NVMe-oF™ JBOFs

Sponsored by NVM Express® organization, the owner of NVMe™, NVMe-oF™ and NVMe-MI™ standards
JBOF Track Speakers

- Bryan Cowger
- Nishant Lodha
- Peter Onufryk
- Fazil Osman
- Sujoy Sen

Brands: KAZAN, Marvell, Microsemi, Broadcom, Intel
JBOF Session Agenda

- Market Overview
- Composable Infrastructure
- PCIe (direct-attached) JBOF
- Fabric-attached FBOF
- Management Options
- Remaining Challenges
- Q & A
Market Overview

Nishant Lodha
Marvell Semiconductor
Storage Trends from all around!

WW Enterprise Storage spend growing (~$42B(2016) → ~$47B(2020))

• Scale up → Scale Out (Hyperscale – public cloud driven by 3rd platform – mobile, social, cloud, analytics)
• ECB revenues stay flat ($25B) – Flash driving enterprise storage @ 26.2% CAGR; HDD declining @ 14.5% CAGR

Traditional storage deployment models being disrupted!

• Proprietary/siloed architectures → Software Defined Storage (SDS)/Hyper Converged (HCI) on commodity HW
• Direct Attach Storage (DAS) → Disaggregated storage (JBOD → JBOF, FBOF)

Faster media necessitates new protocol, drives faster interconnects & enables new use cases

• NVMe™ will displace SCSI as the dominant block storage protocol by 2020 for AFA/CI/Scale-out
• Shared NVMe storage over a variety of Fabrics with NVMe-oF (RDMA (Eth, IB), FC, TCP)
• Emerging 3D Xpoint enables storage class memory (SCM)/persistent memory (PMEM)

Cloud storage for Enterprise customers iffy!

• Cost savings questionable; Data security concerns
• Hard to migrate legacy storage; Public cloud SaaS for email/collaboration
Fabrics play a key role for JBOFs -> FBOFs
Scaling our NVMe™ Requires a (Real) Network

- Many options, plenty of confusion, conversation beyond PCIe®
- Fibre Channel is the transport for the vast majority of today’s all flash arrays
 - FC-NVMe Standardized in Mid-2017
- RoCEv2, iWARP and InfiniBand are RDMA-based but not compatible with each other
 - NVMe-oF RDMA Standardized in 2016
- FCoE is a fabric is a option
- NVMe over TCP - making it way through the standards
RDMA is Most “Considered”, Challenges Remain

<table>
<thead>
<tr>
<th>Infrastructure and Skillset change required!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Automatic</td>
</tr>
<tr>
<td>Not Precise</td>
</tr>
<tr>
<td>Congestion</td>
</tr>
<tr>
<td>Keeping the network ‘lossless’</td>
</tr>
<tr>
<td>RNDMA/OEFD expertise</td>
</tr>
<tr>
<td>Skillset Requirements</td>
</tr>
<tr>
<td>RNIC Upgrade Required</td>
</tr>
<tr>
<td>RDMA Camps</td>
</tr>
<tr>
<td>Backward Compatibility</td>
</tr>
</tbody>
</table>
New This Year! NVMe-oF™/TCP

Defines a TCP Transport Binding layer for NVMe-oF

Promoted by Facebook, Google, DELL EMC, Intel, Others. Sweet spots for JBOF/FBOFs

Not RDMA-based

Not yet part of the NVMe-oF standard, Likely in 2018/19

Enables adoption of NVMe-oF into existing datacenter IP network environments that are not RDMA-enabled

TCP offload required to leverage Flash potential
Composable Infrastructure

Bryan Cowger

Kazan Networks
Today’s “Shared Nothing” Model
a.k.a. DAS

Challenges:
- Forces the up-front decision of how much storage to devote to each server.
- Locks in the compute:storage ratio.
Shared Nothing Model
Option A: One Model Serves All Apps

App A: Needs 1 SSD
App B: Needs 2 SSDs
App C: Needs 3 SSDs

Utilized SSD
Not utilized SSD
“Dark Flash”

Net utilization: 6 SSDs out of 12 = 50%
Shared Nothing Model

Option B: Specialized Server Configurations

App A: Needs 1 SSD

App B: Needs 2 SSDs

App C: Needs 3 SSDs

Utilized SSD

Dark Flash eliminated, but limits agility and future app deployments
Disaggregated Datacenter

Pool of Compute

Pool of Storage – JBOF/FBOF
The Composable Datacenter

Pool of CPUs

Pool of Storage

Utilized SSDs

Spare SSDs

App A: Needs
1 SSD

CPU

SSD

SSD

App B: Needs
2 SSDs

CPU

SSD

SSD

App C: Needs
3 SSDs

CPU

SSD

SSD

Pool of CPUs

Pool of Storage

Utilized SSDs

Spare SSDs

CPU

SSD

SSD

CPU

SSD

SSD

CPU

SSD

SSD
The Composable Datacenter

- **App A:** Needs 1 SSD
- **App B:** Needs 2 SSDs
- **App C:** Needs 3 SSDs

Pool of CPUs

Pool of Storage

Utilized SSDs

- SSD
- SSD
- SSD
- SSD
- SSD
- SSD

Spare SSDs

- SSD
- SSD
- SSD
- SSD
- SSD
- SSD

Spares / Expansion Pool

- Minimize *Dark Flash*!
- Buy them only as needed
- Power them only as needed

Other benefits

- Dynamically allocate more or less storage
- Return SSDs to Pool as apps are retired
- Upgrade SSDs independently
JBOF Session Agenda

• Market Overview
• Composable Infrastructure
• PCIe (direct-attached) JBOF
• Fabric-attached FBOF
• Management Options
• Remaining Challenges
• Q & A
PCIe® NVMe™ JBOF

PCIe Switch

NVMe Host

NVMe SSD
NVMe SSD
NVMe SSD
NVMe SSD

Facebook Lightning PCIe NVMe JBOF
PCIe® JBOF Enclosure Management

• Native PCIe Enclosure Management (NPEM)
 • Submitted to the PCI-SIG® Protocol Workgroup (PWG) on behalf of the NVMe™ Management Interface (NVMe-MI™) Workgroup
 • Approved by PCI-SIG on August 10th, 2017
 • Transport specific basic enclosure management

• SCSI Enclosure Services (SES) Based Enclosure Management
 • Technical proposal developed in the NVMe-MI workgroup
 • While the NVMe and SCSI architectures differ, the elements of an enclosure and capabilities to manage them are the same
 • Example enclosure elements: power supplies, fans, display or indicators, locks, temperature sensors, current sensors, voltage sensors, and ports
 • Comprehensive enclosure management for NVMe that leverages (SES), a standard developed by T10 for management of enclosures using the SCSI architecture
The PCIe® Latency Advantage

Latency data from Z. Guz et al., “NVMe-over-Fabrics Performance Characterization and the Path to Low-Overhead Flash Disaggregation” in SYSTOR ’17
The PCIe® Advantage

Other Flash Storage Networks

PCIe Fabric
NVMe™ SR-IOV

[Diagram showing a PCIe Port connected to Physical Function 0, Virtual Function (0,1) NVMe Controller, Virtual Function (0,2) NVMe Controller, Virtual Function (0,3) NVMe Controller, Virtual Function (0,4) NVMe Controller, with NSIDs 1 to 5 and NSs A to E.]
Multi-Host I/O Sharing

- NVMe Host 1
- NVMe Host 2
- NVMe Host 3
- NVMe Host 4

PCIe Switch

- NVMe SSD

 diseo de circuito de multiplexor PCIe

- Flash Memory Summit

nvm EXPRESS

23
Storage is Not Just About CPU I/O Anymore

- NVMe™ together with a PCIe® fabric allow direct network to storage and accelerator to storage communications

Example:
1. Data transferred from network to NVMe CMB
2. NVMe block write operation imitated from CMB to NVM
3. sometime later …
4. NVMe block read operation initiated from NVM to CMB
5. GPU/Accelerator transfers data from NVMe CMB for processing
FBOF Architecture

Fazil Osman, Broadcom
NVMe-oF™ Market

SAS Replacement
- High performance
- Low latency
- Better scalability than PCIe®
- Solution for traditional Enterprise iSCSI, cluster architectures etc.

Composable
- TCP
- IO Determinism
- Data Integrity
- Application Offload
- Cloud Scale Out

Form Factor

<table>
<thead>
<tr>
<th>Future</th>
<th>Today</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 x U.2</td>
<td>30/60 x M.2</td>
</tr>
<tr>
<td>Ruler (16/32 x 1U)</td>
<td>Modular w/Ethernet</td>
</tr>
<tr>
<td>EDSFF, NF1</td>
<td>EDSFF Derivative</td>
</tr>
</tbody>
</table>

Future Today Cloud Scale Out

TCP
FBOF architecture examples

Example 1: NVMe-oF HA Enterprise Storage Array

Controller 1
SoC/FPGA/ASIC
PCle Switch

Controller 2
SoC/FPGA/ASIC
PCle Switch

High Availability option 1
HA FBOF architecture

Example 3: NVMe-oF Enterprise HA Storage Array

Controller 1
- SoC/FPGA/ASIC
- PCIe Switch

Controller 2
- SoC/FPGA/ASIC
- PCIe Switch

Ethernet Switch

25G/50G/100G

Storage Client
- RNIC

High Availability option 2
HA FBOF architecture with redundant switches
FBOF high fanout architecture

SoC/FPG A/ASIC

PCIe® Switch

NVMe

NVMe

NVMe

25G/50G/100G

Storage Client

Storage Client

Storage Client

RNIC

Ethernet Switch

NVMe-of Storage Array

SoC/FPG A/ASIC

PCIe Switch

NVMe

NVMe

NVMe

25G/50G/100G

High Fanout
1U ruler based designs on PCIe® attach being introduced into the market
 – i.e. White River Glacier etc., various ODM offerings

Designs provide high density NVMe™ but lack scalability

Goal is to extend concept for cloud scale using NVMeoF™

Gain scalability of fabrics attached

Simplify design by removing PCIe switch
FBOFs in the Cloud

Sujoy Sen, Intel
Making FBOFs Successful in the Cloud

FBOFs in the cloud enable the composable and disaggregated use case

Success will require the following

• Network QoS (especially RDMA@scale)
• Easy to deploy and manage@scale
• Enable Scale-out Distributed Storage architectures
Ease of Use

- E2E management
 - Not just FBOFs but the hosts and the network in-between
- Cloud OS Enablement
 - Develop drivers/plug-ins for NVMe-oF™
- Bare Metal
 - Server platform and OS native support for NVMe-oF provisioning

Drive standards-based management eco-system
Scale-Out Distributed Storage

- Blast Radius and Failure Domains
 - Soft vs hard error handling
 - Single Point-of-Failure avoidance
- Partitioning of Data Services between storage node and FBOF, e.g.
 - Data Layout and Media Management
 - Replication/HA
 - Data Compression and Security
- Distributed storage-aware NVMe-oF™
 - Cluster-aware protocol enhancements
Key Takeaways

• JBOF / FBOF represents a key building block for NVMe™ based datacenters

• Two options:
 • PCIe® Direct Connect JBOFs
 • Lowest Latency
 • Limited Scale / Distance
 • Fabric Attached FBOFs
 • Scale at the levels of FC or Ethernet
 • Additional latency, networking / fabric bandwidth

• Manageability represents new opportunities and challenges
Contact Information

For more information please contact the following:

Fazil Osman fazil.osman@broadcom.com
Nishant Lodha Nishant.Lodha@cavium.com
Sujoy Sen sujoy.sen@intel.com
Bryan Cowger bryan.cowger@kazan-networks.com
Peter OnufrykPeter.Onufryk@microchip.com