

LEGAL NOTICE:

© Copyright 2007 - 2019 NVM Express, Inc. ALL RIGHTS RESERVED.
This NVM Express Management Interface revision 1.0a technical proposal is proprietary to the NVM
Express, Inc. (also referred to as “Company”) and/or its successors and assigns.

NOTICE TO USERS WHO ARE NVM EXPRESS, INC. MEMBERS: Members of NVM Express, Inc. have
the right to use and implement this NVM Express Management Interface revision 1.0a technical proposal
subject, however, to the Member’s continued compliance with the Company’s Intellectual Property Policy
and Bylaws and the Member’s Participation Agreement.

NOTICE TO NON-MEMBERS OF NVM EXPRESS, INC.: If you are not a Member of NVM Express, Inc.
and you have obtained a copy of this document, you only have a right to review this document or make
reference to or cite this document. Any such references or citations to this document must acknowledge
NVM Express, Inc. copyright ownership of this document. The proper copyright citation or reference is as
follows: “© 2007 - 2019 NVM Express, Inc. ALL RIGHTS RESERVED.” When making any such
citations or references to this document you are not permitted to revise, alter, modify, make any
derivatives of, or otherwise amend the referenced portion of this document in any way without the prior
express written permission of NVM Express, Inc. Nothing contained in this document shall be deemed as
granting you any kind of license to implement or use this document or the specification described therein,
or any of its contents, either expressly or impliedly, or to any intellectual property owned or controlled by
NVM Express, Inc., including, without limitation, any trademarks of NVM Express, Inc.

LEGAL DISCLAIMER:

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN “AS IS”
BASIS. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, NVM EXPRESS, INC.
(ALONG WITH THE CONTRIBUTORS TO THIS DOCUMENT) HEREBY DISCLAIM ALL
REPRESENTATIONS, WARRANTIES AND/OR COVENANTS, EITHER EXPRESS OR IMPLIED,
STATUTORY OR AT COMMON LAW, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, VALIDITY,
AND/OR NONINFRINGEMENT.

All product names, trademarks, registered trademarks, and/or service marks may be claimed as the
property of their respective owners.

NVM Express Management Interface Workgroup
c/o VTM Inc.
3855 SW 153rd Drive
Beaverton, OR 97003
info@nvmexpress.org

mailto:info@nvmexpress.org

2

NVM Express Technical Proposal for New Feature

Technical Proposal ID 6003 – Multi NVM Subsystem Management

Change Date 3/20/2019

Builds on Specification NVM Express Management Interface 1.0a

Technical Proposal Author(s)

Name Company

Myron Loewen Intel Corporation

Peter Onufryk Microsemi

The purpose of this Technical Proposal is to specify the mechanisms and architecture necessary
to discover the presence of NVMe Storage Devices that contain multiple NVM Subsystems and/or
other elements (e.g., PCIe switches and expansion connectors) and enable management of these
NVMe Storage Devices.

The mechanism supports both muxed and shared SMBus/I2C topologies with either default
addressing or ARP. VPD enhancements are defined that allow discovery of the number of NVM
Subsystems contained in an NVMe Storage Device and their connections. A new SMBus/I2C
address is also reserved for FRU Information Devices to prevent conflicts when NVMe Storage
Devices are plugged into expansion connectors.

For NVMe Storage Devices with multiple NVM Subsystems that support an SMBus/I2C port, NVMe-
MI traffic is directed to a specific NVM Subsystem using either an SMBus/I2C Mux or a unique
SMBus address assigned via ARP.

3

Revision History

Revision Date Change Description

10/23/2017 First published draft based on prior power point discussions

01/15/2018 All technical feedback incorporated and ready for wordsmithing

02/28/2018
Split parameterized link records into separate data types with new label record and
simplified SMBus/I2C Mux sorting constraints. Updated Figure 109 for Vaux off
state.

04/16/2018
Cleaned up syntax, vendor defined link types, PCIe reserved link types, and SMBus
devices table

05/28/2018
Reversed several ideas based on last NVMe-MI meeting. Keeping old NVMe Ports
MultiRecord and adding one for Elements. Clarified A6h VPD address to be for all
leaf node devices, ie SSDs that do not have Expansion Connectors.

07/15/2018

Shuffled the bytes around in the new PCIe Elements MultiRecord for clearer
descriptions of devices and somewhat cleaner backwards compatibility. This
eliminated the labels MultiRecord and separated the prior MultiRecords for NVMe-
MI 1.0 devices and the new MultiRecord for devices with multiple NVM subsystems
or expansion ports.

8/26/2018
Changed the disconnected link indicator from FFh to 00h. Rewrote the PCIe
Retimer Descriptor to match real devices. Many syntax improvements.

9/5/2018
Combined the two Expansion Connector types, eliminated element ordering
requirements, added definition for expansion power connector mapping and
integrated all known syntax feedback

9/28/2018

Changed PCIe Elements MultiRecord to the more descriptive name of Topology
MultiRecord. Rewrote all Topology Descriptors Figures. Rewrote descriptive text in
sections 9.2.5 through 9.2.5.2. Relaxed strict size requirements in Product Info Area
and eliminated NVM Capacity. Highlighted all references in yellow that need
hyperlinks. Moved Extended Element Descriptor to Type 1. Deleted Element
Descriptors for SMBus/I2C Wire Bridge and PCIe Retimer.

11/14/2018
Eliminated Appendix D, printf formatting of label strings, and Element descriptor for
power. Many syntax improvements.

11/17/2018
Many additional syntax improvements, changed Label Element encoding from ASCII
to UTF-8, gave ARP and Mux solutions equal recommendation, and renamed Host
Connector to Upstream Connector.

11/21/2018
Lots of syntax improvements from multiple reviewers. Changed Basic ARP to make
it more specific for multi NVM subsystems. Made VPD requirements more explicit
for permanently populated Expansion Connectors.

12/14/2018 Removed technical author at author’s request.

3/20/2019 Ratified

Description of Specification Changes

Editor’s note: These changes interact with TP6001 & TP6002 and an attempt was made to use their
merged content as a base for this document, the section numbers correspond to merged content
in the current NVMe-MI 1.1 draft. Note that yellow highlight is used to indicate all references that
need hyperlinks. Figures and Tables with TBD values should be replaced with the correct
sequential reference number in the final document.

Modify Section 1.2.1 as shown below:

The management of NVMe over Fabrics Storage Devices or NVMe Enclosures containing multiple
architecturally visible NVM Subsystems is outside the scope of this specification. This specification does
not define new security mechanisms.

4

Modify Section 1.4.1 as shown below and add 2 figures:

An NVMe Storage Device Field Replaceable Unit, or simply NVMe Storage Device that implements the
out-of-band mechanisms but not the in-band mechanisms defined in this specification consists of anzero
or more NVM Subsystems. An NVMe Storage Device that implements the in-band mechanisms defined
in this specification consists of one or more NVM Subsystems. that Each NVM Subsystem includes a
non-volatile storage medium along with one or more Management Endpoints. TIn these NVM
Subsystems there may be up to one Management Endpoint per PCIe port and up to one Management
Endpoint per SMBus/I2C port. Each Management Endpoint has a Port Identifier that is less than or equal
to the Number of Ports (NUMP) field value in the NVM Subsystem Information Data Structure.

An NVMe Storage Device that is a Field-Replaceable Unit (FRU) is a physical component, device, or
assembly that a technician can remove and replace without having to replace the entire system in which it
is contained. Examples of NVMe Storage Device Field-Replaceable Units include a U.2 PCIe SSD, a PCI
Express Card Electromechanical (CEM) add-in card, and an M.2 module. The FRU referenced by the
FRU Globally Unique Identifier (FGUID) field in the NVM Express Specification shall be an NVMe Storage
Device Field-Replaceable Unit.

There are many variants of an NVMe Storage Device. One example is an NVMe Storage Device that only
contains a single NVM Subsystem. Another example may contain no NVM Subsystems and instead have
one or more Expansion Connectors for adding additional NVMe Storage Device FRUs. Such an NVMe
Storage Device is referred to as a Carrier. In another example, the NVMe Storage Device may contain
one or more NVM Subsystems and one or more Expansion Connectors. NVMe Storage Devices may
contain PCIe switches which connect to one or more NVM Subsystems or Expansion Connectors. NVMe
Storage Devices may contain SMBus/I2C Muxes that connect to one or more NVM Subsystems or
Expansion Connectors.

NVMe-MI supports Vital Product Data (VPD) that utilizes the format defined in the IPMI Platform
Management FRU Information Storage Definition and is stored in a FRU Information Device. The FRU
Information Device may be implemented in the NVM Subsystem, in an external device (e.g., serial
EEPROM), or a combination of the two. The VPD is accessible over any port that supports NVMe-MI
using MCTP commands. If the NVMe Storage Device has an SMBus/I2C portinterface, then the VPD is
accessible using the access mechanism over I2C as defined in the IPMI Platform Management FRU
Information Storage Definition.

An NVMe Storage Device is required to have a FRU Information Device for each Upstream Connector
that supports SMBus/I2C. If an NVMe Storage Device contains multiple NVM Subsystems, then the FRU
Information Device associated with each NVM Subsystem is optional since the required FRU Information
Device connected to the Upstream Connector describes the entire NVMe Storage Device. The contents
of these optional FRU Information Devices is out of scope for this specification.

Figure 1 illustrates an NVMe Storage Device that is a single-port PCIe SSD with the FRU Information
Device at address A6h implemented by the NVM Subsystem. Figure illustrates an NVMe Storage Device
that is a dual-port PCIe SSD with an SMBus/I2C port and a FRU Information Device at address A6h
implemented using a Serial EEPROM.

5

Figure 1: Single-Port PCIe SSD

NVM Subsystem

PCIe SSD

PCIe

Port

Figure 2: Dual-Port PCIe SSD with SMBus/I2C

NVM Subsystem

PCIe

Port 0

PCIe SSD

PCIe

Port 1

Serial

EEPROM

SMBus/I2C

An example U.2 form factor NVMe Storage Device with Expansion Connectors (i.e. a Carrier) is shown in
Figure TBD1. This Carrier has two M.2 Expansion Connectors for connecting two M.2 NVMe Storage
Device FRUs. The Carrier and each M.2 NVMe Storage Device are separate NVMe Storage Device
FRUs, each with their own FRU Information Device. The FRU Information Device on the Carrier is at
address A4h and the FRU Information Devices on each M.2 NVMe Storage Device has a default address
of A6h and supports the SMBus Address Resolution Protocol (ARP). ARP is used after power is applied
to reassign the conflicting A6h addresses before the M.2 FRU Information devices are read. ARP would
also be used to reassign the conflicting MCTP addresses and potentially additional elements.

Figure TBD1: NVMe Storage Device with Connectors (i.e., a Carrier)

6

Expansion

Connector

Expansion

Connector

NVM

Subsystem 0
NVM

Subsystem 1

PCIe Port

Lanes 0-1

Carrier

NVMe

Storage

Device

PCIe Port

Lanes 2-3

SMBus/I2C

With ARP

Serial

EEPROM

Serial EEPROM Serial EEPROM

M.2

NVMe Storage

Device

M.2

NVMe Storage

Device

Figure TBD2 shows an NVMe Storage Device that contains two NVM Subsystems implemented using
soldered down BGA packages and a FRU Information Device at address A6h implemented using a Serial
EEPROM. An NVMe Storage Device without Expansion Connectors that implements an SMBus/I2C port
always contains a FRU Information Device at address A6h directly connected to the Upstream Connector.
An SMBus/I2C Mux is used in this example instead of ARP to eliminate SMBus/I2C address collisions.
The SMBus/I2C Mux is configured by a Management Controller prior to communications with the desired
NVM Subsystem. The FRU Information Device contains the details necessary to configure the
SMBus/I2C Mux.

Figure TBD2: NVMe Storage Device with two NVM Subsystems and an SMBus/I2C Mux

SMBus/I2C Mux

PCIe SSD

PCIe

Port

SMBus/I2C
NVM

Subsystem 0
NVM

Subsystem 1
Serial

EEPROM

PCIe Switch

Channel 0

Channel 1

The NVMe Management Interface is used to send Command Messages which consist of standard NVMe
Admin Commands that target a Controller within the NVM Subsystem; commands that provide access to
the PCI Express configuration ….

Modify Section 1.7 as shown below (Note: order the items in alphabetical order):

1.7.x Carrier

An NVMe Storage Device FRU with one or more Expansion Connectors and zero or more NVM
Subsystems.

7

1.7.x Expansion Connector

A connector where an NVMe Storage Device FRU or cable may be attached to a Carrier. Expansion
connectors may be empty or populated.

1.7.x Field Replaceable Unit (FRU)

A physical component, device, or assembly in a system that an end user or technician can remove and
replace without having to replace the entire system in which it is contained. The Field-Replaceable Unit
described in this specification is an NVMe Storage Device Field-Replaceable Unit (refer to 1.7.x).

1.7.13 NVMe Enclosure (Enclosure)

A platform, card, module, box, rack, or set of boxes that may provide power, cooling, mechanical
protection and/or external interfaces for zero or more NVMe Storage Devices. An Enclosure may itself
contain one or more NVM Subsystems and shall contain one or more Enclosure Services Processes.

1.7.x NVMe Storage Device

A logical or physical component, device, or assembly that contains at least one NVM subsystem or
Expansion Connector and at least one Upstream Connector. It may contain additional elements such as:
FRU Information Devices, PCIe switches, and SMBus/I2C Muxes. An NVMe Storage Device shall comply
with the NVM Express specification. In this specification, NVMe Storage Devices shall also comply with
this specification.

1.7.x NVMe Storage Device FRU

An NVMe Storage Device that an end user or technician can remove and replace without having to
replace the entire system in which it is contained. Examples of NVMe Storage Device Field-Replaceable
Units include a U.2 PCIe SSD, a PCI Express Card Electromechanical add-in card, or an M.2 module.

1.7.x SMBus/I2C Mux
A bidirectional SMBus/I2C fan-out multiplexer with one upstream channel and one or more downstream
channels configured by an I2C command from a Management Controller to connect specific channels.
Each channel may be connected to devices with SMBus/I2C ports. This multiplexer permits multiple
devices to use the same SMBus/I2C addresses as long as they are on separate channels.

1.7.x Upstream Connector
A connector on the NVMe Storage Device to which a host or Management Controller attaches. It may be
a physical connector as in U.2 form factors, solder balls as in a BGA form factor, or PCB trace fingers as
in a CEM Add in Card or EDSFF form factor. An Upstream Connector may include multiple
communications ports, control signals, and power supply rails.

Modify Section 2.2 as shown below:

2.2 SMBus/I2C
This section defines the requirements for an NVMe Storage Device that implements an SMBus/I2C Port.
The SMBus/I2C physical layer is only applicable for the out-of-band mechanism.

The NVMe Storage Device shall contain a FRU Information Device as defined in the IPMI Platform
Management FRU Information Storage Definition specification associated with each Upstream
Connector.

8

If an NVM Subsystem implements a Management Endpoint associated with the SMBus/I2C port If the
NVM Subsystem implements an SMBus/I2C interface and associated with that SMBus/I2C interface is a
Management Endpoint, then that interfaceport shall comply to MCTP over SMBus/I2C as specified by the
Management Component Transport Protocol (MCTP) SMBus/I2C Transport Binding Specification.

The SMBus/I2C physical layer is only applicable in the out-of-band mechanism. If anthe NVMe Storage
Device implements an SMBus/I2C interface, then theAn NVM Subsystem may optionally support the
NVMe Basic Management Command for health and status polling. The NVMe Basic Management
Command is defined in Appendix A and is not recommended for new designs. It is possible to support
both MCTP and the Basic Management Command.

Figure TBD3 lists SMBus/I2C elements that are supported on an NVMe Storage Device. For each
SMBus/I2C element, the default SMBus/I2C address is provided as well as the conditions under which
the SMBus/I2C element is required on an NVMe Storage Device. The presence or absence of Expansion
Connectors on an NVMe Storage Device determines which of the two mutually exclusive SMBus/I2C
addresses is used for the FRU Information Device. Using different SMBus/I2C address for the FRU
Information Device on NVMe Storage Devices that are Carriers versus non-Carriers avoids SMBus/I2C
address conflicts when Expansion Connectors are populated with NVMe Storage Devices.

ARP support on SMBus/I2C elements is optional but is required to avoid SMBus/I2C address conflicts if
multiple SMBus/I2C elements with the same default SMBus/I2C address are present on the same
SMBus/I2C channel.

Figure TBD3: SMBus/I2C Elements and Requirements

SMBus/I2C
Element

Default SMBus/I2C
Address SMBus ARP

Support
Required

Element Presence Hex
Format

Binary
Format1

FRU
Information
Device

A6h 1010_011xb Optional
Required on an NVMe Storage
Device with no Expansion
Connectors.

FRU
Information
Device

A4h 1010_010xb Optional

Required on Carriers (i.e. an
NVMe Storage Device with
one or more Expansion
Connectors).

NVM
subsystem
SMBus/I2C
Management
Endpoint

3Ah 0011_101xb Optional

Required if an NVM
Subsystem has an SMBus/I2C
Management Endpoint.

SMBus/I2C
Mux

E8h 1110_100xb Optional

Required if there is more than
one SMBus/I2C element on
any SMBus/I2C channel with
the same SMBus/I2C address
that does not support ARP.

NVM
subsystem
Basic
Management
Command
(Appendix A)

D4h 1101_010xb Optional

Not recommended for new
designs.

Notes:
1. The x represents the SMBus/I2C read/write bit.

. The address 3Ah appears on SMBus as 0011_101xb where x represents the SMBus read/write bit.

9

Host platforms expecting to be used with one or more Management Endpoints (e.g., data center platforms
and workstations) should isolate SMBus/I2C segmentschannels to avoid a Management Endpoint
conflicting with the address of another SMBus/I2C element. An SMBus/I2C address conflict may occur
when a Management Endpoint that does not support ARP is used with platforms that do not isolate
SMBus/I2C channelssegments (e.g., some client platforms). ARP may be used to dynamically reassign
SMBus/I2C addresses in a system when supported by both the Management Controller and the NVMe
Storage Devices.

SMBus/I2C elements on an NVMe Storage Device that support ARP should be implemented as Default
Slave Address (DSA) devices as defined by the SMBus specification. These devices should not issue
“Notify ARP Master” commands because the NVMe Storage Device should not initiate SMBus/I2C traffic.

The SMBus/I2C Management Endpoint shall be accessible at a power-up SMBus/I2C address of 3Ah and
should be SMBus ARP-capable (as defined in the SMBus 3.0 specification).1 If the NVM Subsystem is
“Discoverable” (as defined in the SMBus 3.0 specification), the device may issue a “Notify ARP Master”
command when the NVM Subsystem is ready to communicate. If the NVM Subsystem implements an
SMBus/I2C interface, then VPD information shall be accessible from the Management Endpoint using
Sequential Read and Random Read operations as defined by the IPMI Platform Management FRU
Information Storage Definition specification.

The VPD shall be accessible using I2C read operations from a FRU Information Device at a power-up
SMBus/I2C address of A6h and should be SMBus ARP-capable (as defined in the SMBus 3.0
specification).2 If the FRU Information Device is “Discoverable” (as defined in the SMBus 3.0
specification), it may issue a “Notify ARP Master” command when the FRU Information Device is ready to
communicate.

If ARP is supported by an NVM Subsystem, then all SMBus/I2C elementsthe NVM Subsystem and the
FRU Information Device associated with that NVM Subsystem, if present, SMBus/I2C Management
Endpoint and VPD shall both use the SMBus Address Resolution Protocol Unique Device Identifier
(UDID) shown in Modify Figure 7 to define additional UDID use cases shown below:

Figure 3. The ARP UDID is a unique identifier created by the NVMe Storage Device vendor. The UDID
Vendor ID bits 30 and 31 allow up to four SMBus/I2C elements to be grouped together with the same
NVM Subsystem. The only difference within this group of between UDIDsthe NVM Subsystem and FRU
Information Device UDID is the most significant two bits of the Vendor Specific ID. This fact may be used
by the Management ControllerMCTP bus owner to associate an SMBus/I2C Management Endpoint with
its corresponding VPD.

If there are multiple NVM Subsystems in an SMBus ARP-capable NVMe Storage Device, then the Unique
NVM Storage Device ID field of the UDID shall be incremented by one for each NVM Subsystem. If the
Upstream Connector has an SMBus/I2C port, then the FRU Information Device associated with that
connector shall be present directly on the SMBus/I2C channel connected to the Upstream Connector.

Modify Figure 7 to define additional UDID use cases shown below:

1 The address 3Ah appears on SMBus as 0011_101xb where x represents the SMBus read/write bit.
2 The address A6h appears on SMBus as 1010_011xb where x represents the SMBus read/write bit.

10

Figure 3: NVM Subsystem and FRU Information Device SMBus SMBus/I2C Element UDID

Bits Field Description

127:120
Device

Capabilities

This field describes the device capabilities

Bits Description

7:6
Address Type: This field describes the type of address contained in the
device. Refer to the SMBus transport binding specification.

5:1 Reserved

0
PEC Supported: All MCTP transactions shall include a Packet Error Code
(PEC) byte. This field shall be set to one to indicate support for PEC.

119:112
Version /
Revision

This field is used to identify the UDID version and silicon revision.

Bits Description

7:6 Reserved

5:3 UDID Version. This field specifies the UDID version and shall be set to 001b

2:0
Silicon Revision ID: This field is used to specify a vendor specific silicon
revision level.

111:96 Vendor ID This field contains the PCI-SIG vendor ID for the Management Endpoint.

95:80 Device ID This field contains a vendor assigned device ID for the Management Endpoint.

79:64 Interface

This field defines the SMBus version and the Interface Protocols supported.

Bits Description

15:8 Reserved

7 ZONE. This field shall be cleared to ‘0’.

6 IPMI. This field shall be cleared to ‘0’.

5
ASF. This field shall be set to ‘1’. Refer to the MCTP transport binding
specification.

4 OEM. This field shall be set to ‘1'.

3:0
SMBus Version. This field shall be set to 4h for SMBus Version 2.0, or to 5h
for SMBus Version 3.0 and 3.1which corresponds to SMBus Version 2.0 and
3.0 respectively.

63:48
Subsystem
Vendor ID

This field contains the PCI-SIG vendor ID for the Management Endpoint.

47:32
Subsystem
Device ID

This field contains a vendor assigned device ID for the Management Endpoint.

11

Bits Field Description

31:0
Vendor

Specific ID

This field ensures all UDIDs from a vendor are unique and is used to associate elements
implemented within an NVMe Storage Device. contains a unique 30-bit static NVM
storage device ID and distinguish the NVM Subsystem UDID from the FRU Information
Device UDID.

Bits Description

31:30 UDID Type. This field distinguishes which NVM subsystem that implements
multiple SMBus elements is providing the UDID. Note that Management
Controllers implemented prior to NVMe-MI1.1 may be incompatible with
devices using values 1h and 3h.

Value Description

0h FRU Information Device

1h SMBus/I2C Mux

2h Management Endpoint

3h Additional devices

31
UDID Type. This field is used to distinguish the Management Endpoint UDID
from the VPD UDID. A ‘1’ in this field indicates the Management Endpoint. A
‘0’ in this field indicates the FRU Information Device.

30 Reserved.

29:0
Unique NVM Storage Device ID: This field contains a unique vendor
assigned ID for the NVM Subsystem. The ID is different in each NVM
Subsystem instance and remains static during the life of the device.

Modify Section 9.1 as shown below:

9 Management Architecture

9.1 Operational Times

The ability of a Management Endpoint to receive and process Request Messages outlined in this
specification is dependent on the state of the Management Endpoint. This section enumerates
Management Endpoint operational times and the operations supported in each of these operational times.
The NVM Subsystem power state is defined by the state of main power and auxiliary power. Main power
consists of one or more voltage rails as defined by form factor. When main power consists of multiple
voltage rails, main power is considered “on” when power is good on all main voltage rails. Auxiliary power
is optionally supported by a form factor and enables SMBus/I2C communications wake-up processing in
the absence of main power. Only the Powered On and Powered Off states are applicable Auxiliary power
is considered “off” in form factors and platforms that do not support auxiliary power. Figure 4Figure 109
defines the power states of a Management Endpoint. Note that auxiliary power is described from the
perspective of the NVMe Storage Device and could be provided by any appropriate power rail in a host
platform.

Figure 4: NVM Subsystem Power States

Power State Main Power Auxiliary Power

Powered Off Off Off

Auxiliary Power1 Off On

Main Power (Auxillary Power on if
defined)

On
On

Main Power with No Auxiliary Power1 On Off

1 These states are not used on form factors that do not define Auxiliary power.

12

The operations supported in each NVM Ssubsystem power state are summarized in Figure 5. VPD
SMBus/I2C access consists of processing read operations to the FRU Information Device. SMBus/I2C
MCTP access consists of processing and responding to MCTP messages and responding to the NVMe
Basic Management Command (refer to Appendix A) on the NVM Subsystem SMBus/I2C port. PCIe
MCTP access consists of processing and responding to MCTP messages issued on any NVM Subsystem
PCIe port. The behavior of an operation that is “Not Supported” in Figure 5 is undefined.

Figure 5: Operations Supported During NVM Subsystem Power States

Operation

P
o

w
e
re

d
 O

ff

-A
ll

P
o

w
e

r
R

a
ils

 O
ff

P
o

w
e
re

d
 O

n
M

a
in

 P
o

w
e

r

(w
it
h

 A
u
x
ill

a
ry

 P
o

w
e

r)

-A
ll

P
o

w
e

r
R

a
ils

 O
n

A
u

x
il
ia

ry
 P

o
w

e
r

O
n

ly
2

-M
a

in
 P

o
w

e
r

O
ff

-A
u

x
ili

a
ry

 P
o

w
e

r
O

n

M
a
in

 P
o

w
e
r

O
n

ly
2
w

it
h

 N
o

A
u

x
ili

a
ry

 P
o

w
e

r

-M
a

in
 P

o
w

e
r

O
n

-A
u

x
ili

a
ry

 P
o

w
e

r
O

ff

SMBus/I2C VPD
and SMBus/I2C

Mux Access
Not Supported Supported Supported

Inmplementation
Specific

SMBus/I2C MCTP
Access

Not Supported Supported Optional1
Supported

Implementation
Specific

PCIe MCTP
Access

Not Supported Supported Not Supported Supported

NOTES:
1. An implementation that supports SMBus/I2C MCTP Access during Auxiliary Power may support a

subset of commands during this power state. The commands that are supported are implementation
specific.

2. Auxiliary Power Only and Main Power Only columns are not applicable to form factors that do not
define Auxiliary power.

Modify first paragraphs of Section 9.2 as shown below:

9.2 Vital Product Data

The Vital Product Data (VPD) is information describing an NVMe Storage Device. Each NVMe Storage
Device Subsystem with one or more Responders shall have a FRU Information Device with a size of 256
bytes to hold the VPD which is compliant withas defined in the IPMI Platform Management FRU
Information Storage Definition. The VPD shall contain the required elements defined in Error! Reference
source not found.. The size of the VPD is 256 bytes as defined by the IPMI Platform Management FRU
Information Storage Definition.

Figure 6: VPD Elements

Byte Name

7:0 Common Header

Vendor Specific Product Info Area (Optional)

Vendor Specific MultiRecord Info Area

Vendor Specific Internal Use Area (Optional)

Vendor Specific Chassis Info Area (Optional)

Vendor Specific Board Info Area (Optional)

13

The VPD shall be accessible using the VPD Read command. The entire contents of the VPD may be
updated using the VPD Write command.

If the NVMe Storage Device has an SMBus/I2C interface, the VPD shall be accessible at the SMBus/I2C
address of the FRU Information Device using the access mechanism over I2C as defined in the IPMI
Platform Management FRU Information Storage Definition. Updating the VPD by writing to the FRU
Information Device directly on SMBus/I2C shall not be supported if the VPD Write command is supported.

VPD records utilize the Type/Length byte format defined in the IPMI Platform Management FRU
Information Storage Definition. Type/Length byte encodings utilized in this specification are summarized
in Figure TBD7.

Move Figure 141 into section 9.2.2 and add one sentence:

9.2.2 Product Info Area (offset 8 bytes)

The optional Product Info Area shall have the same format and conventions as the Product Info Area
Format as defined by the IPMI Platform Management FRU Information Storage Definition. Therefore, all
fields within the Product Info Area shall not follow the conventions defined in Section Error! Reference
source not found.. The Product Info Area factory default values shall be set to the values defined in
Figure 8. The Type/Length bytes use the format shown in Figure TBD141a.

Figure TBD7a: Type/Length Byte Format

Bits Field Name Description

7:6 Type Code
Specifies field encoding
11b – Always corresponds to ASCII in this specification

5:0 Number of Data Bytes
Specifies field length
000000b indicates that the field is empty

Figure 8: Product Info Area Factory Default Values

Factory
Default

Description

01h
IPMI Format Version Number (IPMIVER): This field indicates the IPMI Format
Version.

Impl
Spec

Product Info Area Length (PALEN): This field indicates the length of the Product Info
Area in multiples of 8 bytes.

19h
Language Code (LCODE): This field indicates the language used. A value of 19h is
used to indicate English.

C8h Impl
Spec

Manufacturer Name Type/Length (MNTL): This field indicates the type and length of
the Manufacturer Name field. The maximum length is 8.

Impl
Spec

Manufacturer Name (MNAME): This field indicates the Manufacturer name in 8-bit
ASCII. Unused bytes should be NULL characters.

The Manufacturer name in this field should correspond to that in the PCI Subsystem
Vendor ID (SSVID) and IEEE OUI Identifier fields in the Identify Controller Data
Structure.

D8h Impl
Spec

Product Name Type/Length (PNTL): This field indicates the type and length of the
Product Name field. The maximum length is 24.

Impl
Spec

Product Name (PNAME): This field indicates the Product name in 8-bit ASCII. Unused
bytes should be NULL characters.

14

Figure 8: Product Info Area Factory Default Values

Factory
Default

Description

E8h Impl
Spec

Product Part/Model Number Type/Length (PPMNNTL): This field indicates the type
and length of the Product Part/Model Number field. The maximum length is 40.

Impl
Spec

Product Part/Model Number (PPMN): This field indicates the Product Part/Model
Number in 8-bit ASCII. Unused bytes should be NULL characters.

This field should contain the same value as the Model Number (NM) field in the NVMe
Identify Controller Data Structure.

C2h Impl
Spec

Product Version Type/Length (PVTL): This field indicates the type and length of the
Product Part/Model Number field. The maximum length is 2.

Impl
Spec

Product Version (PVER): This field indicates the Product Version in 8-bit ASCII.
Unused bytes should be NULL characters.

D4h Impl
Spec

Product Serial Number Type/Length (PSNTL): This field indicates the type and length
of the Product Serial Number field. The maximum length is 20.

Impl
Spec

Product Serial Number (PSN): This field indicates the Product Serial Number in 8-bit
ASCII. Unused bytes should be NULL characters.

This field should contain the same value as the Serial Number (SN) field in the NVMe
Identify Controller Data Structure.

Impl
Spec

Asset Tag Type/Length (ATTL): This field indicates the type and length of the Asset
Tag field. A value of 00h may be used to indicate an Asset Tag is not present.

Impl
Spec

Asset Tag (AT): This field indicates the asset tag.

Impl
Spec

FRU File ID Type/Length (ATTL): This field indicates the type and length of the FRU
File ID field. A value of 00h may be used to indicate an FRU File ID is not present.

Impl
Spec

FRU File ID (FFI): This field provides manufacturing aid for verifying the file that was
used during manufacture or field update to load the FRU information.

Impl
Spec

Custom Product Info Area (CPIA): This optional field allows for the addition of custom
Product Info Area fields that shall be proceeded with a Type/Length field.

C1h End of Record (EOR): A value of C1h in this field indicates the end of record.

0h
 Zero or more bytes of value 0h that are used to pad the size of the Product Info Area
to a multiple of 8 bytes.

Impl
Spec

Product Info Area (PICHK): Checksum computed over all bytes in the Product Info
Area excluding this field. The checksum is computed by adding the 8-bit value of the
byes modulo 256 and then taking the 2’s complement of this sum. When the checksum
and the sum of the bytes module 256 are added, the result should be 0h.

Modify Section 9.2.3 as shown below:

9.2.3 NVMe MultiRecord Area

This MultiRecord is used to describe the form factor, power requirements, and capacity of NVMe Storage
Devices with a single NVM Subsystem. It has been superseded by the Topology MultiRecord (refer to
Section 9.2.5). For backwards compatibility the NVMe MultiRecord should be included in the VPD unless
the NVMe Storage Device has Expansion Connectors, has more than one NVM Subsystem, or if
including this MultiRecord would extend the size of the VPD beyond the 256-byte limit.

Figure 9: NVMe MultiRecord Area

Byte
Offset

Factory
Default

Description

00 0Bh NVMe Record Type ID

01
2h
or

82h

Bit 7 – end of list; record format version = 2h
Record Format:

Bit Definition

15

7 Set to 1 if last record in list

6:0 Record format version = 2

02 3Bh
Record Length (RLEN): This field indicates the length of the MultiRecord Area
in bytes without including the first 5 bytes that are common to all MultiRecords.

03
Impl
Spec

Record Checksum: This field is used to give the record data a zero checksum
(i.e., the modulo 256 sum of the record data bytes from byte offset 05 through
the end of this record plus this checksum byte equals zero)

04
Impl
Spec

Header Checksum: This field is used to give the record header a zero
checksum (i.e., the modulo 256 sum of the preceding record bytes starting with
the first byte of the header plus through this checksum byte equals zero).

05 0h
NVMe MultiRecord Area Version Number: This field indicates the version
number of this NVMe MultiRecord. This field shall be set to 0h in this version of
the specification.

06
Impl
Spec

Management Endpoint Form Factor (MEFF): This field indicates the form
factor of the Management Endpoint. See the values in Figure 14a.

Editor’s Note: Move Table to Section 9.2.5.2 Figure 14a and updated
definition for Value 1

Value Definition

0 Other – unknown

1 – 15 Reserved

16 2.5” Form Factor – unknown

17 2.5” Form Factor – U.2 (SFF-8639) 15mm

18 2.5” Form Factor – U.2 (SFF-8639) 7mm

19 2.5” Form Factor – (SFF-TA-1001) 15mm

20 2.5” Form Factor – (SFF-TA-1001) 7mm

21 – 31 Reserved

32 CEM add in card – unknown

33 CEM add in card – Low Profile (HHHL)

34 CEM add in card – Standard Height Half Length (FHHL)

35 CEM add in card – Standard Height Full Length (FHFL)

36-47 Reserved

48 M.2 module – unknown

49 M.2 module – 2230

50 M.2 module – 2242

51 M.2 module – 2260

52 M.2 module – 2280

53 M.2 module – 22110

54-63 Reserved

64 BGA SSD – unknown

65 BGA SSD – 16 x 20mm (M.2 Type 1620)

66 BGA SSD – 11.5 x 13mm (M.2 Type 1113)

65-79 Reserved

80 Enterprise & Datacenter SSD Form Factor – unknown

81 1U Short Form Factor - (SFF-TA-1006) 5.9mm

82 1U Short Form Factor - (SFF-TA-1006) 8mm

83 1U Long Form Factor - (SFF-TA-1007) 9.5mm

84 1U Long Form Factor - (SFF-TA-1007) 18mm

85 3” Short Form Factor - (SFF-TA-1008) 7.5mm

86 3” Short Form Factor - (SFF-TA-1008) 16.8mm

87 3” Long Form Factor - (SFF-TA-1008) 7.5mm

88 3” Long Form Factor - (SFF-TA-1008) 16.8mm

16

89-239 Reserved

240-255 Vendor Specific

12:07 00h Reserved

13
Impl

Spec1
Initial 1.8V Power Supply Requirements: This field specifies the initial 1.8V power
supply requirements in Watts prior to receiving a Set Slot Power message.

14
Impl

Spec1

Maximum 1.8V Power Supply Requirements: This field specifies the maximum
1.8V power supply requirements in Watts. A value of zero indicates that the
power supply voltage is not used.

15
Impl

Spec1
Initial 3.3V Power Supply Requirements: This field specifies the initial 3.3V power
supply requirements in Watts prior to receiving a Set Slot Power message.

16
Impl

Spec1

Maximum 3.3V Power Supply Requirements: This field specifies the maximum
3.3V power supply requirements in Watts. A value of zero indicates that the
power supply voltage is not used.

17 00h Reserved

18
Impl

Spec1

Maximum 3.3V aux Power Supply Requirements: This field specifies the maximum
3.3V power supply requirements in 10 mW units. A value of zero indicates that
the power supply voltage is not used.

19
Impl

Spec1
Initial 5V Power Supply Requirements: This field specifies the initial 5V power
supply requirements in Watts prior to receiving a Set Slot Power message.

20
Impl

Spec1

Maximum 5V Power Supply Requirements: This field specifies the maximum 5V
power supply requirements in Watts. A value of zero indicates that the power
supply voltage is not used.

21
Impl

Spec1
Initial 12V Power Supply Requirements: This field specifies the initial 12V power
supply requirements in Watts prior to receiving a Set Slot Power message.

22
Impl

Spec1

Maximum 12V Power Supply Requirements: This field specifies the maximum 12V
power supply requirements in Watts. A value of zero indicates that the power
supply voltage is not used.

23
Impl
Spec

Maximum Thermal Load: This field specifies the maximum thermal load from the
NVM Subsystem in Watts.

36:24
Impl
Spec

Total NVM Capacity: This field indicates the total NVM capacity of the NVM
Subsystem in bytes.

If the NVM Subsystem supports Namespace Management, then this field should
correspond to the value reported in the TNVMCAP field in the NVMe Identify
Controller Data structure.

A value of 0h may be used to indicate this feature is not supported.

63:37 00h
Reserved

Notes:

1. Power supply requirements shall be set to the smallest integer value which fully supplies the
necessary power to the NVMe Storage Device. A value of 0h indicates that the power supply
voltage is not used.

Modify Section 9.2.4 and Figure 145 as shown below, fix font size to 10 for first 2 columns and
rows 5-10 of Fig 145 :

17

9.2.4 NVMe PCIe Port MultiRecord Area

This MultiRecord is used to describe the PCIe connectivity for NVMe Storage Devices with a single NVM
Subsystem. It has been superseded by the Topology MultiRecord (refer to Section 9.2.5). For backwards
compatibility the PCIe Port MultiRecord should be included in the VPD unless the NVMe Storage Device
has Expansion Connectors, has more than one NVM Subsystem, or if including this MultiRecord would
extend the size of the VPD beyond the 256-byte limit.

Figure 10: NVMe PCIe Port MultiRecord Area

Byte
Offset

Factory
Default

Description

00 0Ch NVMe PCIe Port Record Type ID

01

2h
or

82h

Bit 7 – end of list; record format version = 2h
Record Format:

Bit Definition

7 Set to 1 if last record in list

6:0 Record format version = 2

02 0Bh
Record Length (RLEN): This field indicates the length of the MultiRecord Area
in bytes without including the first 5 bytes that are common to all MultiRecords..

03
Impl
Spec

Record Checksum: This field is used to give the record data a zero checksum (i.e., the
modulo 256 sum of the record data bytes from byte offset 05 to the end of this record plus
this checksum byte equals zero).

04
Impl
Spec

Header Checksum: This field is used to give the record header a zero checksum (i.e.,

the modulo 256 sum of the preceding record bytes starting with the first byte of the

header plus through this checksum byte equals zero).

05 0h
NVMe PCIe Port MultiRecord Area Version Number: This field indicates the version
number of this NVMe PCIe Port MultiRecord. This field shall be cleared to 0h in this version
of the specification.

06
Impl
Spec

PCIe Port Number: This field contains the PCIe port number. This is the same value as
that reported in the Port Number field in the PCIe Link Capabilities Register.

07
Impl
Spec

Port Information: This field indicates information about the PCIe Ports in the device.

Bits 7:1 are reserved.

Bit 0, if set to ‘1’ indicates that all PCIe ports within the device have the same capabilities
(i.e., the capabilities listed in this structure are consistent across each PCIe port).

08
Impl
Spec

PCIe Link Speed: This field indicates a bit vector of link speeds supported by the PCIe
port.

Bit Definition

7:4 Reserved

3
Set to ‘1’ if the PCIe link supports 16.0 GT/s. Otherwise
cleared to ‘0’.

2
Set to ‘1’ if the PCIe link supports 8.0 GT/s. Otherwise
cleared to ‘0’.

1
Set to ‘1’ if the PCIe link supports 5.0 GT/s. Otherwise
cleared to ‘0’.

0
Set to ‘1’ if the PCIe link supports 2.5 GT/s. Otherwise
cleared to ‘0’.

09
Impl
Spec

PCIe Maximum Link Width: The maximum PCIe link width for this NVM
Subsystem port. This is the expected negotiated link width that the port link trains
to if the platform supports it. A Management Controller may compare this value
with the PCIe Negotiated Link Width to determine if there has been a PCIe link
training issue.

18

Figure 10: NVMe PCIe Port MultiRecord Area

Byte
Offset

Factory
Default

Description

Value Definition

0 Reserved

1 PCIe x1

2 PCIe x2

3 Reserved

4 PCIe x4

5 to 7 Reserved

8 PCIe x8

9 to 11 Reserved

12 PCIe x12

13 to 15 Reserved

16 PCIe x16

17 to 31 Reserved

32 PCIe x32

33 to 255 Reserved

10
Impl
Spec

MCTP Support: This field contains a bit vector that specifies the level of support for the
NVMe Management Interface.

Bits 7:1 are reserved.

Bit 0, if set to ‘1’ indicates that MCTP based management commands are supported on
the PCIe port.

11
Impl
Spec

Ref Clk Capability: This field contains a bit vector that specifies the PCIe clocking modes
supported by the port.

Bit Definition

7:4 Reserved

3
Set to ‘1’ if the device automatically uses RefClk if
provided and otherwise uses SRIS, otherwise cleared
to ‘0’.

2
Set to ‘1’ if the PCIe link supports Separate ReClk with
SSC (SRIS), otherwise cleared to ‘0’.

1
Set to ‘1’ if the PCIe link supports Separate ReClk with
no SSC (SRNS), otherwise cleared to ‘0’.

0
Set to ‘1’ if the PCIe link supports common ReClk,
otherwise cleared to ‘0’.

15:12 00h Reserved

Insert new Section 9.2.5 as shown below:

9.2.5 Topology MultiRecord Area

This MultiRecord describes an NVMe Storage Device’s architectural elements and their connections. It is
required on all NVMe Storage Devices.

The Topology MultiRecord consists mainly of a list of Element Descriptors as shown in Figure TBD11.
Element Descriptors are used to describe the architectural elements that make up an NVMe Storage
Device such as NVM subsystems, Upstream Connectors, Expansion Connectors, SMBus/I2C elements,
and PCIe elements. Each architectural element has an Element Descriptor Type. The format of an

19

Element Descriptor is shown in Figure TBD 11b and Element Descriptor Types are listed in Figure
TBD12.

Element Descriptors may have fields that are used to point to other Element Descriptors. When an
Element Descriptor contains a pointer to another Element Descriptor, then the Element Descriptor
containing the pointer is called the parent and the Element Descriptor pointed to by the parent is called
the child. An Element Descriptor may be both a child and a parent.

An Element Descriptor pointer is either populated with an index of the child or 0h to indicate that there is
no child. The index is a logical construct that indicates the position of an Element Descriptor in the VPD.
The Element Descriptor at the lowest byte offset in the VPD has an index of 0, the Element Descriptor at
the second lowest byte offset has an index of 1, and so on. A child may have an index that is higher or
lower than its parent. The Element Descriptor at the lowest byte offset (i.e., index 0) shall be an Upstream
Connector Element Descriptor. Some Element Descriptors use indexes in a similar manner to select a
Port from a list of Ports.

Figure TBD11: Topology MultiRecord

Byte
Offset

Factory
Default

Description

00 0Dh Topology Record Type ID

01
2h
or

82h

Record Format:
Bit Description

7 Set to 1 if last record in list

6:0 Record format version = 2

02
Impl
Spec

Record Length (RLEN): This field indicates the length of the MultiRecord Area
in bytes without including the first 5 bytes that are common to all MultiRecords.

03
Impl
Spec

Record Checksum: This field is used to give the record data a zero checksum
(i.e., the modulo 256 sum of the record data bytes from byte offset 05 through
the end of this record plus this checksum byte equals zero)

04
Impl
Spec

Header Checksum: This field is used to give the record header a zero
checksum (i.e., the modulo 256 sum of the first byte of the header through this
checksum byte equals zero).

05 00h
Version Number: This field indicates the version number of this Topology
MultiRecord. This field shall be 0h in this version of the specification.

06 00h Reserved

07
Impl
Spec

Element Count (N): This field indicates the number of Element Descriptors in
this Topology MultiRecord. The value of 0h is reserved.

Impl
Spec

Impl
Spec

Element Descriptor 0: This field contains the first Element Descriptor in this
Topology MultiRecord.

Impl
Spec

Impl
Spec

Element Descriptor 1: This field contains the second Element Descriptor in
this Topology MultiRecord if Element Count is greater than one otherwise this
field is not present.

… … …

The VPD may contain more than one Topology MultiRecord only when the list of required Element
Descriptors is too large to fit into a single Topology MultiRecord. If there is more than one Topology
MultiRecord, then the index associated with Element Descriptors continues to increment sequentially
across Topology MultiRecord instances. Figure TBD11a illustrates multiple Topology MultiRecords where
Index 0 is at the lowest byte offset of any Element Descriptor in the VPD. Parent Element Descriptors
may be in different Topology MultiRecords from their Child Element Descriptors.

20

Figure TBD11a: Indexing Across Extended MultiRecords

Index
Topology

MultiRecord
Instance

Element Descriptors
Child

Indices

0

0

Element Descriptor 0, parent of 2, 3, 5 2, 3, 5

1 Element Descriptor 1, child of 5

2 Element Descriptor 2, child of 0

3 Element Descriptor 3, child of 0

4
1

Element Descriptor 01

5 Element Descriptor 1, child of 0, parent of 1 1

NOTES:
1. This Element Descriptor is an Extended Element Descriptor that extends the

preceding Element Descriptor at index 3. Extended Element Descriptors are
further detailed in Section 9.2.5.1.

Figure TBD11b: Element Descriptor

Byte Offset
Factory
Default

Description

0
Impl
Spec

Type: This field indicates the type of the Element Descriptor. Values
are defined in Table TBD12

1
Impl
Spec

Revision: This field indicates the revision of the Element Descriptor.

2
Impl
Spec

Length: Number of bytes in the Element Descriptor.

Length - 1:3
Impl
Spec

This area contains the Type-specific information associated with the
Element Descriptor. Type-specific information is defined for each
Element Descriptor Type in the subsections below.

Element Descriptor Types, fields, and bits in the VPD that are defined as reserved should be ignored by
Requesters to ensure forward and backward compatibility. Extra trailing bytes in an Element Descriptor
should be treated as reserved in order to tolerate the Length of an Element Descriptor increasing as new
fields are appended in future revisions of the Element Descriptor.

Element Descriptor Types are defined in Figure TBD12. Subsequent sections define the details
associated with each Element Descriptor Type.

Figure TBD12: Element Descriptor Types

Value Name Reference

0 Reserved n/a

1 Extended Element Descriptor Section 9.2.5.1

2 Upstream Connector Element Descriptor Section 9.2.5.2

3 Expansion Connector Element Descriptor Section 9.2.5.3

4 Label Element Descriptor Section 9.2.5.4

5 SMBus/I2C Mux Element Descriptor Section 9.2.5.5

6 PCIe Switch Element Descriptor Section 9.2.5.6

7 NVM Subsystem Element Descriptor Section 9.2.5.7

8 to 239 Reserved n/a

240 to 255 Vendor specific Section 9.2.5.8

21

9.2.5.1 Extended Element Descriptor

The Extended Element Descriptor is shown in Figure TBD13. This Element Descriptor Type shall only be
used when an Element Descriptor spans across more than one Topology MultiRecord. Extended Element
Descriptors shall not be the children of other Element Descriptors.

If an Element Descriptor causes the maximum size of a Topology MultiRecord to be exceeded, then that
Element Descriptor is truncated so that the non-truncated portion of the Element Descriptor fits into the
Topology MultiRecord. The truncated portion of the Element Descriptor forms the contents of the
Extended Content field in an Extended Element Descriptor. That Extended Element Descriptor is the first
Element Descriptor in the next Topology MultiRecord. If the truncated portion of the Element Descriptor
does not fit into a single Topology MultiRecord, then two or more Extended Element Descriptors are
required, each in subsequent Topology MultiRecords.

An example is shown in Figure TBD11a where the Element Descriptor at index 4 is an Extended Element
Descriptor that extends the Element Descriptor at index 3. Element Descriptor 3 is the child of Element
Descriptor 0 and Element Descriptor 4 is not the child of any parent Element Descriptor.

Figure TBD13: Extended Element Descriptor

Byte Offset
Factory
Default

Description

00 01h
Type: This field indicates the type of the Element Descriptor. The
Extended Element Descriptor Type is 1h.

01 00h
Revision: This field indicates the revision of the Element Descriptor.
The Extended Element Descriptor Revision is 0h for this specification.

02 Impl Spec
Length: This field indicates the length of the Extended Element
Descriptor in bytes.

Length - 1:03 Impl Spec
Extended Content: This field extends the content of the Element
Descriptor at the immediately preceding index.

9.2.5.2 Upstream Connector Element Descriptor

The Upstream Connector Element Descriptor is shown in Figure TBD14 and is used to describe an
Upstream Connector (i.e., a connector through which a host or Management Controller communicates
with the NVMe Storage Device). Upstream Element Descriptors are always a parent and never a child.

Figure TBD14: Upstream Connector Element Descriptor

Byte
Offset

Factory
Default

Description

00 02h
Type: This field indicates the type of the Element Descriptor. The Upstream
Connector Element Descriptor Type is 2h.

01 00h
Revision: This field indicates the revision of the Element Descriptor. The
Upstream Connector Element Descriptor Revision is 0h for this specification.

02
Impl
Spec

Length: This field indicates the length of the entire Upstream Connector
Element Descriptor in bytes.

03
Impl
Spec

Form Factor: This field indicates the Form Factor of the NVMe Storage Device.
See Figure TBD14a for a list of defined values.

04
Impl
Spec

Label Pointer: If the Upstream Connector has a label, then this field shall
contain the index of a Label Element Descriptor that contains the label. The
value 0h indicates there is no associated label.

06:05 00h Reserved

22

07
Impl
Spec

Maximum Auxiliary Power: This field specifies the maximum auxiliary power
supply requirements in 10 mW increments consumed by the NVMe Storage
Device. A value of 0h indicates that auxiliary power is not used from this
Upstream Connector.

09:08
Impl
Spec

Maximum Power: This field specifies the maximum power in Watts consumed
by the NVMe Storage Device.

10
Impl
Spec

Upstream Port Descriptor Count: This field indicates the number of Upstream
Port Descriptors associated with this Upstream Connector Element Descriptor.
The permitted range of values is 1 to 64.

Impl
Spec

Impl
Spec

Upstream Port Descriptor 0: This field contains the first Upstream Port
Descriptor

Impl
Spec

Impl
Spec

Upstream Port Descriptor 1: This field contains the second Upstream Port
Descriptor in this Upstream Connector Element Descriptor if Port Descriptor
Count is greater than one otherwise this field is not present.

… … …

The value of the Form Factor field indicates the NVMe Storage Device’s form factor. Figure TBD14a lists
the NVMe Storage Device’s Form Factor values.

Figure TBD14a: Form Factors

Value Description

0 Other – unknown

1 Integrated

2 to 15 Reserved

16 2.5” Form Factor – unknown

17 2.5” Form Factor – U.2 (SFF-8639) 15mm

18 2.5” Form Factor – U.2 (SFF-8639) 7mm

19 2.5” Form Factor – (SFF-TA-1001) 15mm

20 2.5” Form Factor – (SFF-TA-1001) 7mm

21 to 31 Reserved

32 CEM add in card – unknown

33 CEM add in card – Low Profile (HHHL)

34 CEM add in card – Standard Height Half Length (FHHL)

35 CEM add in card – Standard Height Full Length (FHFL)

36 to 47 Reserved

48 M.2 module – unknown

49 M.2 module – 2230

50 M.2 module – 2242

51 M.2 module – 2260

52 M.2 module – 2280

53 M.2 module – 22110

54 to 63 Reserved

64 BGA SSD – unknown

65 BGA SSD – 16 x 20mm (M.2 Type 1620)

66 BGA SSD – 11.5 x 13mm (M.2 Type 1113)

65 to 79 Reserved

80 Enterprise & Datacenter SSD Form Factor – unknown

81 1U Short Form Factor - (SFF-TA-1006) 5.9mm

82 1U Short Form Factor - (SFF-TA-1006) 8mm

23

83 1U Long Form Factor - (SFF-TA-1007) 9.5mm

84 1U Long Form Factor - (SFF-TA-1007) 18mm

85 3” Short Form Factor - (SFF-TA-1008) 7.5mm

86 3” Short Form Factor - (SFF-TA-1008) 16.8mm

87 3” Long Form Factor - (SFF-TA-1008) 7.5mm

88 3” Long Form Factor - (SFF-TA-1008) 16.8mm

89 to 239 Reserved

240 to 255 Vendor Specific

The Upstream Connector may have an associated label, such as silk screened text on the printed circuit
board. If the Upstream Connector has a label, then the Label Pointer may contain the index of the
associated Label Element Descriptor.

The Upstream Connector Element Descriptor contains a list of the Upstream Port Descriptors that are
ports through which a host or Management Controller communicates with the NVMe Storage Device.
Each Upstream Port Descriptor has a type. The types defined in this specification are SMBus/I2C
Upstream Port Descriptor and PCIe Upstream Port Descriptor.

An SMBus/I2C Upstream Port Descriptor is shown in Figure TBD14b. It contains a list of pointers to child
Element Descriptors whose SMBus/I2C port is directly connected to the Upstream Connector.

A PCIe Upstream Port Descriptor is shown in Figure TBD14c. It indicates the starting and ending PCIe
lane numbers on the Upstream Connector that make up a PCIe Upstream Port. The PCIe Upstream Port
Descriptor contains a single pointer to a child Element Descriptor connected to this PCIe Upstream Port.
The Destination Port field of the PCIe Upstream Port Element Descriptor specifies which port of the child
is connected to this Upstream Connector. The Destination Port value is an index into the child Element
Descriptor’s list of Port Descriptors.

The PCIe lanes associated with a PCIe Upstream Connector may be organized as a single large port or
subdivided into multiple ports. Each of these ports is described with its own PCIe Upstream Port
Descriptor. The PCIe Upstream Port Descriptors may be listed in any order. A form factor specific
mechanism, such as the U.2 Dual Port Enable signal, may be used to determine which of the listed PCIe
Upstream Port Descriptors are currently applicable. These form factor specific mechanisms are outside
the scope of this specification

For example, a U.2 NVMe Storage Device capable of running in either single-port mode or dual-port
mode based on the Dual Port Enable signal would have three PCIe Upstream Port Descriptors describing
PCIe ports on the following PCIe Lanes:

1. PCIe lanes 0 to 3 (single-port mode)
2. PCIe lanes 0 to 1 (dual-port mode)
3. PCIe lanes 2 to 3 (dual-port mode)

In the example above, if the U.2 NVMe Storage Device is only capable of running in single-port mode,
then only the PCIe Upstream Port Descriptor describing the single-port mode (item 1 in the list above)
shall be included in the Upstream Connector Element Descriptor. And if the U.2 NVMe Storage Device is
only capable of running in dual-port mode, then only the two PCIe Upstream Port Descriptors describing
the dual-port mode (items 2 and 3 in the list above) shall be included in the Upstream Connector Element
Descriptor.

In another example, consider a x16 CEM add-in card Upstream Connector that is subdivided into four x4
PCIe ports, also referred to as bifurcation. Each of these x4 PCIe Upstream Ports may connect to
different elements on the NVMe Storage Device. The Upstream Connector in this example shall contain
four PCIe Upstream Port Descriptors describing the four PCIe ports:

1. PCIe lanes 0 to 3
2. PCIe lanes 4 to 7

24

3. PCIe lanes 8 to 11
4. PCIe lanes 12 to 15

Figure TBD14b: SMBus/I2c Upstream Port Descriptor

Byte
Offset

Factory
Default

Description

00 00h
Type: This field indicates the type of the Port Descriptor. The SMBus/I2C Port
Descriptor Type is 0h.

01
Impl
Spec

Length: This field indicates the length of the SMBus/I2C Port Descriptor in
bytes.

02
Impl
Spec

Count: This field indicates the number of SMBus/I2C Pointers in the
SMBus/I2C Upstream Port Descriptor. The permitted range of values is 1 to 32.

03
Impl
Spec

SMBus/I2C Pointer 0: This field contains the child index of the first Element
Descriptor whose SMBus/I2C port is connected to this SMBus/I2C port.

04
Impl
Spec

SMBus/I2C Pointer 1: If Count is greater than one, then this field is present
and contains the child index of the second Element Descriptor whose
SMBus/I2C port is connected to this SMBus/I2C Upstream Port. If Count is not
greater than one, then this field is not present.

… … …

Figure TBD14c: PCIe Upstream Port Descriptor

Byte
Offset

Factory
Default

Description

00 01h
Type: This field indicates the type of Upstream Port Descriptor. The PCIe
Upstream Port Descriptor Type is 1h.

01
Impl
Spec

Length: This field indicates the length of the PCIe Upstream Port Descriptor in
bytes.

02
Impl
Spec

Starting Lane: This field indicates first PCIe lane (i.e., lane 0) of the port from
the Upstream Connector.

03
Impl
Spec

Ending Lane: This field indicates the ending PCIe lane of the port from the
Upstream Connector.

04
Impl
Spec

PCIe Pointer: This field contains the child index of the Element Descriptor
whose PCIe port is connected to this PCIe Upstream Port.

05
Impl
Spec

Destination Port: This field contains the index of the Port Descriptor in the
child Element Descriptor. If the child Element Descriptor has one PCIe
upstream port (i.e., a PCIe Switch Element Descriptor) this field shall be cleared
to 0h.

9.2.5.3 Expansion Connector Element Descriptor

The Expansion Connector Element Descriptor is shown in Figure TBD17 and is used to describe the form
factor, label, and port configurations for Expansion Connectors on a Carrier. The Expansion Connector
Element Descriptor shall be a child Element Descriptor.

Figure TBD17: Expansion Connector Element Descriptor

Byte
Offset

Factory
Default

Description

25

00 03h
Type: This field indicates the type of the Element Descriptor. The Expansion
Connector Element Descriptor Type is 3h.

01 00h
Revision: This field indicates the revision of the Element Descriptor. The
Expansion Connector Element Descriptor Revision is 0h for this specification.

02
Impl
Spec

Length: This field indicates the length of the Expansion Connector Element
Descriptor in bytes.

03
Impl
Spec

Form Factor: This field indicates the Form Factor of the NVMe Storage Device
that plugs into the Expansion Connector. See Figure TBD14a for a list of
defined values.

04
Impl
Spec

Label Pointer: If the Upstream Connector has a label, then this field shall
contain the index of a Label Element Descriptor that contains the label. The
value 0h indicates there is no associated label.

05
Impl
Spec

Expansion Connector Port Descriptor Count: This field indicates the number
of Expansion Port Descriptors associated with this Expansion Connector
Element Descriptor. The permitted range of values is 1 to 64.

06
Impl
Spec

Expansion Connector Port Descriptor 0: This field contains the first
Expansion Connector Port Descriptor.

07
Impl
Spec

Expansion Connector Port Descriptor 1: This field contains the second
Expansion Connector Port Descriptor in this Expansion Connector Descriptor if
Expansion Connector Port Descriptor Count is greater than one otherwise this
field is not present.

… … …

In a manner similar to the PCIe Upstream Connector, the Expansion Connector Element Descriptor’s
PCIe lanes may support one or more PCIe ports for connecting to external NVMe Storage Device FRUs.
The PCIe ports have a starting and ending PCIe lane number on the Expansion Connector that are
determined by the external NVMe Storage Device FRU’s form factor’s lane numbering.

The Expansion Connector Element Descriptor holds the list of Expansion Connector PCIe Port
Descriptors. Each PCIe port is described by an Expansion Connector PCIe Port Descriptor whose format
is shown in Figure TBD17a. Parent Element Descriptors, such as Upstream Connectors and PCIe
Switches, contain Port Descriptors that point to Expansion Connectors. The Destination Port field of the
parent Port Descriptor contains an index to the specific Expansion Connector PCIe Port Descriptor
instance to which the Port Descriptor is connected. Each Expansion Connector PCIe Port Descriptor is
the destination of exactly one pointer from a parent Element Descriptor.

There are two ways to document Expansion Connector’s on Carriers with permanently populated
expansion devices. If the FRU Information Device attached to the Upstream Connector of the Carrier can
be programmed from an NVM Subsystem, then the permanently attached expansion device should be
described as if its elements were directly on the Carrier, this Expansion Connector Element Descriptor is
not included in the Carrier’s VPD, and the FRU Information Device on the expansion device becomes
optional. Otherwise, the Form Factor field for the Expansion Connector should be set to Integrated and
the Requester will also need to read the VPD from the expansion device which is not modified from its
original content by the permanent connection.

Figure TBD17a: Expansion Connector PCIe Port Descriptor

Byte
Offset

Factory
Default

Description

00 00h
Type: This field indicates the type of Expansion Connector Port Descriptor. The
Expansion Connector PCIe Port Descriptor Type is 0.

01
Impl
Spec

Length: This field indicates the length of the Expansion Connector PCIe Port
Descriptor in bytes.

26

02
Impl
Spec

Starting Lane: This field indicates first PCIe lane (i.e., lane 0) of the port on the
Expansion Connector PCIe Port Descriptor.

03
Impl
Spec

Ending Lane: This field indicates the ending PCIe lane of the port on the
Expansion Connector PCIe Port Descriptor.

9.2.5.4 Label Element Descriptor

The Label Element Descriptor is shown in Figure TBD18 and is used to store text strings in the VPD for
Element Descriptors that have a label. A Label Element Descriptor shall be a child Element Descriptor.

Figure TBD18: Label Element Descriptor

Byte Offset
Factory
Default

Description

00 04h
Type: This field indicates the type of the Element Descriptor. The
Label Element Descriptor Type is 4h.

01 00h
Revision: This field indicates the revision of the Element Descriptor.
The Label Element Descriptor Revision is 0h for this specification.

02 Impl Spec
Length: This field indicates the length of the Label Element
Descriptor in bytes including the null termination.

Length - 1 : 03 Impl Spec
Label String: This field contains a null-terminated UTF-8 string used
to identify the parent Element Descriptor.

9.2.5.5 SMBus/I2C Mux Element Descriptor

The SMBus/I2C Mux Element Descriptor is shown in Figure TBD19 and is used to describe an
SMBus/I2C multiplexor element that can connect a single upstream SMBus/I2C channel to zero or more
downstream SMBus/I2C channels. This Element Descriptor contains the address and capabilities of the
SMBus/I2C Mux followed by a list of SMBus/I2C Mux Channel Descriptors that describe SMBus/I2C Mux
downstream channel connections. The SMBus/I2C Mux shall be compatible with the industry standard
PCA9542/45/48 family of SMBus/I2C multiplexors and may be extended to support ARP, error detection,
and additional downstream channels as defined below.

Figure TBD19: SMBus/I2C Mux Element Descriptor

Byte
Offset

Factory
Default

Description

00 05h
Type: This field indicates the type of the Element Descriptor. The SMBus/I2C
Mux Element Descriptor Type is 5h.

01 00h
Revision: This field indicates the revision of the Element Descriptor. The
SMBus/I2C Mux Element Descriptor Revision is 0h for this specification.

02
Impl
Spec

Length: This field indicates the length of the SMBus/I2C Mux Element
Descriptor in bytes.

03
E8h
or

E9h

SMBus/I2C Address Info: This field indicates the SMBus/I2C address and
whether or not ARP is supported.

Bit Description

7:1
SMBus/I2C Address: This field contains the 7-bit
SMBus/I2C address. Refer to Table TBD3 for
requirements.

0
ARP Capable: This bit is set to ‘1’ if SMBus ARP is
supported, else it is cleared to ‘0’. Refer to Table TBD3
for requirements.

27

04
Impl
Spec

SMBus/I2C Capabilities: This field indicates the SMBus/I2C Mux capabilities.

Bit Description

7

Form Factor Reset: This field is set to ‘1’ if all of
the SMBus/I2C reset mechanisms are supported
as defined by the associated form factor
specification. This field is cleared to ‘0’ if the form
factor does not define SMBus Reset or the NVMe
Storage Device does not support all of the
SMBus/I2C reset mechanisms defined in the
specification for the Form Factor in the Host
Connector Element Descriptor.

6

Packet Error Code (PEC) Support: This field is
set to ‘1’ if PEC is supported by the SMBus/I2C
Mux. This field is cleared to ‘0’ if PEC is not
supported.

6:2 Reserved

1:0

Maximum Speed: This field is set to the highest
supported SMBus/I2C clock speed by the
SMBus/I2C Mux.

Value Description

0 100 kHz

1 400 kHz

2 1 MHz

3 Reserved

05
Impl
Spec

SMBus/I2C Mux Channel Descriptor Count: This field indicates the number
of downstream channels listed for this SMBus/I2C Mux. Each channel has a
corresponding SMBus/I2C Channel Descriptor in the list below. The permitted
range of values is 1 to 64. The value of this field may be less than the actual
number of Channels implemented by the SMBus/I2C Mux if the truncated
SMBus/I2C Mux Channel Descriptors are not connected to anything.

06
Impl
Spec

SMBus/I2C Mux Channel Descriptor 0: This field contains the first
SMBus/I2C Mux Channel Descriptor

07
Impl
Spec

SMBus/I2C Mux Channel Descriptor 1: This field contains the second
SMBus/I2C Mux Channel Descriptor in this SMBus/I2C Mux Element Descriptor
if SMBus/I2C Mux Channel Descriptor Count is greater than one otherwise this
field is not present.

… … …

An SMBus/I2C Mux Channel Descriptor is shown in Figure TBD19b. SMBus/I2C Mux Channel
Descriptors that are not connected to anything have a value 0h in the Count field and contain no
SMBus/I2C Mux Channel Descriptors. Unconnected SMBus/I2C Mux Channel Descriptors at the end of
the list in Figure TBD19 may be truncated unless they are needed to position the optional Packet Error
Code (PEC).

Writing to an SMBus/I2C Mux configures the SMBus/I2C Mux and reading from an SMBus Mux returns its
current configuration. Figure TBD19a shows the protocol for reading and writing an SMBus/I2C Mux
configuration. The white background blocks are transmitted by a Management Controller and the grey
background blocks are transmitted in response by the SMBus/I2C Mux. The first byte sent or received is
the SMBus/I2C Mux address followed by one or more channel bytes. Each channel byte has eight
channel bits that are set to ‘1’ for connecting the corresponding downstream channel to the upstream
channel or cleared to ‘0’ for disconnecting the corresponding downstream channel from the upstream
channel.

28

The first channel byte sent or received represents channels 0 to 7, the second channel byte sent or
received represents channels 8 to 15, and so on. Within each channel byte the least significant bit in the
byte that is transmitted or received represents the lowest numbered channel. Bits for channels exceeding
the SMBus/I2C Mux Channel Descriptor Count are reserved.

Figure TBD19a: SMBus/I2C Mux Read and Write Command Format

St

a
rt

E8h

Mux
Addr

0

A
ck

02h

Chan
7:0

A
ck

01h

Chan
15:8

A
ck

St
o

p

Write

St
a

rt

E9h

Mux
Addr

1

A
ck

02h

Chan
7:0

A
ck

01h

Chan
15:8

N
A

C
K

St
o

p

Read

The minimum number of channel bytes are read or written to reach all the channels specified in the
SMBus/I2C Mux Channel Descriptor Count field. Thus, SMBus/I2C Muxes with one to eight downstream
channels would have one channel byte while an SMus/I2C Mux with 57 downstream channels would
have 8 channel bytes. In the example shown in Figure TBD19a, the SMBus/I2C Mux has 16 downstream
channels that require 2 bytes. In this example, channels 1 and 8 are being connected while all others are
being disconnected.

An SMBus/I2C Mux may also protect communications with an optional Packet Error Code (PEC) that is
appended after sufficient channel bytes have been read or written to satisfy the SMBus/I2C Mux Channel
Descriptor Count value. If the write command includes a PEC byte and the PEC byte is incorrect, then the
entire command shall be ignored by the SMBus/I2C Mux. Otherwise, the actions associated with the write
command take place after the STOP condition is received. Write commands with insufficient channel
bytes shall be accepted with truncated channel bytes having an implied value of zero. Bytes beyond the
size needed for the number of channels and PEC are reserved.

Multiple downstream channels may be simultaneously connected to the upstream channel to bridge them
together. All downstream channels shall be disconnected when the NVMe Storage Device is powered off
(see Figure 109) or by an SMBus Reset (refer to Section 9.3.4). Connecting or disconnecting channels
while they are active is strongly discouraged and results in undefined behavior.

Figure TBD19b: SMBus/I2C Mux Channel Descriptor

Byte
Offset

Factory
Default

Description

00 00h
Type: This field indicates the type of the Descriptor. The SMBus/I2C Mux
Channel Descriptor Type is 0h.

01
Impl
Spec

Length: This field indicates the length of the SMBus/I2C Mux Channel
Descriptor in bytes.

02
Impl
Spec

Count: This field indicates the number of SMBus/I2C Pointers in the
SMBus/I2C Mux Channel Descriptor. The permitted range of values is 0 to 32.

03
Impl
Spec

SMBus/I2C Pointer 0: This field contains the child index of the first Element
Descriptor whose SMBus/I2C is connected to this channel.

04
Impl
Spec

SMBus/I2C Pointer 1: If Count is greater than one, then this field is present
and contains the child index of another Element Descriptor whose SMBus/I2C
is connected to this channel. If Count is not greater than one, then this field is
not present.

… … …

29

9.2.5.6 PCIe Switch Element Descriptor

The PCIe Switch Element Descriptor is shown in Figure TBD21 and is used to describe a PCIe switch.
This Element Descriptor is the child of a single parent and the parent of one or more children.

Figure TBD21: PCIe Switch Element Descriptor

Byte
Offset

Factory
Default

Description

00 06h
Type: This field indicates the type of the Element Descriptor. The PCIe Switch
Element Descriptor Type is 6h.

01 00h
Revision: This field indicates the revision of the Element Descriptor. The PCIe
Switch Element Descriptor Revision is 0h for this specification.

02
Impl
Spec

Length: This field indicates the length of the PCIe Switch Element Descriptor in
bytes.

03
Impl
Spec

Upstream Switch Port Descriptor: This field contains the PCIe Switch Port
Descriptor that describes the upstream switch port.

Impl
Spec

Impl
Spec

Downstream Switch Port Descriptor Count: This field indicates the number
of PCIe Port Descriptors associated with downstream switch ports.

Impl
Spec

Impl
Spec

Downstream Switch Port Descriptor 0: This field contains the PCIe Switch
Port Descriptor associated with the first downstream port.

Impl
Spec

Impl
Spec

Downstream Switch Port Descriptor 1: This field contains the PCIe Switch
Port Descriptor associated with the second downstream port if Downstream
Switch Port Descriptor Count is greater than one otherwise this field is not
present.

… … …

The PCIe Switch Element Descriptor consists of a list of PCIe Switch Port Descriptors. There is an
Upstream Switch Port Descriptor that describes the upstream port and is the child of exactly one parent
Element Descriptor. A variable length list of Downstream Switch Port Descriptors describe the
downstream ports.

The format of a PCIe Switch Port Descriptor is shown in Figure TBD21a. It describes the PCIe port’s
supported PCIe link speeds, PCIe maximum link width, reference clock capabilities, and PCIe Port
Number. Downstream ports also have a child Element Descriptor and its Destination Port index value.

Figure TBD21a: PCIe Switch Port Descriptor

Byte
Offset

Factory
Default

Description

00 00h
Type: This field indicates the type of Port Descriptor. The PCIe Switch Port
Descriptor Type is 0.

01
Impl
Spec

Length: This field indicates the length of the PCIe Switch Port Descriptor in
bytes.

02
Impl
Spec

PCIe Link Speed: This field indicates a bit vector of link speeds supported by
the PCIe port.

Bit Description

7:4 Reserved

3
Set to ‘1’ if the PCIe link supports 16 GT/s.
Otherwise cleared to ‘0’.

2
Set to ‘1’ if the PCIe link supports 8.0 GT/s.
Otherwise cleared to ‘0’.

1
Set to ‘1’ if the PCIe link supports 5.0 GT/s.
Otherwise cleared to ‘0’.

30

0
Set to ‘1’ if the PCIe link supports 2.5 GT/s.
Otherwise cleared to ‘0’.

03

PCIe Maximum Link Width: The maximum PCIe link width for this port.

Value Definition

0 Reserved

1 PCIe x1

2 PCIe x2

3 Reserved

4 PCIe x4

5 to 7 Reserved

8 PCIe x8

9 to 11 Reserved

12 PCIe x12

13 to 15 Reserved

16 PCIe x16

17 to 31 Reserved

32 PCIe x32

33 to 255 Reserved

04
Impl
Spec

RefClk Capability: This field contains a bit vector that specifies the PCIe
clocking modes supported by the port.

Bit Description

7:4 Reserved

3
Set to ‘1’ for upstream ports that automatically use
RefClk if provided and otherwise uses SRIS. Otherwise,
cleared to ‘0’. Reserved for downstream ports.

2
Set to ‘1’ if the PCIe port supports Separate RefClk with
SSC (SRIS), otherwise cleared to ‘0’.

1
Set to ‘1’ if the PCIe port supports Separate RefClk with
no SSC (SRNS), otherwise cleared to ‘0’.

0
Set to ‘1’ if the PCIe port supports common RefClk,
otherwise cleared to ‘0’.

05
Impl
Spec

Port Number: This field indicates the PCIe Port Number, as defined by the PCI
Express Base Specification, associated with this port.

06
Impl
Spec

PCIe Pointer: In downstream ports this field contains the child index of the
Element Descriptor that has a PCIe port connected to this PCIe port. In
upstream ports this field is cleared to 0h.

07
Impl
Spec

Destination Port: This field contains the index of the Port Descriptor in the
child Element Descriptor. If the child Element Descriptor has one PCIe
upstream port (i.e., a PCIe Switch Element Descriptor) this field shall be cleared
to 0h.

9.2.5.7 NVM Subsystem Element Descriptor

The NVM Subsystem Element Descriptor is shown in Figure TBD23 and is used to describe an NVM
Subsystem contained in the NVMe Storage Device.

Figure TBD23: NVM Subsystem Element Descriptor

Byte
Offset

Factory
Default

Description

31

00 07h
Type: This field indicates the type of the Element Descriptor. The NVM
Subsystem Element Descriptor Type is 7h.

01 00h
Revision: This field indicates the revision of the Element Descriptor. The NVM
Subsystem Element Descriptor Revision is 0h for this specification.

02
Impl
Spec

Length: This field indicates the length of the NVM Subsystem Element
Descriptor in bytes.

03
3Ah
or

3Bh

SMBus/I2C Address Info: If the NVM Subsystem supports an MCTP over
SMBus/I2C port, then this field indicates the SMBus/I2C address for MCTP over
SMBus/I2C port and whether or not SMBus ARP is supported; otherwise, this
field has a value of 0h.

Bit Description

7:1
SMBus/I2C Address: This field contains the 7-bit
SMBus/I2C address. Refer to Table TBD3 for
requirements.

0
ARP Capable: This bit is set to ‘1’ if SMBus ARP is
supported, else it is cleared to ‘0’. Refer to Table TBD3 for
requirements.

04
Impl
Spec

SMBus/I2C Capabilities: If the NVM Subsystem supports an SMBus/I2C port
then this field indicates the SMBus/I2C capabilities; otherwise, this field has a
value of 0h.

Bit Description

7

Reset: This field is set to ‘1’ if all of the SMBus/I2C
reset mechanisms are supported as defined by the
associated form factor specification. This field is
cleared to ‘0’ if the form factor does not define
SMBus Reset or the NVMe Storage Device does
not support all of the SMBus/I2C reset mechanisms
defined by the specification for the Form Factor in
the Host Connector Element Descriptor.

6:2 Reserved

1:0

Maximum Speed: This field is set to the highest
supported SMBus/I2C clock speed.

Value Description

0 100 kHz

1 400 kHz

2 1 MHz

3 Reserved

05
Impl
Spec

NVM Subsystem Port Descriptor Count: This field indicates the number of
NVM Subsystem Port Descriptors associated with the NVM Subsystem. The
permitted range of values is 1 to 64.

Impl
Spec

Impl
Spec

NVM Subsystem Port Descriptor 0: This field contains the NVM Subsystem
Port Descriptor associated with the first NVM Subsystem port.

Impl
Spec

Impl
Spec

NVM Subsystem Port Descriptor 1: This field contains the NVM Subsystem
Port Descriptor associated with the second NVM Subsystem port if NVM
Subsystem Port Descriptor Count is greater than one otherwise this field is not
present.

… … …

Each upstream port is described by an NVM Subsystem Port Descriptor as shown in Figure TBD23a. It
describes the PCIe port’s supported PCIe link speeds, PCIe max link width, RefClk capabilities, and PCIe
Port Identifier. Each NVM Subsystem Port Descriptor should be the child of exactly parent Element
Descriptor.

32

Figure TBD23a: NVM Subsystem Port Descriptor

Byte
Offset

Factory
Default

Description

00 00h
Type: This field indicates the type of an NVM Subsystem Port Descriptor. The
NVM Subsystem Port Descriptor Type is 0.

01
Impl
Spec

Length: This field indicates the length of the NVM Subsystem Port Descriptor
in bytes.

02
Impl
Spec

PCIe Link Speed: This field indicates a bit vector of link speeds supported by
the PCIe port.

Bit Description

7:4 Reserved

3
Set to ‘1’ if the PCIe link supports 16 GT/s.
Otherwise cleared to ‘0’.

2
Set to ‘1’ if the PCIe link supports 8.0 GT/s.
Otherwise cleared to ‘0’.

1
Set to ‘1’ if the PCIe link supports 5.0 GT/s.
Otherwise cleared to ‘0’.

0
Set to ‘1’ if the PCIe link supports 2.5 GT/s.
Otherwise cleared to ‘0’.

03

PCIe Maximum Link Width: The maximum PCIe link width for this NVM
Subsystem port.

Value Description

0 Reserved

1 PCIe x1

2 PCIe x2

3 Reserved

4 PCIe x4

5 to 7 Reserved

8 PCIe x8

9 to 11 Reserved

12 PCIe x12

13 to 15 Reserved

16 PCIe x16

17 to 31 Reserved

32 PCIe x32

33 to 255 Reserved

04
Impl
Spec

RefClk Capability: This field contains a bit vector that specifies the PCIe
clocking modes supported by the port.

Bit Description

7:4 Reserved

3
Set to ‘1’ if the device automatically uses RefClk if
provided and otherwise uses SRIS, otherwise cleared
to ‘0’.

2
Set to ‘1’ if the PCIe link supports Separate RefClk
with SSC (SRIS), otherwise cleared to ‘0’.

1
Set to ‘1’ if the PCIe link supports Separate RefClk
with no SSC (SRNS), otherwise cleared to ‘0’.

0
Set to ‘1’ if the PCIe link supports common RefClk,
otherwise cleared to ‘0’.

05
Impl
Spec

Port Identifier: This field contains the NVMe-MI Port Identifier associated with
this port.

33

9.2.5.8 Vendor-Specific Element Descriptors

The Vendor-Specific Element Descriptor is shown Figure TBD24.

Figure TBD24: Vendor-Specific Element Descriptors

Byte
Offset

Factory
Default

Description

00
Impl
Spec

Type: This field indicates the type of the Element Descriptor. Vendor-Specific
Types have a value in the range of F0h – FFh.

01
Impl
Spec

Revision: This field indicates the revision of the Element Descriptor. The Vendor-
Specific Element Descriptor Revision is determined by the Vendor.

02
Impl
Spec

Length: This field indicates the length of the Vendor-Specific Element Descriptor
in bytes.

04:03
Impl
Spec

PCI Vendor ID: This field indicates PCI-SIG assigned vendor identifier.

Impl
Spec

Impl
Spec

Vendor Specific: Vendor-specific information.

Add Section 9.3.4 as shown below:

9.3.4 SMBus Reset

All SMBus/I2C elements should support the recommendation for SMBus reset when the SMBus/I2C clock
is low for longer than tTIMEOUT,MIN .

Some form factors may also specify one or more separate SMBus reset mechanisms. If such
mechanisms are supported by an NVMe Storage Device, then the NVMe Storage Device shall propagate
the reset to all SMBus/I2C elements on the NVMe Storage Device and translate the reset as needed to
Expansion Connector form factors.

If the SMBus/I2C element on an NVMe Storage Device is in master mode, then an SMBus Reset shall
cause it to generate a STOP condition as defined in the SMBus Specification within or after the current
data byte in the transfer process. The NVMe Storage Device shall remain idle on SMBus for the
remainder of the SMBus Reset assertion even if other SMBus/I2C elements attempt to address it. An
NVMe Storage Device shall be ready to receive a START condition as defined in the SMBus Specification
within 10 ms after SMBus Reset de-assertion.

An SMBus Reset shall not modify ARP assigned addresses. Management Controllers may send an ARP
reset after the SMBus Reset if addresses need to be reinitialized.

An SMBus Reset shall cause SMBus/I2C Management Endpoints to drop the MCTP packet in flight. If the
MCTP Command Servicing State is in Transmit then it shall change to Idle as if transmit completed. An
SMBus Reset does not reset other MCTP state information or abort NVMe-MI command processing.

34

Change Appendix A as shown below:

The SMBus slave address to read this data structure is not the same address we used for MCTP, and
defaults to 6Ah if ARP is not invoked1. After the Management Controller assigns the MCTP UDID a new
address using ARP, then the Basic Management Command will respond to slave reads at the MCTP
address on NVMe Storage Devices with multiple controllers that support ARP. This method of changing
the Basic Command address is optional on other NVMe Storage Device implementations. Since SMBus
shifts the address left to make room for the read/write direction bit, the address appears in the examples
below as D4h for write and D5h for read.

…

The SMBus Arbitration bit may be used for simple arbitration on systems that have multiple drives on the
same SMBus channelsegment without ARP or muxes to separate them. To use this mechanism, the host
follows this 3 step process to handle collisions for the same slave address:

…

Change Figure 146 as shown below:

Command
Code

Offset
(byte)

Description

0 00
Length of Status: Indicates number of additional bytes to read before encountering PEC.
This value should always be 6 (06h) in implementations of this version of the spec.

 01

Status Flags (SFLGS): This field indicates the status of the NVM Subsystem.

SMBus Arbitration – Bit 7 is set to ‘1’ after an SMBus block read is completed all the way
to the stop bit without bus contention and cleared to ‘0’ if an SMBus Send Byte FFh is
received on this SMBus slave address.

Drive Not Ready – Bit 6 is set to ‘1’ when the subsystem is not capable of processing NVMe
management commands, and the rest of the transmission may be invalid. If cleared to ‘0’,
then the NVM Subsystem is fully powered and ready to respond to management commands.
This logic level intentionally identifies and prioritizes powered up and ready drives over their
powered off neighbors on the same SMBus channelsegment.

Drive Functional – Bit 5 is set to ‘1’ to indicate an NVM Subsystem is functional. If cleared
to ‘0’, then there is an unrecoverable failure in the NVM Subsystem and the rest of the
transmission may be invalid. Note that this bit may default to ‘0’ after reset and transition to
‘1’ after the NVM Subsystem has completed initialization and this case should not be
considered an error.

Reset Not Required - Bit 4 is set to ‘1’ to indicate the NVM Subsystem does not need a reset
to resume normal operation. If cleared to ‘0’, then the NVM Subsystem has experienced an
error that prevents continued normal operation. A Controller Level Reset is required to
resume normal operation.

Port 0 PCIe Link Active - Bit 3 is set to ‘1’ to indicate the first port’s PCIe link is up (i.e., the
Data Link Control and Management State Machine is in the DL_Active state). If cleared to
‘0’, then the PCIe link is down.

Port 1 PCIe Link Active - Bit 2 is set to ‘1’ to indicate the second port’s PCIe link is up. If
cleared to ‘0’, then the second port’s PCIe link is down or not present.
Bits 1:0 shall be set to ‘1’.

… … …

32+ 32:255
Vendor Specific – Thisese data structures shall not exceed the maximum read length of 255
specified in the SMBus version 3 specification. Preferably their lengths are is not greater than
32 for compatibility with SMBus 2.0, additional blocks shall be on 8 byte boundaries.

35

