NVMe™: Hardware Implementations and Key Benefits in environments

Sponsored by NVM Express® organization, the owner of NVMe™, NVMe-oF™ and NVMe-MI™ standards
NVMe™ A-11b Track Speakers

Chris Petersen

Chander Chadha

Jonmichael Hands

facebook

TOSHIBA

intel
NVMe™ Agenda

Hyperscale Challenges and NVMe Solutions
NVMe for Data Center Enterprise Needs
NVMe Client Implementations
Q&A
<table>
<thead>
<tr>
<th>Track</th>
<th>Title</th>
<th>Speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVMe-101-1</td>
<td>NVM Express: NVM Express roadmaps and market data for NVMe, NVMe-oF, and NVMe-MI - what you need to know for the next year.</td>
<td>Janene Ellefson, Micron J Metz, Cisco</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber Huffman, Intel David Allen, Seagate</td>
</tr>
<tr>
<td></td>
<td>8/7/18 8:30-9:35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NVMe architectures for in Hyperscale Data Centers, Enterprise Data Centers, and in the Client and Laptop space.</td>
<td>Janene Ellefson, Micron Chris Peterson, Facebook</td>
</tr>
<tr>
<td></td>
<td>9:45-10:50</td>
<td>Chander Chadha, Toshiba Jonmichael Hands, Intel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3:40-4:45 8/7/18</td>
<td>Uma Parepalli, Cavium Austin Bolen, Dell EMC Myron Loewen, Intel Lee Prewitt, Microsoft</td>
</tr>
<tr>
<td></td>
<td>NVMe Drivers and Software: This session will cover the software and drivers required for NVMe-MI, NVMe, NVMe-oF and support from the top operating systems.</td>
<td>Suds Jain, VMware David Minturn, Intel James Harris, Intel</td>
</tr>
<tr>
<td></td>
<td>8/7/18 9:45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4:55-6:00 8/7/18</td>
<td>Brandon Hoff, Emulex Fazil Osman, Broadcom</td>
</tr>
<tr>
<td></td>
<td>NVMe-oF Transports: We will cover for NVMe over Fibre Channel, NVMe over RDMA, and NVMe over TCP.</td>
<td>Curt Beckmann, Brocade Praveen Midha, Marvell</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/8/18 8:30-9:35</td>
<td>Brandon Hoff, Emulex Michael Peppers, NetApp Clod Barrera, IBM</td>
</tr>
<tr>
<td></td>
<td>NVMe-oF Enterprise Arrays: NVMe-oF and NVMe is improving the performance of classic storage arrays, a multi-billion dollar market.</td>
<td>Fred Night, NetApp Brent Yardley, IBM</td>
</tr>
<tr>
<td></td>
<td>9:45-10:50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/8/18 9:45</td>
<td>Jeremy Werner, Toshiba Manoj Wadekar, eBay Kamal Hyder, Toshiba</td>
</tr>
<tr>
<td></td>
<td>NVMe-oF Appliances: We will discuss solutions that deliver high-performance and low-latency NVMe storage to automated orchestration-managed clouds.</td>
<td>Nishant Lodha, Marvell Yaniv Romem, CTO, Excelero</td>
</tr>
<tr>
<td></td>
<td>10:45-11:00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/8/18 3:20-4:25</td>
<td>Bryan Cowger, Kazan Networks</td>
</tr>
<tr>
<td></td>
<td>NVMe-oF JBOFs: Replacing DAS storage with Composable Infrastructure (disaggregated storage), based on JBOFs as the storage target.</td>
<td>Praveen Midha, Marvell Fazil Osman, Broadcom</td>
</tr>
<tr>
<td></td>
<td>4:40-6:45 8/8/18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Testing and Interoperability: This session will cover testing for Conformance, Interoperability, Resilience/error injection testing to ensure interoperable solutions base on NVM Express solutions.</td>
<td>Brandon Hoff, Emulex Tim Sheehan, IOL Mark Jones, FCIA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jason Rusch, Viavi Nick Kriczky, Teledyne</td>
</tr>
<tr>
<td></td>
<td>8/8/18 4:40-6:45</td>
<td></td>
</tr>
</tbody>
</table>
Follow NVMe™

[nvmexpress.org]

@NVMExpress
Hyperscale Challenges and NVMe® Solutions

Chris Petersen, Facebook
Hyperscale use cases

- **Boot and Log**
 - OS boot drive
 - OS and application logs

- **Databases**

- **Cache**
 - Content caching
 - Object caching
 - Indexing
Where do Hyperscalers use flash today?
M.2 Carriers
Hyperscale NVM Characteristics and Challenges

Important:
- Scalable & Flexible
- High volume & Low cost
- Power & Thermal Efficiency
- Hot-swappable & Serviceable
- Performance per TB & Quality of Service

Less important:
- Backwards compatible
- Support for non-NVM media
- Maximum density
- Peak performance (peak IOPs/BW)
Hyperscale NVM Characteristics and Challenges

Important:
- Scalable & Flexible
- High volume & Low cost
- **Power & Thermal Efficiency**
- Hot-swappable & Serviceable
- Performance per TB & Quality of Service

Less important:
- Backwards compatible
- Support for non-NVM media
- Maximum density
- Peak performance (peak IOPs/BW)
Hyperscale Efficiency

Power and thermal efficiency are critical

- Limited airflow and power is available in datacenters
- Temperature increase across servers is large (delta T)
- OPEX matters

NVMe-MI™ enables effective thermal management!
Hyperscale NVM Characteristics and Challenges

Important:
- Scalable & Flexible
- High volume & Low cost
- Power & Thermal Efficiency
- Hot-swappable & Serviceable
- Performance per TB & Quality of Service

Less important:
- Backwards compatible
- Support for non-NVM media
- Maximum density
- Peak peformance (peak IOPs/BW)
Scalable Performance

IOPs scales with capacity

*Basic assumptions: 4TB SSDs @ 300k 4k IOPs and 600k IOPs SATA limitation
Scalable Performance

NVMe™ I/O Determinism

Today

A
B
C
D

4TB SSD

Tomorrow

A
B
C
D

1TB
1TB
1TB
1TB

NVM Set 1
NVM Set 2
NVM Set 3
NVM Set 4
Scalable Performance

NVMe™ I/O Determinism

70/30% 4K Random Read IOPs

- 1.75X the IOPs!

Aggregate Read IOPs

Sets No Sets

90,000 80,000 70,000 60,000 50,000 40,000 30,000 20,000 10,000

70/30% 4K Random Read Latency

- 4X reduction in latency outliers!

Read Latency (microseconds)

P99 P99.99 P99.9999

Sets No Sets

10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000 110,000 120,000 130,000 140,000 150,000 160,000 170,000 180,000 190,000 200,000
Scalable Performance

NVMe™ provides fabric connectivity

Compute client A

Compute client B

Compute client C

Compute client D

NVMe over Fabrics or TCP

Storage server

NVMe SSD

NVM Set A

NVMe SSD

NVM Set B

NVM Set C

NVMe SSD

NVM Set D
Hyperscale NVM Characteristics and Challenges

Important:

• Scalable & Flexible
• High volume & Low cost
• Power & Thermal Efficiency
• Hot-swappable & Serviceable
• Performance per TB & Quality of Service

Less important:

• Backwards compatible
• Support for non-NVM media
• Maximum density
• Peak peformance (peak IOPs/BW)

There may be many challenges, but innovative, standardized solutions are the key to scaling for the future!
NVMe™ for Enterprise Datacenters Needs

Chander Chadha, Toshiba
Enterprise Datacenter needs from storage

- Scale
- Performance
- Pooling
 Disaggregated
- QoS
- Data
 Integrity
- Fault
 Tolerance
How NVMe™ benefits Enterprise Datacenter needs …

✓ Multiple core architecture with deeper queue depth
 ► Non-locking cores for faster and parallel threads execution
 ► Saleable queuing as system needs more storage resources while keeping the performance high
 ► Host front end interface can maximize advantage of Flash parallelism
How NVMe™ benefits Enterprise Datacenter needs …

✓ PCIe® interface (1GB/lane Gen3)

► Scalable interface with options to add lanes
► Higher bandwidth and Random Performance over legacy SATA & SAS
► Faster response time due to HBA elimination as PCIe direct attached
► 4KB sector size (NVMe) better aligned (compared to 512B) for application performance acceleration
How NVMe™ benefits Enterprise Datacenter needs …

- SGL to connect fragmented Host Memory data to NVMe SSD to reduce IO and improve efficiency
- CMB, PMR(for persistency) as DRAM buffer for RDMA NICs for directly placing NVMe-oF™ queues and data into the NVMe SSD
 - Improves latency and eliminates Host CPU intervention, improving system performance
How NVMe™ benefits Enterprise Datacenter needs …

- NVMe SRIOV enables single storage device to be exposed as multiple PCIe functions.
 - Improves latency as storage gets directly virtualized (native storage virtualization)
 - Multiple namespace sharing or Global namespace sharing options across multiple VF’s
 - With multiple VF’s HostBandwidth and IO’s utilization across multiple Host with SRIOV
How NVMe™ benefits Enterprise Datacenter needs …

✓ NVMe Dual Port
 ► Redundant host physical access for failover
 ► Reservation capabilities allow recovery from failing host
How NVMe™ benefits Enterprise Datacenter needs …

✓ NVMe Sets to address specific QoS needs for applications
 ► NVMe SSD configured as multiple sets for QoS targets
 ► Example: Sets targeted for Read QoS to prioritize read operations
 ► Host scheduling of IO’s based on deterministic time windows
How NVMe™ benefits Enterprise Datacenter needs …

✓ Fully compatible with T10 DIF & DIX, including DIF Type 1, 2, and 3
NVMe™ Client Implementations

Jonmichael Hands, Intel
Client use cases for NVMe™

Gaming
Opens up the opportunity for unparalleled realism, with high quality textures and decreased load times

Content Creation
NVMe creates opportunity for new workflows for content creation when working with large data sets. Creators frequently move, backup, and duplicate storage

Workstation
Opportunity to accelerate any WS workload with large data requirements, reduce CPU idle time. Speed up design, CAD, simulations

Client / Mobile
High performance is driving NVMe into client. Efficiency and features of NVMe lead to better battery life. Lower latency and better QoS delivers better application responsiveness

Media Creation
Rendering, high resolution (4k, 8k editing), audio production
Consumer product storage priorities

What are consumer storage needs

• Low cost
• Small form factor
• Optimal thermal and power management
• High performance
• Low active power usage
• Compatibility

Why is NVMe™ great for all consumer storage?

• Scalable streamlined storage stack
• Low latency
• Industry standard drivers in all OS
• Robust features to address power/thermals
• Scalability /w PCIe® and next gen NVM
• Built in security and manageability features
Client Desktop PCIe® Storage Form Factors

Add-in-card

- U.2
- M.2

Source: https://www.msi.com/Motherboard/X299-XPOWER-GAMING-AC.html
M.2 mania!

https://www.ekwb.com/shop/ek-m-2-nvme-heatsink-black
Choose the right laptop (hint...it needs NVMe™ SSD)

Choose the ultimate in form, function & style!

- Choose a balance of performance, mobility & battery life in the right form factor is essential.

Portability
- BGA or M.2 NVMe

Performance
- M.2 NVMe

Battery life
- M.2 NVMe and 2.5in SATA

- Dual M.2 NVMe slots and 2.5in SATA

*Altering clock frequency or voltage may damage or reduce the useful life of the processor and other system components, and may reduce system stability and performance. Product warranties may not apply if the processor is operated beyond its specifications. Check with the manufacturers of system and components for additional details.

Copyright © 2018 Intel Corporation. All rights reserved.
NVMe™ Scales to Mobile and Removable Storage

BGA 11.5x13mm

Learn more tomorrow at CMOB-201B-1: New PCIe/NVMe Memory Cards Open up New High-Speed Applications

Source:
Power Consumption

<table>
<thead>
<tr>
<th></th>
<th>Device Idle Power</th>
<th>4K Video Playback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel® 760P SSD</td>
<td>55.32 mW</td>
<td>112.19 mW</td>
</tr>
<tr>
<td>Data is collected by Intel on Key sight 6705B data logger by running Mobilemark® 2014 Office Productivity test for 2 hrs on Lenovo® IdeaPad 720s. Windows® apps and other services are turned off for measurement consistency. Data is collected by Intel on Key sight 6705B data logger by leaving the Lenovo IdeaPad 720s for 10 mins and measuring the L1.2+PS3 power. Windows apps, radios, and other services are turned off for measurement consistency. Data is collected by Intel on Key sight 6705B data logger by running 4K Video on the Lenovo IdeaPad 720s for 1 hour and taking average of the measured power. Windows apps, radios, and other services are turned off for measurement consistency.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Other names and brands may be claimed as the property of others.
NVMe™ removes the SATA performance bottleneck

Over HDDs
Sequential Read 26x
3176 MB/s
120 MB/s

Sequential Write 13x
1592 MB/s
118 MB/s

Intel® SSD 7 Series
versus
WD Blue* 5400RPM 500 GB HDD

Over SATA SSDs
Sequential Read 5.7x
3176 MB/s
560 MB/s

Sequential Write 3.1x
1592 MB/s
500 MB/s

Intel® SSD 7 Series
versus
Intel® 545 SATA-based SSD

Gen 3x4 128K and 4K Reads

Storage performance comparison workload by Intel: CrystalDiskMark V5.2*. Drives being compared: Intel® 7600p vs Intel® 760p. System: processor: Intel® Core™ i7-7700K processor @ 4.5GHz Turbo Frequency, 8T/4C, 8MB cache, 91 W TDP, on motherboard: Asus Z270-A* Prime, memory: 2 X 4GB Corsair Vengeance DDR4* 3000MHz 8GB, operating system: Windows 10 Pro* (x64) OS RS2, storage: Intel® 600P and Intel® 760p 512GB. Drive under test is configured as a primary drive plugged into M.2 slot directly. System power profile set to performance mode.

Data is collected at 500GB span size at Queue Depth 32 and thread 1 for sequential read and write. *Other names and brands may be claimed as the property of others.
NVMe™ vs SATA Application Performance

Burst 128kB Sequential Read (Queue Depth 1)	Data Rate in MB/s - Higher is Better	396.9	2139
Burst 128kB Sequential Write (Queue Depth 1)	Data Rate in MB/s - Higher is Better	407.1	1976
Sustained 4kB Random Read	Average of QD1, QD2 & QD4 Data Rates in MB/s - Higher is Better	81.8	123.7
Sustained 4kB Random Write	Average of QD1, QD2 & QD4 Data Rates in MB/s - Higher is Better	237.6	686.7
Sustained 128kB Sequential Read	Average of QD1, QD2 & QD4 Data Rates in MB/s - Higher is Better	487.7	1532.5
Sustained 128kB Sequential Write	Average of QD1, QD2 & QD4 Data Rates in MB/s - Higher is Better	459.2	1833
ATSB - The Destroyer (Data Rate)	Average Data Rate in MB/s - Higher is Better	1139.34	330.34
ATSB - The Destroyer (Average Latency)	Average Latency in Microseconds - Lower is Better	160.84	854.33
ATSB - The Destroyer (Power)	Energy Consumed in Watt-Hours - Lower is Better	12.95	17.1
ATSB - Heavy (Data Rate)	Average Data Rate in MB/s - Higher is Better	898.19	273.11
ATSB - Heavy (Average Latency)	Average Latency in Microseconds - Lower is Better	130.17	654.95
ATSB - Heavy (Power)	Energy Consumed in Watt-Hours - Lower is Better	1.81	2.12

Other names and brands may be claimed as the property of others.

NVMe™ required for next gen NVM
Intel® Optane™ Technology Proof Point

Performance results are based on testing as of July 2018 and may not reflect the publicly available security updates. See configuration disclosure for details. No product can be absolutely secure.

1. Test: Blackmagic DaVinci resolve 14* Video Caching of a 3.5mins @4K by using the command “media optimization.” Test done by Intel. System Configurations: Intel® Core™ i9-7980X, Gigabyte X299 motherboard, NVIDIA® GeForce GTX1080, Memory 64GB (4X16GB) DDR4-2133, OS Win 10, Storage 1TB Intel® SSD 760p vs. 960GB Intel® Optane™ SSD 905P.

2. Test: Blackmagic DaVinci resolve 14* Video Rendering of a 3.5mins @4K by rendering it to DPX file format at 4K/24FPS/10b. Test done by Intel. System Configurations: Intel® Core™ i9-7980X, Gigabyte X299 motherboard, NVIDIA® GeForce GTX1080, Memory 64GB (4X16GB) DDR4-2133, OS Win 10, Storage 1TB Intel® SSD 760p vs. 960GB Intel® Optane™ SSD 905P.

*Other names and brands may be claimed as the property of others.
NVMe™ 1.2 Improvements for Client

RTD3
Allows safe shutdown to the storage to save platform power

Platform Value
- Enables safe shutdown of device
- Power savings

Specification Details:
- Spec provides registers for providing device details for entry/exit latencies.

Additional Power State Info
Provides host additional info to the power levels supported by the device

Platform Value
- Additional details of power states to assist in transitions.
- Power/thermal benefit

Specification Details
- Spec allocates details in SMART

NVMe innovations enable additional features for client to help manage power/thermals.
NVMe™ 1.2 Improvements for small form factors

Host Memory Buffer
Allows the host driver to allocate system memory for the SSD’s exclusive use

Platform Value
- Enables DRAM savings & smaller BGA packages
- E.g., Allocate translation tables in host DRAM

Specification Details:
- Device indicates preferred HMB size
- Host enables/disables via Set Features

Composite Temperature
Allows host to monitor temperature of the SSD

Platform Value
- Platform has feedback to the device temperature.
- If the host believes the temperature is out of its limits, it can set a lower power state on the NVMe device

Specification Details
- Device indicates temperature in SMART
- Power State can be changed in power management

NVMe innovations enable scaling into smaller form factors delivering new differentiated platforms.
NVMe™ 1.3 - Boot Partitions

- Optional storage area that can be read with “fast” initialization method (not standard NVMe queues). Example: UEFI bootloader
- Saves cost and space by removing the need for another storage medium (like SPI flash, EPROM)
- Write using standard NVMe Firmware Download and Firmware Commit
- Can be protected with **Replay Protected Memory Block**

Makes NVMe more accessible for mobile and client form factors
NVMe™ 1.3 - Host Controlled Thermal Management

Better thermal management in client systems like laptops and desktops.

Host can set **Thermal Management Temperature** at which a device should start going into a lower power state / throttling

- **TMT1** – host tells SSD what temp in degrees K it should start throttling at
- **TMT2** – threshold where the SSD should start heavy throttling regardless of impact to performance
Namespace Write Protection is an optional configurable controller capability that enables the host to control the write protection state of a namespace.

(exactly what you think it does)

Could be used for secure space on drive, bootloader, backup image, important system files
Back-Up Slides
NVMe™ 1.3 improvement for Enterprise NVMe

- Sanitize improvements
- Device Self Test
- Boot Partitions
- Error Log Updates
- Globally Unique NGUID/EUI64
- SGL Dword Simplify
- Streams Directive
- Telemetry
- Host Controlled Thermal Management
- NVMe-MI™ Tunneling