

LEGAL NOTICE:

© Copyright 2007 - 2018 NVM Express, Inc. ALL RIGHTS RESERVED.
This NVM Express Management Interface revision 1.0a technical proposal is proprietary to the NVM
Express, Inc. (also referred to as “Company”) and/or its successors and assigns.

NOTICE TO USERS WHO ARE NVM EXPRESS, INC. MEMBERS: Members of NVM Express, Inc. have
the right to use and implement this NVM Express Management Interface revision 1.0a technical proposal
subject, however, to the Member’s continued compliance with the Company’s Intellectual Property Policy
and Bylaws and the Member’s Participation Agreement.

NOTICE TO NON-MEMBERS OF NVM EXPRESS, INC.: If you are not a Member of NVM Express, Inc.
and you have obtained a copy of this document, you only have a right to review this document or make
reference to or cite this document. Any such references or citations to this document must acknowledge
NVM Express, Inc. copyright ownership of this document. The proper copyright citation or reference is as
follows: “© 2007 - 2018 NVM Express, Inc. ALL RIGHTS RESERVED.” When making any such
citations or references to this document you are not permitted to revise, alter, modify, make any
derivatives of, or otherwise amend the referenced portion of this document in any way without the prior
express written permission of NVM Express, Inc. Nothing contained in this document shall be deemed as
granting you any kind of license to implement or use this document or the specification described therein,
or any of its contents, either expressly or impliedly, or to any intellectual property owned or controlled by
NVM Express, Inc., including, without limitation, any trademarks of NVM Express, Inc.

LEGAL DISCLAIMER:

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN “AS IS”
BASIS. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, NVM EXPRESS, INC.
(ALONG WITH THE CONTRIBUTORS TO THIS DOCUMENT) HEREBY DISCLAIM ALL
REPRESENTATIONS, WARRANTIES AND/OR COVENANTS, EITHER EXPRESS OR IMPLIED,
STATUTORY OR AT COMMON LAW, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, VALIDITY,
AND/OR NONINFRINGEMENT.

All product names, trademarks, registered trademarks, and/or servicemarks may be claimed as the
property of their respective owners.

NVM Express Management Interface Workgroup
c/o NVM Express Administration
3855 SW 153rd Drive
Beaverton, OR 97003
admin@nvmexpress.org

NVM Express Technical Proposal for New Feature

Technical Proposal ID 6001 – SES Based Enclosure Management

Change Date 1/28/2018

Builds on Specification NVM Express Management Interface 1.0a

Technical Proposal Author(s)

Name Company

Peter Onufryk Microsemi

This technical proposal defines an enclosure management architecture for NVM Express. This
technical proposal also defines the Management Endpoint Buffer which is an intermediate buffer
that allows NVMe-MI to service out-of-band NVMe-MI Messages that have a Message Body that
is larger than the 4224 byte limit that is specified by the NVMe Management Messages over
MCTP Binding Specification.

3

Revision History

Revision Date Change Description

11/11/2016 • Initial draft.

12/4/2016

• Corrected typos and refined wording

• Removed the Invalid Operation Requested (INVOP) bit and associated
functionality

• Removed text associated with zero filling of data not transferred by an SES
Send command and added text that requires that all bytes of a page be
transferred in a series of non-overlapping SES Send commands.

• Added Page Changed (PCHANGED) bit to SES Receive command to
allow page changes to be detected.

3/18/2017

• Changed Short Enclosure Status diagnostic page support to optional

• Remove page code (PCODE) field from SES Send command to better
align with SCSI Send Diagnostic command.

• Added definitions for Enclosure/NVMe Enclosure and Enclosure Services
Process

• Started writing the architectural model for an enclosure (Section 1.5)

4/2/2017
• Removed text associated with ad-hoc greater than 4KB transfers for SES

Send and SES Receive.

• Expanded Section 1.5 Enclosures and Enclosure Management

5/1/2017
• Updated Section 1.5 based on review feedback

• Built out sections and commands associated with the MCTP Management
Endpoint Buffer

5/7/2017

• Changed all references to Management Endpoint Buffer to MCTP
Management Endpoint Buffer. The prefix MCTP was added to highlight the
fact that only MCTP Management Endpoints may support this feature.

• Added Section 4.6 that describes the MCTP Management Endpoint Buffer
and its operation.

5/22/2017

• Integrated Austin’s feedback.

• Added text that describes that updates to the MCTP Management Endpoint
Buffer are not atomic.

• Described how the MCTP Management Endpoint Buffer operates when a
sanitize operation is performed on the NVM subsystem.

• Updated Figure F+2 to show a usage model that is realistic for the case of
multiple Enclosure Services Processes associated with a single enclosure.

6/5/2017
• Simplified the SES Send and SES Receive commands by using the MCTP

Management Endpoint Buffer. Removed ability to retrieve/transfer a partial
page using the SES Send or SES Receive commands.

6/12/2017
• Updated error handling.

• Added back NVMe Management Response field to SES Receive
command.

6/26/2017

• Added text that SES state in NVMe-MI is global and not per I_T Nexus.

• Changed name of MCTP Management Endpoint Buffer to Management
Endpoint Buffer.

• Added error codes for SES and Management Endpoint Buffer access that
reads data zeroed due to a sanitize operation.

• Added mapping of SES sense keys and additional sense codes to NVMe-
MI Response Message Status values.

7/10/2017

• Added Section 1 edits to comprehend that NVMe-MI now also specifies
enclosure management.

• Added column to opcode tables to show optional and mandatory
commands for an NVMe Storage Device as well as an NVMe Enclosure.

• Miscellaneous other updates and corrections.

7/16/2017

• Changed sanitize operation behavior to always clear the entire
Management Endpoint Buffer.

• Updated text and command tables to allow some commands to be
prohibited in an NVMe Enclosure. Described how an NVMe Enclosure that
is also an NVMe Storage Device is required to implement mandatory

commands for either. Described how an NVMe Enclosure that is also an
NVMe Storage Device may implement optional NVMe Storage Device
commands.

8/14/2017

• Removed table of supported SES control type diagnostic pages
and SES status type diagnostic pages and replaced table
references with a reference to SES-3.

• If applicable, split command tables into multiple tables. If
applicable, added separate table that shows commands supported
in-band and one that shows commands supported out-of-band.

• Put shortened definition terms in parentheses.

• Miscellaneous wording and text changes to improve readability.

• Added NVM Subsystem Report (NVMSR) field to NVM Subsystem
Information Data Structure. This allows one to determine if the NVM
subsystem is part of an NVMe Storage Device, and NVMe Enclosure or
both.

9/11/2017

• Clarified that the Request Data contains an SES control type
diagnostic page. The Length of the Request Data is equal to the
value of the PAGE LENGTH field in the SES control type diagnostic
page plus four.

• Added Allocation length (ALENGTH) field to NVMe Management
Dword 1. Described how ALENGTH is used to limit the maximum
amount of SES diagnostic page data that may be returned.

• Updated TP based on review feedback.

• Changed all instances of NVMe-MI MCTP Message to NVMe-MI
Message.

• Moved NVMe Storage Devices outside of Enclosures and showed
them attaching through slots.

9/24/2017

• Corrected ALENGTH field typo/error.

• Added Data Length (DLEN) field to SES Send command and
updated text.

• Modified MEB length error handling to more accurately align with
the protocol.

• Corrected error handling when MEB is used with a command that
doesn’t support it.

• Incorporated editorial feedback.

9/25/2017

• Capitalized all instances of Subenclosure. Added Subenclosure to
the list of definitions.

• Incorporated editorial feedback.

• Incorporated feedback from the workgroup call review.

10/1/2017

• Moved NVM Subsystem Report (NVMSR) field from NVM
Subsystem Information Data Structure to Identify Controller Data
Structure.

• Changed format of Management Endpoint Capabilities (MEC) field
in Identify Controller Data Structure to match other bit field
definitions in the NVMe-MI spec. Named bits zero and one.

• Changed support of Read NVMe-MI Data Structure when using the
In-Band Tunneling Mechanism from mandatory (M) to prohibited
(P). This command is no longer mandatory since the NVMSR field
was moved to the Identify Controller Data Structure.

10/2/2017
• Moved NVMSR field in Identify Controller Data Structure from byte

254 to 253 since VPD write cycle reduction TP uses byte 253.

10/8/2017

• Incorporated feedback received from workgroup review.

• Updated Section 1.4 NVMe Storage Device Architectural Model to
clarify that the Subsystem in this case shall include a non-volatile
storage medium.

5

10/22/2017

• Removed NVMe Storage Device definition since that definition will
be contained in NVMe 1.3 Alignment TP. Updated architectural
model section to use NVMe Storage Device FRU and provide a
linkage between an NVMe Storage Device (shorthand) and an
NVMe Storage Device FRU.

• Changed instance of NVM storage device to NVMe Storage
Device.

11/5/2017

• Removed “An example of an NVMe Storage Device is a PCIe SSD”
text.

• Minor editorial text edits.

11/10/2017

• Modified management interface command support tables to make
NVMe-MI commands optional. Added note that states that the
mapping of these commands to an NVMe Enclosure is outside the
scope of this specification.

• Added text to NVM Subsystem Report (NVMSR) field that at least
one bit in this field shall be set to ‘1’.

• Changed second instance of Table Xb to Xc to fix table labeling
error.

1/28/2018
• Editorial changes to align with NVMe TP numbering, updated NVMe

administration, and updated year.

Note – This technical proposal alludes to the fact that NVMe-MI may be accessed both in-band and out-
of-band since it was developed in parallel with the Support for In-Band NVMe-MI technical proposal. The
details of in-band access shall be updated in the Support for In-Band NVMe-MI technical proposal.

Description of Specification Changes

Add the following subsections to Section 1 as shown below:

1 Introduction

1.1 Overview

NVM Express (NVMe) is a register-level interface that allows in-band host software to communicate with
an NVM Subsystem. Since this specification builds on the NVM Express specification, knowledge of
NVMe is assumed.

The NVMe Management Interface (NVMe-MI) allows a Management Controller to communicate out-of-
band with an NVMe NVM Subsystem over one or more external interfaces. NVMe-MI also allows a
Management Controller to monitor and control the elements of an NVMe Enclosure.
Since this specification builds on the NVMe specification, knowledge of NVMe is assumed.

1.2 Scope

This specification defines an architecture and command set for out-of-band management of an NVMe
NVM Subsystem. as well as an architecture and mechanisms for monitoring and controlling the elements
of an NVMe Enclosure.

NVMe-MI has the following key capabilities for NVMe Storage Devices:

• Discover devices that are present and learn capabilities of each device

• Store data about the host environment enabling a Management Controller to query the data later

• Health and temperature monitoring

• Multiple Command Slots to prevent a long latency command from blocking monitoring operations

• Processor and operating system agnostic

• A standard format for VPD and defined mechanisms to read/write VPD contents

• Preserves data at rest security

NVMe-MI has the following key capabilities for NVMe Enclosures:

• Discover enclosures and learn their capabilities

• Manage and sense the state of enclosure power supplies, cooling devices, displays, and indicators

• Discover NVMe Storage Devices that are present in enclosure slots

• Preserves data at rest security

1.2.1 Outside of Scope

The architecture and command set are specified apart from any usage model. This specification does not
specify whether NVMe is used to implement a solid-state drive, a main memory, a cache memory, a
backup memory, a redundant memory, etc. Specific usage models are outside the scope, optional, and
not licensed.

This interface is NVM technology agnostic and is specified at a level that abstracts implementation details
associated with any specific NVM technology. For example, NAND wear leveling, block erases, and other
management tasks are abstracted.

The implementation or use of other published specifications referred to in this specification, even if
required for compliance with the specification, are outside the scope of this specification (e.g., PCI
Express, SMBus/I2C and MCTP).

The management of NVMe FRUs containing multiple architecturally visible NVM sSubsystems is outside
the scope of this specification. This specification does not define new security mechanisms.

This specification does not cover management of non-transparent bridges or management using any
interface other than MCTP over PCIe VDM or SMBus/I2C. Co-ordination between multiple Management
Controllers or a Management Controller and a device other than a Management Endpoint is outside the
scope of this specification.

Coordinating concurrency resulting from operations associated with multiple Management Endpoints or
between a host and Management Endpoint operations is outside the scope of this specification.

The specification of specific enclosure elements that make up an NVMe Enclosure is outside the scope of
this specification. Support for cards or modules that connect to a device slot element (slot) of an NVMe
Enclosure, that are not NVMe Storage Devices (e.g., GPUs or FPGAs) is outside the scope of this
specification.

An Enclosure may support comprehensive management capabilities using SCSI Enclosure Services,
basic management capabilities using transport specific mechanisms, or no management capabilities. An
example of basic enclosure management capabilities is Native PCIe Enclosure Management (NPEM)
specified by the PCI-SIG for PCI Express. The specification of such transport specific basic management
capabilities is outside the scope of this specification. This specification only defines comprehensive
management using SCSI Enclosure Services.

An Enclosure may contain multiple Enclosure Services Processes. Communication and coordination
between the Enclosure Services Processes that manage Enclosure elements is outside the scope of this
specification.

1.3 Theory of Operation NVMe-MI Out-of-Band Protocol Layering

NVMe-MI is designed to provide a common interface over multiple physical layers (i.e., PCI Express,
SMBus/I2C) for inventory, monitoring, configuration, and change management. The interface provides

7

the flexibility necessary to manage NVM Subsystems using an out-of-band mechanism in a variety of host
environments and systems.

Figure 1: NVMe Management Interface Protocol Layering

NVMe-MI utilizes the Management Component Transport Protocol (MCTP) as the command transport
and utilizes existing MCTP SMBus/I2C and PCIe bindings for the physical layer. MCTP commands are
submitted to one of two Command Slots associated with each Management Endpoint.

Modify the NVMe-MI specification to capitalize all instances of Storage Device or NVMe Storage
Device

Modify Section 1.4 as shown below:

1.4 NVMe Storage Device Field Replaceable Unit Architectural Model

An NVMe sStorage dDevice Field Replaceable Unit, or simply NVMe Storage Device, , such as a PCIe
SSD, that implements this specification, consists of an NVM Subsystem that includes a non-volatile
storage medium along with one or more Management Endpoints. There may be up to one Management
Endpoint per PCIe port and SMBus/I2C port. Each Management Endpoint has a Port Identifier that is less
than or equal to the Number of Ports (NUMP) field value in the NVM Subsystem Information Data
Structure. The Port Identifier for a PCIe port is the same as the Port Number field in the PCIe Link
Capabilities Register.

Insert the following section after Section 1.4 as shown below:

1.5 NVMe Enclosure Architectural Model

An NVMe Enclosure, or Enclosure, is a platform, card, module, box, rack, or set of boxes that may
provide power, cooling, and mechanical protection for one or more NVM Subsystems. These NVM

Management

Applications (e.g.,

Remote Console)

SMBus/I2C PCIe VDM

MCTP over

SMBus/I2C Binding

MCTP over

PCIe Binding

Management Component Transport Protocol (MCTP)

NVMe Management Interface

Management Controller
(BMC or Host Processor)

Management Applications (e.g., Remote Console)

Physical

Layer

Transport
Layer

Protocol

Layer

Application

Layer

Management

Applications (e.g.,

Remote Console)

Subsystems may be part of the Enclosure itself and/or may be contained in NVMe Storage Devices that
connect to the Enclosure through one or more enclosure slots.

An Enclosure may contain elements that support operation of the Enclosure (e.g., power supplies, fans,
locks, temperature sensors, current sensors, and voltage sensors). An Enclosure may also contain
displays and/or indicators that indicate the state of the Enclosure (e.g., state of elements, NVM
Subsystems, or RAID volumes) and/or NVMe Storage Devices that connect to the Enclosure. Some of
the elements that make up an Enclosure may be removable and replaceable while the Enclosure
continues to operate normally.

SCSI Enclosure Services - 3 (SES-3) is a standard developed by the American National Standards
Institute T10 committee for management of Enclosures using the SCSI architecture. While the NVMe and
SCSI architectures differ, the elements of an Enclosure and the capabilities required to manage these
elements are similar. Thus, NVMe-MI leverages SES for enclosure management. SES manages the
elements of an Enclosure using control and status diagnostic pages transferred using SCSI commands
(refer to Enclosure Control and Enclosure Status diagnostic pages in SES-3). NVMe-MI uses these same
control and status diagnostic pages, but transfers them using the SES Send and SES Receive
commands. Since enclosure management is tightly coupled with NVMe-MI, NVMe-MI supports only a
standalone Enclosure Services Process model.

A Management Controller manages an Enclosure using SES Send and SES Receive commands that are
part of the Management Interface Command Set (refer to Section 5). The SES Send command provides
the functionality of the SES-3 SCSI SEND DIAGNOSTIC command and is used by a Management
Controller to send SES control type diagnostic pages to modify the state of the Enclosure. The SES
Receive command provides the functionality of the SES-3 SCSI RECEIVE DIAGNOSTIC RESULTS
command and is used by a Management Controller to retrieve SES status type diagnostic pages that
contain various status and warning information available from the Enclosure.

Refer to SES-3 for a list and description of SES control type diagnostic pages and SES status type
diagnostic pages. The NVMe firmware update process is used (i.e., Firmware Image Download and
Firmware Commit commands) to update NVMe firmware. Download Microcode Control and Status
diagnostic pages, if supported, shall only be supported on Enclosure elements.

An Enclosure Services Process, that is logically part of the Enclosure, is responsible for managing
Enclosure elements and participates in servicing SES Send and SES Receive commands issued by a
Management Controller. Unlike the SES-3 Enclosure Services Process model that maintains state for
each I_T nexus (refer to SES-3), unless otherwise noted, NVMe-MI maintains a single global state for an
Enclosure regardless of the Management Controller or path used to access that state.

An Enclosure may contain of one or more Subenclosures (refer to SES-3). Each Subenclosure is
identified by a SES-3 defined one-byte Subenclosure identifier. If multiple Subenclosures are present,
then one of the Subenclosures is designated as the primary Subenclosure and the remaining
Subenclosures are secondary Subenclosures. When an Enclosure consists of only a single
Subenclosure, then that Subenclosure is the primary Subenclosure. The Enclosure Services Process
associated with the primary Subenclosure is the one that provides access to Enclosure services
information for all Subenclosures. Refer to SES-3 for more information.

An Enclosure contains one or more Enclosure slots that are used as a means for a Requester to
communicate with the Enclosure and/or as a means for the Enclosure to communicate with an NVMe
Storage Device that connects to the Enclosure. Associated with each Enclosure slot is a SES element
that may be used to manage the slot. Refer to SES-3 for more information.

Figure F illustrates an example NVMe Enclosure that contains one NVM Subsystem. This Enclosure has
multiple ports that Requesters may use to communicate with the Enclosure. It also has multiple slots that
are used to connect NVMe Storage Devices to the Enclosure (e.g., PCIe). The mapping of Enclosure

9

ports to NVM subsystems, NVMe Controllers within these NVM subsystems, and NVMe Storage Devices
is vendor specific and outside the scope of this specification. An Enclosure shall contain one or more
NVM Subsystems used for enclosure management. The enclosure in this example may be managed
using the out-of-band mechanism via the Management Endpoint (“Mgmt. Ep.” in the figure), or using the
in-band tunneling mechanism via the NVMe Controller.

Figure F: Example NVMe Enclosure

Power

Supplies

Cooling

Objects

Temp.

Sensors

NVMe Enclosure

NVM Subsystem

...

Other

Objects

...

NVMe

Controller

Cntrl. Mgmt Intf.

Mgmt.

Ep.

NVMe

Storage

Device

NVMe

Storage

Device

NVMe

Storage

Device

NVMe

Storage

Device

Enclosure

Services Process

Slot Slot Slot Slot

Figure F+1 illustrates an example NVMe Enclosure that contains multiple NVM subsystems and no NVMe
Storage Devices. This may represent a software storage appliance. The NVM subsystems and
Controllers contained within these NVM subsystems may be real or emulated in software. Not all
Controllers within these NVM subsystems need to have the same capabilities. Some of the possible
capability configurations are illustrated in this example. Some Controllers in this example simply provide
access to namespaces; others provide access to namespaces and in-band NVMe-MI management
capabilities; and others provide access to namespaces and a Management Endpoint for out-of-band
management capabilities.

Figure F+1: Example NVMe Enclosure with Multiple NVM Subsystems

Power

Supplies

Cooling

Objects

Temp.

Sensors

NVMe Enclosure

Other

Objects

...

NVMe

Controller

Cntrl. Mgmt Intf.

Mgmt.

Ep.

NVMe

Controller

Cntrl. Mgmt Intf.

Enclosure Services Process

NVMe

Controller

NVMe

Controller

NVMe

Controller

NVMe

Controller
...

...

NVM Subsystem

Figure F+2 shows an Enclosure that supports two Enclosure Services Processes. Elements of the
Enclosure may be accessible by one or both of these Enclosure Services Processes. The coordination of
access to elements by multiple Enclosure Services Processes is outside the scope of this specification.

Figure F+2: Example NVMe Enclosure with Multiple Enclosure Services Processes

Power

Supplies

Cooling

Objects

Temp.

Sensors

NVMe Enclosure

NVM Subsystem

Other

Objects

...

NVMe

Controller

Cntrl. Mgmt Intf.

Mgmt.

Ep.

Enclosure

Services Process

NVM Subsystem

NVMe

Controller

Cntrl. Mgmt Intf.

Mgmt.

Ep.

Enclosure

Services Process

...
NVMe

Storage

Device

NVMe

Storage

Device

NVMe

Storage

Device

NVMe

Storage

Device

Slot Slot Slot Slot

Figure F+3 shows an Enclosure that consists of multiple Subenclosures. Each Subenclosure in this
example contains an Enclosure Services Process. Enclosure services information from Subenclosures is
combined into a single set of SES diagnostic pages by the primary Subenclosure. A Subenclosure
identifier is used to distinguish from which Subenclosure the information was obtained. Refer to SES-3 for
more information. A primary Subenclosure may access Enclosure services information in Subenclosures
using the out-of-band mechanism, the in-band tunneling mechanism, or both; or may use a vendor
specific interface. This example illustrates the use of a vendor specific interface.

11

Figure F+3: Example NVMe Enclosure with Subenclosures

Power

Supplies

Cooling

Objects

Temp.

Sensors

Primary Subenclosure

NVM Subsystem

...

Other

Objects

...

NVMe

Controller

Cntrl. Mgmt Intf.

Mgmt.

Ep.

NVMe

Storage

Device

NVMe

Storage

Device

NVMe

Storage

Device

NVMe

Storage

Device

Enclosure

Services Process

Vendor Specific

Interface

Power

Supplies

Cooling

Objects

Temp.

Sensors

Secondary Subenclosure

NVM Subsystem

...

Other

Objects

...

NVMe

Controller

Cntrl. Mgmt Intf.

Mgmt.

Ep.

NVMe

Storage

Device

NVMe

Storage

Device

NVMe

Storage

Device

NVMe

Storage

Device

Enclosure

Services Process

Vendor Specific

Interface

Power

Supplies

Cooling

Objects

Temp.

Sensors

Secondary Subenclosure

NVM Subsystem

...

Other

Objects

...

NVMe

Controller

Cntrl. Mgmt Intf.

Mgmt.

Ep.

NVMe

Storage

Device

NVMe

Storage

Device

NVMe

Storage

Device

NVMe

Storage

Device

Enclosure

Services Process

Vendor Specific

Interface

NVMe Enclosure

...

Slot Slot Slot Slot

Slot Slot Slot Slot

Slot Slot Slot Slot

Certain Enclosure behaviors are managed by setting controls and testing status of elements within an
Enclosure. An Enclosure Services Process may also monitor a variety of warning and error conditions.
These conditions may be communicated to the Management Controller through polling by the
Management Controller (refer to Enclosure Services Management mode page in SES-3 for details).

The mapping of SES-3 sense keys and additional sense codes associated with CHECK CONDITION
status to NVMe-MI Response Message Status values is shown in Figure F+4. The asynchronous event
notification reporting mechanism described in SES-3 is not supported by NVMe-MI.

Figure F+4: Mapping of SES-3 Sense Keys and Additional Sense Codes to Response Message
Status

Reseponse Message
SES-3

Sense Key Additional Sense Code

Enclosure Services Failure

HARDWARE ERROR

ENCLOSURE SERVICES
FAILURE

Enclosure Services Transfer
Failure

ENCLOSURE SERVICES
TRANSFER FAILURE

Enclosure Failure ENCLOSURE FAILURE

Enclosure Services Transfer
Refused

HARDWARE ERROR or
ILLEGAL REQUEST

ENCLOSURE SERVICES
TRANSFER REFUSED

Unsupported Enclosure
Function

ILLEGAL REQUEST
UNSUPPORTED
ENCLOSURE FUNCTION

Enclosure Services
Unavailable

NOT READY
ENCLOSURE SERVICES
UNAVAILABLE

Enclosure Degraded RECOVERED ERROR
WARNING – ENCLOSURE
DEGRADED

Add the following subsections to Section 1.5.1 in alphabetical order (and alphabetize the existing
definition):

1.5.1.x1 NVMe Enclosure (Enclosure)

A platform, card, module, box, rack, or set of boxes that may provide power, cooling, mechanical
protection and/or external interfaces for zero or more NVMe Storage Devices. An Enclosure may itself
contain one or more NVM Subsystems and shall contain one or more Enclosure Services Processes.

1.5.1.x2 Enclosure Management

The discovery, monitoring and control of elements that make up an NVMe Enclosure.

1.5.1.y Enclosure Services Process

A process that implements Enclosure services for an NVMe Enclosure that supports enclosure
management. Refer to SCSI Enclosure Services - 3 (SES-3) for more information.

1.5.1.z NVMe Subenclosure (Subenclosure)

A portion of an Enclosure accessed through a primary Enclosure’s Enclosure Services Process.

1.5.1.a Management Endpoint Buffer

An intermediate buffer that allows NVMe-MI to service out-of-band NVMe-MI Messages that have a
Message Body that is larger than the 4224 byte limit that is specified by the NVMe Management
Messages over MCTP Binding Specification.

13

1.5.1.c NVMe Subenclosure (Subenclosure)

A portion of an enclosure accessed through a primary subenclosure’s enclosure services process. Refer
to SCSI Enclosure Services - 3 (SES-3) for more information.

Add the following reference to Section 1.7 as shown below:

T10/xxxx-D SCSI SCSI Enclosure Services - 3 (SES-3)

Modify Section 3.2 as shown below:

MCTP Messages

An MCTP message consists of the payload of one or more MCTP packets. The maximum sized message
is 4224 bytes (4K + 128). Refer to the NVMe Management Messages over MCTP Binding Specification.
Messages with lengths greater than 4224 are considered invalid messages. The format of an NVMe-MI
MCTP message is shown in Figure 10.

Figure 10: NVMe-MI MCTP Message

7 6 5 4 3 2 1 0

Byte 3

7 6 5 4 3 2 1 0

Byte 2

7 6 5 4 3 2 1 0

Byte 1

7 6 5 4 3 2 1 0

Byte 0

Message Integrity Check

Byte 0<

Message Data

Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

<

< Byte N

Bytes
4 to N-1

Message
Header

Message
Body

M
E
B

Message Fields

The format of an NVMe-MI Message consists of a Message Header in the first Dword, followed by the
Message Data, and ends with the Message Integrity Check Dword as shown in Figure 10.

The Message Header contains a Message Type (MT) field and an Integrity Check (IC) field that are defined
by the MCTP Base Specification. The Message Type field specifies the type of payload contained in the
message body and is required to be set to 4h in all messages associated with NVMe-MI (refer to the MCTP
IDs and Codes specification). The Integrity Check (IC) field indicates whether the message is covered by
an overall MCTP Message Integrity Check. All NVMe-MI Messages are protected by a 32-bit CRC
computed over the message body contents. The IC field shall be set to ‘1’ in all NVMe-MI MCTP messages.

The Request or Response (ROR) bit in the Message Header specifies whether the NVMe-MI MCTP
message is associated with a Request Message or a Response Message. The NVMe Message Type
(NMIMT) field specifies whether the Request Message is a Control Primitive or a specific type of
Command Message (refer to Figure 14). Finally, the Command Slot Identifier (CSI) field specifies the
Command Slot with which the message is associated. Refer to section 4 for additional information about
Command Slots.

The Management Endpoint Buffer (MEB) bit in the Message Header specifies whether

Request/Response Data is contained in the associated Request/Response Data field of an NVMe-MI
Message or in the Management Endpoint Buffer. This bit should only be set in Command Messages that
support Management Endpoint Buffer operation (i.e., those listed in the Management Endpoint Buffer
Supported Command List data structure). It is an error to set this bit in any other Command Message and
when this occurs it causes the Command Message to complete with an Invalid Parameter error status.

Figure 11: NVMe-MI MCTP Message Fields

Byte Description

1

Bits Description

7
Request or Response (ROR): This field indicates whether the message is a
Request Message or Response Message. This field is cleared to ‘0’ for Request
Messages. This field is set to ‘1’ for Response Messages.

6:3

NVMe-MI Message Type (NMIMT): This field specifies the NVMe-MI Message
Type.

Value Description

0h Control Primitive – refer to section 4.4

1h NVMe-MI Command – refer to section 5

2h NVMe Admin Command – refer to section 6

3h Reserved

4h PCIe Command – refer to section 7

5h – Fh Reserved

2:1 Reserved

0

Command Slot Identifier (CSI): This field indicates the Command Slot with which
the message is associated. For Request Messages this field indicates the
Command Slot with which the Request Message is associated. For Response
Messages, this field indicates the Command Slot associated with the Request
Message with which the Response Message is associated.

Value Description

0h Command Slot 0

1h Command Slot 1

3:2

Reserved

Bits Description

7:1 Reserved

0

Management Endpoint Buffer (MEB): This field indicates whether the
Request/Response Data is contained in the Request/Response Data field of this
NVMe-MI Message or in the Management Endpoint Buffer. Refer to Section 3.2.

Value Description

0h
The Request/Response Data is
contained in the Request/Response
Data of this NVMe-MI Message.

1h
The Request/Response Data is
contained in the Management Endpoint
Buffer.

3 Reserved

N-1:4
Message Data (DATA): This field contains the NVMe-MI message Message payload. The
format of this field depends on the NVMe-MI Message Type.

N+3:N
Message Integrity Check (MIC): This field contains a CRC computed over the contents of
the message. Refer to section 3.2.1.1.

15

Modify Figure 16 in Section 4.2 as shown below:

Figure 17: Response Message Status

Value Description Error Reponse Format

00h Success: The command completed successfully. Refer to 4.2.1

01h

More Processing Required: The command is in progress
and requires more time to complete processing. When this
Response Message Status value is used in a Response
Message, a subsequent message contains the result of
the Command Message. This Response Message Status
shall not be sent more than once per Request Message.

Refer to 4.2.1

02h
Internal Error: The command could not be executed due
to a vendor specific internal error.

Refer to 4.2.1

03h
Invalid Command Opcode: The associated command
opcode field is not valid. Invalid opcodes include reserved
and optional opcodes that are not implemented.

Refer to 4.2.1

04h

Invalid Parameter: Invalid command parameter field
value. Request Messages received with reserved values
in defined fields shall be completed with an Invalid
Parameter Error Response Message. Request Messages
received with reserved or unimplemented values in
defined fields shall be completed with an Invalid
Parameter Error Response Message. Other error
conditions that result in Invalid Parameter Error Response
Message are noted elsewhere in this specification.

Refer to 4.2.2

05h

Invalid Command Size: The Command Message body
was larger or smaller than that expected by the command
due to a reason other than too much or too little input data
(e.g., the command did not contain all the required
parameters or no input data was expected but the
command message body is larger than that needed to
contain the required parameters).

The expected command message body size is determined
by the command opcode assuming no other errors are
detected (e.g., Invalid Command Opcode or Invalid
Parameter).

Refer to 4.2.1

06h
Invalid Command Input Data Size: The Command
Message requires input data and contains too much or too
little input data.

Refer to 4.2.1

07h
Access Denied: A command was prohibited from being
executed due to a vendor specific protection mechanism.

Refer to 4.2.1

08h – 1Fh Reserved

20h
VPD Updates Exceeded: More updates to the VPD are
attempted than allowed.

Refer to 4.2.1

21h
PCIe Inaccessible: The PCIe functionality is not available
at this time.

Refer to 4.2.1

22h

Management Endpoint Buffer Cleared Due to Sanitize:
An attempt was made access data in the Management
Endpoint Buffer that was zeroed due to a sanitize
operation.

Refer to 4.2.1

23h
Enclosure Services Failure: The Enclosure Services
Process has failed in an unknown manner.

Refer to 4.2.1

24h
Enclosure Services Transfer Failure: Communication
with the Enclosure Services Process has failed.

Refer to 4.2.1

25h
Enclosure Failure: An unrecoverable enclosure failure
has been detected by the Enclosure Services Process.

Refer to 4.2.1

26h
Enclosure Services Transfer Refused: The NVM
Subsystem or Enclosure Services Process indicated an
error or an invalid format in communication.

Refer to 4.2.1

27h
Unsupported Enclosure Function: A SES Send
command has been attempted to a simple Subenclosure.

Refer to 4.2.1

28h
Enclosure Services Unavailable: The NVM Subsystem
or Enclosure Services Process has encountered an error,
but may become available again.

Refer to 4.2.1

29h
Enclosure Degraded: A noncritical failure has been
detected by the Enclosure Services Process.

Refer to 4.2.1

22Ah –
DFh

Reserved

Add new Section 4.6 as shown below after Section 4.5:

4.6 Management Endpoint Buffer

Since the maximum size of the NVMe-MI Message is 4224 bytes, the maximum possible amount of out-
of-band Request Data that may be contained in a Request Message is 4216 bytes (i.e., 4224 bytes minus
4 byte message header and 4 byte Message Integrity Check field) and the maximum possible amount of
out-of-band Response Data that may be contained in a Response Message is 4215 bytes (i.e., 4224
bytes minus 4 byte Message Header, 1 byte Status field, and 4 byte Message Integrity Check field). The
amount of supported Request or Response Data is Command Message specific due to the presence of
command specific fields. In some cases it is desirable to service Command Messages that contain more
Request Data or Response Data than may be transferred in an NVMe-MI Message. For example, one
may wish to issue an NVM Express Admin Command Set Get Log Page command to transfer a log page
that is greater in size than that allowed in the Response Data.

A Management Endpoint may support an optional Management Endpoint Buffer that facilitates Request
Data and Response Data transfers that exceed that maximum size allowed by an NVMe-MI Message.
Support for the Management Endpoint Buffer and its size in bytes is indicated by the Management
Endpoint Buffer Size field in the Port Information Data Structure of the port with which the Management
Endpoint is associated. Management Endpoints need not all have the same Management Endpoint Buffer
support. For example, a subset of Management Endpoints may support a Management Endpoint Buffer
and the size of each of these Management Endpoint Buffers may be different.

If a Management Endpoint supports a Management Endpoint Buffer, then all Command Messages or a
subset of Command Messages supported by the Management Endpoint may support use of the
Management Endpoint Buffer. A list of commands that support the use of the Management Endpoint
Buffer is contained in the Management Endpoint Buffer Command Support List data structure that is
retrieved using the Read NVMe-MI Data Structure command. If a Management Endpoint supports a
Management Endpoint Buffer, then the Management Endpoint shall support the Management Endpoint
Buffer Read and Management Endpoint Buffer Write commands.

17

The contents of a Management Endpoint Buffer may be read or written by a Management Controller by
issuing Management Endpoint Buffer Read and Management Endpoint Buffer Write commands. The
Management Endpoint Buffer is permitted to be read or written in an arbitrary manner. For example, the
contents of the Management Endpoint Buffer may be written sequentially using a sequence of
Management Endpoint Buffer Write commands or the contents of the Management Endpoint Buffer may
be written in any order with gaps using these commands. Furthermore, Management Endpoint Buffer
Read and Write commands may be interleaved allowing a portion of the Management Endpoint Buffer to
be read while another portion of the Management Endpoint Buffer is written.

If the Management Endpoint Buffer (MEB) field is set to ‘1’ in a Command Message that normally
contains Request Data, then no Request Data is transferred in the Command Message itself and the
required Request Data is instead transferred from the Management Endpoint Buffer. The Request Data
starts at a zero offset from the start of the Management Endpoint Buffer. If the MEB field is set to ‘1’ in a
Command Message that normally contains Request Data, then the Command Message shall contain no
Request Data. If the Command Message contains Request Data or is one that does not support Request
Data, then the Management Endpoint responds with an Invalid Parameter error status response. The
parameter with the error in this case is the Request Data field.

If the Management Endpoint Buffer (MEB) field is set to ‘1’ in a Command Message that normally results
in Response Data, then no Response Data is transferred in the corresponding Response Message itself
and the Response Data is instead transferred to the Management Endpoint Buffer. The Response Data
starts at a zero offset from the start of the Management Endpoint Buffer.

The contents of the Management Endpoint Buffer are set to ‘0’ when the corresponding Management
Endpoint is reset. The contents of the Management Endpoint Buffer are modified by the Management
Endpoint Buffer Write command and by Command Messages that generate Response Data and have the
MEB field set to ‘1’. When the Management Endpoint Buffer is updated with Response Data, the contents
of the Management Endpoint Buffer that are not updated are set to zero (i.e., the Request/Response Data
from previous Command Messages is not preserved). The same contents of the Management Endpoint
Buffer may be used as Request Data for multiple Command Messages. Similarly, the Management
Endpoint Buffer allows the use of Response Data generated by one Command Message to be used as
the Request Data for a subsequent Command Message.

Since it is possible to have two out-of-band Command Messages, one associated with each of the two
Command Slots, being simultaneously serviced that use the Management Endpoint Buffer, the
Management Controller must comprehend and manage any possible race conditions. Updates to the
Management Endpoint Buffer are not guaranteed to be atomic. Therefore, when a race condition
involving two operations that update the Management Endpoint Buffer occurs, the final contents of the
Management Endpoint Buffer may be an arbitrary mixture of the updates.

The Management Endpoint Buffer is considered a cache in the context of sanitize operations performed
in an NVM Subsystem. The MCTP Management Endpoint Buffer may contain Response Data associated
with a previously executed command that is not allowed during a sanitize operation. When a sanitize
operation is initiated, the contents of the Management Endpoint Buffer shall be set to 0h. An attempt to
access this zeroed data by a Management Endpoint Buffer Read command or any Command Message
that uses the Management Endpoint Buffer, then the Management Endpoint responds with a
Management Endpoint Buffer Cleared Due to Sanitize error response status. This error response is
commonly associated with a Management Endpoint Buffer Read command, but may be associated with
any command that uses the Management Endpoint Buffer as Request Data.

Modify Section 5 as shown below:

Figure 33: Management Interface Command Request Message Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

Opcode

NVMe Management Request Dword 0

NMVe Management Request Dword 1

Request Data (optional)

Reserved

Byte 0<

Byte 4<

Byte 8<

Byte 12<

Bytes
16 to N-1

<

Byte N<

M
E
B

Figure 35 defines the Management Interface Command Set opcodes.

Figure 35: Opcodes for Management Interface Commands

Opcode Command

00h Read NVMe-MI Data Structure

01h NVM Subsystem Health Status Poll

02h Controller Health Status Poll

03h Configuration Set

04h Configuration Get

05h VPD Read

06h VPD Write

07h Reset

08h SES Receive

09h SES Send

0Ah Management Endpoint Buffer Read

0Bh Management Endpoint Buffer Write

08Ch –
BFh

Reserved

C0h – FFh Vendor specific

Figure 35a shows the Management Interface Command Set commands that are mandatory, optional, and
prohibited for an NVMe Storage Device as well as for an NVMe Enclosure using the out-of-band
mechanism. Figure 35b shows Management Interface Command Set commands that are mandatory,
optional, and prohibited for an NVMe Storage Device as well as for an NVMe Enclosure using the in-band
tunneling mechanism.

19

Figure 35a: Management Interface Command Support using an Out-of-Band Mechanism

NVMe
Storage
Device
O/M/P1

NVMe
Enclosure

O/M/P1
Command

M M Read NVMe-MI Data Structure

M O3 NVM Subsystem Health Status Poll

M O3 Controller Health Status Poll

M M2 Configuration Set

M M2 Configuration Get

M O3 VPD Read

M O3 VPD Write

M O3 Reset

P M SES Receive

P M SES Send

O M Management Endpoint Buffer Read

O M Management Endpoint Buffer Write

- - Reserved

O O Vendor specific

NOTES:
1. O/M definition: O = Optional, M = Mandatory, P = Prohibited from being supported.

An NVMe Enclosure that is also an NVMe Storage Device (i.e., implements
namespaces) shall implement mandatory commands required by either an NVMe
Storage Device and an NVMe Enclosure and may implement optional commands
allowed by either an NVMe Storage Device and an NVMe Enclosure.

2. This command was architected for an NVMe Storage Device. The mapping of Health
Status Change Configuration Identifier to an NVMe Enclosure is outside the scope
of this specification.

3. This command was architected for an NVMe Storage Device. The mapping of this
command to an NVMe Enclosure is outside the scope of this specification.

Figure 35b: Management Interface Command Support using In-Band Tunneling Mechanism

NVMe
Storage
Device
O/M/P1

NVMe
Enclosure

O/M/P1
Command

M O2 Read NVMe-MI Data Structure

M O2 NVM Subsystem Health Status Poll

M O2 Controller Health Status Poll

M O2 Configuration Set

M O2 Configuration Get

M O2 VPD Read

M O2 VPD Write

M O2 Reset

P M SES Receive

P M SES Send

P P Management Endpoint Buffer Read

P P Management Endpoint Buffer Write

- - Reserved

O O Vendor specific

NVMe
Storage
Device
O/M/P1

NVMe
Enclosure

O/M/P1
Command

NOTES:
1. O/M definition: O = Optional, M = Mandatory, P = Prohibited from being supported.

An NVMe Enclosure that is also an NVMe Storage Device (i.e., implements
namespaces) shall implement mandatory commands required by either an NVMe
Storage Device and an NVMe Enclosure and may implement optional commands
allowed by either an NVMe Storage Device and an NVMe Enclosure.

2. This command was architected for an NVMe Storage Device. The mapping of this
command to an NVMe Enclosure is outside the scope of this specification.

 Add the following new sections after Section 5.3 as shown below and renumber remaining
sections:

5.TBD Management Endpoint Buffer Read

The Management Endpoint Buffer Read command allows the Management Controller to read the
contents of the Management Endpoint Buffer. This data is returned in the Response Data.

The command uses NVMe Management Dwords 0 and 1. The format of NVMe Management Dwords 0
and 1 are shown in Figure M and Figure M+1 respectively. There is no Request Data included in a
Management Endpoint Buffer Read command. The NVMe Management Response field is reserved.

Figure TBD: Management Endpoint Buffer Read Response Data

Skipped
Data

Management

Endpoint Buffer

Response
Data

Response Data

Data Offset

(DOFST)

Data Length

(DLEN)

Skipped
Data

< Byte 0

If the Data Offset (DOFST) field is greater than or equal to the size of the Management Endpoint Buffer,
then the Management Endpoint responds with an Invalid Parameter error status response. The parameter
with the error in this case is the DOFST field. If the DOFST field is less than the size of the Management
Endpoint Buffer and the sum of the DOFST and DLEN fields is greater than or equal to size of the

21

Management Endpoint Buffer, then the Management Endpoint responds with an Invalid Parameter error
status response. The parameter with the error in this case is the DLEN field.

When an attempt is made to read Management Endpoint Buffer contents that were zeroed due to a
sanitize operation, then the Management Endpoint responds with a Management Endpoint Buffer
Cleared Due to Sanitize error status response .

Figure M: Management Endpoint Buffer Read – NVMe Management Dword 0

Bit Description

31:00
Data Offset (DOFST): This field specifies the starting offset, in bytes, into the Management
Endpoint Buffer.

Figure M+1: Management Endpoint Buffer Read – NVMe Management Dword 1

Bit Description

31:16 Reserved

15:00

Data Length (DLEN): This field specifies the length, in bytes, to be transferred from the
Management Endpoint Buffer starting at the byte offset specified by DOFST and returned in
the Response Data. Specifying a DLEN field value that is greater than the maximum
supported Response Data size results in an Invalid Parameter error status response

Data Length of 0 and no data is valid. The Management Endpoint responds with a
Success Response Message and no Response Data.

5.TBD Management Endpoint Buffer Write

The Management Endpoint Buffer Write command allows the Management Controller to update the
contents of the optional Management Endpoint Buffer. The data used to update the Management
Endpoint Buffer is transferred in the Request Data included in a Management Endpoint Buffer Write
command.

The command uses NVMe Management Dwords 0 and 1. The format of the NVMe Management Dwords
0 and 1 are shown in Figure M and Figure M+1 respectively. The NVMe Management Response field is
reserve and there is no Response Data.

Figure TBD: Management Endpoint Buffer Write Request Data

Skipped
Data

Management Endpoint Buffer

Request
Data

Request Data

Data Offset

(DOFST)

Data Length

(DLEN)

Skipped
Data

< Byte 0

If the Data Offset (DOFST) field is greater than or equal to the size of the Management Endpoint Buffer,
then the Management Endpoint responds with an Invalid Parameter error status response. The parameter
with the error in this case is the DOFST field. If the DOFST field is less than the size of the Management
Endpoint Buffer and the sum of the DOFST and DLEN fields is greater than or equal to size of the
Management Endpoint Buffer, then the Management Endpoint responds with an Invalid Parameter error
status response. The parameter with the error in this case is the DLEN field.

Figure M: Management Endpoint Buffer Write – NVMe Management Dword 0

Bit Description

31:00
Data Offset (DOFST): This field specifies the starting offset, in bytes, into the Management
Endpoint Buffer.

23

Figure M+1: Management Endpoint Buffer Write – NVMe Management Dword 1

Bit Description

31:16 Reserved

15:00

Data Length (DLEN): This field specifies the length, in bytes, to be transferred from the
Request Data to the Management Endpoint Buffer starting at the byte offset specified by
DOFST. Specifying a DLEN field value that is greater than the maximum supported Response
Data size results in an Invalid Parameter error status response.

A DLEN value of ‘0’ specifies that no data shall be transferred. This condition shall not be
considered an error.

Modify Section 5.5 as shown below:

5.5 Read NVMe-MI Data Structure

The Read NVMe-MI Data Structure command requests data that describes information about the NVM
Subsystem, the Management Endpoint or the NVMe Controllers.
The command uses NVMe Management Dword 0. The format of NVMe Management Dword 0 is shown
in Figure 60. NVMe Management Dword 1 is reserved. There is no Request Data included in a Read
NVMe-MI Data Structure command.

Figure 60: Read NVMe-MI Data Structure – NVMe Management Dword 0

Bit Description

31:24

Data Structure Type (DTYP): This field specifies the data structure to return

Value Definition

00h NVM Subsystem Information

01h Port Information

02h Controller List

03h Controller Information

04h Optional Commands Supported

05h Management Endpoint Buffer Command Support List

056h-
FFh

Reserved

23:16

Port Identifier (PORTID): This field contains the identifier of the port whose data structure is
returned.

If the DTYP field value corresponds to Port Information, then this field contains the Port Identifier
whose information is requested.

If the DTYP field value corresponds to Management Endpoint Buffer Command Support List, then
this field contains the Port Identifier whose information is requested.

For all other values of the DTYP field, this field is reserved.

15:00

Controller Identifier (CTRLID): This field contains the Controller identifier whose data structure
is returned.

If the DTYP field value corresponds to Controller List or Controller Information, then this field
contains the Controller identifier in the NVM Subsystem whose information is requested.

For all other values of the DTYP field, this field is reserved.

Upon successful completion of the Read NVMe-MI Data Structure, the NVMe Management Response
field is shown in Figure 61 and the specified data structure is returned in the Response Data.

Figure 61: Read NVMe-MI Data Structure – NVMe Management Response

Bit Description

23:16 Reserved

15:00 Response Data Length: The length, in bytes, of the Response Data field in
this Response Message.

The NVM Subsystem Information data structure contains information about the NVM Subsystem. The
Port Identifier and Controller Identifier fields are reserved. The format is shown in Figure 62.

Figure 62: NVM Subsystem Information Data Structure

Byte Description

00
Number of Ports (NUMP): This field specifies the maximum number of ports of any type
supported by the NVM Subsystem. This is a 0’s based value.

01
NVMe-MI Major Version Number (MJR): This field shall be set to 1h to indicate the major
version number of this specification.

02
NVMe-MI Minor Version Number (MNR): This field shall be cleared to 0h to indicate the minor
version number of this specification.

31:03 Reserved

The Port Information data structure contains information about a port within the NVM Subsystem. The
Port Identifier specifies the port. The Controller Identifier fields are reserved. The format is shown in
Figure 63.

Figure 63: Port Information Data Structure

Byte Description

00 Port Type: Specifies the port type.

Value Definition

0h Inactive

1h PCIe

2h SMBus

3h – FFh Reserved

01 Reserved

03:02 Maximum MCTP Transmission Unit Size: The maximum MCTP Transmission Unit size the
port is capable of sending and receiving.

If the port does not support MCTP, then this field shall be set to 0.

If the port type is PCIe and the port supports MCTP, then this field shall be set to a value
between 64 bytes and the PCIe Max Payload Size supported minus 4, inclusive. All PCIe
ports within an NVM Subsystem should report the same value in this field.

If the port type is SMBus and the port supports MCTP, then this field shall be set to a value
between 64 bytes and 250 bytes, inclusive.

07:04 Reserved Management Endpoint Buffer Size: This field specifies the size of the
Management Endpoint Buffer in bytes when a Management Endpoint Buffer is supported.

A value of 0000h in this field indicates that the Management Endpoint does not support a
Management Endpoint Buffer.

31:08 Port Type Specific (refer to Figure 64 and Figure 65)

25

Figure 64: PCIe Port Specific Data

Byte Description

08

PCIe Maximum Payload Size: This field indicates the Max Payload Size for the specified
PCIe port. If the link is not active, this field should be cleared to 0h.

Value Definition

0h 128 bytes

1h 256 bytes

2h 512 bytes

3h 1024 bytes

4h 2048 bytes

5h 4096 bytes

6h-FFh Reserved

09

PCIe Supported Link Speeds Vector: This field indicates the Supported Link Speeds for the
specified PCIe port.

Bit Description

7:3 Reserved

2 This bit shall be set to ‘1’ if the link supports 8.0 GT/s

1 This bit shall be set to ‘1’ if the link supports 5.0 GT/s

0 This bit shall be set to ‘1’ if the link supports 2.5 GT/s.

10

PCIe Current Link Speed: The port’s PCIe negotiated link speed using the same encoding as
the PCIe Supported Link Speed Vector field. A value of 0h in this field indicates the PCIe Link
is not available.

Value Definition

0h Link not active

1h The current link speed is the speed indicated in the supported link speed bit 0.

2h The current link speed is the speed indicated in the supported link speed bit 1.

3h The current link speed is the speed indicated in the supported link speed bit 2.

4h The current link speed is the speed indicated in the supported link speed bit 3.

5h The current link speed is the speed indicated in the supported link speed bit 4.

6h The current link speed is the speed indicated in the supported link speed bit 5.

7h The current link speed is the speed indicated in the supported link speed bit 6.

8h-FFh Reserved

11

PCIe Maximum Link Width: The maximum PCIe link width for this NVM Subsystem port.
This is the expected negotiated link width that the port link trains to if the platform supports it.
A Management Controller may compare this value with the PCIe Negotiated Link Width to
determine if there has been a PCIe link training issue.

Value Definition

0 Reserved

1 PCIe x1

2 PCIe x2

3 Reserved

4 PCIe x4

5-7 Reserved

8 PCIe x8

9-11 Reserved

12 PCIe x12

13-15 Reserved

16 PCIe x16

17-31 Reserved

32 PCIe x32

33-255 Reserved

12

PCIe Negotiated Link Width: The negotiated PCIe link width for this port.

Value Definition

0 Link not active

1 PCIe x1

2 PCIe x2

3 Reserved

4 PCIe x4

5-7 Reserved

8 PCIe x8

9-11 Reserved

12 PCIe x12

13-15 Reserved

16 PCIe x16

17-31 Reserved

32 PCIe x32

33-255 Reserved

31:13 Reserved

Figure 65: SMBus Port Specific Data

Byte Description

08
Current VPD SMBus/I2C Address: This field indicates the current VPD SMBus/I2C address. A
value of 0h indicates there is no VPD.

09

Maximum VPD Access SMBus/I2C Frequency: This field indicates the maximum SMBus/I2C
frequency supported on the VPD interface.

Value Definition

0h Not supported

1h 100 kHz

2h 400 kHz

3h 1 MHz

4-FFh Reserved

10
Current Management Endpoint SMBus/I2C Address: This field indicates the current MCTP
SMBus/I2C address. A value of 0h indicates there is no Management Endpoint on this port.

11

Maximum Management Endpoint SMBus/I2C Frequency: This field indicates the maximum
SMBus/I2C frequency supported by the Management Endpoint.

Value Definition

0h Not supported

1h 100 kHz

2h 400 kHz

3h 1 MHz

4-FFh Reserved

12
NVMe Basic Management: Bit 0 in this field, if set to ‘1’, indicates if the port implements the
NVMe Basic Management command specified in Appendix A. All other bits in this field are
reserved.

31:13 Reserved

27

The Controller List data structure contains a list of NVMe Controllers in the NVM Subsystem greater than
or equal to the value specified in the Controller Identifier (CTRLID) field. A Controller List may contain up
to 2047 Controller identifiers. Refer to the NVM Express specification for a definition of the Controller List
data structure.

Figure 66: Controller Information Data Structure

Byte Description

00
Port Identifier (PORTID): This field specifies the PCIe Port Identifier with which the
Controller is associated.

04:01 Reserved

05

PCIe Routing ID Information (PRII): This field provides additional data about the PCI
Express Routing ID (PRI) for the specified Controller.

Bit Description

7:1 Reserved

0 PCIe Routing ID Valid: This bit is set to ‘1’ if the device has
captured a Bus Number and Device Number (Bus Number only for
ARI devices). This bit is set to ‘0’ if the device has not captured a
Bus and Device number (Bus Number only for ARI devices).

07:06

PCIe Routing ID (PRI): This field contains the PCIe Routing ID for the specified
Controller.

Bit Description

15:8 PCI Bus Number: The Controller’s PCI Bus Number.

7:3 PCI Device Number: The Controller’s PCI Device
Number.

2:0 PCI Function Number: The Controller’s PCI Function
Number.

Note: For an ARI Device, bits 7:0 represents the (8-bit) Function Number, which replaces
the (5-bit) Device Number and (3-bit) Function Number fields above.

09:08 PCI Vendor ID: The PCI Vendor ID for the specified Controller.

11:10 PCI Device ID: The PCI Device ID for the specified Controller.

13:12 PCI Subsystem Vendor ID: The PCI Subsystem Vendor ID for the specified Controller.

15:14 PCI Subsystem Device ID: The PCI Subsystem Device ID for the specified Controller.

31:16 Reserved

The Optionally Supported Command List data structure contains a list of optional commands that a
Management Endpoint supports. The Optionally Supported Command List data structure may contain up
to 2047 commands, and shall be minimally sized (i.e., if there is 1 optionally supported command, the
data structure is 4 bytes total).

Figure 67 Optionally Supported Command List Data Structure

Byte Description

01:00
Number of Commands (NUMCMD): This field contains the number of optionally
supported commands in the list. A value of 0h indicates there are no commands in the
list.

03:02
Command 0 (CMD0): This field contains the Command Type and Opcode for the first
optionally supported command or 0h if the list is empty (i.e. no optional commands are
supported). Refer to Figure 68.

05:04
Command 1 (CMD1): This field contains the Command Type and Opcode for the
second optionally supported command, if applicable. Refer to Figure 68.

…

(N*2 +3):
(N*2 + 2)

Command N (CMDN): This field contains the Command Type and Opcode for the N+1
optionally supported command, if applicable. Refer to Figure 68.

Figure 68: Optionally Supported Command Data Structure

Byte Description

00

Command Type: This field specifies the command set used by the optionally supported
command.

Bits Description

7 Reserved

6:3
NVMe-MI Message Type (NMIMT): This field specifies
the NVMe-MI Message Type. Refer to Figure 11.

2:0 Reserved

01 Opcode: This field specifies the opcode used for the optionally supported command.

If the Management Endpoint Buffer Size field in the Port Information Data Structure is not 0000h, then
returning of the Management Endpoint Buffer Command Support List data structure shall be supported by
the Management Endpoint. If the Management Endpoint Buffer Size field in the Port Information Data
structure is 0000h, then the Data Structure Type value for Management Endpoint Buffer Command
Support List is reserved.

The Management Endpoint Buffer Command Support List data structure contains a list of commands that
support the use of the Management Endpoint Buffer. The data structure may contain up to 2047
commands, and shall be minimally sized (i.e., if there is 1 optionally supported command, the data
structure is 4 bytes total).

The list of commands that support the Management Endpoint Buffer may be different among
Management Endpoints within the NVM Subsystem. The Port Identifier (PORTID) field in NVMe
Management Dword 0 of the Read NVMe-MI Data Structure specifies the port of the Management
Endpoint whose Management Endpoint Buffer Command Support List data structure is returned.

Figure 68a: Management Endpoint Buffer Supported Command List Data Structure

Byte Description

01:00
Number of Commands (NUMCMD): This field contains the number of commands in
the list. A value of 0000h indicates there are no commands in the list.

03:02
Command 0 (CMD0): This field contains the Management Endpoint Buffer Supported
Command Data Structure (refer to Figure 68b) for the first command that supports the
use of the Management Endpoint Buffer associated with the Management Endpoint.

05:04
Command 1 (CMD1): This field contains the Management Endpoint Buffer Supported
Command Data Structure (refer to Figure 68b) for the second command that supports
the use of the Management Endpoint Buffer associated with the Management Endpoint.

…

(N*2 +3):
(N*2 + 2)

Command N (CMDN): This field contains the Management Endpoint Buffer Supported
Command Data Structure (refer to Figure 68b) for the N+1 command that supports the
use of the Management Endpoint Buffer associated with the Management Endpoint.

29

Figure 68b: Management Endpoint Buffer Supported Command Data Structure

Byte Description

00

Command Type: This field specifies the command set that supports the Management
Endpoint Buffer.

Bits Description

7 Reserved

6:3
NVMe-MI Message Type (NMIMT): This field specifies
the NVMe-MI Message Type. Refer to Figure 11.

2:0 Reserved

01
Opcode: This field specifies the opcode of the command that supports the Management
Endpoint Buffer.

Add the following new sections after Section 5.6 as shown below and renumber remaining
sections:

5.7 SES Receive

The SES Receive command is used to retrieve SES status type diagnostic pages. Upon successful
completion of the SES Receive command, the SES status type diagnostic page is returned in the
Response Data.

The SES Receive command uses NVMe Management Dwords 0 and 1. The format of NVMe
Management Dword 0 is shown in Figure Xa and the format of NVMe Management Dword 1 is shown in
Figure Xb. There is no Request Data sent in the Request Message.

The Page Code (PCODE) field specifies the SES status type diagnostic page to be retrieved. Refer to
SES-3 for a list and description of SES diagnostic pages. If the PCODE field specifies a reserved value,
an unsupported value, or a value that only corresponds to a SES control type diagnostic page, then the
Management Endpoint responds with an Invalid Parameter error status response.

The Allocation Length (ALENGTH) field specifies the maximum length of the Response Data field in the
Response Message and is used to limit the maximum amount of SES diagnostic page data that may be
returned. The length of the Response Data field shall be the total length of the SES diagnostic page
specified by the PCODE field or the number of bytes specified by the ALENGTH field (i.e., the SES
diagnostic page is truncated), whichever is less. When the SES diagnostic page is truncated, the value of
fields within the SES diagnostic page are not altered to reflect the truncation.

All errors are detected and reported while servicing the SES Receive command and reported via an Error
Response. If an invalid field is detected in a SES Receive command, then the Management Endpoint
responds with an Invalid Parameter error status response. If a condition occurs that in SES-3 results in a
CHECK CONDITION, then the Management Endpoint responds with an Error Response. The mapping of
Error Responses to SES-3 sense keys and additional sense codes is shown in Figure F+4.

If the SES Receive command is supported in the out-of-band mechanism, then the Management
Endpoint shall support the use of the Management Endpoint Buffer with SES Receive command and the
size of the Management Endpoint Buffer shall be greater than or equal to the maximum supported SES
status type diagnostic page. This allows a Management Controller to retrieve an SES status type
diagnostic page whose size exceed the maximum size allowed by one NVMe-MI Message.

The amount of data returned in the Response Data or transferred to the Management Endpoint Buffer is
dependent on the SES status diagnostic page that is returned. The Response Data Length field in the
NVMe Management Response contains the length of the Response Data.

Figure Xa: SES Receive – NVMe Management Dword 0

Bit Description

31:8 Reserved

07:00 Page Code (PCODE): This field specifies the SES status diagnostic page to be transferred.

Figure Xb: SES Receive – NVMe Management Dword 1

Bit Description

31:16 Reserved

15:00
Allocation Length (ALENGTH): This field specifies the maximum length of the Response
Data field in the Response Message.

Figure X+1: SES Receive – NVMe Management Response

Bit Description

23:16 Reserved

15:00 Response Data Length (RDL): The length, in bytes, of the Response Data
field in this Response Message or transferred to the Management Endpoint
Buffer.

5.8 SES Send

The SES Send command is used to transfer SES control type diagnostic pages to an SES Enclosure
Service Process. Upon successful completion of the SES Send command, the Request Data, containing
an SES control type diagnostic page, is transferred by the Request Message or to the Management
Endpoint Buffer.

Unlike the SES Receive command that specifies the page code of the SES status diagnostic page being
retrieved, the SES Send command specifies the page code of the SES control type diagnostic page that
is being transferred in the SES control type diagnostic page itself. Refer to SES-3 for a list and description
of SES control type diagnostic pages. If the page code in the SES control type diagnostic page specifies
a reserved value, an unsupported value, or a value that only corresponds to an SES status diagnostic
page, then the Management Endpoint responds with an Invalid Parameter error status response.

The SES Send command does not use NVMe Management Dword 0 or the NVMe Management
Response field. All of these are reserved.

All errors are detected and reported while processing the SES Send command and reported via an Error
Response. If an invalid field is detected in the SES control type diagnostic page data transferred by an
SES Send command, then the Management Endpoint responds with an Invalid Parameter error status
response. If a condition occurs that in SES-3 results in a CHECK CONDITION, then the Management
Endpoint responds with an Error Response. The mapping of Response Message Status to SES-3 sense
keys and additional sense codes is shown in Figure F+4.

The length in bytes of the Request Data field is specified in the Data Length (DLEN) field in NVMe
Management Dword 1. An SES Send command with DLEN equal to 0 and no data is valid, and results in
a Success Response Message. If the DLEN field specifies a value that is greater than PAGE LENGTH
field in the SES control type diagnostic page plus four, then the extra data in the Request Data field
following the page is ignored. If the DLEN field specifies a value that is less than PAGE LENGTH field in
the SES control type diagnostic page plus four, then the page is processed using the data contained in
the Request Data field.

31

If the SES Send command is supported in the out-of-band mechanism, then the Management Endpoint
shall support the use of the Management Endpoint Buffer with the SES Send command and the size of
the Management Endpoint Buffer shall be greater than or equal to the maximum supported SES control
type diagnostic page. This allows a Management Controller to transfer an SES control type diagnostic
page whose size exceeds the maximum size allowed by one NVMe-MI Message.

Figure Xc: SES Send – NVMe Management Dword 1

Bit Description

31:16 Reserved

15:00 Data Length (DLEN): This field specifies the Request Data field in bytes.

Modify Section 6 as shown below:

The NVM Express Admin Command Set allows NVMe Admin commands to be issued to any Controller in
the NVM Subsystem using NVMe-MI. Figure 76 shows NVM Express Admin Commands that are
mandatory, optional, and prohibited for an NVMe Storage Device and an NVMe Enclosure using the out-
of-band mechanism. All NVM Express Admin Commands are prohibited using the in-band tunneling
mechanism. Supported commands are listed in Figure 76, and The commands are defined in the NVM
Express specification. If an NVMe Admin Command is issued in a Request Message other than one listed
in Figure 76, the Management Endpoint shall return a response with status Invalid Parameter pointing to
the NVMe opcode. Future revisions of this specification may add additional commands to Figure
76Figure .

Figure 76: List of NVMe Admin Commands Supported using the Out-of-Band Mechanism

Command

NVMe
Storage
Device

O/M/P1

NVMe
Enclosure

O/M/P1

Firmware Activate/Commit O O

Firmware Image Download O O

Format NVM O P

Get Features M O

Get Log Page M O

Identify M O

Namespace Management O P

Namespace Attachment O P

Security Send O P

Security Receive O P

Set Features O P

Vendor Specific O O

NOTES:
1 O/M definition: O = Optional, M = Mandatory, P = Prohibited from being

supported. An NVMe Enclosure that is also an NVMe Storage Device (i.e.,
implements namespaces) shall implement mandatory commands required by
either an NVMe Storage Device and an NVMe Enclosure and may implement
optional commands allowed by either an NVMe Storage Device and an NVMe
Enclosure.

Figure 77: NVMe Admin Command Request Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

OpcodeCommand Flags

Submission Queue Entry Dword 1

...

Submission Queue Entry Dword 5

Data Offset

Data Length

...

Submission Queue Entry Dword 15

NVMe Request Data (optional)

Controller ID

Reserved

Reserved

Submission Queue Entry Dword 10

Byte 0<

Byte 4<

Bytes
68 to N-1

<

Byte 8<

Byte 24<

Byte 28<

Byte 32<

Byte 36<

Byte 40<

Byte 44<

Byte 64<

Byte N<

M
E
B

Modify Section 7 as shown below:

Figure 84 defines the PCIe Command opcodes. It also shows PCIe Commands that are mandatory,
optional, and prohibited for an NVMe Storage Device and an NVMe Enclosure using the out-of-band
mechanism. All PCIe Commands are prohibited using the in-band tunneling mechanism.

Figure 84: Opcodes for PCIe Commands using an Out-of-Band Mechanism

Opcode

NVMe
Storage
Device
O/M/P1

NVMe
Enclosure

O/M/P1
Command

00h O O PCIe Configuration Read

01h O O PCIe Configuration Write

02h O O PCIe Memory Read

03h O O PCIe Memory Write

04h O O PCIe I/O Read

33

Opcode

NVMe
Storage
Device
O/M/P1

NVMe
Enclosure

O/M/P1
Command

05h O O PCIe I/O Write

06h – FFh - - Reserved

NOTES:
1. O/M definition: O = Optional, M = Mandatory, P = Prohibited from being supported.

An NVMe Enclosure that is also an NVMe Storage Device (i.e., implements
namespaces) shall implement mandatory commands required by either an NVMe
Storage Device and an NVMe Enclosure and may implement optional commands
allowed by either an NVMe Storage Device and an NVMe Enclosure.

Figure 82: PCIe Command Request Format

7 6 5 4 3 2 1 0

+3

7 6 5 4 3 2 1 0

+2

7 6 5 4 3 2 1 0

+1

7 6 5 4 3 2 1 0

+0

Message Integrity Check

Message TypeI
CR CSINVMe-MI

Msg Type

R
O
R

Reserved

Opcode

PCIe Request Dword 0

PCIe Request Dword 1

Request Data (optional)

Controller ID Reserved

PCIe Request Dword 2

Byte 0<

Byte 4<

Byte 8<

Byte 12<

Byte 16<

Byte N<

Bytes
20 to N-1

<

M
E
B

Modify Section 8.1 as shown below:

8.1 Identify Controller

The NVMe Identify Controller data structure contains information about an NVMe Controller. Bytes 240-
255 have been allocated by the NVM Express specification for NVMe-MI are defined below.

Figure 101: NVMe Management Interface Identify Controller

Bytes O/M Description

254252:240 Reserved

253 M

NVM Subsystem Report (NVMSR): This field reports information associated with
the NVM subsystem. At least one bit in this field shall be set to ‘1’.

Bit Definition

0

NVMe Storage Device (NVMESD): If set to ‘1’,
then the NVM Subsystem is part of an NVMe
Storage Device. If cleared to ‘0’, then the NVM
subsystem is not part of an NVMe Storage
Device.

1

NVMe Enclosure (NVMEE): If set to ‘1’, then the
NVM Subsystem is part of an NVMe Enclosure. If
cleared to ‘0’, then the NVM subsystem is not part
of an NVMe Enclosure.

7:2 Reserved

254 Reserved

255 M

Management Endpoint Capabilities (MEC): This field indicates the capabilities
of the Management Endpoint in the Controller.
Bits 7:2 are reserved.
Bit 1: If set to ‘1’ then the NVM Subsystem contains a Management Endpoint on
a PCIe port.
Bit 0: If set to ‘1’ then the NVM Subsystem contains a Management Endpoint on
an SMBus/I2C port.

Bit Definition

0

SMBus/I2C Port Management Endpoint
(SMBUSME): If set to ‘1’ then the NVM
Subsystem contains a Management Endpoint on
an SMBus/I2C port.

1
PCIe Port Management Endpoint (PCIEME): If
set to ‘1’ then the NVM Subsystem contains a
Management Endpoint on a PCIe port.

7:2 Reserved

	NVM Express Technical Proposal for New Feature
	Technical Proposal Author(s)
	Revision History
	1.1 Overview
	1.2 Scope
	1.2.1 Outside of Scope

	1.3 Theory of Operation NVMe-MI Out-of-Band Protocol Layering
	1.4 NVMe Storage Device Field Replaceable Unit Architectural Model
	1.5 NVMe Enclosure Architectural Model
	1.5.1.x1 NVMe Enclosure (Enclosure)
	1.5.1.x2 Enclosure Management
	1.5.1.y Enclosure Services Process
	1.5.1.z NVMe Subenclosure (Subenclosure)
	1.5.1.a Management Endpoint Buffer
	1.5.1.c NVMe Subenclosure (Subenclosure)
	MCTP Messages
	Message Fields

	4.6 Management Endpoint Buffer
	5.TBD Management Endpoint Buffer Read
	The Management Endpoint Buffer Read command allows the Management Controller to read the contents of the Management Endpoint Buffer. This data is returned in the Response Data.
	The command uses NVMe Management Dwords 0 and 1. The format of NVMe Management Dwords 0 and 1 are shown in Figure M and Figure M+1 respectively. There is no Request Data included in a Management Endpoint Buffer Read command. The NVMe Management Respon...
	If the Data Offset (DOFST) field is greater than or equal to the size of the Management Endpoint Buffer, then the Management Endpoint responds with an Invalid Parameter error status response. The parameter with the error in this case is the DOFST fiel...
	5.TBD Management Endpoint Buffer Write
	The Management Endpoint Buffer Write command allows the Management Controller to update the contents of the optional Management Endpoint Buffer. The data used to update the Management Endpoint Buffer is transferred in the Request Data included in a Ma...
	The command uses NVMe Management Dwords 0 and 1. The format of the NVMe Management Dwords 0 and 1 are shown in Figure M and Figure M+1 respectively. The NVMe Management Response field is reserve and there is no Response Data.
	If the Data Offset (DOFST) field is greater than or equal to the size of the Management Endpoint Buffer, then the Management Endpoint responds with an Invalid Parameter error status response. The parameter with the error in this case is the DOFST fiel...
	5.5 Read NVMe-MI Data Structure
	5.7 SES Receive
	5.8 SES Send
	8.1 Identify Controller

