
1 
 

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM 
Express™ Participant’s agreement.  Copyright © 2014-2021 NVMe™ Corporation. 

 
 

 

LEGAL NOTICE: 

© Copyright 2007 - 2021 NVM Express, Inc.  ALL RIGHTS RESERVED. 
This NVM Express over Fabrics revision 1.1 technical proposal is proprietary to the NVM Express, Inc. (also 
referred to as “Company”) and/or its successors and assigns. 

NOTICE TO USERS WHO ARE NVM EXPRESS, INC. MEMBERS: Members of NVM Express, Inc. have 
the right to use and implement this NVM Express over Fabrics revision 1.1 technical proposal subject, 
however, to the Member’s continued compliance with the Company’s Intellectual Property Policy and 
Bylaws and the Member’s Participation Agreement. 

NOTICE TO NON-MEMBERS OF NVM EXPRESS, INC.: If you are not a Member of NVM Express, Inc. 
and you have obtained a copy of this document, you only have a right to review this document or make 
reference to or cite this document. Any such references or citations to this document must acknowledge 
NVM Express, Inc. copyright ownership of this document. The proper copyright citation or reference is as 
follows:  “© 2007 - 2021 NVM Express, Inc.  ALL RIGHTS RESERVED.” When making any such citations 
or references to this document you are not permitted to revise, alter, modify, make any derivatives of, or 
otherwise amend the referenced portion of this document in any way without the prior express written 
permission of NVM Express, Inc.  Nothing contained in this document shall be deemed as granting you any 
kind of license to implement or use this document or the specification described therein, or any of its 
contents, either expressly or impliedly, or to any intellectual property owned or controlled by NVM Express, 
Inc., including, without limitation, any trademarks of NVM Express, Inc. 

 

LEGAL DISCLAIMER: 

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN “AS IS” 
BASIS. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, NVM EXPRESS, INC. (ALONG 
WITH THE CONTRIBUTORS TO THIS DOCUMENT) HEREBY DISCLAIM ALL REPRESENTATIONS, 
WARRANTIES AND/OR COVENANTS, EITHER EXPRESS OR IMPLIED, STATUTORY OR AT 
COMMON LAW, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, VALIDITY, AND/OR 
NONINFRINGEMENT.  

All product names, trademarks, registered trademarks, and/or servicemarks may be claimed as the property 
of their respective owners. 

 
NVM Express Workgroup 
c/o VTM Group 
3855 SW 153rd Drive 
Beaverton, OR  97003  USA 
Info@nvmexpress.org 

  



2 

 

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM 
Express™ Participant’s agreement.  Copyright © 2014-2021 NVMe™ Corporation. 

NVM Express Technical Proposal for New Feature 
 

Technical Proposal ID TP 8011 - TLS 1.3 Profile for NVMe/TCP 

Change Date 02/15/2021 

Builds on Specification NVMe-oF 1.1 

References Ratified TPs TP 8006 

 

 

Technical Proposal Author(s) 
Name Company 

David Black, Claudio DeSanti Dell/EMC 

Constantine Sapuntzakis Pure Storage 

  

 

 

 
 

 

 



3 
 

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM 
Express™ Participant’s agreement.  Copyright © 2014-2021 NVMe™ Corporation. 

Revision History 
Revision Date Change Description 

2020/09/11 Initial import into template / Remove TLS 1.2 support 

2020/09/22 Introduce new SECTYPE for TLS 1.3 

2020/09/24 
Allow TLS 1.2 
Should support secp384r1 
Various smaller fixes 

2020/09/28 

Discuss constraints of using same PSK with different hash functions 
Add hash to use with PSK to PSK identity 
Add PSK Interchange format 
Smaller cleanups 
Should -> shall on parameters 
PSK identity prefix from C -> NVMe 
Session tickets should not be mistaken for PSK identities 
Reflection attacks 

2020/10/07 
Retained / TLS keys first cut 
Remove prefix from interchange format CRC 

2020/10/13 

Differentiate generated from retained TLS keys 
Add hash specifier to key interchange format 
TLS master key generation via HKDF 
Remove processing of NQNs into PSK identity 
Add protocol version and key type indicators to PSK identity 

2020/10/27 Remove reflection attacks language 

2020/11/17 

Editorial rewrite by cds. 
Conventions: 

- Text to add in NVMe-oF 1.1 is in blue 
- Text to delete in NVMe-oF 1.1 is in strikethrough red 
- New text worth more review is highlighted in magenta 
- Text deleted from the previous version is in strikethrough orange  
- Text added to the previous version is in green 

2020/12/01 

- Added definition for the keyword “obsolete” 
- Made TLS_AES_128_GCM_SHA256 mandatory and 

TLS_AES_256_GCM_SHA384 optional 
- Clarified how to transform a configured PSK in a retained PSK 

2020/12/01 concall - Editorial fixes 

2020/12/15 - Added section on PSK reuse 
- Miscellaneous clarifications in section 7.4.9.3 

2020/12/15 concall - Allowed TLS 1.2 as per NVMe-oF 1.1 
- Editorial fixes 

2021/01/28 - Incorporated members’ review editorial comments 

2021/02/15 - Integrated into the NVMe-oF Specification, Revision 1.1. 

 
  



4 

 

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM 
Express™ Participant’s agreement.  Copyright © 2014-2021 NVMe™ Corporation. 

Description of Specification Changes 
 
Add the following definition to section 1.4 (Definitions): 

 

1.4.10 obsolete 
Keyword indicating functionality that was defined in a previous version of this specification and that has 
been removed from this specification. 

 

Modify section 7.4.9 (Transport Specific Address Subtype and Transport Service Identifier) as 
follows: 

 

7.4.9 Transport Specific Address Subtype and Transport Service Identifier 
The Discovery Log Entry includes a Transport Specific Address Subtype (TSAS) field that is defined in 
Figure 71 for the NVMe/TCP Transport. The TSAS field describes TCP connection properties, such as 
whether TLS is supported describes TCP connection properties such as whether TLS is used (refer to 
section 7.4.9.1).  The Discovery Log Entry also includes a Transport Service Identifier (TRSVCID) field that 
describes the TCP port to use (refer to section 7.4.9.7). 

7.4.9.1 Mandatory and Recommended Cipher Suites 
TLS for NVMe/TCP is based on pre-shared key (PSK) cipher suites. NVMe/TCP implementations that 
implement TLS shall support the TLS_PSK_WITH_AES_128_GCM_SHA256 {00h, A8h} cipher suite (refer 
to RFC 5487), and NVM subsystems should include that cipher suite in the initial set of cipher suites 
proposed to a host. In addition, the following cipher suites should be supported (refer to RFC 5487): 

• TLS_PSK_WITH_AES_256_GCM_SHA384 {00h, A9h} cipher suite; 

• TLS_DHE_PSK_WITH_AES_128_GCM_SHA256 {00h, AAh} cipher suite; and 

• TLS_DHE_PSK_WITH_AES_256_GCM_SHA384 {00h, ABh} cipher suite. 

The _AES_128_ and _AES_256_ cipher suites differ in cryptographic strength (e.g., the _AES_128 cipher 
suites specify the use of 128-bit AES encryption and the _AES_256_ cipher suites specify the use of 256-
bit AES encryption). The _DHE_ cipher suites differ from their non-_DHE_ cipher suite counterparts in the 
addition of an ephemeral Diffie-Hellman (DH) exchange to protect encrypted traffic against compromise of 
the pre-shared key (refer to section 6.3 of RFC 7525). The DH keys (also called exponents) used in any 
ephemeral DH exchange: 

10. shall be at least 2,048 bits in size (refer to section 4.3 of RFC 7525); and 

11. should not be reused (i.e., used for more than one DH exchange) (refer to section 6.4 of RFC 
7525). 

The PSK cipher suite framework is described in RFC 4279. NVMe/TCP uses NQNs to identify hosts and 
NVM subsystems, specifically, in the TLS handshake for a PSK cipher suite: 

12. The psk_identity field in the ClientKeyExchange message shall contain the host NQN and the 
subsystem NQN separated by a space (‘ ‘=U+0020h) character as a UTF-8 string, including the 
terminating null (00h) character. 

The following is an example of the psk_identity field in the ClientKeyExchange message assuming that 
both the host and the NVM subsystem are using the UUID-based format NVMe Qualified Names: 

13. nqn.2014-08.org.nvmexpress:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6 nqn.2014-
08.org.nvmexpress:uuid:36ebf5a9-1df9-47b3-a6d0-e9ba32e428a2. 



5 
 

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM 
Express™ Participant’s agreement.  Copyright © 2014-2021 NVMe™ Corporation. 

For interoperability reasons, NVMe/TCP prohibits identity hints in the TLS 1.2 ServerKeyExchange 
message. The host is expected to be able to determine which identity and pre-shared key to use with the 
subsystem based on the NVM subsystem NQN indicated in a corresponding discovery log entry acquired 
before the client Key Exchange message was sent. 

 

7.4.9.1 Transport Specific Address Subtype: TLS 
The TSAS SECTYPE field defined in Figure 71 describes whether TLS is supported. TLS implementation 
is optional for NVMe/TCP. 

Figure 71: Transport Specific Address Subtype Definition for NVMe/TCP Transport 
Bytes Description 

00 

Security Type (SECTYPE): Specifies the type of security used by the NVMe/TCP port. If SECTYPE 
is a value of zero (No Security), then the host is shall setup a normal TCP connection. 
 

Value Definition 
00 No Security 

01 
Transport Layer Security (TLS) version 1.2 (refer to RFC 5246) or a 
subsequent version. The TLS protocol negotiates the version and 
cipher suite for each TCP connection. (refer to NVMe-oF 1.1). 

02 
Transport Layer Security (TLS) version 1.3 (refer to RFC 8446) or a 
subsequent version. The TLS protocol negotiates the version and 
cipher suite for each TCP connection. 

255:03 Reserved 
 

255:01 Reserved 

 

TLS protocol versions prior to 1.2 shall not be used with NVMe/TCP (refer to section 3.1.1 of RFC 7525). 
All versions of SSL, the predecessor protocol to TLS, shall not be used with NVMe/TCP. NVMe/TCP 
implementations that are compliant with this version of the specification and that support TLS shall support 
TLS 1.3 (refer to RFC 8446). For further discussion, refer to section 3.1.1 of RFC 7525. The NVMe/TCP 
prohibition on versions of TLS prior to 1.2 is stronger than the requirements in RFC 7525 because 
NVMe/TCP is a new protocol.  

Editor’s note: Refactoring should look at the usage of the words “this version of the specification”. 

7.4.9.2 Mandatory and Recommended Cipher Suites 
TLS for NVMe/TCP is based on pre-shared key (PSK) authentication. NVMe/TCP implementations that 
support TLS 1.3 shall support the TLS_AES_128_GCM_SHA256 {13h, 01h} cipher suite and should 
support the TLS_AES_256_GCM_SHA384 {13h, 02h} cipher suite. 

Implementations shall support disabling individual cipher suites. The methods for disabling individual cipher 
suites are outside the scope of this specification. 

For authentication and key exchange, implementations shall support (refer to section 2 of RFC 8446):  

• PSK-only authentication; and  
• PSK with (EC)DHE (refer to RFC 8446). 

PSK with (EC)DHE protects encrypted traffic against compromise of the pre-shared key. Implementations 
shall support disabling PSK-only authentication. The method for disabling PSK-only authentication is 
outside the scope of this specification. 

The DH exponentials used in an ephemeral DH exchange should not be reused (refer to section 2.12 of 
RFC 7296 for guidance on DH exponential reuse). Implementations shall not use a DH exponential for 
multiple protocols (e.g., use the same DH exponential for DH-HMAC-CHAP and TLS). 



6 

 

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM 
Express™ Participant’s agreement.  Copyright © 2014-2021 NVMe™ Corporation. 

NVMe/TCP TLS 1.3 implementations shall support the ffdhe3072 group for PSK with DHE and should 
support the secp384r1 group (refer to section 4.2.7 of RFC 8446). Implementations shall support restricting 
the DH and ECDH groups offered and accepted. The method for restricting the DH and ECDH groups 
offered and accepted is outside the scope of this specification. 

7.4.9.3 TLS PSK and PSK Identity Derivation 
This section uses the following terminology: 

• Configured PSK: the PSK provided via an administrative interface of the NVMe/TCP entity. The 
method for configuring a PSK is outside the scope of this specification; 

• Retained PSK: the PSK stored by the NVMe/TCP entity for use with TLS; 
• Generated PSK: the PSK generated by an NVMe authentication protocol (e.g., DH-HMAC-CHAP, 

refer to section 6.5); and 
• TLS PSK: the PSK used by the TLS protocol. 

Note to the editor: 6.5 is a section of TP 8006. 

The configured PSK is configured on both involved entities (i.e., host and NVM subsystem). NVM 
subsystems should support the ability to use a different configured PSK with each host. Hosts should 
support the ability to use a different configured PSK with each NVM subsystem. 

The retained PSK is derived from the configured PSK (refer to section 7.4.9.4). The configured PSK shall 
be destroyed as soon as the retained PSK is generated and stored. Each NVMe/TCP entity shall support: 

• transforming the configured PSK into a retained PSK before it is stored by the NVMe/TCP entity 
for repeated use with another NVMe/TCP entity; and 

• using the configured PSK as a retained PSK. 

The method to derive a retained PSK from a configured PSK shall be using the HKDF-Extract and HKDF-
Expand-Label operations (refer to RFC 5689 and RFC8446): 

1. PRK = HKDF-Extract(0, Configured PSK); and 
2. Retained PSK = HKDF-Expand-Label(PRK, “HostNQN”, NQNh, Length(Configured PSK)), 

where NQNh in the NQN of the host. The hash function used with HKDF shall be the one specified in the 
PSK interchange format (refer to section 7.4.9.4). This transform requires that the NVM subsystem knows 
the NQN of the host with which the configured PSK is used. 

The retained PSK or the generated PSK is used to derive the TLS PSK and the related PSK identity that 
are associated with a TLS 1.3 cipher suite hash function. The result is a {TLS PSK, PSK Identity, Hash} 
tuple for use with TLS 1.3. 

In TLS 1.3 each PSK is identified by the client using a PSK identity. Each PSK is also associated with one 
hash function that shall be the same as the hash function of the selected cipher suite. For example, the 
cipher suites TLS_AES_128_GCM_SHA256 and TLS_AES_256_GCM_SHA384 use the SHA-256 and 
SHA-384 hash functions respectively. A TLS client that offers both cipher suites shall offer two PSKs with 
different identities, different hash functions, and different key material. 

A TLS 1.3 client implementation that only supports sending a single PSK identity during connection setup 
may be required to connect multiple times in order to negotiate cipher suites with different hash functions. 

Some TLS 1.3 server implementations are only able to validate one PSK at a time in the order that they are 
listed in the TLS 1.3 pre_shared_key extension. As a result, TLS 1.3 client implementations should order 
their offered PSKs from most desirable to least desirable. 

The TLS 1.3 PSK identity used with NVMe/TCP is generated from the NQNs of the host and the controller. 
The PSK identity is a UTF-8 string constructed as an in-order concatenation of the following elements. 

1. A 4-character format specifier “NVMe” in utf-8 encoding; 
2. A one-character TLS protocol version indicator:  

• ‘0’ (i.e., U+0030h) indicates TLS 1.3; 



7 
 

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM 
Express™ Participant’s agreement.  Copyright © 2014-2021 NVMe™ Corporation. 

3. A one-character PSK type indicator, specifying the used PSK: 
• ‘R’ (i.e., U+0052h) indicates the retained PSK; 
• ‘G’ (i.e., U+0047h) indicates the generated PSK; 

4. A two-characters hash specifier, specifying the hash function of the cipher suite associated with 
this PSK identity:  
• “01” indicates SHA-256 (e.g., for the TLS_AES_128_GCM_SHA256 cipher suite); 
• “02” indicates SHA-384 (e.g., for the TLS_AES_256_GCM_SHA384 cipher suite); 

5. A space character (i.e., U+0020h); 
6. The NQN of the host (i.e., NQNh); 
7. A space character (i.e., U+0020h); 
8. The NQN of the controller (i.e., NQNc); and 
9. A null character (i.e., U+0000h). 

For example, host NQN “nqn.2014-08.org.nvmexpress:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6” 
and subsystem NQN “nqn.2014-08.org.nvmexpress:uuid:36ebf5a9-1df9-47b3-a6d0-e9ba32e428a2” with 
the SHA-256 hash function and the retained PSK generate the following PSK identity:  

“NVMe0R01 nqn.2014-08.org.nvmexpress:uuid:f81d4fae-7dec-11d0-a765-
00a0c91e6bf6 nqn.2014-08.org.nvmexpress:uuid:36ebf5a9-1df9-47b3-a6d0-
e9ba32e428a2” 

The TLS PSK shall be derived as follows from an input PSK (i.e., either a retained PSK or a generated 
PSK) and a PSK identity using the HKDF-Extract and HKDF-Expand-Label operations (refer to RFC 5689 
and RFC8446) where the hash function is the one specified by the hash specifier of the PSK identity: 

1. PRK = HKDF-Extract(0, Input PSK); and 
2. TLS PSK = HKDF-Expand-Label(PRK, “nvme-tls-psk”, PskIdentity, L), 

where PskIdentity is the PSK identity and L is the output size in bytes of the hash function (i.e., 32 for SHA-
256 and 48 for SHA-384). 

The full process to derive the {TLS PSK, PSK Identity, Hash} tuple is shown in Figure TBD+1 for both 
configured PSK and generated PSK. This process is performed for each supported TLS 1.3 cipher suite 
hash function. 



8 

 

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM 
Express™ Participant’s agreement.  Copyright © 2014-2021 NVMe™ Corporation. 

 

Figure TBD+1: {TLS PSK, TLS Identity, Hash} tuple derivation 
7.4.9.4 PSK Reuse 
A retained PSK is used between a host and an NVM subsystem to set up TLS secure channels for the 
Admin Queue and all I/O Queues of each controller associated with that host. 

A generated PSK used to set up an Admin Queue TLS secure channel after having performed an 
authentication transaction between a host and a controller (refer to section 6.5.9) may be reused within the 
lifetime of the generated PSK to set up additional TLS secure channels for I/O Queues on the same 
controller. Subsequent creation of an I/O Queue on the same controller requires a different PSK, which 
may be generated by performing another authentication transaction on that I/O Queue. The resulting 
generated PSK may be reused within the lifetime of the generated PSK to set up additional TLS secure 
channels for I/O Queues on the same controller. 

Note to the editor: 6.5.9 is a section of TP 8006. 

A generated PSK shall be discarded when its lifetime expires. The lifetime of a generated PSK shall be ten 
minutes, unless otherwise configured. 

If a retained PSK exists for an Admin Queue or a I/O Queue associated with a generated PSK, then that 
generated PSK shall not be reused. 

7.4.9.5 PSK Interchange Format 
In order to facilitate provisioning, management, and interchange (e.g., copy & paste in an administrative 
configuration tool) of PSKs, all NVMe-oF entities shall support the following ASCII representation of 
configured PSKs: 

NVMeTLSkey-1:xx:<Base64 encoded string>: 

Where: 

1. ”NVMeTLSkey-1” indicates this is a version 1 representation of a TLS PSK; 

Authentication Protocol

Generated PSK
(retained up to ten minutes, 

associate with the hash of the 
selected cipher suite)

Derive PSK Identity:
“NVMe0G<hash> NQNh NQNc”

Derive TLS PSK

{TLS PSK, PSK Identity, Hash}

Admin: Configured PSK

Derive Retained PSK, 
Discard configured PSK

Retained PSK
(retained indefinitely, 

associate with the hash of the 
selected cipher suite)

Derive PSK Identity:
“NVMe0R<hash> NQNh NQNc”

Derive TLS PSK

{TLS PSK, PSK Identity, Hash}



9 
 

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM 
Express™ Participant’s agreement.  Copyright © 2014-2021 NVMe™ Corporation. 

2. ‘:’ is used both as a separator and a terminator; 
3.  xx indicates the hash function to be used to transform the configured PSK in a retained PSK (refer 

to section 7.4.9.3), encoded as follows: 
• the two ASCII characters “00” indicate no transform (i.e., the configured PSK is used as a 

retained PSK); 
• the two ASCII characters “01” indicate SHA-256; and 
• the two ASCII characters “02” indicate SHA-384; 

and 

4. The Base64 (refer to RFC 4648) string encodes the configured PSK (32 or 48 bytes binary) followed 
by the CRC-32 (refer to RFC 1952) of the configured (4 bytes binary). 

As an example, the 32-byte configured PSK:  
5512dbb6_737d0106_f65975b7_73dfb011_ffc344bc_f442e2dd_6d8bc487_0b5d5b03h 
is represented as: “NVMeTLSkey-1:01:VRLbtnN9AQb2WXW3c9+wEf/DRLz0QuLdbYvEhwtdWwNf9LrZ:” 
when requested to be transformed to a retained PSK with the SHA-256 hash. 

When provided with a configured PSK in this format, NVMe-oF entities shall verify the validity of the 
provided PSK by computing the CRC-32 value of the PSK and checking the computed value with the 
provided value. If they do not match, then the PSK shall not be used. 

7.4.9.6 TLS Implementations and Use Requirements 
The following requirements apply to use of TLS 1.2 with NVMe/TCP: 

1. TLS compression shall not be used, as it is not secure (refer to section 3.3 of RFC 7525). This 
NVMe/TCP prohibition of TLS compression is stronger than the requirements in RFC 7525 because 
NVMe/TCP is a new protocol; 

2. If TLS session resumption is supported, the implementation of session resumption shall comply 
with the requirements in section 3.4 of RFC 7525; and 

3. If TLS renegotiation is supported, the renegotiation_info extension shall be implemented and used 
for all renegotiations as described in RFC 5746 (refer to section 3.5 of RFC 7525). 

NVMe/TCP host and subsystem implementations shall not send or use 0-RTT data as it is subject to replay 
attacks (refer to Appendix E.5 of RFC 8446). 

All NVMe/TCP host and subsystem implementations shall be configurable to require that all NVMe/TCP 
connections use TLS. If a host that supports TLS for NVMe/TCP receives a discovery log entry indicating 
that the NVM subsystem uses NVMe/TCP and does not support TLS, then the host should nonetheless 
attempt to establish an NVMe/TCP connection that uses TLS. This requirement applies independent of 
whether the host is configured to require use of TLS for all NVMe/TCP connections. 

NVMe/TCP implementations that support TLS shall support disabling the following parameters, using a 
method outside the scope of this specification: 

• Each individual cipher suite; 
• PSK-only authentication; 
• Each individual DH group; and 
• Each individual ECDH group. 

7.4.9.37.4.9.7 Transport Service Identifier 
 


	NVM Express Technical Proposal for New Feature
	Technical Proposal Author(s)
	7.4.9 Transport Specific Address Subtype and Transport Service Identifier
	7.4.9.1 Mandatory and Recommended Cipher Suites

	7.4.9.1 Transport Specific Address Subtype: TLS
	7.4.9.2 Mandatory and Recommended Cipher Suites
	7.4.9.3 TLS PSK and PSK Identity Derivation
	7.4.9.4 PSK Reuse
	7.4.9.5 PSK Interchange Format
	7.4.9.6 TLS Implementations and Use Requirements


