

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-17 NVMe™ Corporation.

LEGAL NOTICE:

© Copyright 2007 - 2018 NVM Express, Inc. ALL RIGHTS RESERVED.
This NVM Express Management Interface 1.0a specification is proprietary to the NVM Express, Inc. (also referred to as

“Company”) and/or its successors and assigns.

NOTICE TO USERS WHO ARE NVM EXPRESS, INC. MEMBERS: Members of NVM Express, Inc. have the

right to use and implement this specification subject, however, to the Member’s continued compliance with the

Company’s Intellectual Property Policy and Bylaws and the Member’s Participation Agreement.

NOTICE TO NON-MEMBERS OF NVM EXPRESS, INC.: If you are not a Member of NVM Express, Inc. and you

have obtained a copy of this document, you only have a right to review this document or make reference to or cite this

document. Any such references or citations to this document must acknowledge NVM Express, Inc. copyright ownership

of this document. The proper copyright citation or reference is as follows: “© 2007 - 2018 NVM Express, Inc. ALL

RIGHTS RESERVED.” When making any such citations or references to this document you are not permitted to

revise, alter, modify, make any derivatives of, or otherwise amend the referenced portion of this document in any way

without the prior express written permission of NVM Express, Inc. Nothing contained in this document shall be deemed

as granting you any kind of license to implement or use this document or the specification described therein, or any of its

contents, either expressly or impliedly, or to any intellectual property owned or controlled by NVM Express, Inc.,

including, without limitation, any trademarks of NVM Express, Inc.

LEGAL DISCLAIMER:

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN “AS IS” BASIS. TO

THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, NVM EXPRESS, INC. (ALONG WITH THE

CONTRIBUTORS TO THIS DOCUMENT) HEREBY DISCLAIM ALL REPRESENTATIONS, WARRANTIES

AND/OR COVENANTS, EITHER EXPRESS OR IMPLIED, STATUTORY OR AT COMMON LAW, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE, VALIDITY, AND/OR NONINFRINGEMENT.

All product names, trademarks, registered trademarks, and/or servicemarks may be claimed as the property of their

respective owners.

NVM Express Management Interface Workgroup

c/o NVM Express Administration

3855 SW 153rd Drive

Beaverton, OR 97003

admin@nvmexpress.org

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-17 NVMe™ Corporation.

NVM Express™ Technical Errata

Errata ID 001

Revision Date 1/28/2018

Affected Spec Ver. NVM Express™ MI 1.0a

Corrected Spec Ver.

Errata Author(s)

Name Company

Peter Onufryk Microsemi

Nanci Olson HPE

Austin Bolen Dell EMC

Michael Allison SK hynix

Errata Overview

• Added SMBus clarifications and corrections.

• Corrected errors in VPD NVMe MultiRecord Area and NVMe PCIe Port MultiRecord Area.

• Aligned Product Info Area to IPMI Platform Management FRU Information Storage
Definition

• Fixed MIC calculation

• Definitions section is requested to be in alphabetical order.

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-17 NVMe™ Corporation.

Revision History

Revision Date Change Description

5/18/2017 • Initial Errata

6/4/2017

• Split Asset Tag Type/Length/Value into separate fields

• Split FRU File ID Type/Length/Value into separate fields

• Added Section 2.2 modifications

6/20/2017
• Added a fix for how to reflect the remainder in the Message

Integrity Check calculations

6/26/2017
• Made Product Info Area require the format from the Platform

Management FRU Information Storage Definition. Added
Appendix D to add an example of the Product Info Area.

7/10/2017

• Removed Appendix D.

• Added table back into Product Info Area and removed byte offsets

• Made explicit requirement on Product Info Area that data
conventions do not follow conventions in this document.

7/11/2017
• Adjusted the format of the Product Info Area and included tag, FRU

ID, and custom fields.

7/11/2017

• Modified the Product Info Area figure to show what changed using
red text + strikethrough.

• Added an acronym for the Asset Tag and FRU File ID fields.

• Updated errata overview to include MIC fix

7/12/2017
• Clarified the reason to ignore the conventions of this document in

section 9.2.2.

7/14/2017 • Added clarification to Product Info Area field descriptions.

10/30/2017 • Editorial changes based on 30-day review.

11/7/2017

• Fixed misspelling in revision history

• Removed a change to “a SMBus”

• Changed note 2 text color in section 2.2 from red to black since it is
existing text

• Changed occurrence of “SMBus” to “SMBus/I2C”

1/28/2018 • Updated NVMe administration contact

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-17 NVMe™ Corporation.

Description of Specification Changes

Modify Section 1.5.1 as shown below:

Editor’s Note:The number of definitions is getting large so they need to be put in alphabetical order.

Modify Section 2.2 as shown below:

If the NVM Subsystem implements an SMBus/I2C interface and associated with that SMBus/I2C interface is a
Management Endpoint, then the interface shall support MCTP over SMBus/I2C as specified by the
Management Component Transport Protocol (MCTP) SMBus/I2C Transport Binding Specification.

If the NVM Subsystem implements an SMBus/I2C interface, then the NVM Subsystem may optionally support
the NVMe Basic Management Command for health and status polling. The NVMe Basic Management
Command is defined in Appendix A. It is possible to support both MCTP and the Basic Management Command.

The SMBus/I2C Management Endpoint shall be accessible at a power-up SMBus/I2C address of 3Ah and
should be SMBus ARP-capable (as defined in the SMBus 3.0 specification).1 If the NVM Subsystem is
“Discoverable” (as defined in the SMBus 3.0 specification), the device shallmay issue a “Notify ARP Master”
command when the NVM Subsystem is ready to communicate.If the NVM Subsystem implements an
SMBus/I2C interface, then VPD information shall be accessible from the Management Endpoint using
Sequential Read and Random Read operations as defined by the IPMI Platform Management FRU Information
Storage Definition specification.

The VPD shall be accessible using I2C read operations from a FRU Information Device at a power-up
SMBus/I2C address of A6h and should be SMBus ARP-capable (as defined in the SMBus 3.0 specification).2
If the FRU Information Device is “Discoverable” (as defined in the SMBus 3.0 specification), it shallmay issue a
“Notify ARP Master” command when the FRU Information Device is ready to communicate.

If ARP is supported, then the SMBus/I2C Management Endpoint and VPD shall both use the SMBus Address
Resolution Protocol Unique Device Identifier (UDID) shown in Figure 7. The only difference between the NVM
Subsystem and FRU Information Device UDID is the most significant bit of the Vendor Specific ID. This fact
may be used by the MCTP bus owner to associate an SMBus/I2C Management Endpoint with its corresponding
VPD.

Clock stretching is allowed by the Management Controller, Management Endpoint, and the VPD. However,
implementations are strongly discouraged from using clock stretching so that communications are more
predictable with higher throughput.

When a NACK is received, a Management Endpoint shall follow the MCTP specification for a non-bridge
endpoint. The Management Endpoint treats a STOP condition due to excessive SMBus NACKs as an implicit
Pause Control Primitive. Refer to 4.4.

It is recommended that neither an SMBus Management Endpoint nor a FRU Information Device master the
SMBus/I2C or otherwise drive the SMBus/I2C clock or data signals except as required to implement the MCTP
over SMBus/I2C Transport Binding Specification.

1 The address 3Ah appears on SMBus as 0b0011_101x where x represents the SMBus read/write bit.
2 The address A6h appears on SMBus as 0b1010_011x where x represents the SMBus read/write bit.

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-17 NVMe™ Corporation.

Figure 1: NVM Subsystem and FRU Information Device SMBus UDID

Bits Field Description

127:120
Device

Capabilties

This field describes the device capabilities

Bits Description

7:6
Address Type: This field describes the type of address contained in the
device. Refer to the SMBus transport binding specification.

5:1 Reserved

0
PEC Supported: All MCTP transactions shall include a Packet Error Code
(PEC) byte. This field shall be set to one to indicate support for PEC.

119:112
Version /
Revision

This field is used to identify the UDID version and silicon revision.

Bits Description

7:6 Reserved

5:3 UDID Version. This field specifies the UDID version and shall be set to 001b

2:0
Silicon Revision ID: This field is used to specify a vendor specific silicon
revision level.

111:96 Vendor ID This field contains the PCI-SIG vendor ID for the Management Endpoint.

95:80 Device ID This field contains a vendor assigned device ID for the Management Endpoint.

79:64 Interface

This field defines the SMBus version and the Interface Protocols supported.

Bits Description

15:8 Reserved

7 ZONE. This field shall be cleared to ‘0’.

6 IPMI. This field shall be cleared to ‘0’.

5
ASF. This field shall be set to ‘1’. Refer to the MCTP transport binding
specification.

4 OEM. This field shall be set to ‘1'.

3:0
SMBus Version. This field shall be set to 4h or 5h which corresponds to
SMBus Version 2.0 and 3.0 respectively.

63:48
Subsystem
Vendor ID

This field contains the PCI-SIG vendor ID for the Management Endpoint.

47:32
Subsystem
Device ID

This field contains a vendor assigned device ID for the Management Endpoint.

31:0
Vendor

Specific ID

This field contains a unique 30-bit static NVM storage device ID and is used to distinguish
the NVM Subsystem UDID from the FRU Information Device UDID.

Bits Description

31
UDID Type. This field is used to distinguish the Management Endpoint UDID
from the VPD UDID. A ‘1’ in this field indicates the Management Endpoint. A
‘0’ in this field indicates the FRU Information Device.

30 Reserved.

29:0
Unique NVM Storage Device ID: This field contains a unique vendor
assigned ID for the NVM Subsystem. The ID is different in each NVM
Subsysteminstance and remains static during the life of the device.

Host platforms expecting to be used with one or more Management Endpoints (e.g., data center platforms and
workstations) should isolate SMBus segments to avoid a Management Endpoint conflicting with the address of
another SMBus device. An SMBus address conflict may occur when a Management Endpoint is used with
platforms that do not isolate SMBus segments (e.g., some client platforms).

Modify Section 3.2.1.1 as shown below:

When sending a message, the Message Integrity Check shall be calculated using the following procedure or a
procedure that produces an equivalent result:

1. Initialize the CRC register to FFFFFFFFh. This is equivalent to inverting the lowest 32 bits of the NVMe-

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-17 NVMe™ Corporation.

MI Message (Dword 0 in Error! Reference source not found.).
2. Append 32 bits of 0’s to the end of the Message Data to allow room for the Message Integrity Check

(Dword N in Error! Reference source not found.). This results in the Message Body shown in Error!
Reference source not found. with the Message Integrity Check field cleared to 0h.

3. Map the bits in the Message Body from step 2 to the coefficients of the message polynomial M(x).
Assume the length of M(x) is Y bytes. Bit 0 of byte 0 in the Message Body is the most significant bit of
M(x), followed by bit 1 of byte 0, on through to bit 7 of byte Y - 1. Note that the bits within each byte
are reflected (i.e., bit n of each byte is mapped to bit (7 - n) resulting in bit 7 to bit 0, bit 6 to bit 1, and
so on).

Figure 2: Message Integrity Check Example

 Message Body (Length = Y bytes)

 Byte 0 Byte 1 … Byte Y - 1

M(x) = 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 … 0 1 2 3 4 5 6 7

4. Divide the polynomial M(x) by the generator polynomial 1EDC6F41h to produce the 32-bit remainder
polynomial R(x).

5. Reflect each byte of R(x) (i.e. bit n of each byte is mapped to bit (317 - n) resulting in bit 317 to bit 0,
bit 306 to bit 1, and so on) to produce the polynomial R′(x).

6. Invert R′(x) to produce the polynomial R′′(x).
7. Store R′′(x) in the Message Integrity Check field of the Message Body.

Upon receipt of an NVMe-MI message, the Message Integrity Check may be validated as follows:
1. Save the received Message Integrity Check.
2. Initialize the CRC register to FFFFFFFFh. This is equivalent to inverting the lowest 32 bits of the NVMe-

MI Message (Dword 0 in Error! Reference source not found.).
3. Clear the Message Integrity Check field to 0h.
4. Map the bits in the Message Body to the coefficients of the message polynomial M(x) as described in

step 3 in the Message Integrity Check calculation procedure above.
5. Divide the polynomial M(x) by the generator polynomial 1EDC6F41h to produce the 32-bit remainder

polynomial R(x).
6. Reflect each byte of R(x) (i.e. bit n of each byte is mapped to bit (317 - n) resulting in bit 317 to bit 0,

bit 306 to bit 1, and so on) to produce the polynomial R′(x).
7. Invert R′(x) to produce the polynomial R′′(x).

Compare R′′(x) from step 5 to the Message Integrity Check value saved in step 1. If both values are equal,
the Message Integrity Check passes.

Modify Section 9.2.2 as shown below:

Editor’s Note: The “section 1.6” in the following paragraph needs to have a reference link added to
section 1.6 of this document.

The Product Info Area shall have the same format and conventions as the Product Info Area Format as defined
by the IPMI Platform Management FRU Information Storage Definition. Therefore, all fields within the Product
Info Area shall not follow the conventions defined in section 1.6. The Product Info Area factory default values
shall be set to the values defined in Figure TBD1.

Figure TBD3: Product Info Area Factory Default Values

Byte
Offset

Factory
Default

Description

00 01h IPMI Format Version Number (IPMIVER): This field indicates the IPMI Format Version.

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-17 NVMe™ Corporation.

01
Impl
Spec

Product Info Area Length (PALEN): This field indicates the length of the pProduct
iInfo aArea in multiples of 8 bytes (e.g., 112 bytes/8 = 14 = 0x0Eh).

02 19h
Language Code (LCODE): This field indicates the language used. A value of 19h is
used to indicate English.

03 C8h
Manufacturer Name Type/Length (MNTL): This bytefield indicates the type and length
of the Manufacturer Name field.

11:04
Impl
Spec

Manufacturer Name (MNAME): This field indicates the Manufacturer name in 8-bit
ASCII. Unused bytes should be NULL characters.

The Manufacturer name in this field should correspond to that in the PCI Subsystem
Vendor ID (SSVID) and IEEE OUI Identifier fields in the Identify Controller Data
Structure

12 D8h
Product Name Type/Length (PNTL): This bytefield indicates the type and length of
the Product Name field.

36:13
Impl
Spec

Product Name (PNAME): This field indicates the Product name in 8-bit ASCII. Unused
bytes should be NULL characters.

37 E8h
Product Part/Model Number Type/Length (PPMNNTL): This bytefield indicates the
type and length of the Product Part/Model Number field.

77:38
Impl
Spec

Product Part/Model Number (PPMN): This field indicates the Product Part/Model
Number in 8-bit ASCII. Unused bytes should be NULL characters.

This field should contain the same value as the Model Number (NM) field in the NVMe
Identify Controller Data Structure

78 C2h
Product Version Type/Length (PVTL): This bytefield indicates the type and length of
the Product Part/Model Number field.

80:79
Impl
Spec

Product Version (PVER): This field indicates the Product Version in 8-bit ASCII.
Unused bytes should be NULL characters.

81 D4h
Product Serial Number Type/Length (PSNTL): This bytefield indicates the type and
length of the Product Serial Number field.

101:82
Impl
Spec

Product Serial Number (PSN): This field indicates the Product Serial Number in 8-bit
ASCII. Unused bytes should be NULL characters.

This field should contain the same value as the Serial Number (SN) field in the NVMe
Identify Controller Data Structure.

102
0hImpl
Spec

Asset Tag Type/Length (ATTL): This bytefield indicates the type and length of the
Asset Tag field. A value of 00h may be used to indicate an Asset Tag is not present.

Impl
Spec

Asset Tag (AT): This field indicates the asset tag.

103
0hImpl
Spec

FRU File ID Type/Length (ATTL): This bytefield indicates the type and length of the
FRU File ID field. A value of 00h may be used to indicate a FRU File ID is not present.

Impl
Spec

FRU File ID (FFI): This field provides manufacturing aid for verifying the file that was
used during manufacture or field update to load the FRU information.

Impl
Spec

Custom Product Info Area (CPIA): This optional field allows for the addition of custom
Product Info Area fields that shall be proceeded with a Type/Length field.

104 C1h End of Record (EOR): A value of C1h in this bytefield indicates the end of record

110:105 0h
ReservedZero or more bytes of value 0h that are used to pad the size of the Product
Info Area to a multiple of 8 bytes.

111
Impl
Spec

Product Info Area (PICHK): Checksum computed over all bytes 0 through 110 in the
Product Info Area excluding this field. The checksum is computed by adding the 8-bit
value of the bytes modulo 256 and then taking the 2’s complement of this sum. When
the checksum and the sum of the bytes module 256 are added, the result should be 0h.

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-17 NVMe™ Corporation.

Modify Section 9.2.3 as shown below:

9.2.3 NVMe MultiRecord Area

Byte
Offset

Factory
Default

Description

00 0Bh NVMe Record Type ID

01
2h

Impl
Spec

Bit 7 – end of list; record format version = 2h
The value of this field is 82h if this is the last record in the list and 2h if it is not
the last record in the list.

02 28h3Bh
Record Length (RLEN): This field indicates the number of bytes of data in the
record. length of the MultiRecord Area in bytes.

03
Impl
Spec

Record Checksum: This field is used to give the record data a zero checksum
(i.e., the modulo 256 sum of the record data bytes from byte offset 05 through
the end of this record plus this checksum byte equals zero)

Modify Section 9.2.4 as shown below:

9.2.4 NVMe PCIe Port MultiRecord Area

Byte
Offset

Factory
Default

Description

00 0Ch NVMe PCIe Port Record Type ID

01
2h

Impl
Spec

Bit 7 – end of list; record format version = 2h
The value of this field is 82h if this is the last record in the list and 2h if it is not
the last record in the list.

02 28h0Bh
Record Length (RLEN): This field indicates the number of bytes of data in the
record. length of the MultiRecord Area in bytes.

03
Impl
Spec

Record Checksum: This field is used to give the record data a zero checksum
(i.e., the modulo 256 sum of the record data bytes from byte offset 05 through
the end of this record plus this checksum byte equals zero)

	NVM Express™ Technical Errata
	Errata Author(s)
	Revision History
	9.2.3 NVMe MultiRecord Area
	9.2.4 NVMe PCIe Port MultiRecord Area

