Generic
Command Function

Data

Transfer
4

0b 000 00b 10b 02h M n/a Get Log Page

0b 000 01b 10b 06h M n/a Identify

NOTES:
1. O/M definition: O = Optional, M = Mandatory.
2. Opcodes not listed are reserved.
3. The Namespace Identifier field (CDW1.NSID) is reserved for Discovery controllers.
4. 00b = no data transfer; 01b = host to controller; 10b = controller to host; 11b = bidirectional

The Discovery controller shall support the Discovery Log Page. The log pages that a Discovery controller
may support are shown in Figure 32.

NVM Express over Fabrics 1.0

35

Figure 32: Discovery Controller – Log Page Identifiers

Log Identifier O/M Description

00h Reserved

01h O Error Information

02h – 6Fh Reserved

70h M Discovery

71h – BFh Reserved

C0h – FFh Vendor specific

O/M: O = Optional, M = Mandatory

The Discovery controller shall support the Identify command with a CNS value of 01h (Identify Controller
data structure); all other CNS values are reserved. The Identify Controller data structure returned when
CNS is 01h is defined in Figure 33.

Figure 33: Discovery Controller – Identify Controller Data Structure

Bytes O/M Description

63:00 Reserved

71:64 M

Firmware Revision (FR): Refer to Figure 90 in the NVMe Base specification. Note:

The firmware revision is only accessible via this mechanism as the Firmware
Information log page is not supported.

76:72 Reserved

77 M

Maximum Data Transfer Size (MDTS): Refer to Figure 90 in the NVMe Base

specification. Note: The CAP.MPSMIN and CAP.MPSMAX values are fixed at 0h.
Thus, this field is reported in units of 4KB.

79:78 M Controller ID (CNTLID): Refer to Figure 90 in the NVMe Base specification.

83:80 M Version (VER): Refer to Figure 90 in the NVMe Base specification.

260:84 Reserved

261 M Log Page Attributes (LPA): Refer to Figure 90 in the NVMe Base specification.

262 M
Error Log Page Attributes (ELPE): Refer to Figure 90 in the NVMe Base

specification.

513:263 Reserved

515:514 M
Maximum Outstanding Commands (MAXCMD): Refer to Figure 90 in the NVMe

Base specification.

535:516 Reserved

539:536 M SGL Support (SGLS): Refer to Figure 90 in the NVMe Base specification.

767:540 Reserved

1023:768 M
NVM Subsystem NVMe Qualified Name (SUBNQN): Refer to Figure 90 in the

NVMe Base specification.

2047:1024 Reserved for Discovery controller specific fields.

3071:2048 Reserved

4095:3072 O Vendor Specific

5.3 Discovery Log Page (Log Identifier 70h)

The Discovery Log Page shall only be supported by Discovery controllers. The Discovery Log Page shall
not be supported by controllers that expose namespaces for NVMe over PCIe or NVMe over Fabrics. The
Discovery Log Page provides an inventory of NVM subsystems with which a host may attempt to form an
association. The Discovery Log may be specific to the host requesting the log. The Discovery Log page is
persistent across power cycles.

The Log Page Offset is used (if needed) to retrieve specific records. The number of records is returned in
the header of the log page. The format for a Discovery Log Page entry is defined in Figure 34. The format
for the Discovery Log is defined in Figure 35.

NVM Express over Fabrics 1.0

36

A single Get Log Page command used to read the Discovery Log Page shall be atomic. If the host reads
the Discovery Log Page using multiple Get Log Page commands it should ensure that there has not been
a change in the contents of the data. The host should read the Discovery Log Page contents in order (i.e.,
with increasing Log Page Offset values) and then re-read the Generation Counter after the entire log page
is transferred. If the Generation Counter does not match the original value read, the host should discard
the log page read as the entries may be inconsistent. If the log page contents change during this command
sequence, the controller may return a status of Discover Restart.

Every record indicates via the SUBTYPE field if it is referring to another Discovery Service or if the record
indicates an NVM subsystem composed of controllers that may expose namespaces. A referral to another
Discovery Service is a mechanism to find additional NVM subsystems that contain controllers that may
expose namespaces. Referrals shall not be deeper than eight levels.

If an NVM subsystem supports the dynamic controller model, then all entries for that NVM subsystem shall
have the Controller ID field set to FFFFh. For an NVM subsystem with a particular NVM subsystem port
and NVMe Transport address, there shall be only one entry with a Controller ID field set to FFFFh (for the
dynamic controller model) or FFFEh (for the static controller model).

Figure 34: Get Log Page – Discovery Log Page Entry

Byte Description

00

Transport Type (TRTYPE): Specifies the NVMe Transport type.

Value Definition

00 Reserved

01 RDMA Transport (refer to section 7.3)

02 Fibre Channel Transport (refer to INCITS 540)

03-253 Reserved

254
Intra-host Transport (i.e., loopback) (NOTE: This is a reserved value for

use by host software.)

255 Reserved

01

Address Family (ADRFAM): Specifies the address family.

Value Definition

00 Reserved

01 AF_INET: IPV4 address family. Address format specified in IETF RFC 791.

02 AF_INET: IPV6 address family. Address format specified in IETF RFC 2373

03 AF_IB: InfiniBand address family.

04 Fibre Channel address family.

05 – 253 Reserved

254
Intra-host Transport (i.e., loopback) (NOTE: This is a reserved value for
use by host software.)

255 Reserved

NVM Express over Fabrics 1.0

37

Byte Description

02

Subsystem Type (SUBTYPE): Specifies the type of the NVM subsystem that is indicated in this

entry.

Value Definition

00 Reserved.

01
The entry describes a referral to another Discovery Service composed of
Discovery controllers for additional records.

02
The entry describes an NVM subsystem that is not associated with
Discovery controllers and whose controllers may have attached
namespaces.

03 – 255 Reserved

03

Transport Requirements (TREQ): Indicates requirements for the NVMe Transport.

Bits 7:2 are reserved.

Bits 1:0 indicate whether connections shall be made over a fabric secure channel.

Value Definition

00b Not specified

01b Required

10b Not required

11b Reserved

05:04

Port ID (PORTID): Specifies a particular NVM subsystem port. Different NVMe Transports or

address families may utilize the same Port ID value (e.g, a Port ID may support both iWARP and
RoCE).

07:06

Controller ID (CNTLID): Specifies the controller ID. If the NVM subsystem uses a dynamic

controller model, then this field shall be set to FFFFh. If the NVM subsystem uses a static controller
model, then this field may be set to a specific controller ID (values 0h to FFEFh are valid). If the
NVM subsystem uses a static controller model and the value indicated is FFFEh, then the host
should remember the Controller ID returned as part of the Fabrics Connect command in order to
re-establish an association in the future with the same controller.

09:08
Admin Max SQ Size (ASQSZ): Specifies the maximum size of an Admin Submission Queue. This

applies to all controllers in the NVM subsystem. The value shall be a minimum of 32 entries.

31:10 Reserved

63:32

Transport Service Identifier (TRSVCID): Specifies the NVMe Transport service identifier as an

ASCII string. The NVMe Transport service identifier is specified by the associated NVMe Transport
binding specification. Refer to http://nvmexpress.org/specifications for a registry that lists the valid
values of this identifier and the associated NVMe Transport binding specifications.

255:64 Reserved

511:256

NVM Subsystem Qualified Name (SUBNQN): NVMe Qualified Name (NQN) that uniquely

identifies the NVM subsystem. Refer to section 7.9 of the NVMe Base specification. For a
Discovery Service, the value returned shall be the well-known Discovery Service NQN (nqn.2014-
08.org.nvmexpress.discovery).

767:512

Transport Address (TRADDR): Specifies the address of the NVM subsystem that may be used

for a Connect command as an ASCII string. The Address Family field describes the reference for
parsing this field. Refer to section 1.5 of the NVMe Base specification for ASCII string
requirements.

1023:768

Transport Specific Address Subtype (TSAS): Specifies NVMe Transport specific information

about the address. For the definition of this field, refer to the appropriate NVMe Transport binding
specification.

http://nvmexpress.org/specifications

NVM Express over Fabrics 1.0

38

Figure 35: Get Log Page – Discovery Log

Bytes Description

07:00
Generation Counter (GENCTR): Indicates the version of the discovery information,
starting at a value of 0h. For each change in the Discovery Log, this counter is
incremented by one. If the maximum count is exceeded, it wraps to a value of 0h.

15:08 Number of Records (NUMREC): Indicates the number of records contained in the log.

17:16

Record Format (RECFMT): Specifies the format of the Discovery Log. If a new format is

defined, this value is incremented by one. The format of the record specified in this
definition shall be 0h.

1023:18 Reserved

2047:1024
Discovery Log Entry 0 (DLE0): Contains the first Discovery Log Entry as defined in
Figure 34.

3071:2048
Discovery Log Entry 1 (DLE1): Contains the second Discovery Log Entry as defined in

Figure 34 (if present).
… …

(((N + 2) × 1024) - 1):

((N + 1) × 1024)

Discovery Log Entry N (DLEN): Contains the Nth Discovery Log Entry as defined in

Figure 34 (if present).

NVM Express over Fabrics 1.0

39

6 Authentication

NVMe over Fabrics supports both fabric secure channel (that includes authentication) and NVMe in-band
authentication. Fabric authentication is part of establishing a fabric secure channel via an NVMe Transport
specific protocol that provides authentication, encryption, and integrity checking (e.g., IPsec; see RFC
4301). NVMe in-band authentication is performed immediately after a Connect command succeeds using
the Authentication Send and Authentication Receive commands (refer to section 3) to tunnel authentication
protocol commands between the host and the controller.

Enrollment of the host and controller in an authentication mechanism, including provisioning of
authentication credentials to the host and controller, is outside the scope of this specification.

If both fabric secure channel and NVMe in-band authentication are used, the identities for these two
instances of authentication may differ for the same NVMe Transport connection. For example, if an iWARP
NVMe Transport is used with IPsec as the fabric secure channel technology, the IPsec identities for
authentication are associated with the IP network (e.g., DNS host name or IP address), whereas NVMe in-
band authentication uses NVMe identities (i.e., Host NQNs). The NVMe Transport binding specification
may provide further guidance and requirements on the relationship between these two identities, but
determination of which NVMe Transport identities are authorized to be used with which NVMe identities is
part of the security policy for the deployed subsystem.

6.1 Fabric Secure Channel

The Transport Requirements field in the Fabrics Discovery Log Page Entry (refer to Figure 34) indicates
whether a fabric secure channel shall be used for an NVMe Transport connection to an NVM subsystem.
The secure channel mechanism is specific to the type of fabric.

If establishment of a secure channel fails or a secure channel is not established when required by the
controller, the resulting errors are fabric-specific and may not be reported to the NVMe layer on the host.
Such errors may result in the controller being inaccessible to the host via the NVMe Transport connection
on which the authentication failure occurred.

An NVM subsystem that requires use of a fabric secure channel (i.e., as indicated by the TREQ field in the
associated Discovery Log entry) shall not allow capsules to be transferred until a secure channel has been
established for the NVMe Transport connection.

All Discovery Log Page Entries for an NVM subsystem should report the same value of TREQ to each host.
Discovery Log Page Entries for an NVM subsystem may report different values of TREQ to different hosts.

6.2 NVMe In-band Authentication

The Authentication Requirements (AUTHREQ) field in the Connect response capsule (refer to Figure 21)
indicates whether NVMe in-band authentication is required.

If one or more of the bits in the AUTHREQ field are set to ‘1’, then the controller requires that the host
authenticate on each queue via one of the indicated security protocols in order to proceed with Fabrics,
Admin, and I/O commands. Authentication success is defined by the specific security protocol that is used
for authentication. If any command other than Connect, Authentication Send, or Authentication Receive is
received prior to authentication success, then the controller shall abort the command with Authentication
Required status.

If all bits in the AUTHREQ field are cleared to ‘0’, then the controller does not require the host to
authenticate, and the subsystem shall not abort any command with a status value of Authentication
Required.

A controller shall report the same value of AUTHREQ in the Connect response capsules sent by all of that
controller’s queues. All controllers in an NVM subsystem should report the same value of AUTHREQ.

If NVMe in-band authentication succeeds, then:

NVM Express over Fabrics 1.0

40

1) any supported commands for the associated queue type may be processed; and
2) if an Authentication Send or an Authentication Receive command is received, then that command

shall be aborted with a status value of Command Sequence Error.

6.2.1 NVMe In-band Authentication Protocol-Specific Requirements

Authentication requirements for security commands are based on the security protocol indicated by the
SECP field in the command.

6.2.1.1 NVMe In-band Authentication Requirements for the TCG Security Protocols

For the TCG Security Protocols (i.e., bit 00 is set to ‘1’ in the AUTHREQ field), security commands
specifying security protocol values 01h through 06h do not require authentication when used for NVMe in-
band authentication. When used for other purposes, in-band authentication of these commands is required.
The TCG Storage Interface Interactions Specification (SIIS) and associated specifications specify the
subset of the TCG security protocols used for NVMe in-band authentication.

NVM Express over Fabrics 1.0

41

7 Transport Definition

7.1 Transport Requirements

This section defines requirements that all NVMe Transports that support an NVMe over Fabrics
implementation shall meet.

The NVMe Transport may support NVMe Transport level error detection and report errors to the NVMe
layer in command status values. The controller may record NVMe Transport specific errors in the Error
Information Log. Transport errors that cause loss of a message or loss of data in a way that the low-level
NVMe Transport cannot replay or recover should cause termination of the NVMe Transport connection and
end the association between the host and controller.

The NVMe Transport shall provide reliable delivery of capsules between a host and NVM subsystem (and
allocated controller) over each connection. The NVMe Transport may deliver command capsules in any
order on each queue except for I/O commands that are part of fused operations (refer to section 4.10 of the
NVMe Base specification).

For command capsules that are part of fused operations for I/O commands, the NVMe Transport:

a) shall deliver the first and second command capsules for each fused operation to the queue in-
order; and

b) shall not deliver any other command capsule for the same Submission Queue between delivery
of the two command capsules for a fused operation.

The NVMe Transport shall provide reliable delivery of response capsules from an NVMe subsystem to a
host over each connection. The NVMe Transport shall deliver response capsules that include an SQ Head
Pointer (SQHD) value to the host in-order; this includes all Connect response capsules.

7.1.1 Submission Queue Head Pointer Update Optimization

The NVMe Transport may omit transmission of the SQHD value for a response capsule that:

a) contains a Generic Command status (i.e., Status Code Type 0h) indicating successful
completion of a command (i.e., Status Code 00h); and

b) is not a Connect response capsule.

If a new SQHD value is not received in a response capsule, the host continues to use its previous SQHD
value. Thus, at the NVMe layer there is a logical progression of SQHD values despite the fact that the
NVMe Transport may not actually transfer the SQHD value in each response capsule.

The NVMe Transport may deliver response capsules that do not contain an SQHD value to the host in any
order. The applicable NVMe Transport binding specification defines how presence versus absence of an
SQHD value in a response capsule is indicated by the NVMe Transport.

Periodic SQHD updates at the host are required to avoid Submission Queue (SQ) starvation as SQHD
value transmission in responses is the only means of releasing SQ slots for host reuse.

An NVMe Transport may transmit an SQHD value in every response capsule. If an NVMe Transport does
not transmit an SQHD value in every response capsule, then an SQHD value should be transmitted
periodically (e.g., in at least one of every n response capsules on a CQ, where n is 10% of the size of the
associated SQ) or more often. An SQHD value should always be transmitted if 90% or more of the slots in
the associated SQ are occupied at the subsystem, or if the associated SQ is empty at the subsystem.

NVM Express over Fabrics 1.0

42

7.1.2 Keep Alive

The Keep Alive feature is defined in section 7.11 of the NVMe Base specification.

The controller shall treat a Keep Alive Timeout in the same manner as connection loss. If the Keep Alive
feature is in use and the timer expires, then the controller shall:

 stop processing commands and set the Controller Fatal Status (CSTS.CFS) bit to ‘1’;

 terminate the NVMe Transport connection; and

 break the host to controller association.

After completing these steps, a controller may accept a Connect command for the Admin Queue from the
same or another host in order to form a new association.

7.2 Transport Capsule and Data Binding: Fibre Channel

The Fibre Channel Technical Committee (ANSI/INCITS TC T11) has defined a transport binding for NVMe
over Fabrics. The Fibre Channel Transport maps NVMe capsules onto Fibre Channel frames using the
NVMe over FC protocol (FC-NVMe).

The binding of an NVMe implementation using the Transport Type of Fibre Channel Transport as defined
in Figure 34 is specified in INCITS 540 Fibre Channel – Non-Volatile Memory Express (FC-NVMe). See
http://www.t11.org for more information on the Fibre Channel Technical Committee and
http://www.incits.org for information on how to purchase Fibre Channel standards.

The diagram in Figure 36 illustrates the layering of the Fibre Channel Transport within the host and NVM
subsystem.

Figure 36: Fibre Channel Transport Protocol Layers

NVMe Host Software

Fibre Channel

Fibre Channel Transport

Fibre Channel Transport

NVM Subsystem

FC Fabric

Fibre Channel

7.3 Transport Capsule and Data Binding: RDMA

This section defines the binding of an NVMe implementation that uses the Transport Type of RDMA
Transport as defined in Figure 34. Common definitions used for RDMA are defined in Figure 37.

http://www.t11.org/
http://www.incits.org/

NVM Express over Fabrics 1.0

43

Figure 37: RDMA Definitions

Term Definition

direct data placement
The use of RDMA_READ or RDMA_WRITE to place data exchanged over the
RDMA fabric directly into a host or an NVM subsystem memory buffer as specified
in the command

Established RDMA QP
Two RDMA Queue Pair endpoints that have an established association between
them.

Host Memory Buffer Address
The RDMA Memory Key, byte offset, and byte length, identify a host memory buffer
within an RDMA Memory Region or Memory Window.

in-order delivery
The use of RDMA_SEND to deliver capsules over the RDMA fabric in the same
order that the capsules were submitted to the RDMA Transport for transmission for
a given Submission or Completion Queue.

InfiniBand™ R_Key
Term used to desribed a remote Memory Region or Window in InfiniBand™ RDMA
implementations.

InfiniBand™ RDMA InfiniBand™ Trade Association definition of RDMA. Refer to www.infinibandta.org.

iWARP RDMA IETF standard definition of RDMA. Refer to https://tools.ietf.org/html/rfc5040.

iWARP STag
Term used to describe a local or remote Memory Region or Window in iWARP
RDMA implementations.

RDMA_LOCAL_INVALIDATE RDMA operation used to invalidate the local system’s memory key.

RDMA Memory Key (RKEY)
Component of the Host Memory Buffer Address that associates a host buffer with
an RDMA Memory Region or Memory Window. For the RDMA Transport, this is
either an iWARP STag or InfiniBand™ R_KEY

RDMA Memory Region
A range of host memory that has been registered with a host-resident RDMA
device.

RDMA Memory Window A range of host memory residing within a registered RDMA Memory Region.

RDMA NIC (RNIC) RDMA enabled network adapter.

RDMA Queue Pair (QP)
RDMA communication endpoint that consists of a Send Queue and Receive
Queue.

RDMA_READ
RDMA operation used to read from the remote system’s memory buffer to the local
system’s memory buffer.

RDMA_SEND
RDMA operation used to send a message from the local peer’s QP Send Queue to
the remote peer’s QP Receive Queue or Shared Receive Queue

RDMA_SEND_INVALIDATE
RDMA operation used to perform the RDMA_SEND operation and invalidate the
memory Key on the remote system.

RDMA_WRITE
RDMA operation used to write memory buffer(s) from the local system’s memory to
the remote system’s memory buffer(s).

RDMA Verbs

Common functional definition and implementation of the RDMA operational
programming model between applications and RDMA providers. Applications are
the consumers of RDMA operations and RDMA providers are the various
implementations of RDMA operations, such as InfiniBand™, iWARP, RoCE, etc.
Refer to https://tools.ietf.org/html/draft-hilland-rddp-verbs-00.

Reliable Connected QP
Two RDMA Queue Pair endpoints connected with reliable in-order communications
of RDMA messages and data.

Reliable Datagram QP
Two or more Queue Pair endpoints using a reliable datagram channel to exchange
RDMA messages and data.

RoCE and RoCEv2 RDMA RDMA over Converged Ethernet definition. Refer to www/infinibandta.org.

7.3.1 Transport Overview

The RDMA Transport provides reliable in-order capsule delivery and direct data placement of Admin and
I/O command data through use of the RDMA reliable QP modes (Reliable Connected and Reliable
Datagram). Use of RDMA unreliable QP modes is not supported. Refer to the RDMA specifications and
RFCs for a description of RDMA QP modes.

The RDMA Transport is RDMA Provider agnostic. The diagram in Figure 38 illustrates the layering of the
RDMA Transport and common RDMA providers (iWARP, InfiniBand™, and RoCE) within the host and NVM
subsystem.

https://tools.ietf.org/html/rfc5040
https://tools.ietf.org/html/draft-hilland-rddp-verbs-00

NVM Express over Fabrics 1.0

44

Figure 38: RDMA Transport Protocol Layers

NVMe Host Software

iWARP InfiniBand RoCE

RDMA Transport

iWARP RoCE

RDMA Transport

NVM Subsystem

InfiniBand

RDMA Fabric

The RDMA Transport uses a common set of RDMA operations to facilitate the exchange of command
capsules, response capsules, and data. These operations are RDMA_SEND,
RDMA_SEND_INVALIDATE, RDMA_READ, and RDMA_WRITE. The RDMA Transport uses RDMA
buffer registration and invalidation operations to facilitate the use of host or NVM subsystem resident buffers
for the exchange of data and metadata for Admin and I/O commands.

In some host and NVM subsystem implementations, the interface between the RDMA Transport and the
RDMA Providers is defined by an implementation of RDMA Verbs. When applicable, the Host and NVM
subsystem RDMA Transport implementations should use the common RDMA Verbs software interfaces in
order for the RDMA Transport layer to be RDMA provider agnostic.

7.3.2 Capsules and SGLs

The capsule size for Fabrics commands are fixed in size regardless of whether commands are submitted
on an Admin Queue or an I/O Queue. The command capsule size is 64 bytes and the response capsule
size is 16 bytes.

The capsule sizes for the Admin Queue are fixed in size. The command capsule size is 64 bytes and the
response capsule size is 16 bytes. In-capsule data is not supported for the Admin Queue.

Command capsules for I/O commands sent on I/O Queues may contain up to the Maximum Data Transfer
Size of in-capsule data. The response capsule size shall be 16 bytes and shall not contain in-capsule data.

The RDMA Transport facilitates the use of separate locations for SGLs and data (refer to section 2.3.1).

NVM Express over Fabrics 1.0

45

Figure 39: RDMA Capsule Size and SGL Mapping

Capsule Type Capsule Size SGL Type

Fabrics and Admin Commands 64 bytes Host-resident data buffer only

Fabrics and Admin Responses 16 bytes n/a

I/O Queue Command
64 bytes to MDTS Host-resident data buffer or in-capsule data; maximum size

up to the Maximum Data Transfer Size indicated in the
Identify Controller data structure

I/O Queue Response 16 bytes n/a

Admin command data is transferred using host-resident data buffers specified in Keyed SGL Data Block
descriptor entries. I/O command data is transferred using host-resident data buffers specified in Keyed SGL
Data Block descriptor entries or within the capsule. The RDMA Transport supports the SGL Data Block,
SGL Last Segment, and Keyed SGL Data Block descriptors only. The RDMA Transport does not support
SGLs in host memory; all SGLs shall be contained in the command capsule. Fabrics and Admin commands
have one (Keyed) SGL Data Block descriptor (i.e., there are no SGL descriptors following the Submission
Queue Entry). I/O commands may have more than one SGL descriptor.

There are SGL Descriptor Sub Type values that are specific to RDMA operation as defined in Figure 40.

Figure 40: SGL Sub Types Specific to RDMA

Descriptor Types Sub Type Sub Type Description

All Ah – Eh Reserved

Keyed SGL Data Block (4h) Fh

Invalidate Key: The host uses this Sub Type to specify that the

controller should remotely invalidate the RKEY. If the controller does
not support remote invalidate then this Sub Type is ignored.

7.3.3 Queue Mapping

A single I/O Submission Queue and I/O Completion Queue pair shall be mapped to a single RDMA Queue
Pair. Multiplexing multiple I/O Submission Queues and I/O Completion Queues onto a single RDMA
Connected Queue pair is not supported. Spanning a single I/O Submission Queue and I/O Completion
Queue pair across multiple RDMA Queue pairs is not supported.

7.3.4 Capsule and Data Exchange

Capsule exchanges are performed using the RDMA_SEND or RDMA_SEND_INVALIDATE operations.
The RDMA Transport at the host uses RDMA_SEND to transmit command capsules. The RDMA
Transport at the controller uses RDMA_SEND or RDMA_SEND_INVALIDATE to transmit response
capsules and optionally invalidate a host memory key. An RDMA_SEND contains at most one command
or response capsule.

All RDMA_READ and RDMA_WRITE operations are initiated by the controller. Data transfers from a
controller to a host are performed using the RDMA_WRITE operation. Data transfers from a host buffer to
a controller buffer are performed using the RDMA_READ operation. Data for the Fabrics, Admin, or I/O
command may also be exchanged from the host to the controller using a single RDMA_SEND operation
that contains the command capsule and in-capsule data within the RDMA_SEND message payload.

Host memory buffer addresses are communicated in the command’s SGL entries. Host memory buffer
addresses are represented as the combination of a memory key, offset, and length. The host is responsible
for allocating the memory buffers, registering the keys, and constructing the SGL entries with the associated
memory buffer address.

NVM Express over Fabrics 1.0

46

To ensure proper command data to command completion ordering, all RDMA_WRITE data transfer
operations for a command shall be submitted onto the same RDMA QP prior to submitting the associated
response capsule onto the same RDMA QP.

The detailed flow of the command sequences using RDMA operations is shown in Figure 41.

Figure 41: Command Sequence Using RDMA Operations

Data Transfer
Direction

Command Sequence Using RDMA Operations

No data to
transfer

 The host transmits the command capsule to the controller using an RDMA_SEND
operation.

 Command action completed by the controller.

 The controller transmits the response capsule to the host using an RDMA_SEND
operation.

 The same RDMA QP shall be used for both RDMA_SEND operations.

Controller to
host

 The host transmits the command capsule to the controller using an RDMA_SEND
operation. The capsule contains or points to SGL(s) required for the data transfer.

 The controller uses RDMA_WRITE operation(s) to transfer data from the controller to
the host. Each RDMA_WRITE is associated with one keyed remote host memory buffer
(SGL) and one or more local controller memory buffer(s).

 The controller transmits the response capsule to the host using an RDMA_SEND or
(optionally) RDMA_SEND_INVALIDATE operation.

 The same RDMA QP shall be used for the RDMA_WRITE operation(s) and the
RDMA_SEND operation.

Host to
controller

 The host transmits the command capsule to the controller using an RDMA_SEND
operation. The capsule contains or points to SGL(s) required for the data transfer. The
capsule may contain in-capsule data, which is pointed to by an offset address in an
SGL within the capsule.

 For host-resident command data, the controller uses RDMA_READ operations to
transfer the data from the host to the controller. Each RDMA_READ is associated with
one keyed remote memory buffer (SGL) and one or more local memory buffer(s).

 The controller transmits the response capsule to the host using an RDMA_SEND or
(optionally) RDMA_SEND_INVALIDATE operation.

 The same RDMA QP shall be used for the RDMA_READ operation(s) and the
RDMA_SEND operation.

7.3.5 Keep Alive Settings

Keep Alive functionality is not supported by all RDMA provider types at the RDMA Transport layer. As a
result, the RDMA Transport requires the use of the Keep Alive Feature (refer to section 5.15.1.14 in the
NVMe Base specification). It is recommended that any RDMA provider level functionality be disabled to
avoid redundant and conflicting policies.

The RDMA Transport does not impose any limitations on the minimum and maximum Keep Alive Timeout
value. The minimum should be set large enough to account for any transient fabric interconnect failures
between the host and controller.

7.3.6 Setup and Initialization

7.3.6.1 Transport Specific Address Subtype

The Discovery Log Entry includes a Transport Specific Address Subtype (TSAS) field that is defined in
Figure 42 for the RDMA Transport.

NVM Express over Fabrics 1.0

47

Figure 42: Transport Specific Address Subtype Definition for RDMA Transport

Byte Description

00

RDMA QP Service Type: (RDMA_QPTYPE): Specifies the type of RDMA Queue Pair. Valid
values are shown in the following table:

Value Definition

00 Reserved

01 Reliable Connected

02 Reliable Datagram

255:03 Reserved

01

RDMA Provider Type: (RDMA_PRTYPE): Specifies the type of RDMA provider. Valid values
are shown in the following table:

Value Definition

00 Reserved

01 No provider specified

02 InfiniBand

03 InfiniBand RoCE

04 InfiniBand RoCEV2

05 iWARP

255:06 Reserved

02

RDMA Connection Management Service: (RDMA_CMS): Specifies the type of RDMA

Connection Management Service. Valid values are shown in the following table:

Value Definition

00 Reserved

01
RDMA_CM. Sockets based endpoint addressing. For details on the RDMA
IP CM Service, refer to the InfiniBand Trade Association specification
Annex A11 or the iWARP specification.

255:02 Reserved

07:03 Reserved

09:08
RDMA_PKEY:Specifies the Partition Key when AF_IB (InfiniBand) address family type is used.

Otherwse this field is reserved.

255:10 Reserved

7.3.6.2 Fabric Dependent Settings

As part of the RDMA QP creation, the host and remote-peer exchange the RDMA_READ resources. This
exchange is typically facilitated by the RDMA Provider.

The host RDMA Transport sets the Inbound RDMA Read (IRD) value and passes it to the remote-peer
using these facilities. The remote-peer uses the host’s IRD value to limit the number of RDMA_READ
operations it issues to the host. Exceeding this limit may result in an RDMA QP error. The remote-peer
returns an IRD value of zero to indicate that any host initiated RDMA_READ operations results in an RDMA
QP error.

The host RDMA Transport sets the value of RNR_RETRY based on the RDMA provider capability. If the
RDMA provider supports RNR_RETRY, then the host should set RNR_RETRY to infinite (value of 7). If
the RDMA provider does not support RNR_RETRY, then the host should set the RNR_RETRY to zero.
The remote-peer shall match the host RNR_RETRY setting or fail the QP creation.

Use of RDMA Private Data for the exchange of NVMe parameters:

NVM Express over Fabrics 1.0

48

Figure 43: RDMA_CM_REQUEST Private Data Format

Byte Description

01:00
Record Format (RECFMT): Specifies the format of the RDMA Private Data. If a new format is
defined, this value is incremented by one. The format of the record specified in this definition
shall be 0h.

03:02 Queue ID (QID): Refer to the Queue ID definition in the Connect command in Figure 19.

05:04
RDMA QP Host Receive Queue Size (HRQSIZE): This field indicates the number of RDMA

QP receive queue entries allocated by the host’s RDMA Transport for capsule reception.

07:06

RDMA QP Host Send Queue Size (HSQSIZE): This field indicates the number of RDMA QP
send queue entries allocated by the host’s RDMA transport for capsule transmission. The value
shall be set to the Submission Queue Size (SQSIZE). Refer to the SQSIZE definition in the
Connect command in Figure 19.

31:08 Reserved

Figure 44: RDMA_CM_ACCEPT Private Data Format

Byte Description

01:00

Record Format (RECFMT): Specifies the format of the RDMA Private Data. If a new format is

defined, this value is incremented by one. The format of the record specified in this definition
shall be 0h.

03:02

RDMA QP Controller Receive Queue Size (CRQSIZE): This field indicates the number of

RDMA QP receive queue entries allocated by the controller’s RDMA Transport for capsule
reception. RDMA Transports that use RNR_RETRY flow control may set this entry to be less
than or equal to the value of HSQSIZE specified in Figure 43. RDMA Transports that do not use
RNR_RETRY shall set this value to be equal to the value of HSQSIZE specified in Figure 43.

31:04 Reserved

Figure 45: RDMA_CM_REJECT Private Data Format

Byte Description

01:00
Record Format (RECFMT): Specifies the format of the RDMA Private Data. If a new format is
defined, this value is incremented by one. The format of the record specified in this definition
shall be 0h.

03:02
Status (STS): Specifies status for the associated RDMA_CM_REQUEST that is paired with
this reject response. The valid status values are specified in Figure 46.

7.3.7 Key Management

An RDMA Memory Key (RKEY) is an identifier that associates a data buffer in host memory with a registered
“remote access enabled” RDMA memory region or memory window on an RDMA NIC (RNIC) attached to
a host. The host NVMe RDMA Transport software manages the creation of RKEYs, association of the
RKEYs to data buffers, insertion of RKEYs into SGL entries, and invalidation of the RKEYs upon completion
of Fabrics, Admin, or I/O commands. Refer to section 4.4 in the NVMe Base specification for the definition
of the Keyed SGL Data Block descriptor.

Commands that require data transfers between a host memory buffer and the controller shall use SGLs
that contain a full RDMA host address tuple consisting of an RKEY, Offset, and Length. The host NVMe
RDMA Transport is responsible for allocating this tuple by registering the associated data buffers with the
appropriate RNIC to produce the RKEY and then subsequently inserting the RKEY, Offset, and Length into
the SGL entries associated with the command. The same RKEY may be used in multiple SGL entries
associated with the same Fabrics, Admin, or I/O command. The RKEY shall be invalidated only after any
RDMA_READ or RDMA_WRITE operations have been completed that use the RKEY.

The host RDMA Transport software selects one of two methods to invalidate the RKEY: local invalidate or
remote invalidate. To indicate a remote invalidate, the host sets the Sub Type field in the Keyed SGL Data

NVM Express over Fabrics 1.0

49

Block descriptor to Fh (refer to Figure 40). If the controller RDMA Transport does not support remote
invalidate, then the host’s request for remote invalidation is ignored.

The controller RDMA Transport may or may not honor the remote invalidate request. If honored, the
controller RDMA Transport invalidates the RKEY by using the RDMA_SEND_INVALIDATE operation to
return the capsule response. If the command capsule contains multiple SGL entries with the remote
invalidate bit set, the controller RDMA Transport shall only invalidate the RKEY in the last Keyed SGL Data
Block descriptor.

The host RDMA Transport shall check the RDMA receive completion to determine if the RDMA_SEND_
INVALIDATE was received and checks the value of the RKEY that was invalidated. If the controller RDMA
Transport did not invalidate the RKEY as requested, the host is responsible for invalidating the RKEY using
a local invalidate operation.

7.3.8 Error Handling

7.3.8.1 RDMA Transport Errors

Errors detected by the RDMA Transport may result in the termination of any command capsule, response
capsule, or data transfer operations and may result in the tear down of the RDMA QP(s). The RDMA
Transport may detect errors that are not directly associated with a capsule or data transfer operation, e.g.
tear down of the RDMA QP due to connection loss, data corruption, or protection error. In the case of a
RDMA QP tear down, the RDMA Transport is responsible for terminating the RDMA QP, freeing up any
NVMe Transport resources, and then informing the NVMe layer about the termination and the associated
cause.

Errors detected by the RDMA Transport during RDMA QP establishment are handled within the RDMA
Transport and are not reported to the NVMe layer. These errors are described in Figure 46.

Figure 46: RDMA Transport Errors

Value Description

1h RDMA Invalid Private Data Length: The host sent an incorrect private_data size.

2h RDMA Invalid RECFMT: The host sent an invalid RECFMT.

3h RDMA Invalid QID: The host sent an invalid QID.

4h RDMA Invalid HSQSIZE: The host sent an invalid HSQSIZE.

5h RDMA Invalid HRQSIZE: The host sent an invalid HRQSIZE.

6h RDMA No Resources: The controller-side RDMA transport is unable to create the RDMA QP due

to lack of resources.

7h RDMA Invalid IRD: The host sent an invalid IRD value.

8h RDMA Invalid ORD: The host sent an invalid ORD value.

9h – FFh Reserved

7.3.8.2 RDMA Provider Errors

Errors detected by the RDMA Provider are communicated to the local NVMe RDMA Transport through
implementation specific interfaces, e.g., RDMA Verbs. RDMA Providers may have facilities to communicate
errors to the RDMA QP remote peer. Details of these facilities or their use is outside the scope of this
specification. Details on the types of errors and their associated identification encoding is contained within
the RDMA Provider specifications.

	1 Introduction
	1.1 Scope
	1.2 Outside of Scope
	1.3 Conventions
	1.4 Definitions
	1.4.1 association
	1.4.2 authentication commands
	1.4.3 capsule
	1.4.4 Discovery controller
	1.4.5 Discovery Service
	1.4.6 dynamic controller
	1.4.7 fabric (network fabric)
	1.4.8 NVMe Transport
	1.4.9 NVMe Transport binding specification
	1.4.10 port (NVM subsystem port)
	1.4.11 Port ID
	1.4.12 property
	1.4.13 static controller

	1.5 Theory of Operation
	1.5.1 Fabrics and Transports
	1.5.2 NVM Subsystem
	1.5.3 Capsules and Data Transfer
	1.5.4 Command Sets
	1.5.5 Properties
	1.5.6 Discovery
	1.5.7 Connection
	1.5.8 Authentication

	2 Capsules and Data Transfers
	2.1 Command Capsules
	2.2 Response Capsules
	2.2.1 Status Values

	2.3 Data Transfers
	2.3.1 Data and SGL Locations within a Command Capsule
	2.3.2 Data Transfer Examples

	2.4 Queue Flow Control Mechanism

	3 Commands
	3.1 Authentication Receive Command and Response
	3.2 Authentication Send Command and Response
	3.3 Connect Command and Response
	3.4 Property Get Command and Response
	3.5 Property Set Command and Response
	3.5.1 Property Definitions

	4 Controller Architecture
	4.1 Identify Controller Data Structure Enhancements
	4.2 Controller Model
	4.3 Queue Initialization and Queue State
	4.4 Initialization
	4.5 Shutdown

	5 Discovery Service
	5.1 Discovery Controller Initialization
	5.2 Discovery Controller Properties and Command Support
	5.3 Discovery Log Page (Log Identifier 70h)

	6 Authentication
	6.1 Fabric Secure Channel
	6.2 NVMe In-band Authentication
	6.2.1 NVMe In-band Authentication Protocol-Specific Requirements
	6.2.1.1 NVMe In-band Authentication Requirements for the TCG Security Protocols

	7 Transport Definition
	7.1 Transport Requirements
	7.1.1 Submission Queue Head Pointer Update Optimization
	7.1.2 Keep Alive

	7.2 Transport Capsule and Data Binding: Fibre Channel
	7.3 Transport Capsule and Data Binding: RDMA
	7.3.1 Transport Overview
	7.3.2 Capsules and SGLs
	7.3.3 Queue Mapping
	7.3.4 Capsule and Data Exchange
	7.3.5 Keep Alive Settings
	7.3.6 Setup and Initialization
	7.3.6.1 Transport Specific Address Subtype
	7.3.6.2 Fabric Dependent Settings

	7.3.7 Key Management
	7.3.8 Error Handling

