NVM Express:
Optimized Interface for
PCI Express* SSDs

Amber Huffman – Sr. Principal Engineer, Intel Corporation

SSDS004
Agenda

- Why NVM Express?
- Overview of NVM Express (NVMe)
- New Technical Developments in NVMe
- Driver Ecosystem Update
- Real NVMe Solutions
Agenda

• Why NVM Express?

• Overview of NVM Express (NVMe)

• New Technical Developments in NVMe

• Driver Ecosystem Update

• Real NVMe Solutions
PCI Express* for Datacenter/Enterprise SSDs

- PCI Express* (PCIe) is a great interface for SSDs
 - Stunning performance: 1 GB/s per lane (PCIe Gen3 x1)
 - With PCIe scalability: 8 GB/s per device (PCIe Gen3 x8) or more
 - Lower latency: Platform+Adapter: 10 µsec down to 3 µsec
 - Lower power: No external SAS IOC saves 7-10 W
 - Lower cost: No external SAS IOC saves ~ $15
 - PCIe lanes off the CPU: 40 Gen3 (80 in dual socket)

PCIe SSDs are emerging in Datacenter/Enterprise, co-existing with SAS & SATA depending on application
Next Generation Scalable NVM

Many candidate next generation NVM technologies. Offer ~ 1000x speed-up over NAND.
Fully Exploiting Next Generation NVM

- With Next Generation NVM, the NVM is no longer the bottleneck
 - Need optimized platform storage interconnect
 - Need optimized software storage access methods
Transformation Required

- Transformation was needed for full benefits of multi-core CPU
 - Application and OS level changes required
Transformation Required

• Transformation was needed for full benefits of multi-core CPU
 – Application and OS level changes required

• To date, SSDs have used the legacy interfaces of hard drives
 – Based on a single, slow rotating platter
Transformation Required

• Transformation was needed for full benefits of multi-core CPU
 – Application and OS level changes required

• To date, SSDs have used the legacy interfaces of hard drives
 – Based on a single, slow rotating platter

• SSDs are inherently parallel and next gen NVM approaches DRAM-like latencies

• For full SSD benefits, must architect for NVM from the ground up

NVM Express* is the interface architected for NAND today and next generation NVM
Agenda

• Why NVM Express*?

• Overview of NVM Express (NVMe)

• New Technical Developments in NVMe

• Driver Ecosystem Update

• Real NVMe Solutions
NVM Express* Overview

- NVM Express* (NVMe) is the standardized high performance host controller interface for PCI Express* SSDs

- NVMe was architected from the ground up for non-volatile memory, scaling from enterprise to client
 - The architecture focuses on latency, parallelism/performance, low power
 - The interface is explicitly designed with next generation NVM in mind

- NVMe was developed by an open industry consortium of 90+ members and is directed by a 13 company Promoter Group
Technical Basics

- All parameters for 4KB command in single 64B command
- Supports deep queues (64K commands per queue, up to 64K queues)
- Supports MSI-X and interrupt steering
- Streamlined & simple command set (13 required commands)
- Optional features to address target segment (Client, Enterprise, etc.):
 - Enterprise: End-to-end data protection, reservations, etc.
 - Client: Autonomous power state transitions, etc.
- Designed to scale for next generation NVM, agnostic to NVM type used
Command Submission
1. Host writes command to Submission Queue
2. Host writes updated Submission Queue tail pointer to doorbell

Command Processing
3. Controller fetches command
4. Controller processes command
Command Completion

5. Controller writes completion to Completion Queue
6. Controller generates MSI-X interrupt
7. Host processes completion
8. Host writes updated Completion Queue head pointer to doorbell
<table>
<thead>
<tr>
<th>Admin Commands</th>
<th>NVM I/O Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create I/O Submission Queue</td>
<td>Read</td>
</tr>
<tr>
<td>Delete I/O Submission Queue</td>
<td>Write</td>
</tr>
<tr>
<td>Create I/O Completion Queue</td>
<td>Flush</td>
</tr>
<tr>
<td>Delete I/O Completion Queue</td>
<td>Write Uncorrectable (optional)</td>
</tr>
<tr>
<td>Get Log Page</td>
<td>Compare (optional)</td>
</tr>
<tr>
<td>Identify</td>
<td>Dataset Management (optional)</td>
</tr>
<tr>
<td>Abort</td>
<td>Write Zeros (optional)</td>
</tr>
<tr>
<td>Set Features</td>
<td>Reservation Register (optional)</td>
</tr>
<tr>
<td>Get Features</td>
<td>Reservation Report (optional)</td>
</tr>
<tr>
<td>Asynchronous Event Request</td>
<td>Reservation Acquire (optional)</td>
</tr>
<tr>
<td>Firmware Activate (optional)</td>
<td>Reservation Release (optional)</td>
</tr>
<tr>
<td>Firmware Image Download (opt)</td>
<td></td>
</tr>
<tr>
<td>Format NVM (optional)</td>
<td></td>
</tr>
<tr>
<td>Security Send (optional)</td>
<td></td>
</tr>
<tr>
<td>Security Receive (optional)</td>
<td></td>
</tr>
<tr>
<td>Reservation Acquire (optional)</td>
<td></td>
</tr>
<tr>
<td>Reservation Release (optional)</td>
<td></td>
</tr>
</tbody>
</table>

Only 10 Admin and 3 I/O commands required
Proof Point: NVM Express* Latency

• NVM Express* (NVMe) is designed to scale for next gen NVM

• NVMe reduces software overhead by over 50%
 - SCSI/SAS: 6.0 µs 19,500 cycles
 - NVMe: 2.8 µs 9,100 cycles

• Increased focus on storage stack / OS needed to reduce latency even further

Chatham NVMe Prototype

Prototype Measured IOPS

Cores Used for 1M IOPs

Measurement taken on Intel® Core™ i5-2500K 3.3GHz 6MB L3 Cache Quad-Core Desktop Processor using Linux RedHat* EL6.0 2.6.32-71 Kernel.
Agenda

• Why NVM Express*?
• Overview of NVM Express (NVMe)
• New Technical Developments in NVMe
• Driver Ecosystem Update
• Real NVMe Solutions
NVM Express* 1.1 Overview

- The NVM Express 1.1 specification, published in October of 2012, adds additional *optional* client and Enterprise features.
NVM Express* 1.1 Overview

- The NVM Express 1.1 specification, published in October of 2012, adds additional optional client and Enterprise features

Multi-path Support
- Reservations
- Unique Identifier per Namespace
- Subsystem Reset
NVM Express* 1.1 Overview

- The NVM Express 1.1 specification, published in October of 2012, adds additional optional client and Enterprise features.

Multi-path Support
- Reservations
- Unique Identifier per Namespace
- Subsystem Reset

Power Optimizations
- Autonomous Power State Transitions
NVM Express* 1.1 Overview

- The NVM Express 1.1 specification, published in October of 2012, adds additional optional client and Enterprise features.

Multi-path Support
- Reservations
- Unique Identifier per Namespace
- Subsystem Reset

Power Optimizations
- Autonomous Power State Transitions

Command Enhancements
- Scatter Gather List support
- Active Namespace Reporting
- Persistent Features Across Power States
- Write Zeros Command
Multi-path Support

- Multi-path includes the traditional dual port model
- With PCI Express*, it extends further with switches
Reservations

• In some multi-host environments, like Windows* clusters, reservations may be used to coordinate host access.

• NVMe 1.1 includes a simplified reservations mechanism that is compatible with implementations that use SCSI reservations.

• What is a reservation? Enables two or more hosts to coordinate access to a shared namespace.
 – A reservation may allow Host A and Host B access, but disallow Host C.
Power Optimizations

- NVMe 1.1 added the Autonomous Power State Transition feature for client power focused implementations.

- Without software intervention, the NVMe controller transitions to a lower power state after a certain idle period,
 - Idle period prior to transition programmed by software.

Example Power States

<table>
<thead>
<tr>
<th>Power State</th>
<th>Operational?</th>
<th>Max Power</th>
<th>Entrance Latency</th>
<th>Exit Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Yes</td>
<td>4 W</td>
<td>10 µs</td>
<td>10 µs</td>
</tr>
<tr>
<td>1</td>
<td>No</td>
<td>10 mW</td>
<td>10 ms</td>
<td>5 ms</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>1 mW</td>
<td>15 ms</td>
<td>30 ms</td>
</tr>
</tbody>
</table>
Continuing to Advance NVM Express*

• NVM Express continues to add features to meet the needs of client and Enterprise market segments as they evolve

• The Workgroup is defining features for the next revision of the specification, expected ~ middle of 2014

Features for Next Revision

Namespace Management
Live Firmware Update
Power Optimizations
Enhanced Status Reporting
Events for Namespace Changes
...

Get involved – join the NVMe Workgroup.
Future: Namespace Management

- A namespace is a pool of NVM exposed as logical blocks.

- The management of namespaces (creation, deletion, resizing, etc) has been outside the scope of the specification.

- Based on OEM feedback, the Workgroup is standardizing namespace management functions, including:
 - Create, delete, re-size (larger or smaller)
 - Ability to attach or detach a namespace to/from a controller
 - Reporting of namespace & NVM pool status, including namespaces that exist, amount of unallocated space in NVM pool, etc
Future: Power Optimizations

• For best results, power policy needs to be tailored to the workload

• As an example, look at the Connected Standby (CS) workload:
 – All storage traffic is contained within 500 ms bursts
 – Bursts of storage traffic are every 30 seconds
 – Need good performance in burst, then immediate entry into deep sleep state

• A future enhancement is to convey workload information to the device
Future: “Live” Firmware Update

- The firmware update process requires a reset of the controller in order for the new firmware to be applied.

- As part of the reset, the controller has to be re-initialized – queues have to be re-created and commands re-issued.

- OEMs would like an option for “live” firmware update without a reset.
Agenda

• Why NVM Express*?
• Overview of NVM Express (NVMe)
• New Technical Developments in NVMe
• Driver Ecosystem Update
• Real NVMe Solutions
Driver Development on Major OSes

- **Windows**
 - Windows* 8.1 and Windows* Server 2012 R2 include inbox driver
 - Open source driver in collaboration with OFA

- **Linux**
 - Native OS driver since Linux* 3.3 (Jan 2012)

- **Unix**
 - FreeBSD driver upstream; ready for release

- **Solaris**
 - Solaris driver will ship in S12

- **VMware**
 - vmklinux driver certified release in Dec 2013

- **UEFI**
 - Open source driver available on SourceForge

Native OS drivers already available, with more coming!
Windows* Open Source Driver Update

<table>
<thead>
<tr>
<th>Release</th>
<th>Date</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 1</td>
<td>Q2 2012</td>
<td>• 64-bit support on Windows* 7 and Windows Server 2008 R2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mandatory features</td>
</tr>
<tr>
<td>Release 1.1</td>
<td>Q4 2012</td>
<td>• Added 64-bit support Windows 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Public IOCTLS and Windows 8 Storport updates</td>
</tr>
<tr>
<td>Release 1.2</td>
<td>Aug 2013</td>
<td>• Added 64-bit support on Windows Server 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Signed executable drivers</td>
</tr>
<tr>
<td>Release 1.3</td>
<td>Q4 2013</td>
<td>• Will add 32-bit support on all supported OS versions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• End-to-end data protection</td>
</tr>
</tbody>
</table>

Three major open source releases since 2012.
Contributors include Huawei*, PMC-Sierra*, Intel, LSI* & SanDisk*
Linux* Driver Update

Recent Feature Additions

- Latest driver on Linux* 3.10
- Deallocate (i.e., Trim support)
- 4KB sector support (in addition to 512B)
- SCSI IOCTL support
- MSI support (in addition to MSI-X)
- Disk I/O statistics

Community Effort

- Contributions from Fastor*, PMC-Sierra*, Intel, Linaro*, Oracle*, SanDisk* and Trend Micro*
- 59 changes since integrated into kernel

Work in progress: power management, end-to-end data protection, sysfs manageability & NUMA optimizations
FreeBSD Driver Update

- NVM Express* (NVMe) support is upstream in the head and stable/9 branches
- FreeBSD 9.2 will be the first official release with NVMe support, slated for September
Solaris* Driver Update

• Current Status from Oracle* team:
 – Stable and efficient working prototype conforming to 1.0c
 – Direct block interfaces bypassing complex SCSI code path
 – NUMA optimized queue/interrupt allocation
 – Support 8K memory page size on SPARC system
 – Plan to validate driver against Oracle SSD partners
 – Plan to integrate into S12 and a future S11 update release

• Future Development Plans:
 – Boot & install on SPARC and X86
 – Surprise removal support
 – Multi-path support, SR-IOV, scatter/gather lists (SGLs)
VMware Driver Update

• Initial “vmklinux” based driver in final stages of development
 – First release in mid-Oct, 2013
 – Certified release in Dec, 2013

• A native VMware* NVM Express* driver is targeted for inclusion in vSphere* in 2014

• VMware`s IOVP program includes workflow for bugs/issues
UEFI Driver Update

• The UEFI 2.4 specification available at www.UEFI.org contains updates for NVM Express* (NVMe)

• An open source version of an NVMe driver for UEFI is available at nvmexpress.org/resources

“AMI is working with vendors of NVMe devices and plans for full BIOS support of NVMe in 2014.”

Sandip Datta Roy
VP BIOS R&D, AMI

NVMe boot support with UEFI will start percolating releases from Independent BIOS Vendors in 2014
Microsoft’s Support of NVMe
Robin Alexander, Microsoft
Microsoft’s Support of NVM Express

• The Natural Progression from SATA for NVM
 - Standardized PCI Express* Storage
 - First devices are enterprise-class
 - High-Density / High-Performance
 - Closing the latency gap with RAM

• Windows* Inbox Driver (StorNVMe.sys)
 - Windows Server 2012 R2 (enterprise)
 - Windows 8.1 (client)
 - Stable Base Driver

• The Storport Model
 - Reduced development cost
 ▪ Offloads Basics: PnP, Power, Setup, Crash, Boot*
 - Mature / Optimized for performance
 - RAM-backed NVMe device
 ▪ > 1 million IOPS with < 20μs latencies
StorNVMe Delivers a Great Solution

• StorNVMe Implementation Highlights
 – Uses hardened Enterprise Storage Stack
 – Strives for 1:1 mapping of queues to processors
 – NUMA optimized
 – Asynchronous notification supported
 – Interrupt coalescing supported
 – Rigorous testing on Windows*
 – Firmware Update/Download (via IOCTL)
StorNVMe Delivers a Great Solution

- StorNVMe Implementation Highlights
 - Uses hardened Enterprise Storage Stack
 - Strives for 1:1 mapping of queues to processors
 - NUMA optimized
 - Asynchronous notification
 - Interrupt coalescing
 - Rigorous testing on Windows*
 - Firmware Update/Download (via IOCTL)

- With great IOPs

System Configuration: 2 Socket Romley-based Server, 16 physical processors (32), Random Read Workload, Tool: Iometer
StorNVMe Delivers a Great Solution

- StorNVMe Implementation Highlights
 - Uses hardened Enterprise Storage Stack
 - Strives for 1:1 mapping of queues to processors
 - NUMA optimized
 - Asynchronous notification supported
 - Interrupt coalescing supported
 - Rigorous testing on Windows*
 - Firmware Update/Download (via IOCTL)

- With great IOPs

- And low latency

System Configuration: 2 Socket Romley-based Server, 16 physical processors (32), Random Read Workload, Tool: Iometer
NVMe Futures

• Microsoft is committed to NVMe

• Enterprise
 – Shareable Devices
 ▪ High Availability (Clustering)
 ▪ Fault Tolerance (Storage Spaces)
 – Form Factor
 ▪ Small Devices, High Density, Transition

• Client ecosystem emerging
 – Boot requires UEFI/platform support first
 – Granular Power Management support needed in devices
 – SATA => NVMe transition is cloudy
Agenda

• Why NVM Express*
• Overview of NVM Express (NVMe)
• New Technical Developments in NVMe
• Driver Ecosystem Update
• Real NVMe Solutions
NVM Express* Deployment is Starting

- First plugfest held May 2013 with 11 companies participating
 - Three devices on Integrator’s List
 - Next plugfest planned for Q4

- Samsung announced first NVM Express* (NVMe) product in July

FOR IMMEDIATE RELEASE

NVM Express Workgroup Holds First Plugfest

Milestone in Process to Deliver Standards-based Interoperability for PCI Express Solid-State Drives

WAKEFIELD, Mass., May 29, 2013 – The NVM Express Workgroup, developer of the NVM Express specification for accessing solid-state drives (SSDs) on a PCI Express (PCIe) bus, held its first Plugfest at the University of New Hampshire InterOperability Lab in Durham, N.H., May 13–16, 2013. This event provided an opportunity for participants to measure their products’ compliance with the NVM Express (NVMe) specification and to test interoperability with other NVMe products.

The NVMe specification defines an optimized register interface, command set and feature set for PCIe-based Solid-State Drives (SSDs). NVMe refers to non-volatile memory, as used in SSDs. The goal of NVMe is to unlock the potential of PCIe SSDs now and in the future, and to standardize the PCIe SSD interface. Participating in the Plugfest were Agilent Technologies, Dell Inc., Fostor Systems, Inc., HGST, a Western Digital company, Integrated Device Technology, Inc., Intel Corporation, Samsung Electronics Co., Ltd., Sandisk Corporation, sTec, Inc., Teledyne LeCroy, and Western Digital Corporation.
Enabling NVMe Solutions
Derek Dicker, PMC
PMC Adds NVMe Products to Enterprise Storage Portfolio

Why?

PCIe Provides a Great Interface for SSDs, Optimal for Performance / Latency-Sensitive Storage Tier
Broad Array of NVMe Products Enabled by Highly Programmable & Flexible Controllers

Controller Considerations

• NVMe Host Interface

• PCIe Gen3 Interface Configurations
 – Dual Independent Host Port Support
 – x4 or x8 Options on Single Port

• Extensible Flash Channel Support

• Broad NAND Flash Support
 – SLC, MLC, eMLC Support...Toggle & ONFI

• Encryption Capability

• Advanced Data Integrity and Reliability

• Flexible Form Factor Support

Applications

• PCiE 2.5” Solid State Drives
• PCiE Flash Adapters
• PCiE NV-RAM Cards
NVMe Solutions On the Horizon

• Flash Solutions
 – 2.5” SSDs
 – PCIe Standard Form Factors

• NVMe Implementers
 – Tier 1 NAND Vendors
 – Tier 1 SSD Vendors
 – Tier 1 HyperScale Datacenters
 – Tier 1 OEMs
 – All Flash Appliance Vendors

• NV-RAM Solutions
 – PCIe Standard Form Factors

The World’s First Enterprise NVMe PCIe Solutions Are Forecasted to Ship in Q4!
Real NVMe Solutions
Steve Sardella, EMC
EMC’s First Use of NVMe

- Aside from the obvious use case of Flash-based SSDs, NVM Express can support other applications
- One storage industry example is Non-Volatile RAM
 - Useful for journaling, logging, write caching
 - DRAM provides lower latency, higher bandwidth than Flash

<table>
<thead>
<tr>
<th>Traditional NVRAM Card Implementation</th>
<th>Using NVM Express to Implement NVRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select “generic” micro-controller with desired physical interfaces (PCIe, DRAM, Flash)</td>
<td>Start with an NVMe standard controller and reference firmware</td>
</tr>
<tr>
<td>Create custom software driver from scratch</td>
<td>Port NVMe driver/utilities, minimize firmware/software customizations</td>
</tr>
<tr>
<td>Validate in a vacuum</td>
<td>Leverage interoperability testing, reduce development/validation time</td>
</tr>
</tbody>
</table>
EMC NVRAM Hardware

1-8 channels

Flash

ECC DRAM

1-16 GB

1066 MHz

Princeton

Power x8 PCIe Gen3

NVMe

VPD

Firmware

Host

Power Hold-up

Power Control & Regulation

Power loss

Power

x8 PCIe Gen3
EMC NVRAM Software

NVM Express Benefits:

- Allows partitioning of NVRAM into multiple namespaces for different purposes, maximizing capacity utilization
- Supports multiple size LBAs, maximizing flexibility
- Provides optional metadata and end-to-end data protection capabilities, maximizing robustness

User Space

- FreeBSD (Intel) “nvmecontrol” Utility
- User Library

Kernel

- IFS Filesystem
- Devices
- Shim Driver (Inv)
- FreeBSD (Intel) NVMe Device Driver
- Semi-Custom Firmware
- Semi-Custom Hardware
The Difference a Standard Makes

• EMC and Intel engineers iteratively collaborated on the FreeBSD driver
 − EMC got off to a quick start, benefiting from previous validation work on the driver
 − Intel used EMC’s design as an additional validation vehicle, and EMC engineers submitted code changes and bug fixes, to further improve the driver’s robustness

• Higher performance was achieved, due to NVMe’s interrupt coalescing and multiple I/O queues

• The existence of a standard saved EMC months of software development and validation, and will allow the hardware to be supported in multiple OS environments

NVM Express: “It’s not just for SSDs”

For a live demo, visit EMC at booth #728 in the NVMe Community
Summary

• NVM Express* is the interface architected for NAND today and next generation NVM of tomorrow

• NVM Express continues to add features to meet the needs of client and Enterprise market segments as they evolve

• The first plugfest was held in May 2013 with 11 companies participating, next plugfest in Q4

• NVMe products are starting to ship NOW!

Learn more at nvmexpress.org
Learn More in the NVMe Community

Check out the NVMe Community in the Showcase to see NVMe products in action

<table>
<thead>
<tr>
<th>Company</th>
<th>Booth #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dell</td>
<td>726</td>
</tr>
<tr>
<td>Intel</td>
<td>727 & 734</td>
</tr>
<tr>
<td>EMC</td>
<td>728</td>
</tr>
<tr>
<td>Micron</td>
<td>729</td>
</tr>
<tr>
<td>SanDisk</td>
<td>730</td>
</tr>
<tr>
<td>LSI</td>
<td>731</td>
</tr>
<tr>
<td>SNIA</td>
<td>732</td>
</tr>
<tr>
<td>PMC-Sierra</td>
<td>733</td>
</tr>
<tr>
<td>Agilent</td>
<td>735</td>
</tr>
<tr>
<td>Western Digital</td>
<td>736</td>
</tr>
<tr>
<td>Teledyne LeCroy</td>
<td>737</td>
</tr>
<tr>
<td>Viking Technology</td>
<td>738</td>
</tr>
<tr>
<td>Tektronix</td>
<td>739</td>
</tr>
</tbody>
</table>
Additional Sources of Information

PDF of this presentation is available from our Technical Session Catalog: www.intel.com/idfsessionsSF. The URL is on top of Session Agenda Pages in Pocket Guide.

- Additional info in the NVMe community – booths 726 to 739
- More web based info: nvmexpress.org
Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel, Look Inside and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

*Other names and brands may be claimed as the property of others.
Copyright ©2013 Intel Corporation.
Risk Factors

The above statements and any others in this document that refer to plans and expectations for the third quarter, the year and
the future are forward-looking statements that involve a number of risks and uncertainties. Words such as “anticipates,”
“expects,” “intends,” “plans,” “believes,” “seeks,” “estimates,” “may,” “will,” “should” and their variations identify forward-looking
statements. Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking
statements. Many factors could affect Intel’s actual results, and variances from Intel’s current expectations regarding such factors
could cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers
the following to be the important factors that could cause actual results to differ materially from the company’s expectations.
Demand could be different from Intel's expectations due to factors including changes in business and economic conditions;
customer acceptance of Intel’s and competitors’ products; supply constraints and other disruptions affecting customers; changes
in customer order patterns including order cancellations; and changes in the level of inventory at customers. Uncertainty in global
economic and financial conditions poses a risk that consumers and businesses may defer purchases in response to negative
financial events, which could negatively affect product demand and other related matters. Intel operates in intensely competitive
industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product
demand that is highly variable and difficult to forecast. Revenue and the gross margin percentage are affected by the timing of
Intel product introductions and the demand for and market acceptance of Intel's products; actions taken by Intel's competitors,
including product offerings and introductions, marketing programs and pricing pressures and Intel’s response to such actions; and
Intel’s ability to respond quickly to technological developments and to incorporate new features into its products. The gross
margin percentage could vary significantly from expectations based on capacity utilization; variations in inventory valuation,
including variations related to the timing of qualifying products for sale; changes in revenue levels; segment product mix; the
timing and execution of the manufacturing ramp and associated costs; start-up costs; excess or obsolete inventory; changes in
unit costs; defects or disruptions in the supply of materials or resources; product manufacturing quality/yields; and impairments
of long-lived assets, including manufacturing, assembly/test and intangible assets. Intel's results could be affected by adverse
economic, social, political and physical/infrastructure conditions in countries where Intel, its customers or its suppliers operate,
including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in
currency exchange rates. Expenses, particularly certain marketing and compensation expenses, as well as restructuring and asset
impairment charges, vary depending on the level of demand for Intel's products and the level of revenue and profits. Intel’s
results could be affected by the timing of closing of acquisitions and divestitures. Intel's results could be affected by adverse
effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory
matters involving intellectual property, stockholder, consumer, antitrust, disclosure and other issues, such as the litigation and
regulatory matters described in Intel's SEC reports. An unfavorable ruling could include monetary damages or an injunction
prohibiting Intel from manufacturing or selling one or more products, precluding particular business practices, impacting Intel’s
ability to design its products, or requiring other remedies such as compulsory licensing of intellectual property. A detailed
discussion of these and other factors that could affect Intel’s results is included in Intel’s SEC filings, including the company’s
most recent reports on Form 10-Q, Form 10-K and earnings release.

Rev. 7/17/13