

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

LEGAL NOTICE:

© Copyright 2007 - 2021 NVM Express, Inc. ALL RIGHTS RESERVED.

This NVM Express over Fabrics revision 1.1 technical proposal is proprietary to the NVM Express, Inc. (also
referred to as “Company”) and/or its successors and assigns.

NOTICE TO USERS WHO ARE NVM EXPRESS, INC. MEMBERS: Members of NVM Express, Inc. have
the right to use and implement this NVM Express over Fabrics revision 1.1 technical proposal subject,
however, to the Member’s continued compliance with the Company’s Intellectual Property Policy and
Bylaws and the Member’s Participation Agreement.

NOTICE TO NON-MEMBERS OF NVM EXPRESS, INC.: If you are not a Member of NVM Express, Inc.
and you have obtained a copy of this document, you only have a right to review this document or make
reference to or cite this document. Any such references or citations to this document must acknowledge
NVM Express, Inc. copyright ownership of this document. The proper copyright citation or reference is as
follows: “© 2007 - 2021 NVM Express, Inc. ALL RIGHTS RESERVED.” When making any such citations
or references to this document you are not permitted to revise, alter, modify, make any derivatives of, or
otherwise amend the referenced portion of this document in any way without the prior express written
permission of NVM Express, Inc. Nothing contained in this document shall be deemed as granting you any
kind of license to implement or use this document or the specification described therein, or any of its
contents, either expressly or impliedly, or to any intellectual property owned or controlled by NVM Express,
Inc., including, without limitation, any trademarks of NVM Express, Inc.

LEGAL DISCLAIMER:

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN “AS IS”
BASIS. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, NVM EXPRESS, INC. (ALONG
WITH THE CONTRIBUTORS TO THIS DOCUMENT) HEREBY DISCLAIM ALL REPRESENTATIONS,
WARRANTIES AND/OR COVENANTS, EITHER EXPRESS OR IMPLIED, STATUTORY OR AT
COMMON LAW, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, VALIDITY, AND/OR
NONINFRINGEMENT.

All product names, trademarks, registered trademarks, and/or servicemarks may be claimed as the property
of their respective owners.

NVM Express Workgroup
c/o VTM Group
3855 SW 153rd Drive
Beaverton, OR 97003 USA
Info@nvmexpress.org

Claudio DeSanti, March 2021 2

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

NVM Express Technical Proposal for New Feature

Technical Proposal ID 8006 - NVMe-oF In Band Authentication

Change Date 03/17/2021

Builds on Specification NVM Express over Fabrics 1.1, TP 8011

Technical Proposal Author(s)

Name Company

Vladislav Bolkhovitin, Yoni Shternhell,
Christoph Hellwig

WDC

David Black, Claudio DeSanti Dell EMC

Costa Sapuntzakis Pure Storage

This technical proposal defines the Diffie-Hellman HMAC-CHAP (DH-HMAC-CHAP) in-band
authentication protocol for NVMe over Fabrics. The authors would like to acknowledge Charlie
Kaufman for his contributions.

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

Revision History

Revision Date Change Description

4/30/2018 Final internal draft

5/25/2018 Updated based of David Black comments

6/01/2018 Updates and Authentication Address Mix added

6/13/2018 N-SRP added

6/18/2018 N-SRP updates

7/11/2018 Minor clarifications and updates during implementation

7/18/2018 Use single ID for SECP field and minor clarifications and fixes

7/19/2018 Use values of 1 and 2 for SPSP0 field and minor clarifications and fixes

7/25/2018 Clarifications about DH exponent sizes and DH parameter validation added

7/27/2018
Clarifications about authentication elements sizes added, notes about DH parameters
reuse and parallel connects added, NSRP simplifications, change to HMAC function to
generate N-SRP verifiers, minor cleanups

8/27/2018 N-SRP: internal hash introduced, editorial modifications

08/30/2018 Whirlpool, SM3 and MD5 hashes removed

09/24/2018 Clean version to start Phase 3 discussions

10/04/2018 Modification upon comments received at Oct 4 call

10/18/2018 Add reference to One-Way Hash and Internal Hash tables

11/26/2018
- Modifications to reflect Intel’s comments from 11/15
- HMAC() usage changed for DH-HMAC-CHAP
- Address Mix clarifications and minor cleanups

12/13/2018 Address Mix removed

1/28/2019

Serious rewrite of common material and DH-HMAC-CHAP:

 Redesign controller authentication to fix security problems

 Finish removing Address Mix

 Add new Authentication Failed error status.

 Use SPSP1 field to identify each message.

 Add a lot of error checks.

 Merge tables into protocol specification.

 Use common hash ids between DH-HMAC-CHAP and SRP in addition to
common DH group ids.

1/29/2019
Add names to DH-HMAC-CHAP protocol steps. Add comment on open issue of
whether DH-HMAC-CHAP should support controller-only authentication.

2/18/2019 New DH-HMAC-CHAP protocol sequence diagrams. Reset change tracking.

2/19/2019

Remove controller-only authentication support from DH-HMAC-CHAP. Use N-SRP
instead. Require N-SRP to use authentication verifier instead of sharing secret. Correct
description of Connect Invalid Parameter status. Improve explanation of internal hash
function.

2/26/2019 Add Stanford notation for N-SRP and editor’s notes on problems and design concerns.

2/27/2019 Add explanation of how order of messages in SRP relates to security of the protocol.

4/23/2019
Add Editor’s Note Design sketch for N-SRP redesign, starting on page 24. Two open
design issues related to negotiation.

Claudio DeSanti, March 2021 4

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

4/25/2019

Results of initial WG discussion added to comments on open design issues. Tentative
conclusions are a) to use only one secure hash in N-SRP (remove separate internal-
only hash) and b) to restructure negotiation to use <DH group, hash> pairs that
correspond to provisioned verifiers to ensure that the results of negotiation correspond
to a verifier.

5/9/2019
Initial round of edits, reduce design sketch to reflect initial WG decisions on design
issues.

7/7/2020

Initial full rewrite by cds:

- Removed N-SRP
- Put error handling in authentication messages rather than NVMe-oF response

capsules to enable centralized authentication verification
- Enabled use of authentication as a way to create pre-shared key material for

subsequent secure channel establishment
- Made the protocol more robust by introducing a way to relate together the

protocol messages
- Made future extensibility more modular

Conventions:

- Text to add in NVMe-oF 1.1 is in blue
- Text to delete in NVMe-oF 1.1 is in strikethrough red
- New text worth more review is highlighted in magenta

7/21/2020

Incorporated first set of updates:

- Replaced DH groups with the TLS 1.3 ones
- Added NVMe-oF entity role in the reply computations
- Consequentially removed unnecessary anti-replay checks
- Updated computations for augmented challenges and TLS PSK

Conventions:

- Text deleted from the previous version is in strikethrough orange
- Text added to the previous version is in green

7/21/2020 concall Made support for the 3072-bit DH group mandatory

8/18/2020

Incorporated second set of updates:

- Defined the ‘key’ and ‘secret’ terminology
- Defined a standard ASCII representation of keys/secrets
- Improved the strength of the response calculation with HMAC
- Allowed reusing the TLS PSK on I/O queue
- Improved the payload format
- Generalized the TLS_c indication into SC_c

Conventions:

- Text deleted from the previous version is in strikethrough orange
- Text added to the previous version is in green

8/18/2020

- Added support requirements for pair-wise keys
- Specified that TLS concatenation should not be used if a TLS PSK was

administratively configured
- Minor fixes

8/25/2020 concall
- Added support requirements for pair-wise secrets
- Minor fixes

8/28/2020

Incorporated comments from Yoni Shternhell

Conventions:

- Text deleted from the previous version is in strikethrough orange
- Text added to the previous version is in green

9/1/2020 concall
- Updated base64 reference
- Minor fixes

9/15/2020 Moved to phase 3

10/6/2020 Updated reference to RFC 5996

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

10/13/2020
- Addressed the ‘Two NQNs’ issue
- Restructured the hash table
- Addressed miscellaneous comments from David Black

10/20/2020 - Addressed additional comments

10/27/2020
- Added provision for reauthentication in section 6.2
- Continued to refine section 6.5.7

11/3/2020

- Added provision to section 3.3 to reject a Connect command with HOSTNQN
= SUBNQN

- Added the NQN of the responding entity to the response computation
- Further refined sections 6.5.7 and 6.5.8

11/3/2020 concall - Concall edits

11/10/2020 - Included both NQNs in the response computation

12/01/2020
- Relaxed secret/key storage requirements in section 6.5.7
- Updated terminology in section 6.5.9

12/03/2020 - Working group call edits

12/15/2020 - Resolved the issue about authentication messages mapping to capsules

12/15/2020 concall - Editorial fixes

01/28/2021
- Incorporated members’ review editorial changes
- Incorporated reauthentication specification

03/02/2021 - Incorporated 2nd members’ review editorial changes

03/16/2021 - Integrated into the NVMe-oF Specification, Revision 1.1

03/17/2021 - Corrected the reserve bit range in AUTHREQ field.

Incompatible Changes

None.

Claudio DeSanti, March 2021 6

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

Description of Specification Changes

Note to the editor: add to the refactored base spec references section the following entry:

INCITS 502-2019, Information technology – SCSI Primary Commands - 5 (SPC-5). Available from
http://webstore.ansi.org.

Modify a portion of section 3.3 (Connect Command and Response) as shown below:

3.3 Connect Command and Response

The Connect command is used to create a Submission and Completion Queue pair for an Admin Queue or
an I/O Queue. If the Admin Queue is specified, then the Connect command establishes an association
between a host and a controller. The fields for the Submission Queue Entry are defined in Figure 19 and
the fields for the data portion are defined in Figure 20.

A host that uses a single Host NQN may employ multiple Host Identifiers to designate elements of the host
that access an NVM subsystem independently of each other (e.g., physical or logical partitions of the host).
Alternatively, a host may employ multiple Host NQN values to cause each element to be treated as a
separate host by an NVM subsystem.

If an NVM subsystem supports DH-HMAC-CHAP authentication (refer to section 6), then the Host NQN
and the NVM Subsystem NQN parameters in a Connect command are required to be different. If the Host
NQN and the NVM Subsystem NQN parameters in a Connect command are identical and the NVM
subsystem supports DH-HMAC-CHAP authentication, then a status value of Connect Invalid Host is
returned.

…

Figure 22: Connect Response – Dword 0 Value Based on Status Code

Status Code Definition of Dword 0

Successful
Completion

Byte Description

01:00
Controller ID (CNTLID): Specifies the controller ID allocated to the
host. If a particular controller was specified in the CNTLID field of the
Connect command, then this field shall contain the same value.

03:02

Authentication and Security Requirements (AUTHREQ): Specifies
the NVMe in-band authentication and security requirements. The field
is bit significant. If no bit is set to ‘1’ all bits are cleared to ‘0’ then no
NVMe in-bandauthentication is not required requirements are
specified. If a bit is set to ‘1’, then NVMe in-band authentication using
the specified protocol is acceptable. If a bit is cleared to ‘0’, then
NVMe in-band authentication shall not use the specified protocol.

Bit Definition

15:03 1 Reserved

02

If this bit is set to ‘1’, then authentication using NVMe-
oF Authentication protocols followed by secure
channel establishment is required and bit 01 should
be cleared to ‘0’. If this bit is cleared to ‘0’, then
authentication using NVMe-oF Authentication
protocols followed by secure channel establishment
is not required.

01

If this bit is set to ‘1’, then authentication using
NVMe-oF Authentication protocols is required. If this
bit is cleared to ‘0’, then authentication using NVMe-
oF Authentication protocols is not required.

00
TCG Security Protocols (refer to TCG Storage
Interface Interactions Specification [SIIS]) Obsolete.

Note to the editor: the new bits should be placed in the field position 01 and 02.

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

Modify section 6 (Authentication) as shown below:

6 Authentication

NVMe over Fabrics supports both fabric secure channel (that includes authentication) and NVMe in-band
authentication. Fabric authentication is part of establishing a fabric secure channel via an NVMe Transport
specific protocol that provides authentication, encryption, and integrity checking (e.g., IPsec; see RFC 4301
or TLS; see RFC 8446). NVMe in-band authentication is performed immediately after a Connect command
(refer to section 3.3) succeeds using the Authentication Send and Authentication Receive commands (refer
to section 3) to tunnel authentication protocol commands between the host and the controller.

Enrollment of the host and controller in an authentication mechanism, including provisioning of
authentication credentials to the host and controller, is outside the scope of this specification.

If both fabric secure channel and NVMe in-band authentication are used, the identities for these two
instances of authentication may differ for the same NVMe Transport connection. For example, if an iWARP
NVMe Transport is used with IPsec as the fabric secure channel technology, the IPsec identities for
authentication are associated with the IP network (e.g., DNS host name or IP address), whereas NVMe in-
band authentication uses NVMe identities (i.e., Host NQNs). The NVMe Transport binding specification
may provide further guidance and requirements on the relationship between these two identities, but
determination of which NVMe Transport identities are authorized to be used with which NVMe identities is
part of the security policy for the deployed NVM subsystem.

6.1 Fabric Secure Channel

The Transport Requirements field in the Fabrics Discovery Log Page Entry (refer to Figure 38) indicates
whether a fabric secure channel shall be used for an NVMe Transport connection to an NVM subsystem.
The secure channel mechanism is specific to the type of fabric.

If establishment of a secure channel fails or a secure channel is not established when required by the
controller, the resulting errors are fabric-specific and may not be reported to the NVMe layer on the host.
Such errors may result in the controller being inaccessible to the host via the NVMe Transport connection
on which the authentication failure occurred.

An NVM subsystem that requires use of a fabric secure channel (i.e., as indicated by the TREQ field in the
associated Discovery Log entry) shall not allow capsules to be transferred until a secure channel has been
established for the NVMe Transport connection.

All Discovery Log Page Entries for an NVM subsystem should report the same value of TREQ to each host.
Discovery Log Page Entries for an NVM subsystem may report different values of TREQ to different hosts.

Figure TBD+1 shows an example of secure channel establishment using TLS.

Claudio DeSanti, March 2021 8

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

Figure TBD+1 - Example of TLS secure channel establishment

TCP/TLS secure channel establishment

Secure channel and queue set up

Host Controller

1. A TCP/TLS session negotiation is performed and a
secure channel is established

2. The Connect exchange is performed to set up
NVMe queue and associate host to controller

3. Secure channel and queue are set up, ready for
subsequent operations

Connect Comm.

Connect Resp.

6.2 NVMe In-band Authentication

The Authentication and Security Requirements (AUTHREQ) field in the Connect response capsule (refer
to Figure 21) indicates whether NVMe in-band authentication is required.

If one or more of the bits in the AUTHREQ field are set to ‘1’, then the controller requires that the host
authenticate on each that queue via one of the indicated security protocols in order to proceed with Fabrics,
Admin, and I/O commands. Authentication success is defined by the specific security protocol that is used
for authentication. If any command other than Connect, Authentication Send, or Authentication Receive is
received prior to authentication success, then the controller shall abort the command with Authentication
Required status.

If all bits in the AUTHREQ field are cleared to ‘0’, then the controller does not require the host to
authenticate, and the NVM subsystem shall not abort any command with a status value of Authentication
Required.

A controller shall report the same value of AUTHREQ in the Connect response capsules sent by all of that
controller’s queues. All controllers in an NVM subsystem should report the same value of AUTHREQ.

If NVMe in-band authentication succeeds, then:

1) any supported commands for the associated queue type may be processed; and
2) if an Authentication Send or an Authentication Receive command is received, then that command

shall be aborted with a status value of Command Sequence Error.

If NVMe in-band authentication succeeds, then any supported commands for the associated queue type
may be processed.

The host may initiate a subsequent authentication transaction at any time for reauthentication purposes.
Initiating reauthentication shall not invalidate a prior authentication. If the reauthentication transaction
concludes with the controller sending an AUTH_Failure1 message, then the controller shall terminate all
commands with a status of Operation Denied and disconnect the NVMe-oF connection. If the
reauthentication transaction concludes with the host sending an AUTH_Failure2 message, then the host
shall disconnect the NVMe-oF connection.

The state of an in-progress authentication transaction is soft-state. If the subsequent command in an
authentication transaction is not received by the controller within a timeout equal to:

 the Keep Alive Timeout value (refer to Figure 19), if the Keep Alive Timer is enabled; or

 the default Keep Alive Timeout value (i.e., two minutes), if the Keep Alive Timer is disabled;

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

then the authentication transaction has timed out and the controller should discard the authentication
transaction state (including the T_ID value, refer to section 6.4.1).

For an initial authentication, an authentication transaction timeout should be treated as an authentication
failure with termination of the transport connection. For reauthentication, an authentication transaction
timeout should not be treated as an authentication failure. Authentication commands used to continue that
transaction after an authentication transaction timeout should be aborted with a status of Command
Sequence Error.

Figure TBD+2 shows an example of authentication transaction for NVMe-oF/TCP.

Figure TBD+2 - Example of authentication transaction for NVMe-oF/TCP

TCP session establishment

Authentication Transaction

Host Controller

1. A TCP session is established

2. The Connect exchange is performed to set up
NVMe queue and associate host to controller

3. The host performs an authentication transaction
with the controller to authenticate the end-points

4. Queue is ready for subsequent operations

Connect Comm.

Connect Resp.

Queue set up

6.2.1 NVMe In-band Authentication Protocol-Specific Requirements

Authentication requirements for security commands are based on the security protocol indicated by the
SECP field in the command.

The authentication protocols defined by this specification use the security protocol identifier E9h (assigned
to NVMe by SPC-5, a SCSI standard). The messages of the defined authentication protocols are self-
identifying, therefore the SPSP0 field and the SPSP1 field of the Authentication Send and Authentication
Receive commands shall be set to 01h. Authentication messages are mapped to NVMe-oF command and
response pairs. The mapping of authentication messages to the Authentication Send command is shown
in Figure TBD+3.

Figure TBD+3 - Mapping of authentication messages to the Authentication Send command

Field1 Value

SPSP0 01h

SPSP1 01h

SECP E9h

TL Specifies the amount of data to transfer in bytes

NOTES:

1. Refer to section 3.2.

Claudio DeSanti, March 2021 10

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

The mapping of authentication messages to the Authentication Receive command is shown in Figure
TBD+4. Security processing requirements associated with the Authentication Receive command (e.g.,
delays in third-party authentication verification) may result in delays in controller completion of an
Authentication Receive command. The host should consider these possible delays associated with the
Authentication Receive command.

Figure TBD+4 - Mapping of authentication messages to the Authentication Receive command

Field1 Value

SPSP0 01h

SPSP1 01h

SECP E9h

AL Specifies the amount of data to transfer in bytes2

1 Refer to section 3.1.
2 The size of the largest authentication message that could be received.

6.2.1.1. NVMe In-band Authentication Requirements for the TCG Security Protocols

For the TCG Security Protocols (i.e., bit 00 is set to ‘1’ in the AUTHREQ field), security commands
specifying security protocol values 01h to 06h do not require authentication when used for NVMe in-band
authentication. When used for other purposes, in-band authentication of these commands is required. The
TCG Storage Interface Interactions Specification (SIIS) and associated specifications specify the subset of
the TCG security protocols used for NVMe in-band authentication.

6.3 NVMe In-band Authentication Followed by Secure Channel Establishment

It is possible to leverage an authentication transaction to generate shared key material to use as pre-shared
key (PSK) to establish a secure channel (e.g., with IPsec or TLS). In this case, the PSK generated to set
up a secure channel on the admin queue may be reused to set up additional secure channels on the I/O
queues. Figure TBD+5 shows an example of this possibility for TLS.

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

Figure TBD+5 - Example of TLS secure channel concatenated to an authentication transaction

TCP session establishment

Authentication Transaction generating a PSK

Host Controller

1. A TCP session is established

2. The Connect exchange is performed to set up
NVMe queue and associate host to controller

3. The host performs an authentication transaction
with the controller, transaction that generates a
pre-shared key PSK between host and controller

4. The pre-shared key PSK is used to perform a TLS
negotiation and to establish a secure channel

5. Secure channel and queue are set up, ready for
subsequent operations

Connect Comm.

Connect Resp.

TLS secure channel establishment using the PSK

Secure channel and queue set up

Claudio DeSanti, March 2021 12

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

6.4 Common Authentication Messages

6.4.1 AUTH_Negotiate Message

The AUTH_Negotiate message is sent from the host to the controller and is used to indicate the
authentication protocols the host is able to use in this authentication transaction and which secure channel
protocol, if any, to concatenate to this authentication transaction. The AUTH_Negotiate message format is
shown in Figure TBD+6.

Figure TBD+6 - AUTH_Negotiate message format

Bytes Description

0 AUTH_TYPE: 00h (i.e., common messages)

1 AUTH_ID: 00h (i.e., AUTH_Negotiate)

3:2 Reserved

5:4 T_ID: 16-bit transaction identifier

6 SC_C: Secure channel concatenation

7 NAPD: Number of authentication protocol descriptors

71:8 Authentication protocol descriptor #1

135:72 Authentication protocol descriptor #2

…

NAPD*64+7:(NAPD-1)*64+8 Authentication protocol descriptor #NAPD

The SC_C field determines if a secure channel concatenation to the authentication transaction is requested
and with which secure channel protocol, as shown in Figure TBD+7.

Figure TBD+7 – Secure channel protocol identifiers

Value Description
Transport

Applicability

00h No secure channel concatenation N/A

01h Secure channel concatenation with TLS (refer to section 6.5.9) TCP

All others Reserved

The AUTH_Negotiate message is structured as a list of 64-byte authentication protocol descriptors to
enable extensibility to define additional authentication protocols. Currently only one authentication protocol
is defined (i.e., DH-HMAC-CHAP), therefore the AUTH_Negotiate message carries only one authentication
protocol descriptor (i.e., NAPD=1). Implementations should support more than one descriptor to enable
protocol extensibility. The first byte of an authentication protocol descriptor identifies the specific
authentication protocol, as shown in Figure TBD+8.

Figure TBD+8 – Authentication protocol identifiers

Value Description

01h DH-HMAC-CHAP (refer to section 6.5)

All others Reserved

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

Upon receiving an AUTH_Negotiate message, if the SC_C value indicated by the host does not satisfy the
security requirements of the controller (e.g., the host did not request secure channel concatenation, but the
controller’s security policy requires secure channel concatenation), then the controller shall:

 reply to the AUTH_Negotiate message with an AUTH_Failure1 message having reason code
‘Authentication failure’ and reason code explanation ‘Secure channel concatenation mismatch’; and

 disconnect the NVMe-oF connection upon transmitting the AUTH_Failure1 message.

Upon receiving an AUTH_Negotiate message, if the protocol descriptors proposed by the host do not satisfy
the security requirements of the controller, then the controller shall:

 reply to the AUTH_Negotiate message with an AUTH_Failure1 message having reason code
‘Authentication failure’ and reason code explanation ‘Authentication protocol not usable’; and

 disconnect the NVMe-oF connection upon transmitting the AUTH_Failure1 message.

6.4.2 AUTH_Failure Messages

The AUTH_Failure1 message is sent from the controller to the host, the AUTH_Failure2 message is sent
from the host to the controller. The format of the AUTH_Failure1 message and of the AUTH_Failure2
message is shown in Figure TBD+9.

Figure TBD+9 – AUTH_Failure1 and AUTH_Failure2 message format

Bytes Description

0 AUTH_TYPE: 00h (i.e., common messages)

1

AUTH_ID:

 F0h (i.e., AUTH_Failure2)

 F1h (i.e., AUTH_Failure1)

3:2 Reserved

5:4 T_ID: 16-bit transaction identifier

6 Reason code

7 Reason code explanation

The AUTH_Failure reason codes are listed in Figure TBD+10.

Figure TBD+10 – AUTH_Failure reason codes

Value Description

01h Authentication failure: The authentication transaction failed

All others Reserved

Claudio DeSanti, March 2021 14

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

The AUTH_Failure reason code explanations are listed in Figure TBD+11.

Figure TBD+11 – AUTH_Failure reason code explanations

Value Description

01h Authentication failed: Authentication of the involved host or NVM subsystem failed

02h
Authentication protocol not usable: The protocol descriptors proposed by the host
do not satisfy the security requirements of the controller (refer to section 6.4.1)

03h
Secure channel concatenation mismatch: The SC_C value indicated by the host
does not satisfy the security requirements of the controller (refer to section 6.4.1)

04h
Hash function not usable: The HashIDList proposed by the host does not satisfy
the security requirements of the controller (refer to section 6.5.2)

05h
DH group not usable: The DHgIDList proposed by the host does not satisfy the
security requirements of the controller (refer to section 6.5.2)

06h Incorrect payload: The payload of the received message is not correct

07h
Incorrect protocol message: The received message is not the expected next
message in the authentication protocol sequence

All others Reserved

6.4.3 Mapping of Common Authentication Messages to Authentication Commands

The AUTH_Negotiate message and the AUTH_Failure2 message are sent from the host to the controller,
therefore they are mapped to the Authentication Send command. The AUTH_Failure1 message is sent
from the controller to the host, therefore it is mapped to the Authentication Receive command.

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

6.5 DH-HMAC-CHAP Protocol

6.5.1 Protocol Operations

DH-HMAC-CHAP is a key based Authentication and key management protocol that uses the Challenge
Handshake Authentication Protocol (CHAP, see RFC 1994) enhanced to use the Hashed Message
Authentication Code (HMAC) mechanism (see RFC 2104) with stronger hash functions and augmented
with an optional Diffie-Hellman (DH) exchange (see RFC 2631, clause 2.2.1). DH-HMAC-CHAP provides
bidirectional or unidirectional Authentication between a host and a controller.

The Diffie-Hellman part of the protocol is optional. When the Diffie-Hellman part of the protocol is not used,
DH-HMAC-CHAP is referred to as HMAC-CHAP. If insufficiently random keys are used (refer to section
6.5.7), HMAC-CHAP potentially allows a passive eavesdropper to discover the key through an off-line
dictionary attack, so its usage should be minimized. DH-HMAC-CHAP provides strong protection from
passive eavesdroppers. However, an active attacker could reduce the operation of this protocol so that only
HMAC-CHAP is used, and as a result gain sufficient information to mount an off-line dictionary attack on
the HMAC-CHAP key.

An implementation that supports DH-HMAC-CHAP authentication shall support DH-HMAC-CHAP with a
NULL DH exchange. All implementations of DH-HMAC-CHAP shall be configurable to require a DH
exchange (i.e., to not use HMAC-CHAP).

In order to authenticate with the DH-HMAC-CHAP protocol, each host and NVM subsystem shall be
provided with a DH-HMAC-CHAP key that is associated with the entity’s NQN. Two entities may
impersonate one another if they have the same key, therefore when the assigned keys are not different for
each entity there is a security vulnerability (refer to section 6.5.7).

To authenticate another entity, an entity is required to either:

a) know the key associated with the entity to be authenticated; or
b) rely on a third party that knows the key to verify the authentication.

An example of a DH-HMAC-CHAP authentication transaction is shown in Figure TBD+12, with the notation
shown in Figure TBD+13. The DH-HMAC-CHAP_Success2 message that is shown as a dashed line is
used only for bidirectional authentication.

Claudio DeSanti, March 2021 16

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

Figure TBD+12 - Example of DH-HMAC-CHAP authentication transaction

AUTH_Negotiate

(T_ID, SC_C, AuthID, HashIDList, DHgIDList)

DH-HMAC-CHAP_Reply

(T_ID, R1, g
y
 mod p, [S2, C2])

DH-HMAC-CHAP_Challenge

(T_ID, HashID, DHgID, S1, C1, g
x
 mod p)

DH-HMAC-CHAP_Success1

(T_ID, [R2])

[DH-HMAC-CHAP_Success2]

(T_ID)

Host Controller

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

Figure TBD+13 - Mathematical notations for DH-HMAC-CHAP

Symbols Description

NQNc, NQNh NQN of the NVM subsystem that contains the controller and NQN of the host

Kc, Kh
DH-HMAC-CHAP key of the NVM subsystem that contains the controller and
DH-HMAC-CHAP key of the host

p, g Modulus (p) and generator (g) of the chosen DH group (refer to Figure TBD+16)

x, y Random numbers used as exponents in a DH exchange

C1, C2 Random challenge values

Ca1, Ca2 Augmented challenge values

S1, S2 32-bit sequence numbers

R1, R2 Reply values

T_ID Authentication transaction identifier

SC_C Secure channel concatenation indication

H() One-way hash function (refer to Figure TBD+15)

HMAC(K, Str) HMAC function (see RFC 2104) with key K on string Str using hash function H()

|| Concatenation operation

KS Session key

When used with a non-NULL DH exchange, the DH-HMAC-CHAP protocol is able to generate a session
key KS to be used to establish a TLS session between host and controller (refer to section 6.5.9).

For an NVM subsystem, the controller is the entity running the protocol, using the identity and credentials
of the NVM subsystem. The DH-HMAC-CHAP protocol proceeds in the following order:

1) The authentication transaction shall begin with the host sending the common AUTH_Negotiate
message to negotiate the authentication protocol to use and its associated parameters (refer to
section 6.4.1). The AUTH_Negotiate message carries the transaction identifier (T_ID) for the entire
authentication transaction and the list of authentication protocol descriptors for the authentication
protocols that may be used in this authentication transaction. For DH-HMAC-CHAP, the
authentication protocol descriptor includes the list of hash functions (HashIDList) and Diffie-
Hellman group identifiers (DHgIDList) that may be used in this authentication protocol transaction.

2) If the parameters of the received DH-HMAC-CHAP protocol descriptor are compatible with the
controller’s policies, then the controller shall reply with a DH-HMAC-CHAP_Challenge message
(refer to section 6.5.3) carrying the same transaction identifier value (T_ID) received in the
AUTH_Negotiate message, the identifiers of the hash function (HashID) and the DH group (DHgID)
selected for use among the ones proposed by the host in the AUTH_Negotiate message, a
sequence number (S1), a random challenge value (C1), and the DH exponential (gx mod p). If the
controller selects a NULL DH group identifier, then the DH portion of the DH-HMAC-CHAP protocol
shall not be used, and the protocol reduces to a HMAC-CHAP transaction.

3) If the received DH-HMAC-CHAP_Challenge message is valid, then the host shall send a DH-
HMAC-CHAP_Reply message (refer to section 6.5.4) carrying the same transaction identifier value
(T_ID), the response R1 to the challenge value C1, and its own DH exponential (gy mod p). The DH
Value Length shall be cleared to 0h if the controller has sent a NULL DH group identifier in the DH-
HMAC-CHAP_Challenge message. If bidirectional authentication is requested, then the DH-
HMAC-CHAP_Reply message shall carry also a sequence number S2 and a random challenge
value C2 that differs from the challenge value C1 received in the DH-HMAC-CHAP_Challenge
message.

Claudio DeSanti, March 2021 18

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

4) If the authentication verification by the controller succeeds, then the controller shall reply with a
DH-HMAC-CHAP_Success1 message (refer to section 6.5.5) carrying the same transaction
identifier value (T_ID). If bidirectional authentication was requested, then the DH-HMAC-
CHAP_Success1 message shall also carry the response R2 to the challenge value C2. If the
authentication verification fails, then the controller shall send an AUTH_Failure1 message and
disconnect the NVMe-oF connection upon transmitting it.

5) The authentication transaction ends here, unless bidirectional authentication has been requested.
In this case, as shown by the dashed arrow in Figure TBD+12, if the authentication verification by
the host succeeds, then the host shall send a DH-HMAC-CHAP_Success2 message (refer to
section 6.5.6) carrying the same transaction identifier value (T_ID). If the authentication verification
fails, then the host shall send an AUTH_Failure2 message and disconnect the NVMe-oF
connection upon transmitting it.

If the controller receives a message that is not the expected next message in the DH-HMAC-CHAP protocol
sequence, then the controller shall:

 reply with an AUTH_Failure1 message having reason code ‘Authentication failure’ and reason code
explanation ‘Incorrect protocol message’; and

 disconnect the NVMe-oF connection upon transmitting the AUTH_Failure1 message.

If the host receives a message that is not the expected next message in the DH-HMAC-CHAP protocol
sequence, then the host shall:

 reply with an AUTH_Failure2 message having reason code ‘Authentication failure’ and reason code
explanation ‘Incorrect protocol message’; and

 disconnect the NVMe-oF connection upon transmitting the AUTH_Failure2 message.

The payload format of a message shall be validated before performing any other security computation.

6.5.2 DH-HMAC-CHAP Authentication Protocol Descriptor

The authentication protocol descriptor for DH-HMAC-CHAP (refer to section 6.4.1) is shown in Figure
TBD+14.

Figure TBD+14 - Authentication protocol descriptor for DH-HMAC-CHAP

Bytes Description

0 AuthID: Authentication protocol identifier (01h for DH-HMAC-CHAP)

1 Reserved

2 HashIDList Length (HALEN): Number of hash function identifiers (1 to 30)

3 DHgIDList Length (DHLEN): Number of Diffie-Hellman group identifiers (1 to 30)

3+HALEN:4 HashIDList: Array of hash function identifiers (one byte per identifier)

33:4+HALEN Padding bytes cleared to 0h, if present

33+DHLEN:34 DHgIDList: Array of Diffie-Hellman Group identifiers (one byte per identifier)

63:34+DHLEN Padding bytes cleared to 0h, if present

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

The one-way hash functions used by DH-HMAC-CHAP are shown in Figure TBD+15.

Figure TBD+15 - DH-HMAC-CHAP hash function identifiers

Identifier Hash Function Hash Length (bytes) Hash Block Size1 (bytes) Reference

00h Reserved

01h SHA-256 32 64 RFC 6234

02h SHA-384 48 128 RFC 6234

03h SHA-512 64 128 RFC 6234

04h-DFh Reserved

E0h-FEh Vendor specific

FFh Reserved

NOTES:

1. The hash block size is used by the HMAC calculation

The SHA-256 hash function shall be supported.

Upon receiving an AUTH_Negotiate message, if the HashIDList proposed by the host does not satisfy the
security requirements of the controller (e.g., the host proposed SHA-256, but the controller’s security policy
requires a SHA-384 hash), then the controller shall:

 reply to the AUTH_Negotiate message with an AUTH_Failure1 message having reason code
‘Authentication failure’ and reason code explanation ‘Hash function not usable’; and

 disconnect the NVMe-oF connection upon transmitting the AUTH_Failure1 message.

The Diffie-Hellman (DH) groups used by DH-HMAC-CHAP are shown in Figure TBD+16.

Figure TBD+16 – DH-HMAC-CHAP Diffie-Hellman group identifiers

Identifier DH group size Generator (g) Modulus (p) and Reference

00h NULL N/A N/A

01h 2048-bit 2 see RFC 7919

02h 3072-bit 2 see RFC 7919

03h 4096-bit 2 see RFC 7919

04h 6144-bit 2 see RFC 7919

05h 8192-bit 2 see RFC 7919

06h-DFh Reserved

E0h-FEh Vendor specific

FFh Reserved

The 00h identifier indicates that no Diffie-Hellman exchange is performed, which reduces the DH-HMAC-
CHAP protocol to the HMAC-CHAP protocol.

The 2048-bit DH group and the 3072-bit DH group shall be supported. A mechanism shall be provided to
disable (i.e., prohibit) use of the 2048-bit DH group.

Upon receiving an AUTH_Negotiate message, if the DHgIDList proposed by the host does not satisfy the
security requirements of the controller (e.g., the host proposed only the NULL DH group, but the controller’s
security policy requires a DH group whose size is 3072-bit or larger), then the controller shall:

 reply to the AUTH_Negotiate message with an AUTH_Failure1 message having reason code
‘Authentication failure’ and reason code explanation ‘DH group not usable’; and

Claudio DeSanti, March 2021 20

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

 disconnect the NVMe-oF connection upon transmitting the AUTH_Failure1 message.

6.5.3 DH-HMAC-CHAP_Challenge Message

The DH-HMAC-CHAP_Challenge message is sent for the controller to the host. The format of the DH-
HMAC-CHAP_Challenge message is shown in Figure TBD+17.

Figure TBD+17 - DH-HMAC-CHAP_Challenge message format

Bytes Description

0 AUTH_TYPE: 01h (i.e., DH-HMAC-CHAP)

1 AUTH_ID: 01h (i.e., DH-HMAC-CHAP_Challenge)

3:2 Reserved

5:4 T_ID: 16-bit transaction identifier

6 Hash Length (HL): Length in bytes of the selected hash function

7 Reserved

8 HashID: Identifier of selected hash function

9 DHgID: Identifier of selected Diffie-Hellman group

11:10
DH Value Length (DHVLEN): Length in bytes of DH value. If no DH
value is included in the message, then this field is cleared to 0h

15:12 Sequence Number (SEQNUM): Sequence number S1

15+HL:16 Challenge Value (CVAL): Challenge C1

15+HL+DHVLEN:16+HL
DH Value (DHV): DH exponential gx mod p. This field is not present
(i.e., the CVAL field is the last field in the message) if DHVLEN is
cleared to 0h

Hash Length (HL): Shall be set to the length in bytes of the selected hash function, as specified in Figure
TBD+15.

HashID: Shall be set to the hash function identifier (refer to Figure TBD+15) selected for this authentication
transaction among those proposed in the DH-HMAC-CHAP protocol descriptor in the AUTH_Negotiate
message. The controller shall select a hash function in accord with its applicable policy.

DHgID: Shall be set to the DH group identifier (refer to Figure TBD+16) selected for this authentication
transaction among those proposed in the DH-HMAC-CHAP protocol descriptor in the AUTH_Negotiate
message. The controller shall select a DH group identifier in accord with its applicable policy. If this field is
cleared to 0h, the DH portion of the DH-HMAC-CHAP protocol shall not be performed in this authentication
transaction.

DH Value Length (DHVLEN): Diffie-Hellman exponential length. This length shall be a multiple of 4. If the
DH group identifier is cleared to 0h (i.e., NULL DH exchange), this field shall be cleared to 0h. Otherwise,
it shall be set to the length in bytes of the DH Value.

Sequence Number (SEQNUM): 32-bit sequence number S1. A random non-zero value shall be used as
the initial value. The sequence number is incremented modulo 232 after each use, except that the value 0h
is skipped (i.e., incrementing the value FFFF FFFFh results in the value 0000 0001h).

Challenge Value (CVAL): Shall be set to a random challenge value C1 (refer to section 6.5.7). Each
challenge value should be unique and unpredictable, since repetition of a challenge value in conjunction
with the same key may reveal information about the key or the correct response to this challenge. The
algorithm for generating the challenge value is outside the scope of this specification. Randomness of the
challenge value is crucial to the security of the protocol (refer to section 6.5.7). The CVAL length is the
same as the length of the selected hash function (i.e., HL).

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

DH Value (DHV): Diffie-Hellman exponential. If the DH Value Length is cleared to 0h, this field is not
present. The DH value shall be set to the value of gx mod p, where x is a random number selected by the
controller that shall be at least 256 bits long (refer to section 6.5.7) and p and g shall have the values
indicated in Figure TBD+16, based on the selected DH group identifier.

Upon receiving a DH-HMAC-CHAP_Challenge message, if:

 the Hash Length (HL) does not match the value specified in Figure TBD+15 for the selected hash
function;

 the Sequence Number (SEQNUM) is cleared to 0h;

 DHgID is non-zero and the DH Value Length (DHVLEN) is cleared to 0h; or

 DHgID is non-zero and the DH Value (DHV) is 0, 1, or p-1;

then the host shall:

 reply with an AUTH_Failure2 having reason code ‘Authentication failure’ and reason code
explanation ‘Incorrect payload’; and

 disconnect the NVMe-oF connection.

6.5.4 DH-HMAC-CHAP_Reply Message

The DH-HMAC-CHAP_Reply message is sent from the host to the controller. The host may request
authentication of the controller to enable bidirectional authentication, by including a DH-HMAC-CHAP
challenge value C2 in this message. The challenge value C2 shall be different from the challenge value C1
received in the DH-HMAC-CHAP_Challenge message.

The format of the DH-HMAC-CHAP_Reply message is shown in Figure TBD+18.

Figure TBD+18 - DH-HMAC-CHAP_Reply message format

Bytes Description

0 AUTH_TYPE: 01h (i.e., DH-HMAC-CHAP)

1 AUTH_ID: 02h (i.e., DH-HMAC-CHAP_Reply)

3:2 Reserved

5:4 T_ID: 16-bit transaction identifier

6 Hash Length (HL): Length in bytes of the selected hash function

7 Reserved

8

Challenge Valid (CVALID):

Value Definition

00h The Challenge Value is not valid

01h The Challenge Value is valid

All others Reserved

9 Reserved

11:10
DH Value Length (DHVLEN): Length in bytes of DH value. If no
DH value is included in the message, then this field is cleared to 0h

15:12 Sequence Number (SEQNUM): Sequence number S2

15+HL:16 Response Value (RVAL): Response R1

15+2*HL:16+HL
Challenge Value (CVAL): Challenge C2, if valid (i.e., if the CVALID
field is set to 01h), cleared to 0h otherwise

15+2*HL+DHVLEN:16+2*HL
DH Value (DHV): DH exponential gy mod p. This field is not present
(i.e., the CVAL field is the last field in the message) if DHVLEN is
cleared to 0h

Claudio DeSanti, March 2021 22

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

Hash Length (HL): Shall be set to the length in bytes of the selected hash function, as specified in Figure
TBD+15.

Challenge Valid: If the host does not require bidirectional authentication or no establishment of a secure
channel after unidirectional authentication is sought (refer to section 6.5.8), this field shall be cleared to 0h.
Otherwise, this field shall be set to 01h.

DH Value Length (DHVLEN): Diffie-Hellman exponential length. This length shall be a multiple of 4. If the
DH group identifier is cleared to 0h (i.e., NULL DH exchange), this field shall be cleared to 0h. Otherwise,
it shall be set to the length in bytes of the DH Value.

Sequence Number (SEQNUM): 32-bit sequence number S2. A random non-zero value shall be used as
the initial value. The sequence number is incremented modulo 232 after each use, except that the value 0h
is skipped (i.e., incrementing the value FFFF FFFFh results in the value 0000 0001h). The value 0h is used
to indicate that bidirectional authentication is not performed, but a challenge value C2 is carried in order to
generate a pre-shared key (PSK) for subsequent establishment of a secure channel (refer to section 6.5.8).

Response Value (RVAL): DH-HMAC-CHAP response value R1. The value of R1 is computed using the
hash function H() selected by the HashID parameter in the DH-HMAC-CHAP_Challenge message, and
the augmented challenge Ca1. If the NULL DH group has been selected, the augmented challenge Ca1 is
equal to the challenge C1 received from the controller (i.e., Ca1 = C1). If a non-NULL DH group has been
selected, the augmented challenge is computed applying the HMAC function using the hash function H()
selected by the HashID parameter in the DH-HMAC-CHAP_Challenge message with the hash of the
ephemeral DH key resulting from the combination of the random value y selected by the host with the DH
exponential (i.e., gx mod p) received from the controller as HMAC key (see RFC 2104) to the challenge C1
(i.e., Ca1 = HMAC(H((gx mod p)y mod p), C1) = HMAC(H(gxy mod p), C1)). The value of R1 shall be computed
applying the HMAC function using the hash function H() selected by the HashID parameter in the DH-
HMAC-CHAP_Challenge message with key Kh as HMAC key to the concatenation of the augmented
challenge Ca1, the sequence number S1, the transaction identifier T_ID, the secure channel concatenation
indication SC_C sent in the AUTH_Negotiate message, the eight ASCII characters ”HostHost” to indicate
the host is computing the reply, the host NQN not including the null terminator, a 00h byte, and the NVM
subsystem NQN not including the null terminator (i.e., R1 = HMAC(Kh, Ca1 || S1 || T_ID || SC_C || ”HostHost”
|| NQNh || 00h || NQNc)). Using C language notation:

Ca1 = (DHgID == 00h) ? C1 : HMAC(H((gx mod p)y mod p)), C1)

R1 = HMAC(Kh, Ca1 || S1 || T_ID || SC_C || ”HostHost” || NQNh || 00h || NQNc)

Challenge Value (CVAL): Shall be set to a random challenge value C2 (refer to section 6.5.7). Each
challenge value should be unique and unpredictable, since repetition of a challenge value in conjunction
with the same key may reveal information about the key or the correct response to this challenge. The
algorithm for generating the challenge value is outside the scope of this specification. Randomness of the
challenge value is crucial to the security of the protocol (refer to section 6.5.7). The CVAL length is the
same as the length of the selected hash function (i.e., HL).

DH Value (DHV): Diffie-Hellman exponential. If the DH Value Length is cleared to 0h, this field is not
present. The DH Value shall be set to the value of gy mod p, where y is a random number selected by the
host that shall be at least 256 bits long (refer to section 6.5.7) and p and g shall have the values indicated
in Figure TBD+16, based on the selected DH group identifier.

Upon receiving a DH-HMAC-CHAP_Reply message, if:

 the Hash Length (HL) does not match the value specified in Figure TBD+15 for the selected hash
function;

 DHgID is non-zero and the DH Value Length (DHVLEN) is cleared to 0h; or

 DHgID is non-zero and the DH Value (DHV) is 0, 1, or p-1;

then the controller shall:

 reply with an AUTH_Failure1 message having reason code ‘Authentication failure’ and reason code
explanation ‘Incorrect payload’; and

 disconnect the NVMe-oF connection.

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

In addition, the controller shall:

 check the challenge value C2, if the Challenge Valid field is set to 01h, to verify it is different from
the challenge value C1 the controller previously sent. If C2 is equal to C1, the controller shall:

o reply with an AUTH_Failure1 message having reason code ‘Authentication failure’ and
reason code explanation ‘Authentication failed’; and

o disconnect the NVMe-oF connection; and

 verify the response value R1 using the negotiated hash function. If verification of the response value
R1 does not succeed, the controller shall:

o reply with an AUTH_Failure1 message having reason code ‘Authentication failure’ and
reason code explanation ‘Authentication failed’; and

o disconnect the NVMe-oF connection.

If verification of the response value R1 succeeds, the host has been authenticated and the controller
shall continue with a DH-HMAC-CHAP_Success1 message.

6.5.5 DH-HMAC-CHAP_Success1 Message

The DH-HMAC-CHAP_Success1 message is sent from the controller to the host and indicates that the
controller has successfully authenticated the host. The format of the DH-HMAC-CHAP_Success1 message
is shown in Figure TBD+19.

Figure TBD+19 - DH-HMAC-CHAP_Success1 message format

Bytes Description

0 AUTH_TYPE: 01h (i.e., DH-HMAC-CHAP)

1 AUTH_ID: 03h (i.e., DH-HMAC-CHAP_Success1)

3:2 Reserved

5:4 T_ID: 16-bit transaction identifier

6 Hash Length (HL): Length in bytes of the selected hash function

7 Reserved

8

Response Valid (RVALID):

Value Definition

00h The Response Value is not valid

01h The Response Value is valid

All others Reserved

15:9 Reserved

15+HL:16
Response Value (RVAL): Response R2, if valid (i.e., if the RVALID
field is set to 01h), cleared to zero otherwise

Hash Length (HL): Shall be set to the length in bytes of the selected hash function, as specified in Figure
TBD+15.

Response Valid: If the host did not request authentication of the controller (i.e., bidirectional authentication)
this field shall be cleared to 0h to indicate that no response is conveyed (i.e., the Response Value field is
not valid). If the host did request authentication of the controller, this field shall be set to 01h.

Response Value (RVAL): DH-HMAC-CHAP response value R2. The value of R2 is computed using the
hash function H() selected by the HashID parameter of the DH-HMAC-CHAP_Challenge message, and
the augmented challenge Ca2. If the NULL DH group has been selected, the augmented challenge Ca2 is
equal to the challenge C2 received from the host (i.e., Ca2 = C2). If a non-NULL DH group has been selected,
the augmented challenge is computed applying the HMAC function using the hash function H() selected
by the HashID parameter in the DH-HMAC-CHAP_Challenge message with the hash of the ephemeral DH
key resulting from the combination of the random value x selected by the controller with the DH exponential
(i.e., gy mod p) received from the host as HMAC key (see RFC 2104) to the challenge C2 (i.e., Ca2 =
HMAC(H((gy mod p)x mod p), C2) = HMAC(H(gxy mod p)), C2). The value of R2 shall be computed applying

Claudio DeSanti, March 2021 24

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

the HMAC function using the hash function H() selected by the HashID parameter in the DH-HMAC-
CHAP_Challenge message with key Kc as HMAC key to the concatenation of the augmented challenge
Ca2, the sequence number S2, the transaction identifier T_ID, the secure channel concatenation indication
SC_C received in the AUTH_Negotiate message, the ten ASCII characters ”Controller” to indicate the
controller is computing the reply, the NVM subsystem NQN not including the null terminator, a 00h byte,
and the host NQN not including the null terminator (i.e., R2 = HMAC(Kc, Ca2 || S2 || T_ID || SC_C ||
”Controller” || NQNc || 00h || NQNh)). Using C language notation:

Ca2 = (DHgID == 00h) ? C2 : HMAC(H((gy mod p)x mod p)), C2)

R2 = HMAC(Kc, Ca2 || S2 || T_ID || SC_C || ”Controller” || NQNc || 00h || NQNh)

Upon receiving a DH-HMAC-CHAP_Success1 message:

 if the Hash Length (HL) does not match the value specified in Figure TBD+15 for the selected hash
function, the host shall:

o reply with an AUTH_Failure2 message having reason code ‘Authentication failure’ and
reason code explanation ‘Incorrect payload’; and

o disconnect the NVMe-oF connection; and

 if the Response Valid field is set to 01h, the host shall verify the response value R2 using the
negotiated hash function and DH group. If verification of the response value R2 does not succeed,
the host shall:

o reply with an AUTH_Failure2 message having reason code ‘Authentication failure’ and
reason code explanation ‘Authentication failed’; and

o disconnect the NVMe-oF connection.

If verification of the response value R2 succeeds, the controller has been authenticated and the host
shall continue with a DH-HMAC-CHAP_Success2 message.

6.5.6 DH-HMAC-CHAP_Success2 Message

The DH-HMAC-CHAP_Success2 message is sent from the host to the controller and indicates that the host
has successfully authenticated the controller. The format of the DH-HMAC-CHAP_Success2 message is
shown in Figure TBD+20.

Figure TBD+20 - DH-HMAC-CHAP_Success2 message format

Bytes Description

0 AUTH_TYPE: 01h (i.e., DH-HMAC-CHAP)

1 AUTH_ID: 04h (i.e., DH-HMAC-CHAP_Success2)

3:2 Reserved

5:4 T_ID: 16-bit transaction identifier

15:6 Reserved

6.5.7 DH-HMAC-CHAP Security Requirements

In order to authenticate with the DH-HMAC-CHAP protocol, each host or controller uses a DH-HMAC-
CHAP key that is associated with the entity’s NQN. A DH-HMAC-CHAP key is unidirectional (i.e., used only
for one direction of an authentication transaction). A DH-HMAC-CHAP key should not be associated with
more than one NQN as this opens security vulnerabilities. All DH-HMAC-CHAP implementations should
check for use of the same key with more than one NQN and should generate an administrative warning if
this situation occurs (e.g., as a result of configuring a DH-HMAC-CHAP key to verify authentication of
another entity).

The DH-HMAC-CHAP key is derived from an administratively configured secret (refer to section 6.5.8).
Each host and NVM subsystem shall support:

 transforming the provided secret into a key applying the HMAC function using the hash function
specified in the secret representation (refer to section 6.5.8) with the secret as HMAC key to the

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

concatenation of its own NQN not including the null terminator and the seventeen ASCII characters
“NVMe-over-Fabrics” (i.e., key = HMAC(secret, NQN || ”NVMe-over-Fabrics”)). This transformation
ensures the resulting key is uniquely associated with the entity identified by the NQN; and

 using the provided secret as a key. This is intended for use with key management solutions able to
ensure that key is uniquely associated with the entity identified by the NQN.

NVM subsystems should support the ability to use a different NVM subsystem key with each host. Hosts
should support the ability to use a different host key with each NVM subsystem. NVM subsystems should
support the ability to use a different NVM subsystem secret with each host. Hosts should support the ability
to use a different host secret with each NVM subsystem.

If an implementation of NVMe over Fabrics is capable of functioning as both a host and an NVM subsystem,
then that implementation shall use either:

 one NQN for the host functionality and a different NQN for the NVM subsystem functionality; or

 one NQN for both host functionality and NVM subsystem functionality.

DH-HMAC-CHAP implementations may reuse a DH exponential (e.g., gx mod p or gy mod p). The primary
risk in allowing reuse of a DH exponential is replay of a prior authentication sequence based on the attacker
reusing the other exponential. For DH-HMAC-CHAP, replay is prevented with extremely high probability by
the requirement that all challenges be randomly generated. See section 2.12 of RFC 7296 for guidance on
DH exponential reuse.

The security of the DH-HMAC-CHAP protocol requires secrets, challenges, and DH exponents (i.e., x and
y) to be generated from actual randomness. For a discussion of randomness and sources of randomness,
refer to RFC 4086.

Implementations shall use a cryptographic random number generator that should be seeded with at least
256 bits of entropy to generate random numbers for this protocol. The secret provisioning mechanism for
each host and controller is outside of scope of this specification. For instance, secrets could be provisioned
via an encrypted HTTPS-based connection.

6.5.8 Secret Representation

In order to facilitate provisioning, management, and interchange (e.g., copy & paste in an administrative
configuration tool) of secrets, all NVMe-oF entities shall support the following ASCII representation of
secrets:

DHHC-1:xx:<Base64 encoded string>:

Where:

 ”DHHC-1” indicates this is a version 1 representation of a secret for the DH-HMAC-CHAP protocol;

 ‘:’ is used both as a separator and a terminator;

 xx indicates the hash function to be used to transform the secret in key (refer to section 6.5.7),
encoded as the ASCII representation of the hexadecimal value specified in Figure TBD+15 (e.g.,
the two ASCII characters “01” indicate SHA-256). The two ASCII characters “00” indicate no
transform (i.e., use the secret as a key); and

 The Base64 (see RFC 4648) string encodes the secret (32, 48, or 64 bytes binary) followed by the
CRC-32 (see RFC 1952) of the secret (4 bytes binary).

As an example, the 32-byte secret:

89AEB31A 874EAF84 841B4673 6B0DFDF2 BA58D30A A2A545A3 E235A352 1E07594Ch

is represented as: “DHHC-1:00:ia6zGodOr4SEG0Zzaw398rpY0wqipUWj4jWjUh4HWUz6aQ2n:”

when intended to be used as a key without transform.

When provided with a secret in this format, NVMe-oF entities shall verify the validity of the provided secret
by computing the CRC-32 value of the secret and checking the computed value with the provided value. If
they do not match, then the secret shall not be used.

Claudio DeSanti, March 2021 26

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2021 NVMe™ Corporation.

6.5.9 Generated PSK for TLS

When used with a non-NULL DH exchange, the DH-HMAC-CHAP protocol is able to generate a session
key KS used to generate a pre-shared key (PSK) to establish a secure channel session with the TLS protocol
between host and controller. A TLS session is concatenated to an authentication transaction when the
SC_C indication is set to 01h in the AUTH_Negotiate message. A TLS session should not be concatenated
to an authentication transaction if the involved host and controller are administratively configured with a
PSK for use with each other. In this case, host and controller should just establish a TLS session based on
the configured PSK.

The session key KS shall be computed from the ephemeral DH key (i.e., gxy mod p) generated during the
DH-HMAC-CHAP transaction by applying the hash function H() selected by the HashID parameter in the
DH-HMAC-CHAP_Challenge message (i.e., KS = H(gxy mod p)). The size of the session key KS is
determined by the selected hash function, as shown in Figure TBD+15. Specifically:

 The host computes KS as the hash of the ephemeral DH key resulting from the combination of the
random value y selected by the host with the DH exponential (i.e., gx mod p) received from the
controller (i.e., KS = H((gx mod p)y mod p) = H(gxy mod p)).

 The controller computes KS as the hash of the ephemeral DH key resulting from the combination
of the random value x selected by the controller with the DH exponential (i.e., gy mod p) received
from the host (i.e., KS = H((gy mod p)x mod p) = H(gxy mod p)).

The generated PSK for TLS shall be computed applying the HMAC function using the hash function H()
selected by the HashID parameter in the DH-HMAC-CHAP_Challenge message with the session key KS
as key to the concatenation of the two challenges C1 and C2 (i.e., generated PSK = HMAC(KS, C1 || C2)).
The generated PSK used to set up a TLS secure channel on the admin queue may be reused to set up
additional TLS secure channels on the I/O queues (refer to section 7.4.9.4). The lifetime of this generated
PSK should be no more than ten minutes; this requires authentication for I/O queues created after this time.

Note to the editor: 7.4.9.4 is a section of TP 8011.

The host may request secure channel concatenation with the TLS protocol by setting the SC_C indication
in the AUTH_Negotiate message to 01h while performing only unidirectional authentication. In this case the
host shall still send a challenge value C2 to the controller and clear the sequence number S2 to 0h to indicate
that controller authentication is not requested.

6.5.10 Mapping of DH-HMAC-CHAP Messages to Authentication Commands

The DH-HMAC-CHAP_Reply message and the DH-HMAC-CHAP_Success2 message are sent from the
host to the controller, therefore they are mapped to the Authentication Send command. The DH-HMAC-
CHAP_Challenge message and the DH-HMAC-CHAP_Success1 message are sent from the controller to
the host, therefore they are mapped to the Authentication Receive command.

