

i

NVM Express®

Base Specification

Revision 2.0e

July 29th, 2024

Please send comments to info@nvmexpress.org

NVM Express® Base Specification, Revision 2.0e

ii

NVM Express® Base Specification, Revision 2.0e is available for download at https://nvmexpress.org. The
NVM Express Base Specification, Revision 2.0e incorporates NVM Express Base Specification, Revision
2.0 (refer to https://nvmexpress.org/changes-in-nvm-express-revision-2-0 for details), ECN 001, ECN102,
ECN105, ECN106, ECN107, ECN109, ECN110, ECN111, ECN112, ECN113, ECN114, ECN115,
ECN117, ECN118, ECN119, ECN120 and ECN122.

SPECIFICATION DISCLAIMER
LEGAL NOTICE:

© Copyright 2008 to 2024 NVM Express, Inc. ALL RIGHTS RESERVED.

This NVM Express Base Specification, Revision 2.0e is proprietary to the NVM Express, Inc. (also referred
to as “Company”) and/or its successors and assigns.

NOTICE TO USERS WHO ARE NVM EXPRESS, INC. MEMBERS: Members of NVM Express, Inc. have
the right to use and implement this NVM Express Base Specification, Revision 2.0e subject, however, to
the Member’s continued compliance with the Company’s Intellectual Property Policy and Bylaws and the
Member’s Participation Agreement.

NOTICE TO NON-MEMBERS OF NVM EXPRESS, INC.: If you are not a Member of NVM Express, Inc.
and you have obtained a copy of this document, you only have a right to review this document or make
reference to or cite this document. Any such references or citations to this document must acknowledge
NVM Express, Inc. copyright ownership of this document. The proper copyright citation or reference is as
follows: “© 2008 to 2024 NVM Express, Inc. ALL RIGHTS RESERVED.” When making any such citations
or references to this document you are not permitted to revise, alter, modify, make any derivatives of, or
otherwise amend the referenced portion of this document in any way without the prior express written
permission of NVM Express, Inc. Nothing contained in this document shall be deemed as granting you any
kind of license to implement or use this document or the specification described therein, or any of its
contents, either expressly or impliedly, or to any intellectual property owned or controlled by NVM Express,
Inc., including, without limitation, any trademarks of NVM Express, Inc.

LEGAL DISCLAIMER:

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN “AS IS”
BASIS. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, NVM EXPRESS, INC. (ALONG
WITH THE CONTRIBUTORS TO THIS DOCUMENT) HEREBY DISCLAIM ALL REPRESENTATIONS,
WARRANTIES AND/OR COVENANTS, EITHER EXPRESS OR IMPLIED, STATUTORY OR AT
COMMON LAW, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, VALIDITY, AND/OR
NONINFRINGEMENT.

All product names, trademarks, registered trademarks, and/or servicemarks may be claimed as the property
of their respective owners.

The NVM Express® design mark is a registered trademark of NVM Express, Inc.
PCI-SIG®, PCI Express®, and PCIe® are registered trademarks of PCI-SIG.
InfiniBandTM is a trademark and servicemark of the InfiniBand Trade Association.

NVM Express Workgroup
c/o VTM, Inc.
3855 SW 153rd Drive
Beaverton, OR 97003 USA
info@nvmexpress.org

https://nvmexpress.org/
https://nvmexpress.org/changes-in-nvm-express-revision-2-0

NVM Express® Base Specification, Revision 2.0e

iii

Table of Contents

1 INTRODUCTION ... 14

1.1 Overview .. 14
1.2 Scope... 15
1.3 Outside of Scope ... 15
1.4 Conventions ... 15
1.5 Definitions .. 18
1.6 I/O Command Set specific definitions used in this specification ... 24
1.7 NVM Command Set specific definitions used in this specification .. 24
1.8 References .. 24
1.9 References Under Development ... 26

2 THEORY OF OPERATION ... 27

2.1 Memory-Based Transport Model (PCIe) ... 29
2.2 Message-Based Transport Model (Fabrics) .. 30
2.3 NVM Storage Model .. 33
2.4 Extended Capabilities Theory ... 38

3 NVM EXPRESS ARCHITECTURE ... 42

3.1 NVM Controller Architecture .. 42
3.2 NVM Subsystem Entities ... 82
3.3 NVM Queue Models .. 92
3.4 Command Architecture Submission and Completion Mechanism .. 121
3.5 Controller Initialization ... 124
3.6 Shutdown Processing .. 131
3.7 Resets.. 133
3.8 NVM Capacity Model ... 136
3.9 Keep Alive ... 140
3.10 Privileged Actions .. 144
3.11 Firmware Update Process ... 144

4 DATA STRUCTURES ... 147

4.1 Data Layout ... 147
4.2 Feature Values .. 154
4.3 Identifier Format and Layout (Informative) .. 157
4.4 List Data Structures ... 159
4.5 NVMe Qualified Names ... 160

5 ADMIN COMMAND SET ... 163

5.1 Abort command ... 165
5.2 Asynchronous Event Request command .. 166
5.3 Capacity Management command .. 171
5.4 Create I/O Completion Queue command .. 175
5.5 Create I/O Submission Queue command.. 176
5.6 Delete I/O Completion Queue command .. 178
5.7 Delete I/O Submission Queue command .. 179
5.8 Doorbell Buffer Config command .. 180
5.9 Device Self-test command .. 181
5.10 Directive Receive command .. 182
5.11 Directive Send command .. 183
5.12 Firmware Commit command ... 184
5.13 Firmware Image Download command ... 187
5.14 Format NVM command ... 188

NVM Express® Base Specification, Revision 2.0e

iv

5.15 Get Features command ... 191
5.16 Get Log Page command.. 193
5.17 Identify command .. 259
5.18 Keep Alive command ... 300
5.19 Lockdown command .. 300
5.20 NVMe-MI Receive command .. 302
5.21 NVMe-MI Send command ... 302
5.22 Namespace Attachment command ... 302
5.23 Namespace Management command .. 304
5.24 Sanitize command ... 306
5.25 Security Receive command ... 309
5.26 Security Send command ... 310
5.27 Set Features command ... 311
5.28 Virtualization Management command ... 340

6 FABRICS COMMAND SET .. 343

6.1 Authentication Receive Command and Response .. 343
6.2 Authentication Send Command and Response .. 344
6.3 Connect Command and Response ... 345
6.4 Disconnect Command and Response ... 349
6.5 Property Get Command and Response .. 350
6.6 Property Set Command and Response... 351

7 I/O COMMANDS ... 353

7.1 Flush command ... 353
7.2 Reservation Acquire command ... 354
7.3 Reservation Register command .. 355
7.4 Reservation Release command .. 356
7.5 Reservation Report command ... 357

8 EXTENDED CAPABILITIES ... 360

8.1 Asymmetric Namespace Access Reporting .. 360
8.2 Boot Partitions ... 367
8.3 Capacity Management... 370
8.4 Command and Feature Lockdown .. 373
8.5 Controller Memory Buffer .. 374
8.6 Device Self-test Operations ... 376
8.7 Directives ... 378
8.8 Doorbell Stride for Software Emulation ... 388
8.9 Host Memory Buffer ... 388
8.10 Host Operation with Asymmetric Namespace Access Reporting (Informative) 389
8.11 Namespace Management ... 390
8.12 Namespace Write Protection ... 392
8.13 NVMe over Fabrics Secure Channel and In-band Authentication .. 395
8.14 Persistent Memory Region .. 411
8.15 Power Management .. 412
8.16 Predictable Latency Mode ... 418
8.17 Read Recovery Level .. 422
8.18 Replay Protected Memory Block ... 423
8.19 Reservations .. 434
8.20 Rotational Media .. 441
8.21 Sanitize Operations ... 442
8.22 Submission Queue (SQ) Associations .. 446
8.23 Standard Vendor Specific Command Format ... 446
8.24 Telemetry ... 446

NVM Express® Base Specification, Revision 2.0e

v

8.25 Universally Unique Identifiers (UUIDs) for Vendor Specific Information 450
8.26 Virtualization Enhancements ... 453

9 ERROR REPORTING AND RECOVERY ... 458

9.1 Command and Queue Error Handling ... 458
9.2 Media and Data Error Handling ... 458
9.3 Memory Error Handling ... 458
9.4 Internal Controller Error Handling .. 458
9.5 Controller Fatal Status Condition .. 458

ANNEX A. SANITIZE OPERATION CONSIDERATIONS (INFORMATIVE) 460

A.1 Overview .. 460
A.2 Hidden Storage (Overprovisioning) ... 460
A.3 Integrity checks and No-Deallocate After Sanitize .. 460
A.4 Bad Media and Vendor Specific NAND Use ... 460

ANNEX B. HOST CONSIDERATIONS (INFORMATIVE) ... 462

B.1 Basic Steps when Building a Command ... 462
B.2 Creating an I/O Submission Queue ... 462
B.3 Executing a Fused Operation .. 463
B.4 Asynchronous Event Request Host Software Recommendations .. 465
B.5 Updating Controller Doorbell Properties using a Shadow Doorbell Buffer 466

ANNEX C. POWER MANAGEMENT AND CONSUMPTION (INFORMATIVE) 467

NVM Express® Base Specification, Revision 2.0e

vi

Table of Figures

Figure 1: NVMe Family of Specifications ... 14
Figure 2: Decimal and Binary Units .. 16
Figure 3: Byte, Word, and Dword Relationships .. 18
Figure 4: Taxonomy of Transport Models .. 28
Figure 5: Types of NVMe Command Sets .. 28
Figure 6: Queue Pair Example, 1:1 Mapping ... 29
Figure 7: Queue Pair Example, n:1 Mapping ... 30
Figure 8: NVMe over Fabrics Layering ... 31
Figure 9: Command Capsule Format ... 33
Figure 10: Response Capsule Format ... 33
Figure 11: NVM Storage Hierarchy .. 34
Figure 12: Complex NVM Storage Hierarchy ... 35
Figure 13: Single-Namespace NVM Subsystem .. 36
Figure 14: Two-Namespace NVM Subsystem ... 37
Figure 15: Complex NVM Subsystem .. 38
Figure 16: NVM Express Controller with Two Namespaces ... 39
Figure 17: NVM Subsystem with Two Controllers and One Port .. 39
Figure 18: NVM Subsystem with Two Controllers and Two Ports .. 40
Figure 19: PCI Express Device Supporting Single Root I/O Virtualization (SR-IOV) ... 41
Figure 20: Controller Types .. 43
Figure 21: NVM Subsystem with Three I/O Controllers .. 44
Figure 22: I/O Controller – Admin Command Support .. 45
Figure 23: I/O Controller – Common I/O Command Support ... 45
Figure 24: I/O Controller – Log Page Support .. 46
Figure 25: I/O Controller – Feature Support ... 47
Figure 26: NVM Subsystem with One Administrative and Two I/O Controllers .. 49
Figure 27: NVM Subsystem with One Administrative Controller .. 49
Figure 28: Administrative Controller – Admin Command Support .. 49
Figure 29: Administrative Controller – Log Page Support .. 51
Figure 30: Administrative Controller – Feature Support ... 51
Figure 31: Discovery Controller Initialization process flow ... 54
Figure 32: Discovery Controller – Admin Command Support ... 54
Figure 33: Discovery Controller – Log Page Support ... 55
Figure 34: Discovery Controller – Feature Support .. 56
Figure 35: Property Definition .. 58
Figure 36: Memory-Based Property Definition ... 59
Figure 37: Message-Based Property Definition .. 59
Figure 36: Offset 0h: CAP – Controller Capabilities ... 60
Figure 37: VS Value for 1.0 Compliant Controllers ... 63
Figure 38: VS Value for 1.1 Compliant Controllers ... 63
Figure 39: VS Value for 1.2 Compliant Controllers ... 63
Figure 40: VS Value for 1.2.1 Compliant Controllers .. 63
Figure 41: VS Value for 1.3 Compliant Controllers ... 64
Figure 42: VS Value for 1.4 Compliant Controllers ... 64
Figure 43: VS Value for 2.0 Compliant Controllers ... 64
Figure 44: Offset Ch: INTMS – Interrupt Mask Set... 64
Figure 45: Offset 10h: INTMC – Interrupt Mask Clear .. 65
Figure 46: Offset 14h: CC – Controller Configuration ... 65
Figure 47: Offset 1Ch: CSTS – Controller Status ... 68
Figure 48: Offset 20h: NSSR – NVM Subsystem Reset ... 70
Figure 49: Offset 24h: AQA – Admin Queue Attributes .. 70
Figure 50: Offset 28h: ASQ – Admin Submission Queue Base Address ... 71
Figure 51: Offset 30h: ACQ – Admin Completion Queue Base Address .. 71
Figure 52: Offset 38h: CMBLOC – Controller Memory Buffer Location .. 71
Figure 53: Offset 3Ch: CMBSZ – Controller Memory Buffer Size... 72
Figure 54: Offset 40h: BPINFO – Boot Partition Information .. 73
Figure 55: Offset 44h: BPRSEL – Boot Partition Read Select ... 74
Figure 56: Offset 48h: BPMBL – Boot Partition Memory Buffer Location ... 74
Figure 57: Offset 50h: CMBMSC – Controller Memory Buffer Memory Space Control .. 75
Figure 58: Offset 58h: CMBSTS – Controller Memory Buffer Status.. 75
Figure 59: Offset 5Ch: CMBEBS – Controller Memory Buffer Elasticity Buffer Size .. 76

NVM Express® Base Specification, Revision 2.0e

vii

Figure 60: Offset 60h: CMBSWTP – Controller Memory Buffer Sustained Write Throughput 76
Figure 61: Offset 64h: NSSD – NVM Subsystem Shutdown .. 77
Figure 62: Offset 68h: CRTO – Controller Ready Timeouts ... 77
Figure 63: Offset E00h: PMRCAP – Persistent Memory Region Capabilities .. 78
Figure 64: Offset E04h: PMRCTL – Persistent Memory Region Control .. 79
Figure 65: Offset E08h: PMRSTS – Persistent Memory Region Status ... 79
Figure 66: Offset E0Ch: PMREBS – Persistent Memory Region Elasticity Buffer Size .. 80
Figure 67: Offset E10h: PMRSWTP – Persistent Memory Region Sustained Write Throughput 81
Figure 68: Offset E14h: PMRMSCL – Persistent Memory Region Memory Space Control Lower 82
Figure 69: Offset E18h: PMRMSCU – Persistent Memory Region Memory Space Control Upper 82
Figure 70: NSID Types and Relationship to Namespace ... 83
Figure 71: NSID Types ... 84
Figure 72: NVM Sets and Associated Namespaces ... 86
Figure 73: NVM Set Aware Admin Commands .. 86
Figure 74: NVM Sets and Associated Namespaces ... 88
Figure 75: Example 1 Domain Structure .. 90
Figure 76: Example 2 Domain Structure .. 91
Figure 77: Empty Queue Definition .. 94
Figure 78: Full Queue Definition... 94
Figure 79: Command Capsule ... 95
Figure 80: Fabrics Command Capsule – Submission Queue Entry Format ... 95
Figure 81: Fabrics Command Capsule – Command Dword 0 .. 96
Figure 82: Response Capsule .. 96
Figure 83: Fabrics Response Capsule – Completion Queue Entry Format .. 97
Figure 84: Data and SGL Locations within a Command Capsule .. 98
Figure 85: SGL Example Using Memory Transactions .. 99
Figure 86: SGL Example Using In Capsule Data Transfer ... 99
Figure 87: Command Dword 0 ... 105
Figure 88: Common Command Format .. 105
Figure 89: Common Command Format – Vendor Specific Commands (Optional) ... 108
Figure 90: Common Completion Queue Entry Layout – Admin and All I/O Command Sets 108
Figure 91: Completion Queue Entry: DW 2 .. 108
Figure 92: Completion Queue Entry: DW 3 .. 109
Figure 93: Completion Queue Entry: Status Field .. 109
Figure 94: Status Code – Status Code Type Values .. 110
Figure 95: Status Code – Generic Command Status Values ... 110
Figure 96: Status Code – Command Specific Status Values ... 114
Figure 97: Status Code – Command Specific Status Values, I/O Commands ... 115
Figure 98: Status Code – Command Specific Status Values, Fabrics Commands .. 116
Figure 99: Status Code – Media and Data Integrity Error Values... 116
Figure 100: Status Code – Path Related Status Values ... 117
Figure 101: Phase Tag bit Transition Example .. 118
Figure 102: Round Robin Arbitration .. 123
Figure 103: Weighted Round Robin with Urgent Priority Class Arbitration ... 124
Figure 104: Queue Creation Flow .. 126
Figure 105: Admin Commands Permitted to Return a Status Code of Admin Command Media Not Ready 128
Figure 106: Simple NVM Subsystem ... 137
Figure 107: Vertically-Organized NVM Subsystem .. 138
Figure 108: Horizontally-Organized Dual NAND NVM Subsystem .. 139
Figure 109: Capacity Information Field Usage ... 140
Figure 110: PRP Entry Layout.. 147
Figure 111: PRP Entry – Page Base Address and Offset .. 147
Figure 112: PRP List Layout for Physically Contiguous Memory Pages .. 147
Figure 113: PRP List Layout for Physically Non-Contiguous Memory Pages .. 148
Figure 114: SGL Segment ... 149
Figure 115: Generic SGL Descriptor Format .. 149
Figure 116: SGL Descriptor Type ... 149
Figure 117: SGL Descriptor Sub Type Values ... 150
Figure 118: SGL Data Block descriptor .. 150
Figure 119: SGL Bit Bucket descriptor ... 151
Figure 120: SGL Segment descriptor ... 151
Figure 121: SGL Last Segment descriptor ... 152

NVM Express® Base Specification, Revision 2.0e

viii

Figure 122: Keyed SGL Data Block descriptor ... 152
Figure 123: Transport SGL Data Block descriptor.. 153
Figure 124: SGL Read Example .. 154
Figure 125: Current Value after Reset with Scope of Entire NVM Subsystem ... 155
Figure 126: Current Value after Reset with Scope of Subset of the NVM Subsystem ... 156
Figure 127: PCI Vendor ID (VID) and PCI Subsystem Vendor ID (SSVID) .. 157
Figure 128: Serial Number (SN) and Model Number (MN) .. 157
Figure 129: IEEE OUI Identifier (IEEE) .. 158
Figure 130: IEEE Extended Unique Identifier (EUI64), MA-L Format... 158
Figure 131: IEEE Extended Unique Identifier (EUI64), OUI Identifier .. 158
Figure 132: IEEE Extended Unique Identifier (EUI64), Ext. ID (cont)... 158
Figure 133: MA-L similarity to WWN .. 158
Figure 134: Namespace Globally Unique Identifier (NGUID) ... 159
Figure 135: Namespace Globally Unique Identifier (NGUID), OUI ... 159
Figure 136: Namespace Globally Unique Identifier (NGUID), Extension Identifier (continued) 159
Figure 137: Namespace Globally Unique Identifier (NGUID), NGUID similarity to WWN .. 159
Figure 138: Controller List Format .. 159
Figure 139: Namespace List Format .. 160
Figure 140: NQN Processing ... 161
Figure 141: NQN Construction for Older NVM Subsystems ... 162
Figure 142: Opcodes for Admin Commands .. 163
Figure 143: Sanitize Operations and Format NVM Command – Admin Commands Allowed 164
Figure 144: Abort – Command Dword 10 ... 166
Figure 145: Abort – Command Specific Status Values .. 166
Figure 146: Status Code – Command Specific Status Values ... 168
Figure 147: Asynchronous Event Request – Completion Queue Entry Dword 0 ... 168
Figure 148: Asynchronous Event Information – Error Status ... 168
Figure 149: Asynchronous Event Information – SMART / Health Status ... 169
Figure 150: Asynchronous Event Information – Notice .. 169
Figure 151: Asynchronous Event Information – I/O Command Specific Status ... 170
Figure 152: Asynchronous Event Information – Immediate .. 171
Figure 153: Capacity Management – Command Dword 10 ... 171
Figure 154: Capacity Management – Command Dword 11 ... 172
Figure 155: Capacity Management – Command Dword 12 ... 172
Figure 156: Capacity Management – Command Specific Status Values ... 174
Figure 157: Capacity Management – Completion Queue Entry Dword 0 ... 175
Figure 158: Create I/O Completion Queue – PRP Entry 1 ... 175
Figure 159: Create I/O Completion Queue – Command Dword 10 .. 175
Figure 160: Create I/O Completion Queue – Command Dword 11 .. 175
Figure 161: Create I/O Completion Queue – Command Specific Status Values .. 176
Figure 162: Create I/O Submission Queue – PRP Entry 1 ... 177
Figure 163: Create I/O Submission Queue – Command Dword 10.. 177
Figure 164: Create I/O Submission Queue – Command Dword 11.. 177
Figure 165: Create I/O Submission Queue – Command Dword 12.. 178
Figure 166: Create I/O Submission Queue – Command Specific Status Values ... 178
Figure 167: Delete I/O Completion Queue – Command Dword 10 .. 179
Figure 168: Delete I/O Completion Queue – Command Specific Status Values .. 179
Figure 169: Delete I/O Submission Queue – Command Dword 10 .. 179
Figure 170: Delete I/O Submission Queue – Command Specific Status Values .. 180
Figure 171: Doorbell Buffer Config – Shadow Doorbell and EventIdx .. 180
Figure 172: Doorbell Buffer Config – PRP Entry 1 ... 180
Figure 173: Doorbell Buffer Config – PRP Entry 2 ... 180
Figure 174: Device Self-test Namespace Test Action .. 181
Figure 175: Device Self-test – Command Dword 10 .. 181
Figure 176: Device Self-test – Command Processing .. 181
Figure 177: Device Self-test – Command Specific Status Values .. 182
Figure 178: Directive Receive – Data Pointer .. 183
Figure 179: Directive Receive – Command Dword 10 ... 183
Figure 180: Directive Receive – Command Dword 11 ... 183
Figure 181: Directive Send – Data Pointer ... 183
Figure 182: Directive Send – Command Dword 10 .. 183
Figure 183: Directive Send – Command Dword 11 .. 184

NVM Express® Base Specification, Revision 2.0e

ix

Figure 184: Firmware Commit – Command Dword 10 ... 184
Figure 185: Firmware Commit – Completion Queue Entry Dword 0 .. 185
Figure 186: Firmware Commit – Command Specific Status Values ... 186
Figure 187: Firmware Image Download – Data Pointer ... 187
Figure 188: Firmware Image Download – Command Dword 10 .. 187
Figure 189: Firmware Image Download – Command Dword 11 .. 187
Figure 190: Firmware Image Download – Command Specific Status Values .. 188
Figure 191: Format NVM – Operation Scope ... 188
Figure 192: Format NVM – Command Dword 10 ... 190
Figure 193: Format NVM – Command Specific Status Values ... 190
Figure 194: Get Features – Data Pointer ... 191
Figure 195: Get Features – Command Dword 10 .. 191
Figure 196: Get Features – Command Dword 14 .. 192
Figure 197: Get Features – Feature Identifiers .. 192
Figure 198: Completion Queue Entry Dword 0 when Select is set to 11b .. 193
Figure 199: Get Log Page – Data Pointer .. 194
Figure 200: Get Log Page – Command Dword 10 ... 194
Figure 201: Get Log Page – Command Dword 11 ... 194
Figure 202: Get Log Page – Command Dword 12 ... 195
Figure 203: Get Log Page – Command Dword 13 ... 195
Figure 204: Get Log Page – Command Dword 14 ... 195
Figure 205: Get Log Page – Log Page Identifiers .. 196
Figure 206: Supported Log Pages Log Page ... 198
Figure 207: LID Supported and Effects Data Structure .. 198
Figure 208: LID Supported and Effects Data Structure – LID Specific Parameter Field ... 198
Figure 209: Error Information Log Entry Data Structure ... 199
Figure 210: SMART / Health Information Log Page ... 201
Figure 211: Temperature Sensor Data Structure ... 204
Figure 212: Firmware Slot Information Log Page ... 205
Figure 213: Commands Supported and Effects Log Page ... 206
Figure 214: Commands Supported and Effects Data Structure ... 207
Figure 215: Device Self-test Log Page ... 208
Figure 216: Self-test Result Data Structure .. 209
Figure 217: Telemetry Host-Initiated Log Specific Parameter Field ... 210
Figure 218: Telemetry Host-Initiated Log Page .. 211
Figure 219: Telemetry Controller-Initiated Log Page .. 213
Figure 220: Endurance Group Information Log Page ... 214
Figure 221: Predictable Latency Per NVM Set Log Page .. 216
Figure 222: Predictable Latency Event Aggregate Log Page ... 218
Figure 223: Asymmetric Namespace Access Log Specific Parameter Field .. 218
Figure 224: Asymmetric Namespace Access Log Page .. 219
Figure 225: ANA Group Descriptor format ... 219
Figure 226: Persistent Event Log Specific Parameter Field ... 222
Figure 227: Persistent Event Log Page .. 223
Figure 228: Persistent Event Format .. 225
Figure 229: Persistent Event Log Event Types .. 227
Figure 230: SMART / Health Log Snapshot Event Data Format (Event Type 01h) .. 227
Figure 231: Firmware Commit Event Data Format (Event Type 02h) .. 228
Figure 232: Timestamp Change Event Format (Event Type 03h) .. 228
Figure 233: Power-on or Reset Event (Event Type 04h) .. 228
Figure 234: Controller Reset Information descriptor... 229
Figure 235: NVM Subsystem Hardware Error Event Format (Event Type 05h) ... 230
Figure 236: NVM Subsystem Hardware Error Event Codes .. 230
Figure 237: Additional Hardware Error Information for correctable and uncorrectable PCIe errors 231
Figure 238: Additional Hardware Error Information for Controller Ready Timeout Exceeded errors 233
Figure 239: Change Namespace Event Data Format (Event Type 06h) .. 233
Figure 240: Format NVM Start Event Data Format (Event Type 07h) .. 235
Figure 241: Format NVM Completion Event Data Format (Event Type 08h) ... 235
Figure 242: Sanitize Start Event Data Format (Event Type 09h) ... 236
Figure 243: Sanitize Completion Event Data Format (Event Type 0Ah) .. 236
Figure 244: Set Feature Event Data Format .. 237
Figure 245: Telemetry Log Create Event Data Format (Event Type 0Ch) ... 238

NVM Express® Base Specification, Revision 2.0e

x

Figure 246: Thermal Excursion Event Data Format (Event Type 0Dh) .. 238
Figure 247: Vendor Specific Event Format (Event Type DEh) ... 240
Figure 248: Vendor Specific Event Descriptor Format ... 240
Figure 249: Vendor Specific Event Data Type Codes .. 240
Figure 250: Endurance Group Event Aggregate Log Page .. 241
Figure 251: Media Unit Status Log Page ... 242
Figure 252: Media Unit Status Descriptor .. 242
Figure 253: Supported Capacity Configuration List Log Page ... 244
Figure 254: Capacity Configuration Descriptor... 244
Figure 255: Endurance Group Configuration Descriptor .. 245
Figure 256: Channel Configuration Descriptor ... 246
Figure 257: Media Unit Configuration Descriptor ... 246
Figure 258: Feature Identifiers Effects Log Page ... 247
Figure 259: FID Supported and Effects Data Structure .. 247
Figure 260: NVMe-MI Commands Supported and Effects Log Page ... 248
Figure 261: NVMe-MI Commands Supported and Effects Data Structure ... 249
Figure 262: Command and Feature Lockdown Log Specific Parameter Field ... 250
Figure 263: Command and Feature Lockdown Log Page .. 251
Figure 264: Boot Partition Log Specific Parameter Field .. 251
Figure 265: Boot Partition Log Page .. 252
Figure 266: Rotational Media Information Log Page .. 252
Figure 267: Discovery Log Page Entry Data Structure ... 254
Figure 268: Discovery Log Page .. 255
Figure 269: Reservation Notification Log Page .. 256
Figure 270: Sanitize Status Log Page .. 257
Figure 271: Get Log Page – Command Specific Status Values ... 258
Figure 272: Identify – Data Pointer ... 259
Figure 273: Identify – Command Dword 10 .. 259
Figure 274: Identify – Command Dword 11 .. 259
Figure 275: Identify – Command Dword 14 .. 259
Figure 276: Identify – CNS Values ... 260
Figure 277: Command Set Identifiers ... 261
Figure 278: Identify – Identify Controller Data Structure, I/O Command Set Independent ... 262
Figure 279: Identify – Power State Descriptor Data Structure .. 287
Figure 280: Identify – Namespace Identification Descriptor ... 289
Figure 281: NVM Set List ... 290
Figure 282: NVM Set Attributes Entry .. 290
Figure 283: Identify – I/O Command Set Independent Identify Namespace Data Structure 292
Figure 284: Identify – Primary Controller Capabilities Structure ... 295
Figure 285: Secondary Controller List .. 296
Figure 286: Secondary Controller Entry ... 296
Figure 287: UUID List ... 297
Figure 288: UUID List Entry ... 297
Figure 289: Domain List ... 298
Figure 290: Domain Attributes Entry .. 298
Figure 291: Endurance Group List ... 298
Figure 292: Identify I/O Command Set Data Structure ... 299
Figure 293: I/O Command Set Vector .. 300
Figure 294: Lockdown – Command Dword 10 ... 301
Figure 295: Lockdown – Command Dword 14 ... 301
Figure 296: Lockdown – Command Specific Status Values ... 302
Figure 297: Namespace Attachment – Data Pointer .. 303
Figure 298: Namespace Attachment – Command Dword 10 ... 303
Figure 299: Namespace Attachment – Command Specific Status Values ... 303
Figure 300: Namespace Management – Data Pointer ... 304
Figure 301: Namespace Management – Command Dword 10 .. 304
Figure 302: Namespace Management – Command Dword 11 .. 305
Figure 303: Namespace Management – Data Structure for Create ... 305
Figure 304: Namespace Management – Command Specific Status Values .. 305
Figure 305: Namespace Management – Completion Queue Entry Dword 0 .. 306
Figure 306: Sanitize – Command Dword 10 .. 308
Figure 307: Sanitize – Command Dword 11 .. 308

NVM Express® Base Specification, Revision 2.0e

xi

Figure 308: Sanitize – Command Specific Status Values .. 308
Figure 309: Security Receive – Data Pointer ... 309
Figure 310: Security Receive – Command Dword 10 .. 309
Figure 311: Security Receive – Command Dword 11 .. 309
Figure 312: Security Protocol EAh – Security Protocol Specific Field Values .. 310
Figure 313: Security Send – Data Pointer .. 310
Figure 314: Security Send – Command Dword 10 ... 310
Figure 315: Security Send – Command Dword 11 ... 310
Figure 316: Set Features – Data Pointer .. 311
Figure 317: Set Features – Command Dword 10 ... 311
Figure 318: Set Features – Command Dword 14 ... 311
Figure 319: Set Features – Feature Identifiers ... 312
Figure 320: Arbitration & Command Processing – Command Dword 11 ... 313
Figure 321: Power Management – Command Dword 11 ... 314
Figure 322: Power Management – Completion Queue Entry Dword 0 ... 314
Figure 323: Temperature Threshold – Command Dword 11 .. 315
Figure 324: Volatile Write Cache – Command Dword 11 ... 315
Figure 325: Number of Queues – Command Dword 11 ... 316
Figure 326: Number of Queues – Completion Queue Entry Dword 0 .. 316
Figure 327: Interrupt Coalescing – Command Dword 11 ... 317
Figure 328: Interrupt Vector Configuration – Command Dword 11 .. 317
Figure 329: Asynchronous Event Configuration – Command Dword 11 .. 317
Figure 330: Autonomous Power State Transition – Command Dword 11 .. 319
Figure 331: Autonomous Power State Transition – Data Structure Entry .. 319
Figure 332: Interactions between APSTE and NOPPME ... 319
Figure 333: Host Memory Buffer – Command Dword 11 ... 320
Figure 334: Host Memory Buffer – Command Dword 12 ... 320
Figure 335: Host Memory Buffer– Command Dword 13 .. 321
Figure 336: Host Memory Buffer – Command Dword 14 ... 321
Figure 337: Host Memory Buffer – Command Dword 15 ... 321
Figure 338: Host Memory Buffer – Host Memory Descriptor List ... 321
Figure 339: Host Memory Buffer – Host Memory Buffer Descriptor Entry .. 321
Figure 340: Host Memory Buffer – Completion Queue Entry Dword 0 ... 322
Figure 341: Host Memory Buffer – Attributes Data Structure ... 322
Figure 342: Timestamp – Data Structure for Set Features ... 323
Figure 343: Timestamp – Data Structure for Get Features .. 323
Figure 344: Keep Alive Timer – Command Dword 11 .. 324
Figure 345: HCTM – Command Dword 11 ... 324
Figure 346: Non-Operational Power State Config – Command Dword 11 ... 325
Figure 347: Read Recovery Level Config – Command Dword 11 .. 326
Figure 348: Read Recovery Level Config – Command Dword 12 .. 326
Figure 349: Predictable Latency Mode Config – Command Dword 11... 326
Figure 350: Predictable Latency Mode Config – Command Dword 12... 326
Figure 351: Predictable Latency Mode – Deterministic Threshold Configuration Data Structure 327
Figure 352: Predictable Latency Mode Window – Command Dword 11 .. 327
Figure 353: Predictable Latency Mode Window – Command Dword 12 .. 327
Figure 354: Host Behavior Support – Data Structure ... 328
Figure 355: Sanitize Config – Command Dword 11 ... 329
Figure 356: Asynchronous Event Configuration – Command Dword 11 .. 330
Figure 357: I/O Command Set Profile – Command Dword 11 ... 330
Figure 358: I/O Command Set Profile – Completion Queue Entry Dword 0 ... 331
Figure 359: Spinup Control – Command Dword 11.. 331
Figure 360: Completion Queue Entry Dword 0 .. 331
Figure 361: Get Features – Command Dword 11 .. 331
Figure 362: Set Features – Command Dword 11 ... 332
Figure 363: Host Metadata Data Structure ... 334
Figure 364: Metadata Element Descriptor .. 334
Figure 365: Controller Metadata Element Types .. 334
Figure 366: Namespace Metadata Element Types .. 336
Figure 367: Software Progress Marker – Command Dword 11 .. 336
Figure 368: Host Identifier – Command Dword 11 ... 337
Figure 369: Host Identifier – Data Structure Entry.. 337

NVM Express® Base Specification, Revision 2.0e

xii

Figure 370: Reservation Notification Configuration – Command Dword 11 ... 338
Figure 371: Reservation Persistence Configuration – Command Dword 11 .. 339
Figure 372: Write Protection – Command Dword 11 .. 339
Figure 373: Set Features – Command Specific Status Values .. 340
Figure 374: Virtualization Management – Command Dword 10 ... 340
Figure 375: Virtualization Management – Command Dword 11 ... 341
Figure 376: Virtualization Management – Command Specific Status Values ... 341
Figure 377: Virtualization Management – Completion Queue Entry Dword 0 .. 342
Figure 378: Fabrics Command Types .. 343
Figure 379: Authentication Receive Command – Submission Queue Entry .. 343
Figure 380: Authentication Receive Response .. 344
Figure 381: Authentication Send Command – Submission Queue Entry ... 344
Figure 382: Authentication Send Response ... 345
Figure 383: Connect Command – Submission Queue Entry .. 347
Figure 384: Connect Command – Data .. 348
Figure 385: Connect Response ... 348
Figure 386: Connect Response – Dword 0 Value Based on Status Code ... 349
Figure 387: Disconnect Command – Submission Queue Entry ... 350
Figure 388: Disconnect Response ... 350
Figure 389: Property Get Command – Submission Queue Entry ... 350
Figure 390: Property Get Response ... 351
Figure 391: Property Set Command – Submission Queue Entry ... 351
Figure 392: Property Set Response ... 351
Figure 393: Opcodes for I/O Commands ... 353
Figure 394: Reservation Acquire – Data Pointer .. 354
Figure 395: Reservation Acquire – Command Dword 10 ... 354
Figure 396: Reservation Acquire Data Structure .. 354
Figure 397: Reservation Type Encoding .. 355
Figure 398: Reservation Register – Data Pointer ... 355
Figure 399: Reservation Register – Command Dword 10 .. 355
Figure 400: Reservation Register Data Structure... 356
Figure 401: Reservation Release – Data Pointer ... 356
Figure 402: Reservation Release – Command Dword 10 .. 356
Figure 403: Reservation Release Data Structure ... 357
Figure 404: Reservation Report – Data Pointer ... 357
Figure 405: Reservation Report – Command Dword 10 .. 358
Figure 406: Reservation Report – Command Dword 11 .. 358
Figure 407: Reservation Status Data Structure .. 358
Figure 408: Reservation Status Extended Data Structure .. 359
Figure 409: Registered Controller Data Structure .. 359
Figure 410: Registered Controller Extended Data Structure .. 359
Figure 411: Namespace B and C optimized through Controller 2 .. 361
Figure 412: Namespace B optimized through Controller 1 ... 362
Figure 413: Multiple Namespace groups .. 363
Figure 414: ANA effects on Command Processing .. 365
Figure 415: Boot Partition Overview ... 368
Figure 416: Boot Partition Protection Overview ... 370
Figure 417: Example Device Self-test Operation (Informative) .. 377
Figure 418: Format NVM command Aborting a Device Self-Test Operation .. 378
Figure 419: Directive Types ... 379
Figure 420: Directive Specific Field Interpretation .. 379
Figure 421: Identify Directive – Directive Operations ... 380
Figure 422: Identify Directive – Return Parameters Data Structure ... 380
Figure 423: Enable Directive – Command Dword 12 ... 381
Figure 424: Enable Directive – Command Specific Status Values ... 381
Figure 425: Directive Streams – Stream Alignment and Granularity .. 382
Figure 426: Streams – Directive Operations .. 382
Figure 427: Example Multi-Stream and NSSC ... 383
Figure 428: Streams Directive – Command Specific Status Values ... 384
Figure 429: Streams Directive – Return Parameters Data Structure .. 385
Figure 430: Streams Directive – Get Status Data Structure ... 386
Figure 431: Allocate Resources – Command Dword 12 .. 387

NVM Express® Base Specification, Revision 2.0e

xiii

Figure 432: Allocate Resources – Completion Queue Entry Dword 0 .. 387
Figure 433: Namespace Write Protection State Definitions ... 392
Figure 434: Namespace Write Protection State Machine Model .. 393
Figure 435: Commands Allowed when Specifying a Write Protected NSID ... 394
Figure 436: Example of TLS secure channel establishment .. 396
Figure 437: Example of authentication transaction for NVMe/TCP .. 397
Figure 438: Mapping of authentication messages to the Authentication Send command .. 397
Figure 439: Mapping of authentication messages to the Authentication Receive command 397
Figure 440: Example of TLS secure channel concatenated to an authentication transaction 398
Figure 441: AUTH_Negotiate message format .. 398
Figure 442: Secure channel protocol identifiers ... 399
Figure 443: Authentication protocol identifiers ... 399
Figure 444: AUTH_Failure1 and AUTH_Failure2 message format .. 400
Figure 445: AUTH_Failure reason codes ... 400
Figure 446: AUTH_Failure reason code explanations .. 400
Figure 447: Example of DH-HMAC-CHAP authentication transaction ... 401
Figure 448: Mathematical notations for DH-HMAC-CHAP ... 402
Figure 449: Authentication protocol descriptor for DH-HMAC-CHAP ... 403
Figure 450: DH-HMAC-CHAP hash function identifiers ... 403
Figure 451: DH-HMAC-CHAP Diffie-Hellman group identifiers .. 404
Figure 452: DH-HMAC-CHAP_Challenge message format ... 404
Figure 453: DH-HMAC-CHAP_Reply message format .. 406
Figure 454: DH-HMAC-CHAP_Success1 message format .. 407
Figure 455: DH-HMAC-CHAP_Success2 message format .. 409
Figure 456: Dynamic Power Management ... 413
Figure 457: Example Power State Descriptor Table .. 413
Figure 458: Workload Hints .. 415
Figure 459: HCTM Example ... 417
Figure 460: Deterministic and Non-Deterministic Windows ... 418
Figure 461: DTWIN Attributes and Estimates .. 420
Figure 462: Typical and Reliable Estimate Example .. 421
Figure 463: Read Recovery Level Overview .. 423
Figure 464: RPMB Device Configuration Block Data Structure .. 424
Figure 465: RPMB Request and Response Message Types ... 425
Figure 466: RPMB Operation Result .. 426
Figure 467: RPMB Contents .. 426
Figure 468: RPMB Data Frame .. 427
Figure 469: RPMB – Authentication Key Data Flow ... 428
Figure 470: RPMB – Read Write Counter Value Flow ... 429
Figure 471: RPMB – Authenticated Data Write Flow ... 431
Figure 472: RPMB – Authenticated Data Read Flow ... 432
Figure 473: RPMB – Authenticated Device Configuration Block Write Flow .. 433
Figure 474: RPMB – Authenticated Device Configuration Block Read Flow .. 434
Figure 475: Example Multi-Host System .. 435
Figure 476: Command Behavior in the Presence of a Reservation.. 436
Figure 477: Command Behavior in the Presence of a Reservation.. 437
Figure 478: Sanitize Operations – Overwrite Mechanism .. 443
Figure 479: Telemetry Log Example – All Data Areas Populated .. 449
Figure 480: Telemetry Log Example – Data Area 2 Populated .. 450
Figure 481: UUID Index Field ... 451
Figure 482: Controller Resource Allocation .. 454
Figure 483: PRP List Describing I/O Submission Queue ... 463
Figure 484: PRP List Describing Data to Compare .. 464

NVM Express® Base Specification, Revision 2.0e

14

1 Introduction

1.1 Overview

The NVM Express® (NVMe®) interface allows host software to communicate with a non-volatile memory
subsystem (NVM subsystem). This interface is optimized for all storage solutions, attached using a variety
of transports including PCI Express®, Ethernet, InfiniBandTM, and Fibre Channel. The mapping of
extensions defined in this document to a specific NVMe Transport are defined in an NVMe Transport
binding specification. The NVMe Transport binding specification for Fibre Channel is defined in INCITS 556
Fibre Channel – Non-Volatile Memory Express - 2 (FC-NVMe-2).

For an overview of changes from revision 1.4 to revision 2.0, refer to http://nvmexpress.org/changes for a
document that describes the new features, including mandatory requirements for a controller to comply with
revision 2.0.

 NVM Express® Specification Family

Figure 1 shows the relationship of the NVM Express specifications to each other within the NVMe™ family
of specifications.

Figure 1: NVMe Family of Specifications

I/O Command Set Specifications
(e.g., NVM, Key Value, Zoned Namespace)

Transport Specifications
(e.g., PCIe

®
, RDMA, TCP)

NVM Express Base

Specification

N
V

M
 E

xp
re

ss

M
an

ag
e

m
en

t
In

te
rf

ac
e

Sp

e
ci

fi
ca

ti
o

n

The NVM Express specification family structure shown in Figure 1 is intended to show the applicability of
NVM Express specifications to each other, not a hierarchy, protocol stack, or system architecture.

The NVM Express Base Specification (i.e., this specification) defines a protocol for host software to
communicate with an NVM subsystem over a variety of memory-based transports and message-based
transports.

The NVM Express Management Interface (NVMe-MI) Specification defines an optional management
interface for all NVM Express Subsystems.

NVM Express I/O Command Set specifications define data structures, features, log pages, commands, and
status values that extend the NVM Express Base Specification.

NVM Express Transport specifications define the binding of the NVMe protocol including controller
properties to a specific transport.

http://nvmexpress.org/changes

NVM Express® Base Specification, Revision 2.0e

15

1.2 Scope

This specification defines a set of properties and commands that comprise the interface required for
communication with a controller in an NVM subsystem. These properties are to be implemented by an
instance of a controller using a specific NVMe Transport. This specification also defines common aspects
of the NVMe I/O Command Sets that may be supported by a controller.

There are three types of controllers with different capabilities (refer to section 3.1.3):

a) I/O controllers;
b) Discovery controllers; and
c) Administrative controllers.

In this document the generic term controller is often used instead of enumerating specific controller types
when applicable controller types may be determined from the context.

1.3 Outside of Scope

The property interface and command set are specified apart from any usage model for the NVM, but rather
only specifies the communication interface to the NVM subsystem. Thus, this specification does not specify
whether the NVM subsystem is used as a solid state drive, a main memory, a cache memory, a backup
memory, a redundant memory, etc. Specific usage models are outside the scope, optional, and not
licensed.

This specification defines requirements and behaviors that are implementation agnostic. The
implementation of these requirements and behaviors are outside the scope of this specification. For
example, an NVM subsystem that follows this specification may be implemented by an SSD that attaches
directly to a fabric, a device that translates between a fabric and a PCIe NVMe SSD, or software running
on a general purpose server.

This interface is specified above any non-volatile media management, like wear leveling. Erases and other
management tasks for NVM technologies like NAND are abstracted.

This specification does not contain any information on caching algorithms or techniques.

The implementation or use of other published specifications referred to in this specification, even if required
for compliance with the specification, are outside the scope of this specification (e.g., PCI, PCI Express,
and PCI-X). This includes published specifications for fabrics and other technologies referred to by this
document or any NVMe Transport binding specification.

1.4 Conventions

 Keywords

Several keywords are used to differentiate between different levels of requirements.

1.4.1.1 mandatory

A keyword indicating items to be implemented as defined by this specification.

1.4.1.2 may

A keyword that indicates flexibility of choice with no implied preference.

1.4.1.3 obsolete

A keyword indicating functionality that was defined in a previous version of the NVM Express specification
and that has been removed from this specification.

NVM Express® Base Specification, Revision 2.0e

16

1.4.1.4 optional

A keyword that describes features that are not required by this specification. However, if any optional
feature defined by the specification is implemented, the feature shall be implemented in the way defined by
the specification.

1.4.1.5 R

“R” is used as an abbreviation for “reserved” when the figure or table does not provide sufficient space for
the full word “reserved”.

1.4.1.6 reserved

A keyword referring to bits, bytes, words, fields, and opcode values that are set-aside for future
standardization. Their use and interpretation may be specified by future extensions to this or other
specifications. A reserved bit, byte, word, field, property, or register shall be cleared to 0h, or in accordance
with a future extension to this specification. The recipient of a command or a register write is not required
to check reserved bits, bytes, words, or fields. Receipt of reserved coded values in defined fields in
commands shall be reported as an error. Writing a reserved coded value into a controller property field
produces undefined results.

1.4.1.7 shall

A keyword indicating a mandatory requirement. Designers are required to implement all such mandatory
requirements to ensure interoperability with other products that conform to the specification.

1.4.1.8 should

A keyword indicating flexibility of choice with a strongly preferred alternative. Equivalent to the phrase “it is
recommended”.

 Numerical Descriptions

A 0’s based value is a numbering scheme in which the number 0h represents a value of 1h, 1h represents
2h, 2h represents 3h, etc. In this numbering scheme, there is no method to represent the value of 0h.
Values in this specification are 1-based (i.e., the number 1h represents a value of 1h, 2h represents 2h,
etc.) unless otherwise specified.

Size values are shown in binary units or decimal units. The symbols used to represent these values are as
shown in Figure 2.

Figure 2: Decimal and Binary Units

Decimal Binary

Symbol
Power

(base-10)
Symbol

Power
(base-2)

kilo / k 103 kibi / Ki 210

mega / M 106 mebi / Mi 220

giga / G 109 gibi / Gi 230

tera / T 1012 tebi / Ti 240

peta / P 1015 pebi / Pi 250

exa / E 1018 exbi / Ei 260

zetta / Z 1021 zebi / Zi 270

yotta / Y 1024 yobi / Yi 280

The ^ operator is used to denote the power to which that number, symbol, or expression is to be raised.

Some parameters are defined as an ASCII string. ASCII strings shall contain only code values (i.e., byte
values or octet values) 20h through 7Eh. For the string “Copyright”, the character “C” is the first byte, the
character “o” is the second byte, etc. ASCII strings are left justified. If padding is necessary, then the string

NVM Express® Base Specification, Revision 2.0e

17

shall be padded with spaces (i.e., ASCII character 20h) to the right unless the string is specified as null-
terminated. A hexadecimal ASCII string is an ASCII string that uses a subset of the code values: “0” to “9”,
“A” to “F” uppercase, and “a” to “f” lowercase.

Some parameters are defined as a UTF-8 string. UTF-8 strings shall contain only byte values (i.e., octet
values) 20h through 7Eh, 80h through BFh, and C2h through F4h (refer to sections 1 to 3 of RFC 3629).
For the string “Copyright”, the character “C” is the first byte, the character “o” is the second byte, etc. UTF-
8 strings are left justified. If padding is necessary, then the string shall be padded with spaces (i.e., ASCII
character 20h, Unicode character U+0020) to the right unless the string is specified as null-terminated.

If padding is necessary for a field that contains a null-terminated string then the field should be padded with
nulls (i.e., ASCII character 00h, Unicode character U+0000) to the right of the string.

Hexadecimal (i.e., base 16) numbers are written with a lower case “h” suffix (e.g., 0FFFh, 80h).
Hexadecimal numbers larger than eight digits are represented with an underscore character dividing each
group of eight digits (e.g., 1E_DEADBEEFh).

Binary (i.e., base 2) numbers are written with a lower case “b” suffix (e.g., 1001b, 10b). Binary numbers
larger than four digits are written with an underscore character dividing each group of four digits (e.g.,
1000_0101_0010b).

All other numbers are decimal (i.e., base 10). A decimal number is represented in this specification by any
sequence of digits consisting of only the Western-Arabic numerals 0 to 9 not immediately followed by a
lower-case b or a lower-case h (e.g., 175). This specification uses the following conventions for representing
decimal numbers:

a) the decimal separator (i.e., separating the integer and fractional portions of the number) is a period;
b) the thousands separator (i.e., separating groups of three decimal digits in a portion of the number)

is a comma;
c) the thousands separator is used in only the integer portion of a number and not the fractional portion

of a number; and
d) the decimal representation for a year does not include a comma (e.g., 2019 instead of 2,019).

NVM Express® Base Specification, Revision 2.0e

18

 Byte, Word, and Dword Relationships

Figure 3 illustrates the relationship between bytes, words and dwords. A qword (quadruple word) is a unit
of data that is four times the size of a word; it is not illustrated due to space constraints. Unless otherwise
specified, this specification specifies data in a little endian format.

Figure 3: Byte, Word, and Dword Relationships

7

6

5

4

3

2

1

0

 byte

 1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

 word

 byte 1 byte 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

 dword

word 1 word 0

byte 3 byte 2 byte 1 byte 0

1.5 Definitions

 Admin Queue

The Admin Queue is the Submission Queue and Completion Queue with identifier 0. The Admin
Submission Queue and corresponding Admin Completion Queue are used to submit administrative
commands and receive completions for those administrative commands, respectively.

The Admin Submission Queue is uniquely associated with the Admin Completion Queue.

NVM Express® Base Specification, Revision 2.0e

19

 Administrative controller

A controller that exposes capabilities that allow a host to manage an NVM subsystem. An Administrative
controller does not implement I/O Queues, provide access to data or metadata associated with user data
on a non-volatile storage medium, or support namespaces attached to the Administrative controller (i.e.,
there are never any active NSIDs).

 arbitration burst

The maximum number of commands that may be fetched by an arbitration mechanism at one time from a
Submission Queue.

 arbitration mechanism

The method used to determine which Submission Queue is selected next to fetch commands for execution
by the controller. Refer to section 3.4.4.

 association

An exclusive communication relationship between a particular controller and a particular host that
encompasses the Admin Queue and all I/O Queues of that controller.

 audit

The process of accessing media to determine correct operation of a sanitize operation. Refer to section
8.21 and to ISO/IEC 27040.

 authentication commands

Used to refer to Fabrics Authentication Send or Authentication Receive commands.

 cache

A data storage area used by the NVM subsystem, that is not accessible to a host, and that may contain a
subset of user data stored in the non-volatile storage medium or may contain user data that is not committed
to non-volatile storage medium.

 candidate command

A candidate command is a submitted command which has been transferred into the controller and the
controller deems ready for processing.

 capsule

An NVMe unit of information exchange used in NVMe over Fabrics. A capsule contains a command or
response and may optionally contain command/response data and SGLs.

 Channel

A Channel represents a communication path between the controller and one or more Media Units in an
NVM subsystem.

 command completion

A command is completed when the controller has completed processing the command, has updated status
information in the completion queue entry, and has posted the completion queue entry to the associated
Completion Queue.

 command submission

For memory-based transport model (e.g. PCIe) implementations, a command is submitted when a
Submission Queue Tail Doorbell write has completed that moves the Submission Queue Tail Pointer value
past the Submission Queue slot in which the command was placed.

NVM Express® Base Specification, Revision 2.0e

20

For message-based transport model (e.g. NVMe over Fabrics) implementations, a command is submitted
when a host adds a capsule to a Submission Queue.

 controller

A controller is the interface between a host and an NVM subsystem. There are three types of controllers:

a) I/O controllers;
b) Discovery controllers; and
c) Administrative controllers.

A controller executes commands submitted by a host on a Submission Queue and posts a completion on
a Completion Queue. All controllers implement one Admin Submission Queue and one Admin Completion
Queue. Depending on the controller type, a controller may also implement one or more I/O Submission
Queues and I/O Completion Queues. When PCI Express is used as the transport, then a controller is a PCI
Express function.

 Controller Reset

Host modification of the CC property that clears CC.EN from ‘1’ to ‘0’ (refer to section 3.7.2).

 Directive

A method of information exchange between a host and either an NVM subsystem or a controller.
Information may be transmitted using the Directive Send and Directive Receive commands. A subset of I/O
commands may include a Directive Type field and a Directive Specific field to communicate more
information that is specific to the associated I/O command. Refer to section 8.7.

 Discovery controller

A controller that exposes capabilities that allow a host to retrieve a Discovery Log Page. A Discovery
controller does not implement I/O Queues or provide access to a non-volatile storage medium. Refer to
section 3.1.3.3.

 Discovery Service

An NVM subsystem that supports Discovery controllers only. A Discovery Service shall not support a
controller that exposes namespaces.

 dynamic controller

The controller is allocated on demand with no state (e.g., Feature settings) preserved from prior
associations.

 Domain

A domain is the smallest indivisible unit that shares state (e.g., power state, capacity information).

 emulated controller

An NVM Express controller that is defined in software. An emulated controller may or may not have an
underlying physical NVMe controller (e.g., physical PCIe function).

 Endurance Group

A portion of NVM in the NVM subsystem whose endurance is managed as a group. Refer to section 3.2.3.

 fabric (network fabric)

A network topology in which nodes pass data to each other.

NVM Express® Base Specification, Revision 2.0e

21

 firmware/boot partition image update command sequence

The sequence of one or more Firmware Image Download commands that download a firmware image or a

boot partition image followed by a Firmware Commit command that commits that downloaded image to a

firmware slot or a boot partition.

 firmware slot

A firmware slot is a location in a domain used to store a firmware image. The domain stores from one to
seven firmware images. Controllers in the same domain share the same firmware slots.

 host

An entity that interfaces to an NVM subsystem through one or more controllers and submits commands to
Submission Queues and retrieves command completions from Completion Queues.

 host-accessible memory

Memory that the host is able to access (e.g., host memory, Controller Memory Buffer (CMB), Persistent
Memory Region (PMR)).

 host memory

Memory that may be read and written by both a host and a controller and that is not exposed by a controller
(i.e., Controller Memory Buffer or Persistent Memory Region). Host memory may be implemented inside or
outside a host (e.g., a memory region exposed by a device that is neither the host nor controller).

 Identify Controller data structures

All controller data structures that are able to be retrieved via the Identify command: Identify Controller data
structure (i.e., CNS 01h) and each of the I/O Command Set specific Identify Controller data structure (i.e.,
CNS 06h).

 Identify Namespace data structures

All namespace data structures that are able to be retrieved via the Identify command: Identify Namespace
data structure (i.e., CNS 00h), I/O Command Set Independent Identify Namespace data structure (i.e., CNS
08h), and each of the I/O Command Set specific Identify Namespace data structures (i.e., 05h).

 I/O command

An I/O command is a command submitted to an I/O Submission Queue.

 I/O Completion Queue

An I/O Completion Queue is a Completion Queue that is used to indicate command completions and is
associated with one or more I/O Submission Queues.

 I/O controller

A controller that implements I/O queues and is intended to be used to access a non-volatile storage
medium.

 I/O Submission Queue

An I/O Submission Queue is a Submission Queue that is used to submit I/O commands for execution by
the controller (e.g., Read command and Write command for the NVM Command Set).

 Media Unit

A Media Unit represents a component of the underlying media in an NVM subsystem. Endurance Groups
are composed of Media Units.

NVM Express® Base Specification, Revision 2.0e

22

 memory-based controller

A controller that supports a memory-based transport model (e.g., a PCIe implementation).

 message-based controller

A controller that supports a message-based transport model (e.g., a Fabrics implementation).

 metadata

Metadata is contextual information related to formatted user data (e.g., a particular LBA of data). The host
may include metadata to be stored by the NVM subsystem if storage space is provided by the controller.
Refer to the applicable I/O Command Set specification for details.

 namespace

A formatted quantity of non-volatile memory that may be directly accessed by a host.

 namespace ID (NSID)

An identifier used by a controller to provide access to a namespace or the name of the field in the SQE that
contains the namespace identifier (refer to Figure 90). Refer to section 3.2.1 for the definitions of valid
NSID, invalid NSID, active NSID, inactive NSID, allocated NSID, and unallocated NSID.

 NVM

NVM is an acronym for non-volatile memory.

 NVM Set

A portion of NVM from an Endurance Group. Refer to section 3.2.2.

 NVM subsystem

An NVM subsystem includes one or more domains, one or more controllers, zero or more namespaces,
and one or more ports. An NVM subsystem may include a non-volatile storage medium and an interface
between the controller(s) in the NVM subsystem and non-volatile storage medium.

 NVM subsystem port

An NVMe over Fabrics protocol interface between an NVM subsystem and a fabric. An NVM subsystem
port is a collection of one or more physical fabric interfaces that together act as a single interface.

 NVMe over Fabrics

An implemenation of the NVM Express interface that complies with either the message-only transport model
or the message/memory transport model (refer to Figure 4 and section 2.2).

 NVMe Transport

A protocol layer that provides reliable delivery of data, commands, and responses between a host and an
NVM subsystem. The NVMe Transport layer is layered on top of the fabric. It is independent of the fabric
physical interconnect and low level fabric protocol layers.

 NVMe Transport binding specification

A specification of reliable delivery of data, commands, and responses between a host and an NVM
subsystem for an NVMe Transport. The binding may exclude or restrict functionality based on the NVMe
Transport’s capabilities.

 physical fabric interface (physical ports)

A physical connection between an NVM subsystem and a fabric.

NVM Express® Base Specification, Revision 2.0e

23

 Port ID

An identifier that is associated with an NVM subsystem port. Refer to section 2.2.2.

 primary controller

An NVM Express controller that supports the Virtualization Management command. An NVM subsystem
may contain multiple primary controllers. Secondary controller(s) in an NVM subsystem depend on a
primary controller for dynamic resource management (refer to section 8.26).

A PCI Express SR-IOV Physical Function that supports the NVM Express interface and the Virtualization
Enhancements capability is an example of a primary controller (refer to section 8.26.4).

 private namespace

A namespace that is only able to be attached to one controller at a time. Refer to the Namespace Multi-
path I/O and Namespace Sharing Capabilities (NMIC) field in Figure 285.

 property

The generalization of memory mapped controller registers defined for NVMe over PCIe. Properties are
used to configure low level controller attributes and obtain low level controller status.

 rotational media

Media that stores data on rotating platters (refer to section 8.20).

 Runtime D3 (Power Removed)

In Runtime D3 (RTD3) main power is removed from the controller. Auxiliary power may or may not be
provided. For PCI Express, RTD3 is the D3cold power state (refer to section 8.15.4).

 sanitize operation

Process by which all user data in the NVM subsystem is altered such that recovery of the previous user
data from any cache or the non-volatile storage medium is infeasible for a given level of effort (refer to
ISO/IEC 27040).

 secondary controller

An NVM Express controller that depends on a primary controller in an NVM subsystem for management of
some controller resources (refer to section 8.26).

A PCI Express SR-IOV Virtual Function that supports the NVM Express interface and receives resources
from a primary controller is an example of a secondary controller (refer to section 8.26.4).

 shared namespace

A namespace that may be attached to two or more controllers in an NVM subsystem concurrently. Refer to
the Namespace Multi-path I/O and Namespace Sharing Capabilities (NMIC) field in Figure 285.

 specified namespace

The namespace that is associated with the value specified by the Namespace Identifier (NSID) field in a
command as defined by the Common Command Format (refer to Figure 90).

 spindown

The process of changing a spindle from an operational power state to a non-operational power state, for
an Endurance Group that stores data on rotational media (refer to section 8.20).

NVM Express® Base Specification, Revision 2.0e

24

 spinup

The process of changing a spindle from a non-operational power state to an operational power state, for
an Endurance Group associated with rotational media (refer to section 8.20).

 static controller

The controller is pre-existing with a specific Controller ID and its state (e.g., Feature settings) is preserved
from prior associations.

 user data

Data stored in a namespace that is composed of data that the host may store and later retrieve including
metadata if supported.

1.6 I/O Command Set specific definitions used in this specification

The following terms used in this specification are defined in each I/O Command Set specification.

 Endurance Group Host Read Command

An I/O Command Set specific command that results in the controller reading user data, but may or may not
return the data to the host.

 Format Index

A value used to index into the I/O Command Set Specific Format table (i.e., the User Data Format number).

 SMART Data Units Read Command

An I/O Command Set specific command that results in the controller reading user data, but may or may not
return the data to the host.

 SMART Host Read Command

An I/O Command Set specific command that results in the controller reading user data, but may or may not
return the data to the host.

 User Data Format

An I/O Command Set specific format that describes the layout of the data on the NVM media.

 User Data Out Command

An I/O Command Set specific command that results in the controller writing user data, but may or may not
transfer user data from the host to the controller.

1.7 NVM Command Set specific definitions used in this specification

The following terms used in this specification are defined in the NVM Command Set Specification. These
terms are used throughout the document as examples for a specific I/O Command Set.

 logical block

The smallest addressable data unit for Read and Write commands.

 logical block address (LBA)

The address of a logical block, referred to commonly as LBA.

1.8 References

INCITS 502-2019, Information technology – SCSI Primary Commands - 5 (SPC-5). Available from
http://webstore.ansi.org.

http://webstore.ansi.org/

NVM Express® Base Specification, Revision 2.0e

25

INCITS 514-2014, Information technology – SCSI Block Commands - 3 (SBC-3). Available from
http://webstore.ansi.org.

INCITS 529-2018, Information technology – ATA/ATAPI Command Set - 4 (ACS-4). Available from
http://webstore.ansi.org.

INCITS 556-2020, Information technology – Non-Volatile Memory Express - 2 (FC-NVMe-2). Available
from http://webstore.ansi.org.

ISO 8601, Data elements and interchange formats – Information interchange – Representations of dates
and times. Available from https://www.iso.org.

ISO/IEC 27040:2015 Information technology – Security techniques – Storage security. Available from
https://www.iso.org.

JEDEC JESD218B-01: Solid State Drive (SSD) Requirements and Endurance Test Method standard.
Available from https://www.jedec.org.

NVM Express Management Interface Specification, Revision 1.2. Available from
https://www.nvmexpress.org.

NVM Express NVM Command Set Specification, Revision 1.0. Available from
https://www.nvmexpress.org.

NVM Express Zoned Namespace Command Set Specification, Revision 1.1. Available from
https://www.nvmexpress.org.

NVM Express Key Value Command Set Specification, Revision 1.0. Available from
https://www.nvmexpress.org.

NVM Express NVMe over PCIe Transport Specification, Revision 1.0. Available from
https://www.nvmexpress.org.

NVM Express RDMA Transport Specification, Revision 1.0. Available from https://www.nvmexpress.org

NVM Express TCP Transport Specification, Revision 1.0. Available from https://www.nvmexpress.org.

PCI Local Bus Specification, revision 3.0. Available from https://www.pcisig.com.

PCI Express® Base Specification, Revision 4.0. Available from https://www.pcisig.com.

PCI Bus Power Management Interface Specification Revision 1.2. Available from https://www.pcisig.com.

PCI Single Root I/O Virtualization and Sharing Specification, revision 1.1. Available from
https://www.pcisig.com/specifications/iov/single_root/.

PCI Firmware Specification Revision 3.2. Available from https://www.pcisig.com.

PCI Code and ID Assignment Specification Revision 1.11, 24 January, 2019. Available from
https://www.pcisig.com.

RFC 1952, P. Deutsch, “GZIP file format specification version 4.3”, May 1996. Available from
https://www.ietf.org/rfc.html.

RFC 1994, W. Simpson, “PPP Challenge Handshake Authentication Protocol (CHAP)”, August 1996.
Available from https://www.ietf.org/rfc.html.

RFC 2104, H. Krawczyk, M. Bellare, R. Canetti, “HMAC: Keyed-Hashing for Message Authentication”,
February 1997. Available from https://www.ietf.org/rfc.html.

RFC 2631, E. Rescorla, “Diffie-Hellman Key Agreement Method”, June 1999. Available from
https://www.ietf.org/rfc.html.

RFC 3629, F. Yergeau, “UTF-8, a transformation format of ISO 10646”, November 2003. Available from
https://www.ietf.org/rfc.html.

http://webstore.ansi.org/
http://webstore.ansi.org/
http://webstore.ansi.org/
https://www.iso.org/
https://www.iso.org/
https://www.jedec.org/
https://www.nvmexpress.org/
https://www.nvmexpress.org/
https://www.nvmexpress.org/
https://www.nvmexpress.org/
https://www.nvmexpress.org/
https://www.nvmexpress.org/
https://www.nvmexpress.org/
https://www.pcisig.com/
https://www.pcisig.com/
https://www.pcisig.com/
https://www.pcisig.com/specifications/iov/single_root/
https://www.pcisig.com/
https://www.pcisig.com/
https://www.ietf.org/rfc.html
https://www.ietf.org/rfc.html
https://www.ietf.org/rfc.html
https://www.ietf.org/rfc.html
https://www.ietf.org/rfc.html

NVM Express® Base Specification, Revision 2.0e

26

RFC 3986, T. Berners-Lee, R. Fielding, L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax”,
January 2005. Available from https://www.ietf.org/rfc.html.

RFC 4086, D. Eastlake 3rd, J. Schiller, S. Crocker, “Randomness Requirements for Security”, June 2005.
Available from https://www.ietf.org/rfc.html.

RFC 4122, P. Leach, M. Mealling, and R. Salz, “A Universally Unique Identifier (UUID) URN Namespace”,
July 2005. Available from https://www.ietf.org/rfc.html.

RFC 4301, S. Kent, K. Seo, “Security Architecture for the Internet Protocol”, December 2005. Available
from https://www.ietf.org/rfc.html.

RFC 4648, S. Josefsson, “The Base16, Base32, and Base64 Data Encodings”, October 2006. Available
from https://www.ietf.org/rfc.html.

RFC 6234, D. Eastlake 3rd, and T. Hansen, "US Secure Hash Algorithms (SHA and SHA-based HMAC
and HKDF)", May 2011. Available from https://www.ietf.org/rfc.html.

RFC 7296, C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, T. Kivinen, “Internet Key Exchange Protocol
Version 2 (IKEv2)”, October 2014. Available from https://www.ietf.org/rfc.html.

RFC 7919, D. Gillmor, “Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer
Security (TLS)”, August 2016. Available from https://www.ietf.org/rfc.html.

RFC 8446, E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3”, August 2018.
Available from https://www.ietf.org/rfc.html.

UEFI Specification Version 2.7A, September 2017. Available from https://uefi.org.

Advanced Configuration and Power Interface (ACPI) Specification, Version 6.4, January 2021. Available
from https://www.uefi.org.

TCG Storage Architecture Core Specification, Version 2.01 Revision 1.00. Available from
https://www.trustedcomputinggroup.org.

TCG Storage Interface Interactions Specification (SIIS), Version 1.08 Revision 1.00. Available from
https://www.trustedcomputinggroup.org.

1.9 References Under Development

INCITS 506-201x, SCSI Block Commands - 4 (SBC-4). Available from https://www.t10.org.

https://www.ietf.org/rfc.html
https://www.ietf.org/rfc.html
https://www.ietf.org/rfc.html
https://www.ietf.org/rfc.html
https://www.ietf.org/rfc.html
https://www.ietf.org/rfc.html
https://www.ietf.org/rfc.html
https://www.ietf.org/rfc.html
https://www.ietf.org/rfc.html
https://uefi.org/
https://www.uefi.org/
https://www.trustedcomputinggroup.org/
https://www.trustedcomputinggroup.org/
https://www.t10.org/

NVM Express® Base Specification, Revision 2.0e

27

2 Theory of Operation

The NVM Express scalable interface is designed to address the needs of storage systems that utilize PCI
Express based solid state drives or fabric connected devices. The interface provides optimized command
submission and completion paths. It includes support for parallel operation by supporting up to 65,535 I/O
Queues with up to 65,535 outstanding commands per I/O Queue. Additionally, support has been added for
many Enterprise capabilities like end-to-end data protection (compatible with SCSI Protection Information,
commonly known as T10 DIF, and SNIA DIX standards), enhanced error reporting, and virtualization.

The interface has the following key attributes:

• Does not require uncacheable / MMIO register reads in the command submission or completion
path;

• A maximum of one MMIO register write or one 64B message is necessary in the command
submission path;

• Support for up to 65,535 I/O Queues, with each I/O Queue supporting up to 65,535 outstanding
commands;

• Priority associated with each I/O Queue with well-defined arbitration mechanism;

• All information to complete a 4 KiB read request is included in the 64B command itself, ensuring
efficient small I/O operation;

• Efficient and streamlined command set;

• Support for MSI/MSI-X and interrupt aggregation;

• Support for multiple namespaces;

• Efficient support for I/O virtualization architectures like SR-IOV;

• Robust error reporting and management capabilities; and

• Support for multi-path I/O and namespace sharing.

This specification defines a streamlined set of properties that are used to configure low level controller
attributes and obtain low level controller status. These properties have a transport specific mechanism for
defining access (e.g. Memory Mapped items use registers, whereas Fabrics use the Property Get and
Property Set commands). The following are examples of functionality defined in properties:

• Indication of controller capabilities;

• Status for controller failures (command status is processed via CQ directly);

• Admin Queue configuration (I/O Queue configuration processed via Admin commands); and

• Doorbell registers for a scalable number of Submission and Completion Queues.

There are two defined models for communication between the host and the NVM subsystem, a memory-
based transport model and a message-based transport model. All NVM subsystems require the underlying
NVMe Transport to provide reliable NVMe command and data delivery. An NVMe Transport is an abstract
protocol layer independent of any physical interconnect properties. A taxonomy of NVMe Transports along
with examples is shown in Figure 4. An NVMe Transport may expose a memory-based transport model or
a message-based transport model. The message-based transport model has two subtypes: the message-
only transport model and the message/memory transport model.

A memory-based transport model is one in which commands, responses, and data are transferred between
a host and an NVM subsystem by performing explicit memory read and write operations.

A message-based transport model is one in which messages containing command capsules and response
capsules are sent between a host and an NVM subsystem. The two subtypes of message-based transport
models are differentiated by how data is sent between a host and an NVM subsystem. In the message-only
transport model data is only sent between a host and an NVM subsystem using capsules or messages.
The message/memory transport model uses a combination of messages and explicit memory read and
write operations to transfer command capsules, response capsules and data between a host and an NVM
subsystem. Data may optionally be included in command capsules and response capsules. Both the
message-only transport model and the message/memory transport model are referenced as message-
based transport models throughout this specification when the description is applicable to both subtypes.

NVM Express® Base Specification, Revision 2.0e

28

An NVM subsystem is made up of a single domain or multiple domains as described in section 3.2.4. An
NVM subsystem may optionally include a non-volatile storage medium, and an interface between the
controller(s) of the NVM subsystem and the non-volatile storage medium. Controllers expose this non-
volatile storage medium to hosts through namespaces. An NVM subsystem is not required to have the
same namespaces attached to all controllers. An NVM subsystem that supports a Discovery controller does
not support any other controller type. A Discovery Service is an NVM subsystem that supports Discovery
controllers only (refer to section 3.1).

Figure 4: Taxonomy of Transport Models

NVMe Transport Models

Memory
Commands/Responses & Data

use Shared Memory

Message
Commands/Responses use Capsules

Data may use Capsules or Messages

Message / Memory
Commands/Responses use Capsules

Data may use

Capsules or Shared Memory

Example Transport

PCI Express

Example Transports
Fibre Channel

TCP

Example Transports
RDMA

(InfiniBand, RoCE, iWARP)

The capabilities and settings that apply to an NVM Express controller are indicated in the Controller
Capabilities (CAP) property and the Identify Controller data structure (refer to Figure 280).

A namespace is a formatted quantity of non-volatile memory that may be accessed by a host. Associated
with each namespace is an I/O Command Set that operates on that namespace. An NVM Express controller
may support multiple namespaces that are referenced using a namespace ID. Namespaces may be created
and deleted using the Namespace Management command and Capacity Management command. The
Identify Namespace data structures (refer to section 1.5.30) indicate capabilities and settings that are
specific to a particular namespace.

The NVM Express interface is based on a paired Submission and Completion Queue mechanism.
Commands are placed by host software into a Submission Queue. Completions are placed into the
associated Completion Queue by the controller.

There are three types of commands that are defined in NVM Express: Admin commands, I/O commands,
and Fabrics commands. Figure 5 shows these different command types.

Figure 5: Types of NVMe Command Sets

NVMe Command Sets

Fabrics

Command Set

Admin

Command Set

I/O

Command Sets

NVM

Command

Set

Zoned

Namespace

Command

Set

Key Value

Command

Set

NVM Express® Base Specification, Revision 2.0e

29

An Admin Submission Queue and associated Completion Queue exist for the purpose of controller
management and control (e.g., creation and deletion of I/O Submission and Completion Queues, aborting
commands, etc.). Only commands that are part of the Admin Command Set or the Fabrics Command Set
may be submitted to the Admin Submission Queue.

An I/O Command Set is used with an I/O queue pair. This specification defines common I/O commands.
I/O Command Sets are defined in NVMe I/O Command Set specifications (e.g., NVM Command Set, Key
Value Command Set, or Zoned Namespace Command Set).

The Fabrics Command Set is NVMe over Fabrics specific. Fabrics Command Set commands are used for
operations specific to NVMe over Fabrics including establishing a connection, NVMe in-band
authentication, and to get or set a property. All Fabrics commands may be submitted on the Admin
Submission Queue and some Fabrics commands may also be submitted on an I/O Submission Queue.
Unlike Admin and I/O commands, Fabrics commands are processed by a controller regardless of whether
the controller is enabled (i.e., regardless of the state of CC.EN).

2.1 Memory-Based Transport Model (PCIe)

In the memory-based model, Submission and Completion Queues are allocated in memory.

Host software creates queues, up to the maximum supported by the controller. Typically, the number of
command queues created is based on the system configuration and anticipated workload. For example, on
a four core processor based system, there may be a queue pair per core to avoid locking and ensure data
structures are created in the appropriate processor core’s cache. Figure 6 provides a graphical
representation of the queue pair mechanism, showing a 1:1 mapping between Submission Queues and
Completion Queues. Figure 7 shows an example where multiple I/O Submission Queues utilize the same
I/O Completion Queue on Core B. Figure 6 and Figure 7 show that there is always a 1:1 mapping between
the Admin Submission Queue and Admin Completion Queue.

Figure 6: Queue Pair Example, 1:1 Mapping

Host

Controller

Controller Mgmt Core 0 Core 1 Core N-1

Admin
Submission

Queue

Admin
Completion

Queue

I/O
Submission

Queue 1

I/O
Completion

Queue 1

I/O
Submission

Queue 2

I/O
Completion

Queue 2

I/O
Submission
Queue N

I/O
Completion
Queue N

NVM Express® Base Specification, Revision 2.0e

30

Figure 7: Queue Pair Example, n:1 Mapping

A Submission Queue (SQ) is a circular buffer with a fixed slot size that the host software uses to submit
commands for execution by the controller. The host software updates the appropriate SQ Tail doorbell
register when there are one to n new commands to execute. The previous SQ Tail value is overwritten in
the controller when there is a new doorbell register write. The controller fetches SQ entries in order from
the Submission Queue and may execute those commands in any order.

Each submission queue entry is a command. Commands are 64 bytes in size. The physical memory
locations in memory to use for data transfers are specified using Physical Region Page (PRP) entries or
Scatter Gather Lists (SGL). Each command may include two PRP entries or one Scatter Gather List
segment. If more than two PRP entries are necessary to describe the data buffer, then a pointer to a PRP
List that describes a list of PRP entries is provided. If more than one SGL segment is necessary to describe
the data buffer, then the SGL segment provides a pointer to the next SGL segment.

A Completion Queue (CQ) is a circular buffer with a fixed slot size used to post status for completed
commands. A completed command is uniquely identified by a combination of the associated SQ identifier
and command identifier that is assigned by host software. In the memory-based transport model multiple
Submission Queues may be associated with a single Completion Queue. A configuration with a single
Completion Queue may be used where a single worker thread processes all command completions via one
Completion Queue even when those commands originated from multiple Submission Queues. The CQ
Head pointer is updated by host software after processing completion queue entries indicating the last free
CQ slot. A Phase Tag (P) bit is defined in the completion queue entry to indicate whether an entry has been
newly posted without the host consulting a register (refer to section 3.3.3.2.2). The Phase Tag bit enables
the host to determine whether entries are new or not.

2.2 Message-Based Transport Model (Fabrics)

The message-based transport model used for NVMe over Fabrics has the following differences from the
memory-based transport model:

• There is a one-to-one mapping between I/O Submission Queues and I/O Completion Queues.
NVMe over Fabrics does not support multiple I/O Submission Queues being mapped to a single
I/O Completion Queue;

• NVMe over Fabrics does not define an interrupt mechanism that allows a controller to generate a
host interrupt. It is the responsibility of the host fabric interface (e.g., Host Bus Adapter) to generate
host interrupts;

• NVMe over Fabrics uses different mechanisms for I/O Submission Queue and I/O Completion
Queue creation and deletion (refer to section 3.5);

• NVMe over Fabrics does not support transferring metadata from a separate buffer (e.g. does not
support the Metadata Pointer field, refer to Figure 90);

Host

Controller

Core BCore A

I/O
Submission
Queue X

I/O
Completion
Queue W

I/O
Submission
Queue M

I/O
Completion
Queue N

I/O
Submission
Queue Y

I/O
Submission
Queue Z

Controller Mgmt

Admin
Submission

Queue

Admin
Completion

Queue

NVM Express® Base Specification, Revision 2.0e

31

• NVMe over Fabrics does not support PRPs but requires use of SGLs for Admin, I/O, and Fabrics
commands. This differs from the memory-based transport model where SGLs are not supported
for Admin commands and are optional for I/O commands;

• NVMe over Fabrics does not support Completion Queue flow control (refer to section 3.3.1.2.1).
This requires that the host ensures there are available Completion Queue slots before submitting
new commands; and

• NVMe over Fabrics allows Submission Queue flow control to be disabled if the host and controller
agree to disable it. If Submission Queue flow control is disabled, the host is required to ensure that
there are available Submission Queue slots before submitting new commands.

 Fabrics and Transports

NVMe over Fabrics utilizes the protocol layering shown in Figure 8. This specification defines core aspects
of the architecture that are independent of the NVMe Transport. An NVMe Transport binding specification
is used to describe any NVMe Transport specific specialization as well as how the services required by the
NVMe interface are mapped onto the corresponding NVMe Transport. The native fabric communication
services and other functionality used by the NVMe interface and NVMe Transports (e.g., the Fabric Protocol
and Fabric Physical layers in Figure 8) are outside the scope of the NVMe family of specifications.

Figure 8: NVMe over Fabrics Layering

NVMe Architecture, Queuing Interface

Admin Command & I/O Command Sets,

Properties

Fabric Specific Properties,

Transport Specific Features/Specialization

NVMe Transport Binding Services

NVMe Transport

NVMe over Fabrics

(Message-based

Model)

NVMe Transport

Specification

NVMe Transport

Fabric Protocol

(may include multiple fabric protocol layers)

Fabric

Fabric Physical

(e.g., Ethernet, InfiniBand, Fibre Channel)

 NVM Subsystem Ports

An NVM subsystem presents a collection of one to (64Ki - 16) controllers which are used to access
namespaces. The controllers may be associated with hosts through one to 64Ki NVM subsystem ports.

NVM Express® Base Specification, Revision 2.0e

32

An NVM subsystem port is a protocol interface between an NVM subsystem and a fabric. An NVM
subsystem port is a collection of one or more physical fabric interfaces that together act as a single protocol
interface. When link aggregation (e.g., Ethernet) is used, the physical ports for the group of aggregated
links constitute a single NVM subsystem port.

An NVM subsystem contains one or more NVM subsystem ports.

Each NVM subsystem port has a 16-bit port identifier (Port ID). An NVM subsystem port is identified by the
NVM Subsystem NVMe Qualified Name (NQN) and Port ID. The NVM subsystem ports of an NVM
subsystem may support different NVMe Transports. An NVM subsystem port may support multiple NVMe
Transports if more than one NVMe Transport binding specifications exist for the underlying fabric (e.g., an
NVM subsystem port identified by a Port ID may support both iWARP and RoCE). An NVM subsystem
implementation may bind specific controllers to specific NVM subsystem ports or allow the flexible allocation
of controllers between NVM subsystem ports, however, once connected, each specific controller is bound
to a single NVM subsystem port.

A controller is associated with exactly one host at a time. NVMe over Fabrics allows multiple hosts to
connect to different controllers in the NVM subsystem through the same NVM sybsystem port. All other
aspects of NVMe over Fabrics multi-path I/O and namespace sharing (refer to section 2.4.1) are equivalent
to that of the memory-based transport model.

 Discovery Service

NVMe over Fabrics defines a discovery mechanism that a host uses to determine the NVM subsystems
that expose namespaces that the host may access. The Discovery Service provides a host with the
following capabilities:

• The ability to discover a list of NVM subsystems with namespaces that are accessible to the host;

• The ability to discover multiple paths to an NVM subsystem;

• The ability to discover controllers that are statically configured;

• The optional ability to establish explicit persistent connections to the Discovery controller; and

• The optional ability to receive Asynchronous Event Notifications from the Discovery controller.

A Discovery Service is an NVM subsystem that supports only Discovery controllers (refer to section 3.1.3.3),
and shall not support any other controller type.

The method that a host uses to obtain the information necessary to connect to the initial Discovery Service
is implementation specific. This information may be determined using a host configuration file, a hypervisor
or OS property, or some other mechanism.

 Capsules and Data Transfer

A capsule is an NVMe unit of information exchange used in NVMe over Fabrics. A capsule may be classified
as a command capsule or a response capsule. A command capsule contains a command (formatted as a
submission queue entry) and may optionally include SGLs or data. A response capsule contains a response
(formatted as a completion queue entry) and may optionally include data. Data refers to any data transferred
at an NVMe layer between a host and an NVM subsystem (e.g., logical block data or a data structure
associated with a command). A capsule is independent of any underlying NVMe Transport unit (e.g.,
packet, message, or frame and associated headers and footers) and may consist of multiple such units.

Command capsules are transferred from a host to an NVM subsystem. The SQE contains an Admin
command, an I/O command, or a Fabrics command. The minimum size of a command capsule is NVMe
Transport binding specific, but shall be at least 64B in size. The maximum size of a command capsule is
NVMe Transport binding specific. The format of a command capsule is shown in Figure 9.

NVM Express® Base Specification, Revision 2.0e

33

Figure 9: Command Capsule Format

Submission Queue Entry Data or SGLs (if present)

Byte 0 63 64 (N-1)

Command Capsule of Size N Bytes

Response capsules are transferred from an NVM subsystem to a host. The CQE is associated with a
previously issued Admin command, I/O command, or Fabrics command. The size of a response capsule is
NVMe Transport binding specific, but shall be at least 16B in size. The maximum size of a response capsule
is NVMe Transport binding specific. The format of a response capsule is shown in Figure 10.

Figure 10: Response Capsule Format

Completion Queue Entry Data (if present)

Byte 0 15 16 (N-1)

Response Capsule of Size N Bytes

NVMe Transports using the message-only transport model and message/memory transport model require
all SGLs sent from the host to the controller be transferred within the command. They may optionally support
the transfer of a portion or all data within the command and response capsules.

NVMe over Fabrics requires SGLs for all commands (Fabrics, Admin, and I/O). An SGL may specify the
placement of data within a capsule or the information required to transfer data using an NVMe Transport
specific data transfer mechanism (e.g., via memory transfers as in RDMA). Each NVMe Transport binding
specification defines the SGLs used by a particular NVMe Transport and any capsule SGL and data
placement restrictions.

 Authentication

NVMe over Fabrics supports both fabric secure channel that includes authentication (refer to section 8.13.1)
and NVMe in-band authentication. An NVM subsystem may require a host to use fabric secure channel,
NVMe in-band authentication, or both. The Discovery Service indicates if fabric secure channel shall be
used for an NVM subsystem. The Connect response indicates if NVMe in-band authentication shall be used
with that controller.

A controller associated with an NVM subsystem that requires a fabric secure channel shall not accept any
commands (i.e., Fabrics commands, Admin commands, or I/O commands) on an NVMe Transport until a
secure channel is established. Following a Connect command, a controller that requires NVMe in-band
authentication shall not accept any commands on the queue created by that Connect command other than
authentication commands until NVMe in-band authentication has completed. Refer to section 8.13.

2.3 NVM Storage Model

 Storage Entities

The NVM storage model includes the following entities:

• NVM subsystems (refer to 1.5.43);

• Domains (refer to section 3.2.4);

NVM Express® Base Specification, Revision 2.0e

34

• Endurance Groups (refer to section 3.2.3);

• NVM Sets (refer to section 3.2.2); and

• Namespaces (refer to section 3.2.1).

As illustrated below, each domain is contained in a single NVM subsystem, each Endurance Group is
contained in a single domain, each NVM Set is contained in a single Endurance Group, and each
namespace is contained in a single NVM Set. Each Media Unit is contained in a single
Endurance Group.

Each Endurance Group is composed of storage media, which are termed Media Units (refer to section
8.3.2). For clarity, Media Units are not shown in the examples that follow.

Figure 11 shows the hierarchical relationships of these entities within a simple NVM subsystem, which has:

• one domain;

• one Endurance Group;

• one NVM Set; and

• one namespace.

Figure 11: NVM Storage Hierarchy

NVM Subsystem

Domain 0

Endurance Group

NVM Set

Namespace 1

NVM Express® Base Specification, Revision 2.0e

35

Figure 12 shows the relationships of these entities in a complex NVM subsystem, which has:

• multiple domains;

• multiple Endurance Groups per domain;

• multiple NVM Sets per Endurance Group; and

• multiple namespaces per NVM Set.

Figure 12: Complex NVM Storage Hierarchy

NVM Subsystem

Domain A

Endurance Group A1

NVM Set A1b

NS NS

NVM Set A1e

NS NS

Endurance Group A3

NVM Set A3f

NS NS

NVM Set A3j

NS NS

Domain D

Endurance Group D1

NVM Set D1k

NS NS

NVM Set D1m

NS NS

Endurance Group D5

NVM Set D5n

NS NS

NVM Set D5p

NS NS

...

...

...

...

...

...

... ...

...

Entity naming key (Abc):
A: Domain (capital letter)
b: Endurance Group (digit)
c: NVM Set (lower case letter)

Reporting of Endurance Groups or NVM Sets is optional, but the storage model supports these concepts.
An NVM subsystem may be shipped by the vendor with its storage entities configured, or it may be
configured or re-configured by the customer. Typical changes to the configuration are creation and deletion
of namespaces.

An NVM subsystem that does not support multiple NVM Sets does not require reporting of NVM Sets. An
NVM subsystem that does not support multiple Endurance Groups does not require reporting of Endurance
Groups.

 I/O Command Sets

I/O commands perform operations on namespaces, and each namespace is associated with exactly one
I/O command set. For example, commands in the NVM Command Set access data represented in a
namespace as logical blocks, and commands in the Key Value Command Set access data represented in
a namespace as key-value pairs.

The association of a namespace to an I/O command set is specified when the namespace is created and
is fixed for the lifetime of the namespace.

NVM Express® Base Specification, Revision 2.0e

36

A controller may support one or more I/O command sets. Namespaces as that are associated with the I/O
command sets that are supported and enabled on a controller may be attached to that controller. A host
issues commands to a namespace and those commands are interpreted based on the I/O command set
associated with that namespace.

 NVM Subsystem Examples

Figure 13 illustrates a simple NVM subsystem that has a single instance of each storage entity.

Figure 13: Single-Namespace NVM Subsystem

NVM Subsystem (SSD)

Domain 0

Endurance Group 1

Port

NVM Set 1

Controller

Namespace 1

• The NVM subsystem consists of a single port and a single domain.

• The domain contains a controller and storage media.

• All of the storage media are contained in one Endurance Group.

• All of the storage media in that Endurance Group are organized into one NVM Set.

• That NVM Set contains a single namespace.

NVM Express® Base Specification, Revision 2.0e

37

Figure 14 shows an NVM subsystem with two namespaces.

Figure 14: Two-Namespace NVM Subsystem

NVM Subsystem (SSD)

Domain 0

Endurance Group 1

Port

NVM Set 1

Controller

Namespace 1 Namespace 2

NVM Express® Base Specification, Revision 2.0e

38

An NVM subsystem may have multiple domains, multiple namespaces, multiple controllers, and multiple
ports, as shown in Figure 15.

Figure 15: Complex NVM Subsystem

2.4 Extended Capabilities Theory

 Multi-Path I/O and Namespace Sharing

This section provides an overview of multi-path I/O and namespace sharing. Multi-path I/O refers to two or
more completely independent paths between a single host and a namespace while namespace sharing
refers to the ability for two or more hosts to access a common shared namespace using different NVM
Express controllers. Both multi-path I/O and namespace sharing require that the NVM subsystem contain
two or more controllers. NVM subsystems that support Multi-Path I/O and Namespace Sharing may also
support asymmetric controller behavior (refer to section 2.4.2). Concurrent access to a shared namespace
by two or more hosts requires some form of coordination between hosts. The procedure used to coordinate
these hosts is outside the scope of this specification.

Figure 16 shows an NVM subsystem that contains a single NVM Express controller implemented over PCI
Express and a single PCI Express port. Since this is a single Function PCI Express device, the NVM
Express controller shall be associated with PCI Function 0. A controller may support multiple namespaces.
The controller in Figure 16 supports two namespaces labeled NS A and NS B. Associated with each
controller namespace is a namespace ID, labeled as NSID 1 and NSID 2, that is used by the controller to
reference a specific namespace. The namespace ID is distinct from the namespace itself and is the handle
a host and controller use to specify a particular namespace in a command. The selection of a controller’s
NSIDs is outside the scope of this specification. In this example NSID 1 is associated with namespace A

NVM Subsystem

Domain 2

Endurance Group 3

NVM Set 3

Endurance Group 2

NVM Set 2

Domain 1

Endurance Group 1

NVM Set 1

Port

Controller

Namespace 1

Port

Controller

Namespace 2

Port

Controller

Namespace 3

...

Namespace 4

NVM Express® Base Specification, Revision 2.0e

39

and NSID 2 is associated with namespace B. Both namespaces are private to the controller and this
configuration supports neither multi-path I/O nor namespace sharing.

Figure 16: NVM Express Controller with Two Namespaces

NSID 1 NSID 2

PCI Function 0

NVM Express Controller

PCIe Port

NS

A

NS

B

Figure 17 shows a multi-Function NVM subsystem with a single PCI Express port containing two controllers
implementing NVMe over PCIe. One controller is associated with PCI Function 0 and the other controller is
associated with PCI Function 1. Each controller supports a single private namespace and access to shared
namespace B. The namespace ID shall be the same in all controllers that have access to a particular shared
namespace. In this example both controllers use NSID 2 to access shared namespace B.

Figure 17: NVM Subsystem with Two Controllers and One Port

There is one or more Identify Controller data structures for each controller and one or more Identify
Namespace data structures for each namespace (refer to Figure 278). Controllers with access to a shared
namespace return the Identify Namespace data structure associated with that shared namespace (i.e., the
same data structure contents are returned by all controllers with access to the same shared namespace).
There is a globally unique identifier associated with the namespace itself and may be used to determine
when there are multiple paths to the same shared namespace. Refer to section 4.5.1.

Controllers associated with a shared namespace may operate on the namespace concurrently. Operations
performed by individual controllers are atomic to the shared namespace at the write atomicity level of the
controller to which the command was submitted (refer to section 3.4.3). The write atomicity level is not
required to be the same across controllers that share a namespace. If there are any ordering requirements

NSID 1 NSID 2

PCI Function 0

NVMe Controller

PCIe Port

NS
A

NS
B

NSID 3 NSID 2

PCI Function 1

NVMe Controller

NS
C

NVM Express® Base Specification, Revision 2.0e

40

between commands issued to different controllers that access a shared namespace, then host software or
an associated application, is required to enforce these ordering requirements.

Figure 18 illustrates an NVM subsystem with two PCI Express ports, each with an associated controller
implementing NVMe over PCIe. Both controllers map to PCI Function 0 of the corresponding port. Each
PCI Express port in this example is completely independent and has its own PCI Express Fundamental
Reset and reference clock input. A reset of a port only affects the controller associated with that port and
has no impact on the other controller, shared namespace, or operations performed by the other controller
on the shared namespace. Refer to section 4.2 for Feature behavior on reset. The functional behavior of
this example is otherwise the same as that illustrated in Figure 17.

Figure 18: NVM Subsystem with Two Controllers and Two Ports

NSID 1 NSID 2

PCI Function 0

NVMe Controller

NS
A

NS
B

NSID 3 NSID 2

PCI Function 0

NVMe Controller

NS
C

PCIe Port x PCIe Port y

The two ports shown in Figure 18 may be associated with the same Root Complex or with different Root
Complexes and may be used to implement both multi-path I/O and I/O sharing architectures. System-level
architectural aspects and use of multiple ports in a PCI Express fabric are beyond the scope of this
specification.

Figure 19 illustrates an NVM subsystem that supports Single Root I/O Virtualization (SR-IOV) and has one
Physical Function and four Virtual Functions. An NVM Express controller implementing NVMe over PCIe is
associated with each Function with each controller having a private namespace and access to a namespace
shared by all controllers, labeled NS F. The behavior of the controllers in this example parallels that of the
other examples in this section. Refer to section 8.26.4 for more information on SR-IOV.

NVM Express® Base Specification, Revision 2.0e

41

Figure 19: PCI Express Device Supporting Single Root I/O Virtualization (SR-IOV)

Examples provided in this section are meant to illustrate concepts and are not intended to enumerate all
possible configurations. For example, an NVM subsystem may contain multiple PCI Express ports with
each port supporting SR-IOV.

 Asymmetric Controller Behavior

Asymmetric controller behavior occurs in NVM subsystems where namespace access characteristics (e.g.,
performance) may vary based on:

• the internal configuration of the NVM subsystem; or

• which controller is used to access a namespace (e.g., Fabrics).
NVM subsystems that provide asymmetric controller behavior may support Asymmetric Namespace
Access Reporting as described in section 8.1.

Physical Function 0

NVMe Controller

Virtual Function (0,1)

NVMe Controller

Virtual Function (0,2)

NVMe Controller

Virtual Function (0,3)

NVMe Controller

Virtual Function (0,4)

NVMe Controller

NSID 1 NSID 2 NSID 3 NSID 2 NSID 4 NSID 2 NSID 5 NSID 2 NSID 6 NSID 2

NS

A

NS

B

NS

C

NS

D

NS

E

NS

F

PCIe Port

NVM Express® Base Specification, Revision 2.0e

42

3 NVM Express Architecture

3.1 NVM Controller Architecture

A controller is the interface between a host and an NVM subsystem. This specification defines two controller
models, the static controller model and the dynamic controller model. All controllers in an NVM subsystem
shall support the same controller model.

In an NVM subsystem that supports the static controller model, state (e.g., controller ID, saved Feature
settings) is preserved:

• across a Controller Level Reset for memory-based controllers and message-based controllers; and

• from prior associations for message-based controllers.

In an NVM subsystem that supports the dynamic controller model, the NVM subsystem allocates controllers
on demand with no state preserved from prior associations.

 Memory-Based Controller Architecture (PCIe)

Memory-based controllers shall support only the static controller model.

 Message-Based Controller Architecture (Fabrics)

Message-based controllers, other than Discovery controllers, may support either the dynamic controller
model or the static controller model. A Discovery controller shall support only the dynamic controller model.

In an NVM subsystem that supports the static controller model, each controller that is allocated to a
particular host may have different state at the time the association is established (e.g., each controller may
have state that is preserved from a prior association). The controllers within such an NVM subsystem are
distinguished by their controller identifier. The host may request a particular controller based on the
Controller ID (refer to the CNTLID field in Figure 386).

In an NVM subsystem that supports the dynamic controller model, each controller is allocated by the NVM
subsystem on demand with no state (e.g., Controller ID, Feature settings) preserved from prior
associations. In this model, all controllers allocated to a specific host have the same state at the time the
association is established, including Feature settings. The initial set of attached namespaces should be the
same for all controllers that are allocated to a specific host and accessed via the same NVM subsystem
port. The initial set of attached namespaces may differ among controllers that are each accessed via a
different NVM subsystem port. Changes to a dynamic controller (e.g., attached namespaces, Feature
settings) after the association is established do not impact other dynamic controllers in that NVM
subsystem.

An association is established between a host and a controller when the host connects to a controller’s
Admin Queue using the Fabrics Connect command (refer to section 6.3). Within the Connect command,
the host specifies the Host NQN, NVM Subsystem NQN, Host Identifier, and may request a specific
Controller ID (e.g., the static controller model is being used) or may request a connection to any available
controller (e.g., the dynamic controller model is being used). A controller has only one association at a time.

While an association exists between a host and a controller, only that host may establish connections with
I/O Queues of that controller by presenting the same Host NQN, Host Identifier, NVM Subsystem NQN and
Controller ID in subsequent Connect command(s) using the same NVM subsystem port, NVMe Transport
type, and NVMe Transport address.

An association between a host and controller is terminated if:

• the controller is shutdown as described in section 3.6.2;

• a Controller Level Reset occurs;

• the NVMe Transport connection is lost between the host and controller for the Admin Queue; or

• an NVMe Transport connection is lost between the host and controller for any I/O Queue and the
host or controller does not support individual I/O Queue deletion (refer to section 3.3.2.4).

NVM Express® Base Specification, Revision 2.0e

43

There is no explicit NVMe command that breaks the NVMe Transport association between a host and
controller. The Disconnect command (refer to section 6.4) provides a method to delete an NVMe I/O Queue
(refer to section 3.3.2.4). While a controller is associated with a host, that controller is busy, and no other
associations may be made with that controller.

To use the dynamic controller model, the host specifies a controller identifier of FFFFh when using the
Fabrics Connect command (refer to section 6.3) to establish an association with an NVM subsystem.

When using the static controller model with a fabric connected controller, the state that persists across
associations is any state that persists across a Controller Level Reset. Additionally, different controllers
may present different Feature settings or namespace attachments to the same host. The NVM subsystem
may allocate particular controllers to specific hosts.

While allocation of static controllers to hosts are expected to be durable (so that hosts can expect to form
associations to the same controllers repeatedly (e.g., after each host reboot)), the NVM subsystem may
remove the host allocation of a controller that is not in use at any time for implementation specific reasons
(e.g., controller resource reclamation, subsystem reconfiguration).

 Controller Types

As shown in Figure 20, there are three types of controllers. An I/O controller (refer to section 3.1.3.1) is a
controller that supports commands that provide access to user data stored on an NVM subsystem’s non-
volatile storage medium and may support commands that provide management capabilities. An
Administrative controller (refer to section 3.1.3.2) is a controller that supports commands that provide
management capabilities, but does not support I/O commands that access to user data stored on an NVM
subsystem’s non-volatile storage medium. A Discovery controller (refer to section 3.1.3.3) is a controller
used in NVMe over Fabrics to provide access to a Discovery Log Page.

Figure 20: Controller Types

The Controller Type (CNTRLTYPE) field in the Identify Controller data structure indicates a controller’s
type. Regardless of controller type, all controllers implement one Admin Submission Queue and one Admin
Completion Queue. Depending on the controller type, a controller may also support one or more I/O
Submission Queues and I/O Completion Queues.

When using a memory-based transport implementation (e.g. PCIe), host software submits commands to a
controller through pre-allocated Submission Queues. A controller is alerted to newly submitted commands
through SQ Tail Doorbell register writes. The difference between the previous doorbell register value and
the current register write indicates the number of commands that were submitted.

A controller fetches commands from the Submission Queue(s) and processes them. Except for fused
operations, there are no ordering restrictions for processing of commands within or across Submission
Queues. Host software should not submit commands to a Submission Queue that may not be re-ordered
arbitrarily. Data associated with the processing of a command may or may not be committed to the NVM
subsystem non-volatile storage medium in the order that commands are submitted.

Host software submits commands of higher priorities to the appropriate Submission Queues. Priority is
associated with the Submission Queue itself, thus the priority of the command is based on the Submission
Queue to which that command was submitted. The controller arbitrates across the Submission Queues
based on fairness and priority according to the arbitration scheme specified in section 3.4.4.

NVM Express® Base Specification, Revision 2.0e

44

Upon completion of the command execution by the NVM subsystem, the controller presents completion
queue entries to the host through the appropriate Completion Queues. Transport specific methods (e.g.,
PCIe interrupts) are used to notify the host of completion queue entries to process (refer to the appropriate
Transport specification).

There are no ordering restrictions for completions to the host. Each completion queue entry identifies the
Submission Queue Identifier and Command Identifier of the associated command. Host software uses this
information to correlate the completions with the commands submitted to the Submission Queue(s).

Host software is responsible for creating I/O Submission Queues and I/O Completion Queues prior to using
those queue pairs to submit commands to the controller. I/O Submission Queues and I/O Completion
Queues are created using the Create I/O Submission Queue command (refer to section 5.5) and the Create
I/O Completion Queue command (refer to section 5.4).

3.1.3.1 I/O Controller

An I/O controller is a controller that supports commands that provide access to user data stored on an NVM
subsystem’s non-volatile storage medium using an I/O command set and may support commands that
provide management capabilities.

An I/O controller may simultaneously support multiple I/O Command Sets. The I/O Command Sets that the
controller supports and which of these I/O Command Sets the controller simultaneously supports is reported
in the Identify I/O Command Set data structure (refer to section 5.17.2.21). The contents of the Identify I/O
Command Set data structure are not required to be the same for all controllers in an NVM subsystem.

Figure 21 shows an NVM subsystem with three I/O controllers. I/O controller one has two attached
namespaces, private namespace A and shared namespace B. I/O controller two also has two attached
namespaces, private namespace C and shared namespace B. I/O controller three has no attached
namespaces. At some later point in time shared namespace B may be attached to I/O controller three.

Figure 21: NVM Subsystem with Three I/O Controllers

3.1.3.1.1 Command Support

Figure 22 and Figure 23 defines commands that are mandatory, optional, and prohibited for an I/O
controller. I/O Command Set specific command support requirements are described within individual I/O
Command Set specifications.

NVM Express® Base Specification, Revision 2.0e

45

Figure 22: I/O Controller – Admin Command Support

Command
Command Support

Requirements
1

Reference

Delete I/O Submission Queue M 5.7

Create I/O Submission Queue M 5.5

Get Log Page M 0

Delete I/O Completion Queue M 5.6

Create I/O Completion Queue M 5.4

Identify M 5.17

Abort M 5.1

Set Features M 5.27

Get Features M 5.15

Asynchronous Event Request M 5.2

Capacity Management O 5.3

Namespace Management O 5.23

Firmware Commit O 5.12

Firmware Image Download O 5.13

Device Self-test O 5.9

Namespace Attachment O 5.22

Keep Alive M
2

 5.18

Directive Send O 5.11

Directive Receive O 5.10

Virtualization Management O 5.28

NVMe-MI Send O 5.21

NVMe-MI Receive O 5.20

Doorbell Buffer Config O 5.8

Lockdown O 5.19

Format NVM O 5.14

Security Send O 5.26

Security Receive O 5.25

Sanitize O 5.24

Property Set M
3

 6.6

Connect M
3

 6.3

Property Get M
3

 6.5

Authentication Send O
3

 6.2

Authentication Receive O
3

 6.1

Disconnect O
3

 6.4

I/O Command Set specific Admin
Command

Refer to the applicable
I/O Command Set

specification

Refer to the applicable I/O
Command Set specification

Vendor Specific O

Notes:
1. O/M/P definition: O = Optional, M = Mandatory, P = Prohibited
2. Prohibited if the Keep Alive Timer feature is not supported (refer to section 3.9).
3. For NVMe over PCIe implementations, all Fabrics commands are prohibited. For NVMe over

Fabrics implementations, the commands are as noted in the table.

Figure 23: I/O Controller – Common I/O Command Support

Command Command Support Requirements
1

Flush M

NVM Express® Base Specification, Revision 2.0e

46

Figure 23: I/O Controller – Common I/O Command Support

Command Command Support Requirements
1

Dataset Management O

Reservation Register O
2

Reservation Report O
2

Reservation Acquire O
2

Reservation Release O
2

Notes:
1. O/M/P definition: O = Optional, M = Mandatory, P = Prohibited
2. Mandatory if reservations are supported as indicated in the Identify Controller data structure.

3.1.3.1.2 Log Page Support

Figure 24 defines log pages that are mandatory, optional, and prohibited for an I/O controller. I/O Command
Set specific log page support requirements are described within individual I/O Command Set specifications.

Figure 24: I/O Controller – Log Page Support

Log Page Name Log Page Support Requirements
1

Supported Log Pages M
3

Error Information M

SMART / Health Information (Controller scope) M

SMART / Health Information (Namespace scope) O

Firmware Slot Information M

Changed Namespace List O

Commands Supported and Effects M
3

Device Self-test O

Telemetry Host-Initiated O

Telemetry Controller-Initiated O

Endurance Group Information O

Predictable Latency Per NVM Set O

Predictable Latency Event Aggregate O

Asymmetric Namespace Access O

Persistent Event O

Endurance Group Event Aggregate O

Media Unit Status O
2

Supported Capacity Configuration List O
2

Feature Identifiers Supported and Effects M
3

NVMe-MI Commands Supported and Effects M
3, 4

Command and Feature Lockdown O

Reservation Notification O

Sanitize Status O

Boot Partition O

Rotational Media Information O

Notes:
1. O/M/P definition: O = Optional, M = Mandatory, P = Prohibited
2. Mandatory for controllers that support Fixed Capacity Management (refer to section 8.3.2).
3. Optional for NVM Express revision 1.4 and earlier.
4. Optional if the NVMe-MI Send command and the NVMe-MI Receive command are not supported (refer

to Figure 22).

NVM Express® Base Specification, Revision 2.0e

47

3.1.3.1.3 Features Support

Figure 25 defines features that are mandatory, optional, and prohibited for an I/O controller. I/O Command
Set specific feature support requirements are described within individual I/O Command Set specifications.

Figure 25: I/O Controller – Feature Support

Feature Name
Feature Support

Requirements
1

Logged in

Persistent Event Log
1

Arbitration M O

Power Management M NR

Temperature Threshold M O

Volatile Write Cache O O

Number of Queues M O

Interrupt Coalescing NOTE 2 O

Interrupt Vector Configuration NOTE 2 O

Asynchronous Event Configuration M NR

Autonomous Power State Transition O O

Host Memory Buffer O O

Timestamp O P

Keep Alive Timer M
6 O

Host Controlled Thermal Management O O

Non-Operational Power State Config O O

Read Recovery Level Config O O

Predictable Latency Mode Config O O

Predictable Latency Mode Window O P

Host Behavior Support O O

Sanitize Config O O

Endurance Group Event Configuration O O

I/O Command Set Profile O O

Software Progress Marker O NR

Host Identifier O
3

 O

Reservation Notification Mask O
4

 O

Reservation Persistence O
4

 O

Namespace Write Protection Config O O

Enhanced Controller Metadata O
5

 O

Controller Metadata O
5

 O

Namespace Metadata O
5

 O

Spinup Control O O

Notes:
1. O/M/P/NR definition: O = Optional, M = Mandatory, P = Prohibited, NR = Not Recommended
2. The feature is mandatory for NVMe over PCIe. This feature is not supported for NVMe over Fabrics.
3. Mandatory if reservations are supported as indicated in the Identify Controller data structure.
4. Mandatory if reservations are supported by the namespace as indicated by a non-zero value in the

Reservation Capabilities (RESCAP) field in the Identify Namespace data structure.
5. This feature is optional for NVM subsystems that do not implement a Management Endpoint. For NVM

subsystems that implement any Management Endpoint refer to the NVM Express Management Interface
Specification.

6. Optional if not required by the NVMe Tranport (refer to section 3.9).

3.1.3.2 Administrative Controller

An Administrative controller is a controller whose intended purpose is to provide NVM subsystem
management capabilities. While an I/O controller may support these same management capabilities, an
Administrative controller has fewer mandatory capabilities. Unlike an I/O controller, an Administrative

NVM Express® Base Specification, Revision 2.0e

48

controller does not support I/O commands that access to user data stored on an NVM subsystem’s non-
volatile storage medium. NVMe Transports may support a transport specific mechanism to allow an
Administrative controller to load a dedicated NVMe management driver instead of a generic NVMe driver
(refer to the applicable NVMe Transport binding specification for details).

Examples of management capabilities that may be supported by an Administrative controller include the
following.

• Ability to efficiently poll NVM subsystem health status via NVMe-MI using the NVMe-MI Send
command and the NVMe-MI Receive command (refer to the NVM Subsystem Health Status Poll
section in the NVM Express Management Interface Specification);

• Ability to manage an NVMe enclosure via NVMe-MI using the NVMe-MI Send command and the
NVMe-MI Receive command;

• Ability to manage NVM subsystem namespaces using the Namespace Attachment command and
the Namespace Management command;

• Ability to perform virtualization management using the Virtualization Management command;

• Ability to reset an entire NVM subsystem using the NVM Subsystem Reset (NSSR) register, if
supported; and

• Ability to shutdown an entire NVM subsystem using the NVM Subsystem Shutdown (NSSD)
property, if supported.

An Administrative controller shall not support I/O queues. Namespaces shall not be attached to an
Administrative controller.

An Administrative controller is required to support the mandatory Admin commands listed in Figure 28. An
Administrative controller may support one or more I/O Command Sets. When an Administrative controller
supports an I/O Command Set, then only I/O Command Set specific Admin commands may be supported
since an Administrative controller only has an Admin Queue and no I/O Queues.

Figure 26 shows an NVM subsystem with one Administrative controller and two I/O controllers within an
NVM subsystem that contains a non-volatile storage medium and namespaces. I/O controller one has two
attached namespaces, private namespace A and shared namespace B. I/O controller two also has two
attached namespaces, private namespace C and shared namespace B. Since an Administrative controller
does not provide access to user data stored on an NVM subsystem’s non-volatile storage medium, the
Administrative controller has no attached namespaces. The Administrative controller in this example may
be used for tasks such as NVM subsystem namespace management and efficiently polling NVM subsystem
health status via NVMe-MI. While this example shows a single Administrative controller, an NVM subsystem
may support zero or more Administrative controllers.

NVM Express® Base Specification, Revision 2.0e

49

Figure 26: NVM Subsystem with One Administrative and Two I/O Controllers

Figure 27 shows an NVM subsystem with one Administrative controller within an NVM subsystem that
contains no non-volatile storage medium or namespaces. The Administrative controller in this example may
be used to manage an NVMe enclosure using NVMe-MI. Since the Administrative controller is used for a
very specific dedicated purpose, the implementer of such an Administrative controller may choose to
implement only the mandatory capabilities along with the NVMe-MI Send and NVMe-MI Receive
commands.

Figure 27: NVM Subsystem with One Administrative Controller

Port

NVM Subsystem

Administrative

controller

3.1.3.2.1 Command Support

Figure 28 defines commands that are mandatory, optional, and prohibited for an Administrative controller.
Since an Administrative controller does not support I/O queues, NVM Command Set commands that are
not admin commands are not supported. A host may utilize the Commands Supported and Effects log page
to determine optional commands that are supported by an Administrative controller.

Figure 28: Administrative Controller – Admin Command Support

Command
Command Support

Requirements
1

Reference

Delete I/O Submission Queue P 5.7

Create I/O Submission Queue P 5.5

Get Log Page M 0

Delete I/O Completion Queue P 5.6

Create I/O Completion Queue P 5.4

NVM Express® Base Specification, Revision 2.0e

50

Figure 28: Administrative Controller – Admin Command Support

Command
Command Support

Requirements
1

Reference

Identify M 5.17

Abort O 5.1

Set Features O
3

 5.27

Get Features O
3

 5.15

Asynchronous Event Request O
4

 5.2

Capacity Management O

5.3

Namespace Management O 5.23

Firmware Commit O 5.12

Firmware Image Download O 5.13

Device Self-test O 5.9

Namespace Attachment O 5.22

Keep Alive M
2

 5.18

Directive Send O 5.11

Directive Receive O 5.10

Virtualization Management O 5.28

NVMe-MI Send O 5.21

NVMe-MI Receive O 5.20

Doorbell Buffer Config O 5.8

Lockdown O 5.19

Format NVM O 5.14

Security Send O 5.26

Security Receive O 5.25

Sanitize O 5.24

Property Set M
5

 6.6

Connect M
5

 6.3

Property Get M
5

 6.5

Authentication Send O
5

 6.2

Authentication Receive O
5

 6.1

Disconnect P 6.4

I/O Command Set Specific Admin
commands

P

Vendor Specific O

Notes:
1. O/M/P definition: O = Optional, M = Mandatory, P = Prohibited
2. Prohibited if the Keep Alive Timer feature is not supported (refer to section 3.9).
3. Mandatory if any of the features in Figure 30 are implemented.
4. Mandatory if Telemetry Log, Firmware Commit, or SMART/Health Critical Warnings are

supported.
5. For NVMe over PCIe implementations, all Fabrics commands are prohibited. For NVMe over

Fabrics implementations, the commands are as noted in the table.

3.1.3.2.2 Log Page Support

Figure 29 defines log pages that are mandatory, optional, and prohibited for an Administrative controller.

NVM Express® Base Specification, Revision 2.0e

51

Figure 29: Administrative Controller – Log Page Support

Log Page Name Command Support Requirements
1

Supported Log Pages M
4

Error Information M

SMART / Health Information (Controller scope) O

SMART / Health Information (Namespace scope) O

Firmware Slot Information O

Changed Namespace List O

Commands Supported and Effects M

Device Self-test O

Telemetry Host-Initiated O

Endurance Group Information O

Predictable Latency Per NVM Set O

Predictable Latency Event Aggregate O

Asymmetric Namespace Access P

Persistent Event O

Endurance Group Event Aggregate O

Media Unit Status P

Supported Capacity Configuration List P

Feature Identifiers Supported and Effects M
2,4

NVMe-MI Commands Supported and Effects M
3,4

Command and Feature Lockdown O

Reservation Notification P

Sanitize Status O

Rotational Media Information P

Boot Partition O

I/O Command Set Specific Log Pages P

Notes:
1. O/M/P definition: O = Optional, M = Mandatory, P = Prohibited
2. Optional if Set Features command is not supported (refer to Figure 28).
3. Optional if NVMe-MI Send command and NVMe-MI Receive command is not supported (refer to Figure

28).
4. Optional for NVM Express revision 1.4 and earlier.

3.1.3.2.3 Features Support

Figure 30 defines features that are mandatory, optional, and prohibited for an Administrative controller. If
any feature is supported, then the Set Features and Get Features commands shall be supported. I/O
Command Set specific feature support requirements for I/O Controllers are described within individual I/O
Command Set specification.

Figure 30: Administrative Controller – Feature Support

Feature Name Feature Support Requirements
1

Logged in

Persistent Event Log
1

Arbitration P P

Power Management O NR

Temperature Threshold O O

Volatile Write Cache P P

Number of Queues P P

Interrupt Coalescing NOTE 2 NOTE 2

Interrupt Vector Configuration NOTE 2 NOTE 2

Asynchronous Event Configuration O
3

 NR

Autonomous Power State Transition O O

NVM Express® Base Specification, Revision 2.0e

52

Figure 30: Administrative Controller – Feature Support

Feature Name Feature Support Requirements
1

Logged in

Persistent Event Log
1

Host Memory Buffer O O

Timestamp O P

Keep Alive Timer M
5

 O

Host Controlled Thermal Management O O

Non-Operational Power State Config O O

Read Recovery Level Config O O

Predictable Latency Mode Config O P

Predictable Latency Mode Window O O

Host Behavior Support O O

Sanitize Config O O

Endurance Group Event Configuration O O

I/O Command Set Profile P P

Software Progress Marker O NR

Host Identifier O O

Reservation Notification Mask P P

Reservation Persistence P P

Namespace Write Protection Config O O

Enhanced Controller Metadata O
4

 O

Controller Metadata O
4

 O

Namespace Metadata O
4

 O

Spinup Control P P

Notes:
1. O/M/P/NR definition: O = Optional, M = Mandatory, P = Prohibited, NR = Not Recommended.
2. The feature is mandatory for NVMe over PCIe. This feature is not supported for NVMe over Fabrics.
3. Mandatory if Telemetry Log, Firmware Commit or SMART/Health Critical Warnings are supported.
4. This feature is optional for NVM subsystems that do not implement a Management Endpoint. For NVM

subsystems that implement any Management Endpoint refer to the NVM Express Management Interface
Specification.

5. Optional if not required by the NVMe Transport (refer to section 3.9).

3.1.3.3 Discovery Controller

A Discovery controller only implements features related to Discovery Log Pages and does not implement
I/O Queues, I/O commands, or expose namespaces. The functionality supported by the Discovery controller
is defined in section 3.1.3.3.4.

The host uses the well-known Discovery Service NQN (nqn.2014-08.org.nvmexpress.discovery) in the
Connect command (refer to section 6.3) to a Discovery Service. The method that a host uses to obtain the
NVMe Transport information necessary to connect to the well-known Discovery Service is implementation
specific.

The Discovery Log Page provided by a Discovery controller contains one or more entries. Each entry
specifies information necessary for the host to connect to an NVM subsystem. An entry may be associated
with an NVM subsystem that exposes namespaces or a referral to another Discovery Service. There are
no ordering requirements for log page entries within the Discovery Log Page.

Discovery controller(s) may provide different log page contents depending on the Host NQN provided (e.g.,
different NVM subsystems may be accessible to different hosts). The set of Discovery Log Page Entries
should include all applicable addresses on the same fabric as the Discovery Service and may include
addresses on other fabrics.

Discovery controllers that support explicit persistent connections shall support both Asynchronous Event
Request and Keep Alive commands (refer to sections 5.2 and 5.18 respectively). A host requests an explicit

NVM Express® Base Specification, Revision 2.0e

53

persistent connection to a Discovery controller and Asynchronous Event Notifications from the Discovery
controller on that persistent connection by specifying a non-zero Keep Alive Timer value in the Connect
command. If the Connect command specifies a non-zero Keep Alive Timer value and the Discovery
controller does not support Asynchronous Events, then the Discovery controller shall return a status value
of Connect Invalid Parameters (refer to Figure 388) for the Connect command. Discovery controllers shall
indicate support for Discovery Log Change Notifications in the Identify Controller Data Structure (refer to
Figure 280).

Discovery controllers that do not support explicit persistent connections shall not support Keep Alive
commands and may use a fixed Discovery controller activity timeout value (e.g., 2 minutes). If no commands
are received by such a Discovery controller within that time period, the controller may perform the actions
for Keep Alive Timer expiration defined in section 3.9.5.

A Discovery controller shall not support the Disconnect command.

A Discovery Log Page with multiple Discovery Log Page Entries for the same NVM subsystem indicates
that there are multiple fabric paths to the NVM subsystem, and/or that multiple static controllers may share
a fabric path. The host may use this information to form multiple associations to controllers within an NVM
subsystem.

Multiple Discovery Log Page Entries for the same NVM subsystem with different Port ID values indicates
that the resulting NVMe Transport connections are independent with respect to NVM subsystem port
hardware failures. A host that uses a single association should pick a record to attach to an NVM
subsystem. A host that uses multiple associations should choose different ports.

A transport specific method may exist to indicate changes to a Discovery controller.

The Controller ID values returned in the Discovery Log Page Entries indicate whether an NVM subsystem
supports the dynamic or static controller model. The controller ID value of FFFFh is a special value used
for NVM subsystems that support the dynamic controller model indicating that any available controller may
be returned. The Controller ID value of FFFEh is a special value used for NVM subsystems that support
the static controller model indicating that any available controller may be returned. An NVM subsystem
supports the dynamic controller model if Discovery Log Page Entries use the Controller ID value of FFFFh.
An NVM subsystem supports the static controller model if Discovery Log Page Entries use a Controller ID
value that is less than FFFFh. The Identify Controller data structure also indicates whether an NVM
subsystem is dynamic or static.

If an NVM subsystem implements the dynamic controller model, then multiple Discovery Log Page Entries
(refer to Figure 269) with the Controller ID set to FFFFh may be returned for that NVM subsystem (e.g., to
indicate multiple NVM subsystem ports) in the Discovery Log Page. If an NVM subsystem implements the
static controller model, then multiple Discovery Log Page Entries that indicate different Controller ID values
may be returned for that NVM subsystem in the Discovery Log Page. If an NVM subsystem that implements
the static controller model includes any Discovery Log Page Entries that indicate a Controller ID of FFFEh,
then the host should remember the Controller ID returned from the Fabrics Connect command and re-use
the allocated Controller ID for future associations to that particular controller.

3.1.3.3.1 Discovery Controller Initialization

The initialization process for Discovery controllers is described in Figure 31.

NVM Express® Base Specification, Revision 2.0e

54

Figure 31: Discovery Controller Initialization process flow

Discovery Controller receives

Connect Command
1

 from

Host

Controller uses provided KATO
but MAY use an alternate

KATO
2

Controller pre-allocates

resources for AERs and AENs
3

Connect Command completes

with successful status
4

Host sends AER Commands

Controller uses Fixed KATO
2 Controller returns a Connect

Command error Controller uses Fixed KATO
2

Host completes connection to

controller
4

Host does not send AER
Commands

Connect
Command with

non-zero KATO
2

Connect
Command with

non-zero KATO
2

Discovery
Controller
supports

Discovery change
notifications

Y N

Y NNY

Notes:
1. Refer to section 6.3.
2. Refer to the Keep Alive command in section 5.18.
3. Refer to the Asynchronous Event Request command in section 5.2.
4. Refer to the following steps in this section.

After the Connect Command completes with a status of Successful Completion, the host performs the
following steps:

1. NVMe authentication is performed if required (refer to section 8.13.2);
2. The host determines the controller’s capabilities by reading the Controller Capabilities property;
3. The host configures the controller’s settings by writing the Controller Configuration property,

including setting CC.EN to ‘1’ to enable command processing;
4. The host waits for the controller to indicate that the controller is ready to process commands. The

controller is ready to process commands when CSTS.RDY is set to ‘1’ in the Controller Status
property; and

5. The host determines the features and capabilities of the controller by issuing an Identify command,
specifying each applicable Controller data structure.

After initializing the Discovery controller, the host reads the Discovery Log Page. Refer to section 5.16.1.21.

3.1.3.3.2 Command Support

A Discovery controller supports all mandatory Fabrics commands. A Discovery controller supports a subset
of Admin commands shown in Figure 32.

Figure 32: Discovery Controller – Admin Command Support

Command Command Support Requirements
1
 Reference

Delete I/O Submission Queue P 5.7

Create I/O Submission Queue P 5.5

Get Log Page M 0

NVM Express® Base Specification, Revision 2.0e

55

Figure 32: Discovery Controller – Admin Command Support

Command Command Support Requirements
1
 Reference

Delete I/O Completion Queue P 5.6

Create I/O Completion Queue P 5.4

Identify M 5.17

Abort O 5.1

Set Features NOTE 2 5.27

Get Features NOTE 2 5.15

Asynchronous Event Request NOTE 2 5.2

Capacity Management P 5.3

Namespace Management P 5.23

Firmware Commit P 5.12

Firmware Image Download P 5.13

Device Self-test P 5.9

Namespace Attachment P 5.22

Keep Alive NOTE 2 5.18

Directive Send P 5.11

Directive Receive P 5.10

Virtualization Management P 5.28

NVMe-MI Send P 5.21

NVMe-MI Receive P 5.20

Doorbell Buffer Config P 5.8

Lockdown P 5.19

Format NVM P 5.14

Security Send P 5.26

Security Receive P 5.25

Sanitize P 5.24

Property Set M 6.6

Connect M 6.3

Property Get M 6.5

Authentication Send O 6.2

Authentication Receive O 6.1

Disconnect P 6.4

I/O Command Set Specific Admin
commands

P

Vendor Specific O

Notes:
1. O/M/P definition: O = Optional, M = Mandatory, P = Prohibited
2. For Discovery controllers that support explicit persistent connections, this command is mandatory. For Discovery

controllers that do not support explicit persistent connections, this command is prohibited.

3.1.3.3.3 Log Page Support

The Discovery controller shall support the Discovery Log Page. The log pages that a Discovery controller
may support are shown in Figure 33.

Figure 33: Discovery Controller – Log Page Support

Log Page Name Command Support Requirements
1

Supported Log Pages M
3

Error Information O

SMART / Health Information (Controller scope) P

SMART / Health Information (Namespace scope) P

Firmware Slot Information P

Changed Namespace List P

NVM Express® Base Specification, Revision 2.0e

56

Figure 33: Discovery Controller – Log Page Support

Log Page Name Command Support Requirements
1

Commands Supported and Effects P

Device Self-test P

Telemetry Host-Initiated P

Telemetry Controller-Initiated P

Endurance Group Information P

Predictable Latency Per NVM Set P

Predictable Latency Event Aggregate P

Asymmetric Namespace Access P

Persistent Event P

Endurance Group Event Aggregate P

Media Unit Status P

Supported Capacity Configuration List P

Feature Identifiers Supported and Effects M
2,3

NVMe-MI Commands Supported and Effects O

Command and Feature Lockdown P

Discovery M

Reservation Notification P

Sanitize Status P

Rotational Media Information P

Boot Partition P

I/O Command Set Specific Log Pages P

Notes
1. O/M/P definition: O = Optional, M = Mandatory, P = Prohibited
2. Optional if Set Features command is not supported (refer to Figure 32).
3. Optional for versions 1.1 and earlier of the NVMe over Fabrics specification.

3.1.3.3.4 Features Support

These features indicate the attributes of a Discovery controller (refer to Figure 34). This is optional
information not required for proper behavior of the system (refer to Figure 321).

Figure 34: Discovery Controller – Feature Support

Feature Name
Feature Support

Requirements
1

Logged in

Persistent Event Log
1

Arbitration P P

Power Management P P

Temperature Threshold P P

Volatile Write Cache P P

Number of Queues P P

Interrupt Coalescing P P

Interrupt Vector Configuration P P

Asynchronous Event Configuration NOTE 2 NR

Autonomous Power State Transition P P

Host Memory Buffer P P

Timestamp P P

Keep Alive Timer NOTE 2 O

Host Controlled Thermal Management P P

Non-Operational Power State Config P P

Read Recovery Level Config P P

Predictable Latency Mode Config P P

Predictable Latency Mode Window P P

Host Behavior Support P P

NVM Express® Base Specification, Revision 2.0e

57

Figure 34: Discovery Controller – Feature Support

Feature Name
Feature Support

Requirements
1

Logged in

Persistent Event Log
1

Sanitize Config P P

Endurance Group Event Configuration P P

Vendor Specific O O

Software Progress Marker P P

Host Identifier P P

Reservation Notification Mask P P

Reservation Persistence P P

Namespace Write Protection Config P P

I/O Command Set Profile P P

Enhanced Controller Metadata O O

Controller Metadata O O

Namespace Metadata O O

Spinup Control P P

Notes:
1. O/M/P/NR definition: O = Optional, M = Mandatory, P = Prohibited, NR = Not Recommended.
2. For Discovery controllers that support explicit persistent connections, this feature is mandatory. For Discovery

controllers that do not support explicit persistent connections, this feature is prohibited.

3.1.3.3.4.1 Asynchronous Event Configuration (Feature Identifier 0Bh)

Discovery controllers that support Asynchronous Event Notifications shall implement the Get Features and
Set Features commands. A Discovery controller shall enable Asynchronous Discovery Log Event
Notifications, if a non-zero Keep Alive Timeout (KATO) value is received in the Connect command (refer to
section 6.3) sent to that controller.

Figure 331 defines Discovery controller Asynchronous Event Notifications.

3.1.3.3.4.2 Discovery Controller Asynchronous Event Information – Requests and Notifications

If Discovery controllers detect events about which a host has requested notification, then the Discovery
controller shall send an Asynchronous Event with the:

• Asynchronous Event Type field set to Notice (i.e., 2h);

• Log Page Identifier field set to Discovery (i.e., 70h); and

• Asynchronous Event Information field set as defined in Figure 152.

When a Discovery controller updates Discovery Log Page(s), the Discovery controller shall send a
Discovery Log Page Change Asynchronous Event notification (Asynchronous Event Information F0h) to
each host that has requested asynchronous event notifications of this type (refer to Figure 152).

 Controller Properties

A property is a dword, or qword attribute of a controller. The attribute may have read, write, or read/write
access. The host shall access a property using the width specified for that property with an offset that is at
the beginning of the property unless otherwise noted in a transport specific specification. All reserved
properties and all reserved bits within properties are read-only and return 0h when read.

For message-based controllers, properties may be read with the Property Get command and may be written
with the Property Set command.

For memory-based controllers, refer to the applicable NVMe Transport binding specification for access
methods and rules (e.g., NVMe PCIe Transport Specification).

Figure 35 describes the property map for the controller.

Accesses that target any portion of two or more properties are not supported.

NVM Express® Base Specification, Revision 2.0e

58

Software should not rely on 0h being returned.

Figure 35: Property Definition

Offset
(OFST)

Size
(in

bytes)

I/O

Controller
1

Admin.

Controller
1

Discovery

Controller
1

Name

0h 8 M M M CAP: Controller Capabilities

8h 4 M M M VS: Version

Ch 4 M
2

 M
2

 R INTMS: Interrupt Mask Set

Fh 4 M
2

 M
2

 R INTMC: Interrupt Mask Clear

14h 4 M M M CC: Controller Configuration

18h R R R Reserved

1Ch 4 M M M CSTS: Controller Status

20h 4 O O R NSSR: NVM Subsystem Reset

24h 4 M
2

 M
2

 R AQA: Admin Queue Attributes

28h 8 M
2

 M
2

 R ASQ: Admin Submission Queue Base Address

30h 8 M
2

 M
2

 R ACQ: Admin Completion Queue Base Address

38h 4 O
3

 O
3

 R CMBLOC: Controller Memory Buffer Location

3Ch 4 O
3

 O
3

 R CMBSZ: Controller Memory Buffer Size

40h 4 O
3

 O
3

 R BPINFO: Boot Partition Information

44h 4 O
3

 O
3

 R BPRSEL: Boot Partition Read Select

48h 8 O
3

 O
3

 R BPMBL: Boot Partition Memory Buffer Location

50h 8 O
3

 O
3

 R
CMBMSC: Controller Memory Buffer Memory
Space Control

58h 4 O
3

 O
3

 R CMBSTS: Controller Memory Buffer Status

5Ch 4 O
3

 O
3

 R
CMBEBS: Controller Memory Buffer Elasticity
Buffer Size

60h 4 O
3

 O
3

 R
CMBSWTP: Controller Memory Buffer
Sustained Write Throughput

64h 4 O O R NSSD: NVM Subsystem Shutdown

68h 4 M M R CRTO: Controller Ready Timeouts

6Ch R R R Reserved

E00h 4 O
3

 O
3

 R PMRCAP: Persistent Memory Capabilities

E04h 4 O
3

 O
3

 R PMRCTL: Persistent Memory Region Control

E08h 4 O
3

 O
3

 R PMRSTS: Persistent Memory Region Status

E0Ch 4 O
3

 O
3

 R
PMREBS: Persistent Memory Region Elasticity
Buffer Size

E10h 4 O
3

 O
3

 R
PMRSWTP: Persistent Memory Region
Sustained Write Throughput

E14h 4 O
3

 O
3

 R
PMRMSCL: Persistent Memory Region
Controller Memory Space Control Lower

E18h 4 O
3

 O
3

 R
PMRMSCU: Persistent Memory Region
Controller Memory Space Control Upper

E1Ch R R R Reserved

NVM Express® Base Specification, Revision 2.0e

59

Figure 35: Property Definition

Offset
(OFST)

Size
(in

bytes)

I/O

Controller
1

Admin.

Controller
1

Discovery

Controller
1

Name

1000h

Transport Specific:

• Refer to Figure 36 for Memory-Based transport implementations.

• Refer to Figure 37 for Message-Based transport implementations.

Notes:
1. O/M/R definition: O = Optional, M = Mandatory, R = Reserved
2. Mandatory for memory-based controllers. For message-based controllers this property is reserved.
3. Optional for memory-based controllers. For message-based controllers this property is reserved.
4. Determined by the transport (e.g., the offset calculation formula Offset (1000h + ((2y) * (4 << CAP.DSTRD)))

for the memory-based PCIe transport).

Figure 36: Memory-Based Property Definition

Offset
(OFST)

Size (in
bytes)

I/O

Controller
1

Admin.

Controller
1

Discovery

Controller
1

Name

1000h Variable
2
 T T T

Transport Specific (e.g., PCIe doorbell
registers as specified in the NVMe over PCIe
Transport Specification)

1000h +

Variable
2

 O O O Vendor Specific

Notes:
1. O/T definition: O = Optional, T = Transport Specific
2. Determined by the transport (e.g., the offset calculation formula Offset (1000h + ((2y) * (4 << CAP.DSTRD))) for

the PCIe transport).

Figure 37: Message-Based Property Definition

Offset
(OFST)

Size
(in

bytes)

I/O

Controller
1

Admin.

Controller
1

Discovery

Controller
1

Name

1000h 300h R R R Reserved for Fabrics

1300h O O O Vendor Specific

Notes:
1. O/R definition: O = Optional, R = Reserved

The following conventions are used to describe controller properties for all transport models. Hardware
shall return ‘0’ for all bits that are marked as reserved, and host software shall write all reserved bits and
properties with the value of 0h

The following terms and abbreviations are used:

RO Read Only
RW Read Write

RWC Read/Write ‘1’ to clear
RWS Read/Write ‘1’ to set

Impl Spec Implementation Specific – the controller has the freedom to choose
its implementation.

HwInit The default state is dependent on NVM Express controller and
system configuration.

Reset This column indicates the value of the field after a Controller Level
Reset as defined in section 3.7.2.

NVM Express® Base Specification, Revision 2.0e

60

For some fields, it is implementation specific as to whether the field is RW, RWC, or RO; this is typically
shown as RW/RO or RWC/RO to indicate that if the functionality is not supported that the field is read only.

When a field is referred to in the document, the convention used is “Property Symbol.Field Symbol”. For
example, the PCI command register Parity Error Response Enable bit is referred to by the name CMD.PEE.
If the field is an array of bits, the field is referred to as “Property Symbol.Field Symbol (array offset to
element)”. When a sub-field is referred to in the document, the convention used is “Property Symbol.Field
Symbol.Sub Field Symbol”. For example, when the Controller Ready With Media Support sub-field of the
Controller Ready Modes Supported field within the Controller Capability property, the sub-field is referred
to by the name CAP.CRMS.CRWMS.

3.1.4.1 Offset 0h: CAP – Controller Capabilities

This property indicates basic capabilities of the controller to host software.

Figure 38: Offset 0h: CAP – Controller Capabilities

Bits Type Reset Description

63: 61 RO 0h Reserved

60:59 RO
Impl
Spec

Controller Ready Modes Supported (CRMS): This field indicates the ready
capabilities of the controller. Refer to sections 3.5.3 and 3.5.4 for more detail.

Bits Description

1

Controller Ready Independent of Media Support (CRIMS): If this
bit is set to ‘1’, then the controller supports the Controller Ready
Independent of Media mode.

If this bit is cleared to ‘0’, then the controller does not support
Controller Ready Independent of Media mode.

0

Controller Ready With Media Support (CRWMS): If this bit is set
to ‘1’, then the controller supports the Controller Ready With Media
mode.

If this bit is cleared to ‘0’, then the controller does not support
Controller Ready With Media mode.

This bit shall be set to ‘1’ on controllers compliant with NVM Express
Base Specification, Revision 2.0 and later.

58 RO
Impl
Spec

NVM Subsystem Shutdown Supported (NSSS): This bit indicates whether the
controller supports the NVM Subsystem Shutdown feature defined in section
3.6.3 If the controller supports the NVM Subsystem Shutdown feature, then this
bit is set to ‘1’. If the controller does not support the NVM Subsystem Shutdown
feature, then this bit is cleared to ‘0’. If the NSSRS bit is cleared to ‘0’, then this
bit shall be cleared to ‘0’.

57 RO
Impl
Spec

Controller Memory Buffer Supported (CMBS): If set to ‘1’, this bit indicates
that the controller supports the Controller Memory Buffer, and that addresses
supplied by the host are permitted to reference the Controller Memory Buffer only
if the host has enabled the Controller Memory Buffer’s controller memory space.
If the controller supports the Controller Memory Buffer, this bit shall be set to ‘1’.

56 RO
Impl
Spec

Persistent Memory Region Supported (PMRS): This bit indicates whether the
Persistent Memory Region is supported. This bit is set to ‘1’ if the Persistent
Memory Region is supported. This bit is cleared to ‘0’ if the Persistent Memory
Region is not supported.

55:52 RO
Impl
Spec

Memory Page Size Maximum (MPSMAX): This field indicates the maximum
host memory page size that the controller supports. The maximum memory page
size is (2 ^ (12 + MPSMAX)). The host shall not configure a memory page size
in CC.MPS that is larger than this value.

For Discovery controllers this field shall be cleared to 0h.

NVM Express® Base Specification, Revision 2.0e

61

Figure 38: Offset 0h: CAP – Controller Capabilities

Bits Type Reset Description

51:48 RO
Impl
Spec

Memory Page Size Minimum (MPSMIN): This field indicates the minimum host
memory page size that the controller supports. The minimum memory page size
is (2 ^ (12 + MPSMIN)). The host shall not configure a memory page size in
CC.MPS that is smaller than this value.

For Discovery controllers this shall be cleared to 0h.

47:46 RO
Impl
Spec

Controller Power Scope (CPS): This field indicates scope of controlling the
main power for this controller.

Value Power Scope

00b Not Reported

01b Controller scope

10b
Domain scope (i.e., the NVM subsystem supports multiple domains
(refer to section 3.2.4).

11b
NVM subsystem scope (i.e., the NVM subsystem does not support
multiple domains).

If the NSSS bit is set to ‘1’, then this field shall not be cleared to 00b.

45 RO
Impl
Spec

Boot Partition Support (BPS): This bit indicates whether the controller supports
Boot Partitions. If this bit is set to '1‘, the controller supports Boot Partitions. If this
bit is cleared to ‘0‘, the controller does not support Boot Partitions. Refer to
section 8.2.

44:37 RO
Impl
Spec

Command Sets Supported (CSS): This field indicates the I/O Command Set(s)
that the controller supports.

For Discovery controllers, this field should have only Bit 0 set to 1.

Bits Definition

7

No I/O Command Set is supported (i.e., only the Admin Command
Set is supported).

This bit shall be set to ‘1’ if no I/O Command Set is supported.

6

Controller supports one or more I/O Command Sets and supports the
Identify I/O Command Set data structure (refer to section 5.17.2.21).
Controllers that support I/O Command Sets other than the NVM
Command Set shall set this bit to ‘1’. Controllers that only support the
NVM Command Set may set this bit to ‘1’.

5:1 Reserved

0 NVM Command Set or a Discovery controller

36 RO
Impl
Spec

NVM Subsystem Reset Supported (NSSRS): This bit indicates whether the
controller supports the NVM Subsystem Reset feature defined in section 3.7.1.
This bit is set to '1' if the controller supports the NVM Subsystem Reset feature.
This bit is cleared to ‘0' if the controller does not support the NVM Subsystem
Reset feature.

For Discovery controllers, this field shall be cleared to 0h.

35:32 RO
Impl
Spec

Doorbell Stride (DSTRD): Each Submission Queue and Completion Queue
Doorbell property is 32-bits in size. This property indicates the stride between
doorbell properties. The stride is specified as (2 ^ (2 + DSTRD)) in bytes. A value
of 0h indicates a stride of 4 bytes, where the doorbell properties are packed
without reserved space between each property. Refer to section 8.8.

For NVMe over Fabrics I/O controllers, this property shall be cleared to a fixed
value of 0h.

NVM Express® Base Specification, Revision 2.0e

62

Figure 38: Offset 0h: CAP – Controller Capabilities

Bits Type Reset Description

31:24 RO
Impl
Spec

Timeout (TO): This is the worst-case time that host software should wait for
CSTS.RDY to transition from:

a) ‘0’ to ‘1’ after CC.EN transitions from ‘0’ to ‘1’; or
b) ‘1’ to ‘0’ after CC.EN transitions from ‘1’ to ‘0’.

This worst-case time may be experienced after events such as an abrupt
shutdown or activation of a new firmware image; typical times are expected to be
much shorter.

This field is in 500 millisecond units. The maximum value of this field is FFh,
which indicates a 127.5 second timeout.

If the Controller Ready Independent of Media Enable (CC.CRIME) bit is cleared
to ‘0’ and the worst-case time for CSTS.RDY to change state is due to enabling
the controller after CC.EN transitions from ‘0’ to ‘1’, then this field shall be set to:

a) the value in Controller Ready With Media Timeout (CRTO.CRWMT); or
b) FFh if CRTO.CRWMT is greater than FFh.

If the Controller Ready Independent of Media Enable (CC.CRIME) bit is set to ‘1’
and the worst-case time for CSTS.RDY to change state is due to enabling the
controller after CC.EN transitions from ‘0’ to ‘1’, then this field shall be set to:

a) the value in Controller Ready Independent of Media Timeout
(CRTO.CRIMT); or

b) FFh if CRTO.CRIMT is greater than FFh.

Controllers that support the CRTO register (refer to Figure 64) are able to indicate
larger timeouts for enabling the controller. Host software should use the value in
CRTO.CRWMT or CRTO.CRIMT depending on the controller ready mode
indicated by CC.CRIME to determine the worst-case timeout for CSTS.RDY to
transition from ‘0’ to ‘1’ after CC.EN transitions from ‘0’ to ‘1’. Host software that
is based on revisions earlier than NVM Express Base Specification, Revision 2.0
is not required to wait for more than 127.5 seconds for CSTS.RDY to transition.

Refer to sections 3.5.3 and 3.5.4 for more information.

23:19 RO 0h Reserved

18:17 RO
Impl
Spec

Arbitration Mechanism Supported (AMS): This field is bit significant and
indicates the optional arbitration mechanisms supported by the controller. If a bit
is set to ‘1’, then the corresponding arbitration mechanism is supported by the
controller. Refer to section 3.4.4 for arbitration details.

Bits Definition

1 Vendor Specific

0 Weighted Round Robin with Urgent Priority Class

The round robin arbitration mechanism is not listed since all controllers shall
support this arbitration mechanism.

For Discovery controllers, this property shall be cleared to 0h.

16 RO
Impl
Spec

Contiguous Queues Required (CQR): This bit is set to ‘1’ if the controller
requires that I/O Submission Queues and I/O Completion Queues are required
to be physically contiguous. This bit is cleared to ‘0’ if the controller supports I/O
Submission Queues and I/O Completion Queues that are not physically
contiguous. If this bit is set to ‘1’, then the Physically Contiguous bit (CDW11.PC)
in the Create I/O Submission Queue and Create I/O Completion Queue
commands shall be set to ‘1’.

For controllers using a message-based transport, this property shall be set to a
value of 1h.

NVM Express® Base Specification, Revision 2.0e

63

Figure 38: Offset 0h: CAP – Controller Capabilities

Bits Type Reset Description

15:00 RO
Impl
Spec

Maximum Queue Entries Supported (MQES): This field indicates the
maximum individual queue size that the controller supports. For NVMe over PCIe
implementations, this value applies to the I/O Submission Queues and I/O
Completion Queues that the host creates. For NVMe over Fabrics
implementations, this value applies to only the I/O Submission Queues that the
host creates. This is a 0’s based value. The minimum value is 1h, indicating two
entries.

3.1.4.2 Offset 8h: VS – Version

This property indicates the major, minor, and tertiary version of the NVM Express Base Specification that
the controller implementation supports. Valid versions of the specification are: 1.0, 1.1, 1.2, 1.2.1, 1.3, 1.4,
and 2.0.

3.1.4.2.1 VS Value for 1.0 Compliant Controllers

Figure 39: VS Value for 1.0 Compliant Controllers

Bits Type Reset Description

31:16 RO 1h Major Version Number (MJR): Indicates the major version is “1”.

15:08 RO 0h Minor Version Number (MNR): Indicates the minor version is “0”.

07:00 RO 0h Reserved

3.1.4.2.2 VS Value for 1.1 Compliant Controllers

Figure 40: VS Value for 1.1 Compliant Controllers

Bits Type Reset Description

31:16 RO 1h Major Version Number (MJR): Indicates the major version is “1”

15:08 RO 1h Minor Version Number (MNR): Indicates the minor version is “1”.

07:00 RO 0h Reserved

3.1.4.2.3 VS Value for 1.2 Compliant Controllers

Figure 41: VS Value for 1.2 Compliant Controllers

Bits Type Reset Description

31:16 RO 1h Major Version Number (MJR): Indicates the major version is “1”.

15:08 RO 2h Minor Version Number (MNR): Indicates the minor version is “2”.

07:00 RO 0h Reserved

3.1.4.2.4 VS Value for 1.2.1 Compliant Controllers

Figure 42: VS Value for 1.2.1 Compliant Controllers

Bits Type Reset Description

31:16 RO 1h Major Version Number (MJR): Indicates the major version is “1”.

15:08 RO 2h Minor Version Number (MNR): Indicates the minor version is “2”.

07:00 RO 1h Tertiary Version Number (TER): Indicates the tertiary version is “1”.

NVM Express® Base Specification, Revision 2.0e

64

3.1.4.2.5 VS Value for 1.3 Compliant Controllers

Figure 43: VS Value for 1.3 Compliant Controllers

Bits Type Reset Description

31:16 RO 1h Major Version Number (MJR): Indicates the major version is “1”.

15:08 RO 3h Minor Version Number (MNR): Indicates the minor version is “3”.

07:00 RO 0h Tertiary Version Number (TER): Indicates the tertiary version is “0”.

3.1.4.2.6 VS Value for 1.4 Compliant Controllers

Figure 44: VS Value for 1.4 Compliant Controllers

Bits Type Reset Description

31:16 RO 1h Major Version Number (MJR): Indicates the major version is “1”.

15:08 RO 4h Minor Version Number (MNR): Indicates the minor version is “4”.

07:00 RO 0h Tertiary Version Number (TER): Indicates the tertiary version is “0”.

3.1.4.2.7 VS Value for 2.0 Compliant Controllers

Figure 45: VS Value for 2.0 Compliant Controllers

Bits Type Reset Description

31:16 RO 2h Major Version Number (MJR): Indicates the major version is “2”.

15:08 RO 0h Minor Version Number (MNR): Indicates the minor version is “0”.

07:00 RO 0h Tertiary Version Number (TER): Indicates the tertiary version is “0”.

3.1.4.3 Offset Ch: INTMS – Interrupt Mask Set

This property is used to mask interrupts when using pin-based interrupts, single message MSI, or multiple
message MSI. When using MSI-X, the interrupt mask table defined as part of MSI-X should be used to
mask interrupts. Host software shall not access this property when configured for MSI-X; any accesses
when configured for MSI-X is undefined. For interrupt behavior requirements, refer to the Interrupts section
of the NVMe over PCIe Transport Specification.

Figure 46: Offset Ch: INTMS – Interrupt Mask Set

Bits Type Reset Description

31:00 RWS 0h

Interrupt Vector Mask Set (IVMS): This field is bit significant. If a ‘1’ is written to a
bit, then the corresponding interrupt vector is masked from generating an interrupt
or reporting a pending interrupt in the MSI Capability Structure. Writing a ‘0’ to a bit
has no effect. When read, this field returns the current interrupt mask value within
the controller (not the value of this property). If a bit has a value of a ‘1’, then the
corresponding interrupt vector is masked. If a bit has a value of ‘0’, then the
corresponding interrupt vector is not masked.

3.1.4.4 Offset 10h: INTMC – Interrupt Mask Clear

This property is used to unmask interrupts when using pin-based interrupts, single message MSI, or multiple
message MSI. When using MSI-X, the interrupt mask table defined as part of MSI-X should be used to
unmask interrupts. Host software shall not access this property when configured for MSI-X; any accesses

NVM Express® Base Specification, Revision 2.0e

65

when configured for MSI-X is undefined. For interrupt behavior requirements, refer to the Interrupts section
of the NVMe over PCIe Transport Specification.

Figure 47: Offset 10h: INTMC – Interrupt Mask Clear

Bits Type Reset Description

31:00 RWC 0h

Interrupt Vector Mask Clear (IVMC): This field is bit significant. If a ‘1’ is written to
a bit, then the corresponding interrupt vector is unmasked. Writing a ‘0’ to a bit has
no effect. When read, this field returns the current interrupt mask value within the
controller (not the value of this property). If a bit has a value of a ‘1’, then the
corresponding interrupt vector is masked. If a bit has a value of ‘0’, then the
corresponding interrupt vector is not masked.

3.1.4.5 Offset 14h: CC – Controller Configuration

This property modifies settings for the controller. Host software shall set the Arbitration Mechanism Selected
(CC.AMS), the Memory Page Size (CC.MPS), and the I/O Command Set Selected (CC.CSS) to valid values
prior to enabling the controller by setting CC.EN to ‘1’. Attempting to create an I/O queue before initializing
the I/O Completion Queue Entry Size (CC.IOCQES) and the I/O Submission Queue Entry Size
(CC.IOSQES) should cause a controller to abort a Create I/O Completion Queue command or a Create I/O
Submission Queue command with a status code of Invalid Queue Size.

Figure 48: Offset 14h: CC – Controller Configuration

Bits Type Reset Description

31:25 RO 0h Reserved

24 RW/RO 0b

Controller Ready Independent of Media Enable (CRIME): This field controls
the controller ready mode. The controller ready mode is determined by the state
of this bit at the time the controller is enabled by transitioning the CC.EN bit from
‘0’ to ‘1’.

If the CAP.CRMS field is set to 11b, then this bit is RW. If the CAP.CRMS field
is not set to 11b, then this bit is RO and shall be cleared to ‘0’. Refer to sections
3.5.3 and 3.5.4 for more detail.

Changing the value of this field may cause a change in the time reported in the
CAP.TO field. Refer to the definition of CAP.TO for more details.

Value Definition

0b
Enabling the controller (i.e., CC.EN transitions from ‘0’ to ‘1’) when
this bit is cleared to ‘0’ enables Controller Ready With Media mode.

1b
Enabling the controller when this bit is set to ‘1’ enables Controller
Ready Independent of Media mode.

23:20 RW/RO 0h

I/O Completion Queue Entry Size (IOCQES): This field defines the I/O
completion queue entry size that is used for the selected I/O Command Set(s).
The required and maximum values for this field are specified in the CQES field
in the Identify Controller data structure in Figure 280 for each I/O Command
Set. The value is in bytes and is specified as a power of two (2^n).

If any I/O Completion Queues exist, then write operations that change the value
in this field produce undefined results.

If the controller does not support I/O queues, then this field shall be read-only
with a value of 0h.

For Discovery controllers, this field is reserved.

NVM Express® Base Specification, Revision 2.0e

66

Figure 48: Offset 14h: CC – Controller Configuration

Bits Type Reset Description

19:16 RW/RO 0h

I/O Submission Queue Entry Size (IOSQES): This field defines the I/O
submission queue entry size that is used for the selected I/O Command Set(s).
The required and maximum values for this field are specified in the SQES field
in the Identify Controller data structure in Figure 280 for each I/O Command
Set. The value is in bytes and is specified as a power of two (2^n).

If any I/O Submission Queues exist, then write operations that change the value
in this field produce undefined results.

If the controller does not support I/O queues, then this field shall be read-only
with a value of 0h.

For Discovery controllers, this field is reserved.

15:14 RW 00b

Shutdown Notification (SHN): This field is used to initiate a controller
shutdown when a power down condition is expected. For a normal controller
shutdown, it is expected that the controller is given time to process the controller
shutdown. For an abrupt shutdown, the host may not wait for the controller
shutdown to complete before power is lost.

The controller shutdown notification values are defined as:

Value Definition

00b No notification; no effect

01b Normal shutdown notification

10b Abrupt shutdown notification

11b Reserved

This field should be written by host software prior to any power down condition
and prior to any change of the PCI power management state. It is recommended
that this field also be written prior to a warm reset (refer to the PCI Express
Base Specification). To determine when the controller shutdown processing is
complete, refer to CSTS.ST and CSTS.SHST. Refer to sections 3.6.1 and 3.6.2
for additional shutdown processing details.

Other fields in this property (including the EN bit) may be modified as part of
updating this field to 01b or 10b to initiate a controller shutdown. If the EN bit is
cleared to ‘0’ such that the EN bit transitions from ‘1’ to ‘0’, then both a Controller
Reset and a controller shutdown occur.

If an NVM Subsystem Shutdown is in progress or is being reported as
completed (i.e., CSTS.ST is set to ‘1’, and CSTS.SHST is set to 01b or 10b),
then writes to this field modify the field value but have no effect. Refer to section
3.6.3 for details.

13:11 RW 000b

Arbitration Mechanism Selected (AMS): This field selects the arbitration
mechanism to be used. This value shall only be changed when CC.EN is
cleared to ‘0’. Host software shall only set this field to supported arbitration
mechanisms indicated in CAP.AMS. If this field is set to an unsupported value,
the behavior is undefined.

For Discovery controllers, this value shall be cleared to 0h.

Value Definition

000b Round Robin

001b Weighted Round Robin with Urgent Priority Class

010b to 110b Reserved

111b Vendor Specific

NVM Express® Base Specification, Revision 2.0e

67

Figure 48: Offset 14h: CC – Controller Configuration

Bits Type Reset Description

10:07 RW 0h

Memory Page Size (MPS): This field indicates the host memory page size. The
memory page size is (2 ^ (12 + MPS)). Thus, the minimum host memory page
size is 4 KiB and the maximum host memory page size is 128 MiB. The value
set by host software shall be a supported value as indicated by the
CAP.MPSMAX and CAP.MPSMIN fields. This field describes the value used for
PRP entry size. This field shall only be modified when CC.EN is cleared to ‘0’.

For Discovery controllers this property shall be cleared to 0h.

06:04 RW 000b

I/O Command Set Selected (CSS): This field specifies the I/O Command Set
or Sets that are selected. This field shall only be changed when the controller is
disabled (i.e., CC.EN is cleared to ‘0’). The I/O Command Set or Sets that are
selected shall be used for all I/O Submission Queues.

Value Definition

000b

CAP.CSS
bit 0

Description

1 NVM Command Set

0 Reserved

001b to 101b Reserved

110b

CAP.CSS
bit 6

Description

1

All Supported I/O Command Sets

The I/O Command Sets that are
supported are reported in the Identify I/O
Command Set data structure (refer to
section 5.17.2.21).

0 Reserved

111b

CAP.CSS
bit 7

Description

1

Admin Command Set only

I/O Command Set and I/O Command
Set specific Admin commands are not
supported. Any I/O Command Set
specific Admin command submitted on
the Admin Submission Queue is aborted
with a status code of Invalid Command
Opcode.

0 Reserved

For Discovery controllers, this property shall be cleared to 000b.

03:01 RO 000b Reserved

NVM Express® Base Specification, Revision 2.0e

68

Figure 48: Offset 14h: CC – Controller Configuration

Bits Type Reset Description

00 RW 0b

Enable (EN): When set to ‘1’, then the controller shall process commands.
When cleared to ‘0’, then the controller shall not process commands nor post
completion queue entries to Completion Queues. When the host modifies CC
to clear this bit from ‘1’ to ‘0’, the controller is reset (i.e., a Controller Reset, refer
to section 3.7.2). That reset deletes all I/O Submission Queues and I/O
Completion Queues, resets the Admin Submission Queue and Completion
Queue, and brings the hardware to an idle state. That reset does not affect
transport specific state (e.g. PCI Express registers including MMIO MSI-X
registers), nor the Admin Queue properties (AQA, ASQ, or ACQ). All other
controller properties defined in this section and internal controller state (e.g.,
Feature values defined in section 5.27.1 that are not persistent across power
states) are reset to their default values. The controller shall ensure that there is
no impact (e.g., data loss) caused by that Controller Reset to the results of
commands that have had corresponding completion queue entries posted to an
I/O Completion Queue prior to that Controller Reset. Refer to section 3.6.

When this bit is cleared to ‘0’, the CSTS.RDY bit is cleared to ‘0’ by the controller
once the controller is ready to be re-enabled. When this bit is set to ‘1’, the
controller sets CSTS.RDY to ‘1’ when it is ready to process commands.
CSTS.RDY may be set to ‘1’ before namespace(s) are ready to be accessed.

Setting this bit from a ‘0’ to a ‘1’ when CSTS.RDY is a ‘1’ or clearing this bit from
a '1' to a '0' when CSTS.RDY is cleared to '0' has undefined results. The Admin
Queue properties (AQA, ASQ, and ACQ) are only allowed to be modified when
this bit is cleared to ‘0’.

If an NVM Subsystem Shutdown is in progress or is completed (i.e., CSTS.ST
is set to ‘1’, and CSTS.SHST is set to 01b or 10b), then writes to this field modify
the field value but have no effect. Refer to section 3.6.3 for details.

3.1.4.6 Offset 1Ch: CSTS – Controller Status

Figure 49: Offset 1Ch: CSTS – Controller Status

Bits Type Reset1 Description

31:07 RO 0h Reserved

06 RO
Impl
Spec

Shutdown Type (ST): When CSTS.SHST is set to a non-zero value, then this bit
indicates the type of shutdown reported by CSTS.SHST. If this bit is set to ‘1’, then
CSTS.SHST is reporting the state of an NVM Subsystem Shutdown. If this bit is
cleared to ‘0’, then CSTS.SHST is reporting the state of a controller shutdown.

If CSTS.SHST is cleared to 00b, then this bit should be ignored by the host.

05 RO 0b

Processing Paused (PP): This bit indicates whether the controller is processing
commands. If this bit is cleared to ‘0’, then the controller is processing commands
normally. If this bit is set to ‘1’, then the controller has temporarily stopped processing
commands in order to handle an event (e.g., firmware activation). This bit is only valid
when CC.EN is set to ‘1’ and CSTS.RDY is set to ‘1’.

04 RWC HwInit

NVM Subsystem Reset Occurred (NSSRO): The initial value of this bit is set to '1' if
the last occurrence of an NVM Subsystem Reset (refer to section 3.7.1) occurred while
power was applied to the domain. The initial value of this bit is cleared to '0' following
an NVM Subsystem Reset due to application of power to the domain. This bit is only
valid if the controller supports the NVM Subsystem Reset feature defined in section
3.7.1 as indicated by CAP.NSSRS set to ‘1’.

The reset value of this bit is cleared to '0' if an NVM Subsystem Reset causes
activation of a new firmware image in the domain.

NVM Express® Base Specification, Revision 2.0e

69

Figure 49: Offset 1Ch: CSTS – Controller Status

Bits Type Reset1 Description

03:02 RO 00b

Shutdown Status (SHST): This field indicates the status of shutdown processing that
is initiated by the host setting the CC.SHN field, the host setting the NSSC property,
or a Management Endpoint has processed an NVMe-MI Shutdown command (refer to
the NVM Express Management Interface specification).

The shutdown status values are defined as:

Value Definition

00b Normal operation (no shutdown has been requested)

01b Shutdown processing occurring

10b Shutdown processing complete

11b Reserved

If this field is set to 01b, then:

• an NVM Subsystem Reset aborts a controller shutdown and an NVM
Subsystem Shutdown; and

• any other type of Controller Level Reset:

o may or may not abort a controller shutdown; and
o shall not abort an NVM Subsystem Shutdown.

If this field is set to 01b when a Controller Level Reset is initiated and the shutdown is
not aborted, then this field transitions to 00b on the reset and then to 01b to indicate
the shutdown is still in progress and host software may or may not observe this
transition.

If CSTS.ST is cleared to ‘0’ and this field is set to 10b, then to start executing
commands on the controller:

• If CC.EN is set to ‘1’, after a shutdown operation (CSTS.SHST set to 10b), a
Controller Level Reset (e.g., a Controller Reset) is required. If host software
submits commands to the controller without a prior Controller Level Reset,
the behavior is undefined; and

• If CC.EN is cleared to ‘0’:

o a Controller Level Reset is required; or
o CC.EN is required to be set to ‘1’ and CC.SHN is required to be

cleared to 00b with the same write to the CC property (refer to
section 3.6.1).

If CSTS.ST is set to ‘1’ and this field is set to 10b, then an NVM Subsystem Reset is
required to start executing commands.

Refer to section 3.6.3 on the reset behavior of this field when CAP.CPS is set to 10b
or 11b.

01 RO HwInit

Controller Fatal Status (CFS): This bit is set to ’1’ when a fatal controller error
occurred that could not be communicated in the appropriate Completion Queue. This
bit is cleared to ‘0’ when a fatal controller error has not occurred. Refer to section 9.5.

The reset value of this bit is set to '1' when a fatal controller error is detected during
controller initialization.

NVM Express® Base Specification, Revision 2.0e

70

Figure 49: Offset 1Ch: CSTS – Controller Status

Bits Type Reset1 Description

00 RO 0b

Ready (RDY): This bit is set to ‘1’ when the controller is ready to process submission
queue entries after CC.EN is set to ‘1’. This bit shall be cleared to ‘0’ when CC.EN is
cleared to ‘0’ once the controller is ready to be re-enabled. Commands should not be
submitted to the controller until this bit is set to ‘1’ after the CC.EN bit is set to ‘1’.
Failure to follow this recommendation produces undefined results. Refer to the
definition of CAP.TO, sections 3.5.3, and 3.5.4 for timing information related to this
field.

If an NVM Subsystem Shutdown has completed that affects this controller (i.e.,
CSTS.ST is set to ‘1’ and CSTS.SHST is set to 10b), then an NVM Subsystem Reset
is required before this bit is allowed to be set to ‘1’. Refer to section 3.6.3.

NOTE:
1. During a Controller Level Reset, the field values may transition to values other than the reset value prior to

indicating the reset value.

3.1.4.7 Offset 20h: NSSR – NVM Subsystem Reset

This optional property provides host software with the capability to initiate an NVM Subsystem Reset.
Support for this property is indicated by the state of the NVM Subsystem Reset Supported (CAP.NSSRS)
field. If the property is not supported, then the address range occupied by the property is reserved. Refer
to section 3.7.1.

Figure 50: Offset 20h: NSSR – NVM Subsystem Reset

Bits Type Reset Description

31:00 RW 0h

NVM Subsystem Reset Control (NSSRC): A write of the value 4E564D65h ("NVMe")
to this field initiates an NVM Subsystem Reset. A write of any other value has no
functional effect on the operation of the NVM subsystem. This field shall return the
value 0h when read.

3.1.4.8 Offset 24h: AQA – Admin Queue Attributes

This property defines the attributes for the Admin Submission Queue and Admin Completion Queue. The
Queue Identifier for the Admin Submission Queue and Admin Completion Queue is 0h. The Admin
Submission Queue’s priority is determined by the arbitration mechanism selected, refer to section 3.4.4.
The Admin Submission Queue and Admin Completion Queue are required to be in physically contiguous
memory.

Note: It is recommended that UEFI be used during boot operations. In low memory environments (like
Option ROMs in legacy BIOS environments) there may not be sufficient available memory to allocate the
necessary Submission and Completion Queues. In these types of conditions, low memory operation of the
controller is vendor specific.

Figure 51: Offset 24h: AQA – Admin Queue Attributes

Bits Type Reset Description

31:28 RO 0h Reserved

27:16 RW 0h

Admin Completion Queue Size (ACQS): Defines the size of the Admin Completion
Queue in entries. Refer to section 3.3.3.2.2. Enabling a controller while this field is
cleared to 0h produces undefined results. The minimum size of the Admin Completion
Queue is two entries. The maximum size of the Admin Completion Queue is 4,096
entries. This is a 0’s based value.

15:12 RO 0h Reserved

NVM Express® Base Specification, Revision 2.0e

71

Figure 51: Offset 24h: AQA – Admin Queue Attributes

Bits Type Reset Description

11:00 RW 0h

Admin Submission Queue Size (ASQS): Defines the size of the Admin Submission
Queue in entries. Refer to section 3.3.3.2.2. Enabling a controller while this field is
cleared to 0h produces undefined results. The minimum size of the Admin Submission
Queue is two entries. The maximum size of the Admin Submission Queue is 4,096
entries. This is a 0’s based value.

3.1.4.9 Offset 28h: ASQ – Admin Submission Queue Base Address

This property defines the base memory address of the Admin Submission Queue.

Figure 52: Offset 28h: ASQ – Admin Submission Queue Base Address

Bits Type Reset Description

63:12 RW
Impl
Spec

Admin Submission Queue Base (ASQB): This field specifies the 52 most significant
bits of the 64-bit physical address for the Admin Submission Queue. This address shall
be memory page aligned (based on the value in CC.MPS). All Admin commands,
including creation of I/O Submission Queues and I/O Completions Queues shall be
submitted to this queue. For the definition of Submission Queues, refer to section 4.1.

11:00 RO 0h Reserved

3.1.4.10 Offset 30h: ACQ – Admin Completion Queue Base Address

This property defines the base memory address of the Admin Completion Queue.

Figure 53: Offset 30h: ACQ – Admin Completion Queue Base Address

Bits Type Reset Description

63:12 RW
Impl
Spec

Admin Completion Queue Base (ACQB): This field specifies the 52 most significant
bits of the 64-bit physical address for the Admin Completion Queue. This address shall
be memory page aligned (based on the value in CC.MPS). All completion queue entries
for the commands submitted to the Admin Submission Queue shall be posted to this
Completion Queue. This queue is always associated with interrupt vector 0. For the
definition of Completion Queues, refer to section 4.1.

11:00 RO 0h Reserved

3.1.4.11 Offset 38h: CMBLOC – Controller Memory Buffer Location

This optional property defines the location of the Controller Memory Buffer (refer to section 8.1). If the
controller does not support the Controller Memory Buffer (CAP.CMBS), this property is reserved. If the
controller supports the Controller Memory Buffer and CMBMSC.CRE is cleared to ‘0’, this property shall be
cleared to 0h.

Figure 54: Offset 38h: CMBLOC – Controller Memory Buffer Location

Bits Type Reset Description

31:12 RO
Impl
Spec

Offset (OFST): Indicates the offset of the Controller Memory Buffer in multiples of the
Size Unit specified in CMBSZ.

11:09 RO 000b Reserved

NVM Express® Base Specification, Revision 2.0e

72

Figure 54: Offset 38h: CMBLOC – Controller Memory Buffer Location

Bits Type Reset Description

08 RO
Impl
Spec

CMB Queue Dword Alignment (CQDA): If this bit is set to ‘1’, CDW11.PC is set to ‘1’;
and the address pointer specifies Controller Memory Buffer, then the address pointer in
a Create I/O Submission Queue command (refer to Figure 164) or a Create I/O
Completion Queue command (refer to Figure 160) shall be Dword aligned.

If this bit is cleared to ‘0’, then the I/O Submission Queues and I/O Completion Queues
contained in the Controller Memory Buffer are aligned as defined by the PRP1 field of a
Create I/O Submission Queue command (refer to Figure 164) or a Create I/O Completion
Queue command (refer to Figure 160).

07 RO
Impl
Spec

CMB Data Metadata Mixed Memory Support (CDMMMS): If this bit is set to ‘1’, then
the restriction on data and metadata use of Controller Buffer Memory by a command as
defined in section 8.5 is not enforced. If this bit is cleared to ‘0’, then the restriction on
data and metadata use of Controller Buffer Memory by a command as defined in section
8.5 is enforced.

06 RO
Impl
Spec

CMB Data Pointer and Command Independent Locations Support (CDPCILS): If this
bit is set to ‘1’, then the restriction that the PRP Lists and SGLs shall not be located in
the Controller Buffer Memory if the command that they are associated with is not located
in the Controller Buffer Memory is not enforced (refer to section 8.5). If this bit is cleared
to ‘0’, then that restriction is enforced.

05 RO
Impl
Spec

CMB Data Pointer Mixed Locations Support (CDPMLS): If this bit is set to ‘1’, then
the restriction that for a particular PRP List or SGL associated with a single command,
all memory that contains that particular PRP List or SGL shall reside in either the
Controller Memory Buffer or outside the Controller Memory Buffer, is not enforced (refer
to section 8.5). If this bit is cleared to ‘0’, then that restriction is enforced.

04 RO
Impl
Spec

CMB Queue Physically Discontiguous Support (CQPDS): If this bit is set to ‘1’, then
the restriction that for all queues in the Controller Memory Buffer, the queue shall be
physically contiguous, is not enforced (refer to section 8.5). If this bit is cleared to ‘0’,
then that restriction is enforced.

03 RO
Impl
Spec

CMB Queue Mixed Memory Support (CQMMS): If this bit is set to ‘1’, then for a
particular queue placed in the Controller Memory Buffer, the restriction that all memory
associated with that queue shall reside in the Controller Memory Buffer is not enforced
(refer to section 8.5). If this bit is cleared to ‘0’, then that requirement is enforced.

02:00 RO
Impl
Spec

Base Indicator Register (BIR): Indicates the Base Address Register (BAR) that
contains the Controller Memory Buffer. For a 64-bit BAR, the BAR for the least significant
32-bits of the address is specified. Values 000b, 010b, 011b, 100b, and 101b are valid.
The address specified by the BAR shall be 4 KiB aligned.

3.1.4.12 Offset 3Ch: CMBSZ – Controller Memory Buffer Size

This optional property defines the size of the Controller Memory Buffer (refer to section 8.1). If the controller
does not support the Controller Memory Buffer feature or if the controller supports the Controller Memory
Buffer (CAP.CMBS) and CMBMSC.CRE is cleared to ‘0’, then this property shall be cleared to 0h.

Figure 55: Offset 3Ch: CMBSZ – Controller Memory Buffer Size

Bits Type Reset Description

31:12 RO
Impl
Spec

Size (SZ): Indicates the size of the Controller Memory Buffer available for use by the
host. The size is in multiples of the Size Unit. If the Offset + Size exceeds the length of
the indicated BAR, the size available to the host is limited by the length of the BAR.

NVM Express® Base Specification, Revision 2.0e

73

Figure 55: Offset 3Ch: CMBSZ – Controller Memory Buffer Size

Bits Type Reset Description

11:08 RO
Impl
Spec

Size Units (SZU): Indicates the granularity of the Size field.

Value Granularity

0h 4 KiB

1h 64 KiB

2h 1 MiB

3h 16 MiB

4h 256 MiB

5h 4 GiB

6h 64 GiB

7h to Fh Reserved

07:05 RO 000b Reserved

04 RO
Impl
Spec

Write Data Support (WDS): If this bit is set to ‘1’, then the controller supports data and
metadata in the Controller Memory Buffer for commands that transfer data from the host
to the controller (e.g., Write). If this bit is cleared to ‘0’, then data and metadata for
commands that transfer data from the host to the controller shall not be transferred to
the Controller Memory Buffer.

03 RO
Impl
Spec

Read Data Support (RDS): If this bit is set to ‘1’, then the controller supports data and
metadata in the Controller Memory Buffer for commands that transfer data from the
controller to the host (e.g., Read). If this bit is cleared to ‘0’, then data and metadata for
commands that transfer data from the controller to the host shall not be transferred from
the Controller Memory Buffer.

02 RO
Impl
Spec

PRP SGL List Support (LISTS): If this bit is set to ‘1’, then the controller supports PRP
Lists in the Controller Memory Buffer. If this bit is set to ‘1’ and SGLs are supported by
the controller, then the controller supports Scatter Gather Lists in the Controller Memory
Buffer. If this bit is set to ‘1’, then the Submission Queue Support bit shall be set to ‘1’. If
this bit is cleared to ‘0’, then PRP Lists and SGLs shall not be placed in the Controller
Memory Buffer.

01 RO
Impl
Spec

Completion Queue Support (CQS): If this bit is set to ‘1’, then the controller supports
Admin and I/O Completion Queues in the Controller Memory Buffer. If this bit is cleared
to ‘0’, then Completion Queues shall not be placed in the Controller Memory Buffer.

00 RO
Impl
Spec

Submission Queue Support (SQS): If this bit is set to ‘1’, then the controller supports
Admin and I/O Submission Queues in the Controller Memory Buffer. If this bit is cleared
to ‘0’, then Submission Queues shall not be placed in the Controller Memory Buffer.

3.1.4.13 Offset 40h: BPINFO – Boot Partition Information

This optional property defines the characteristics of Boot Partitions (refer to section 8.2). If the controller
does not support the Boot Partitions feature, then this property shall be cleared to 0h.

Figure 56: Offset 40h: BPINFO – Boot Partition Information

Bits Type Reset Description

31 RO
Impl
Spec

Active Boot Partition ID (ABPID): This bit indicates the identifier of the active Boot
Partition.

30:26 RO 0h Reserved

NVM Express® Base Specification, Revision 2.0e

74

Figure 56: Offset 40h: BPINFO – Boot Partition Information

Bits Type Reset Description

25:24 RO 00b

Boot Read Status (BRS): This field indicates the status of Boot Partition read
operations initiated by the host writing to the BPRSEL.BPID field. Refer to section
8.2.

The boot read status values are defined as:

Value Definition

00b No Boot Partition read operation requested

01b Boot Partition read in progress

10b Boot Partition read completed successfully

11b Error completing Boot Partition read

If host software writes the BPRSEL.BPID field, this field transitions to 01b. After
successfully completing a Boot Partition read operation (i.e., transferring the contents
to the boot memory buffer), the controller sets this field to 10b. If there is an error
completing a Boot Partition read operation, this field is set to 11b, and the contents
of the boot memory buffer are undefined.

23:15 RO 0h Reserved

14:00 RO
Impl
Spec

Boot Partition Size (BPSZ): This field defines the size of each Boot Partition in
multiples of 128 KiB. Both Boot Partitions are the same size.

3.1.4.14 Offset 44h: BPRSEL – Boot Partition Read Select

This optional property is used to initiate the transfer of a data in the Boot Partition (refer to section 8.2) from
the controller to the host. If the controller does not support the Boot Partitions feature, then this property
shall be cleared to 0h.

If the host attempts to read beyond the end of a Boot Partition (i.e., the Boot Partition Read Offset plus Boot
Partition Read Size, is greater than the Boot Partition Size in bytes), the controller shall not transfer data
and report an error in the BPINFO.BRS field.

Figure 57: Offset 44h: BPRSEL – Boot Partition Read Select

Bits Type Reset Description

31 RW 0b
Boot Partition Identifier (BPID): This bit specifies the Boot Partition identifier for the
Boot Partition read operation.

30 RO 0b Reserved

29:10 RW 0h
Boot Partition Read Offset (BPROF): This field selects the offset into the Boot
Partition, in 4 KiB units, that the controller copies into the Boot Partition Memory
Buffer.

09:00 RW 0h
Boot Partition Read Size (BPRSZ): This field selects the read size in multiples of
4 KiB to copy into the Boot Partition Memory Buffer.

3.1.4.15 Offset 48h: BPMBL – Boot Partition Memory Buffer Location

This optional property specifies the memory buffer that is used as the destination for data when a Boot
Partition is read (refer to section 8.2). If the controller does not support the Boot Partitions feature, then this
property shall be cleared to 0h.

Figure 58: Offset 48h: BPMBL – Boot Partition Memory Buffer Location

Bits Type Reset Description

63:12 RW 0h
Boot Partition Memory Buffer Base Address (BMBBA): This field specifies the 52
most significant bits of the 64-bit physical address for the Boot Partition Memory Buffer.

11:00 RO 0h Reserved

NVM Express® Base Specification, Revision 2.0e

75

3.1.4.16 Offset 50h: CMBMSC – Controller Memory Buffer Memory Space Control

This optional property specifies how the controller references the Controller Memory Buffer with host-
supplied addresses. If the controller supports the Controller Memory Buffer (CAP.CMBS), this property is
mandatory. Otherwise, this property is reserved.

This property shall be reset by Controller Level Resets other than Controller Lever Resets caused by:

• a Controller Reset; and

• a Function Level Reset (refer to the NVM Express NVMe over PCIe Transport Specification).

Figure 59: Offset 50h: CMBMSC – Controller Memory Buffer Memory Space Control

Bits Type Reset Description

63:12 RW 0h

Controller Base Address (CBA): This field specifies the 52 most significant bits of the
64-bit base address for the Controller Memory Buffer’s controller address range. The
Controller Memory Buffer’s controller base address and its size determine its controller
address range.

The specified address shall be valid only under the following conditions:

a) no part of the Controller Memory Buffer’s controller address range is greater
than 264 − 1; and

b) if the Persistent Memory Region’s controller memory space is enabled, then the
Controller Memory Buffer’s controller address range does not overlap the
Persistent Memory Region’s controller address range.

11:02 RO 0h Reserved

01 RW 0b

Controller Memory Space Enable (CMSE): This bit specifies whether addresses
supplied by the host are permitted to reference the Controller Memory Buffer.

If CMBSMSC.CRE is cleared to ‘0’ this bit has no effect, and the Controller Memory
Buffer’s controller memory space is not enabled.

If this bit is set to ‘1’ and the controller base address is valid, then the Controller Memory
Buffer’s controller memory space is enabled. Otherwise, the controller memory space is
not enabled.

If the Controller Memory Buffer’s controller memory space is enabled, then addresses
supplied by the host that fall within the Controller Memory Buffer’s controller address
range shall reference the Controller Memory Buffer.

If the Controller Memory Buffer’s controller memory space is not enabled, then no
address supplied by the host shall reference the Controller Memory Buffer. Instead, such
addresses shall reference memory spaces other than the Controller Memory Buffer.

00 RW 0b

Capabilities Registers Enabled (CRE): This bit specifies whether the CMBLOC and
CMBSZ properties are enabled. If this bit is set to ‘1’, then CMBLOC is defined as shown
in Figure 54 and CMBSZ is defined as shown in Figure 55. If this bit is cleared to ‘0’, then
CMBSZ and CMBLOC are cleared to 0h.

3.1.4.17 Offset 58h: CMBSTS – Controller Memory Buffer Status

This optional property indicates the status of the Controller Memory Buffer. If the controller supports the
Controller Memory Buffer (CAP.CMBS), this property is mandatory. Otherwise, this property is reserved.

Figure 60: Offset 58h: CMBSTS – Controller Memory Buffer Status

Bits Type Reset Description

31:01 RO 0h Reserved

00 RO 0b

Controller Base Address Invalid (CBAI): This bit indicates whether the controller has
failed to enable the Controller Memory Buffer’s controller memory space because
CMBMSC.CBA is invalid. If CMBMSC.CRE and CMBMSC.CMSE are set to ‘1’, and
CMBMSC.CBA is invalid, this bit shall be set to ‘1’. Otherwise, this bit shall be cleared to
‘0’.

NVM Express® Base Specification, Revision 2.0e

76

3.1.4.18 Offset 5Ch: CMBEBS – Controller Memory Buffer Elasticity Buffer Size

This optional property identifies to the host the size of the CMB elasticity buffer. A value of 0h in this property
indicates to the host that no information regarding the presence or size of a CMB elasticity buffer is
available.

Figure 61: Offset 5Ch: CMBEBS – Controller Memory Buffer Elasticity Buffer Size

Bits Type Reset Description

31:8 RO
Impl
Spec

CMB Elasticity Buffer Size Base (CMBWBZ): Indicates the size of the CMB elasticity
buffer. The size of the CMB elasticity buffer is equal to the value in this field multiplied
by the value specified by the CMB Elasticity Buffer Size Units field.

7:5 RO 0h Reserved

4 RO
Impl
Spec

Read Bypass Behavior: If a memory read does not conflict with any memory write in
the CMB Elasticity Buffer (i.e., if the set of memory addresses specified by a read is
disjoint from the set of memory addresses specified by all writes in the CMB Elasticity
Buffer), and this bit is:

a) set to ‘1’, then memory reads not conflicting with memory writes in the CMB
Elasticity Buffer shall bypass those memory writes; and

b) cleared to ‘0’, then memory reads not conflicting with memory writes in the
CMB Elasticity Buffer may bypass those memory writes.

3:0 RO
Impl
Spec

CMB Elasticity Buffer Size Units (CMBSZU): Indicates the granularity of the CMB
Elasticity Buffer Size field.

Value Granularity

0h Bytes

1h 1 KiB

2h 1 MiB

3h 1 GiB

4h – Fh Reserved

3.1.4.19 Offset 60h: CMBSWTP – Controller Memory Buffer Sustained Write Throughput

This optional property identifies to the host the maximum CMB sustained write throughput. A value of 0h in
this property indicates to the host that no information regarding the CMB sustained write throughput is
available.

Figure 62: Offset 60h: CMBSWTP – Controller Memory Buffer Sustained Write Throughput

Bits Type Reset Description

31:8 RO
Impl
Spec

CMB Sustained Write Throughput (CMBSWTV): Indicates the sustained write
throughput of the CMB at the maximum payload size specified by the applicable NVMe
Transport binding specification (e.g. the PCIe TLP payload size, as specified in the
Max_Payload_Size (MPS) field of the PCIe Express Device Control (PXDC) register).
The sustained write throughput of the CMB is equal to the value in this field multiplied by
the units specified by the CMB Sustained Write Throughput Units field.

7:4 RO 0h Reserved

3:0 RO
Impl
Spec

CMB Sustained Write Throughput Units (CMBSWTU): Indicates the granularity of the
CMB Sustained Write Throughput field.

Value Granularity

0h Bytes/second

1h 1 KiB/second

2h 1 MiB/second

3h 1 GiB/second

4h – Fh Reserved

NVM Express® Base Specification, Revision 2.0e

77

3.1.4.20 Offset 64h: NSSD – NVM Subsystem Shutdown

This optional property provides host software with the capability to initiate a normal or abrupt NVM
subsystem shutdown.

Support for this property is indicated by the state of the NVM Subsystem Shutdown Supported (CAP.NSSS)
field. If the property is not supported, then the address range occupied by the register is reserved.

Figure 63: Offset 64h: NSSD – NVM Subsystem Shutdown

Bits Type Reset Description

31:00 RW 0h

NVM Subsystem Shutdown Control (NSSC): A write of the value 4E726D6Ch
("Nrml") to this field initiates a normal NVM Subsystem Shutdown on every controller:

• in the domain associated with the controller when CAP.CPS is set to 10b as
specified in section 3.6.3.1; or

• in the NVM subsystem when CAP.CPS is set to 11b in the NVM subsystem
as specified in section 3.6.3.2.

A write of the value 41627074h ("Abpt") to this field initiates an abrupt NVM subsystem
shutdown on every controller:

• in the domain associated with the controller when CAP.CPS is set to 10b as
specified in section 3.6.3.1; or

• in the NVM subsystem when CAP.CPS is set to 11b in the NVM subsystem
as specified in section 3.6.3.2.

A write of any other value to this field has no functional effect on the operation of the
NVM subsystem. This field shall return the value 0h when read.

3.1.4.21 Offset 68h: CRTO – Controller Ready Timeouts

This property indicates the controller ready timeout values. This property is mandatory for controllers
compliant with NVM Express Base Specification revision 2.0 and later.

Figure 64: Offset 68h: CRTO – Controller Ready Timeouts

Bits Type Reset Description

31:16 RO
Impl
Spec

Controller Ready Independent of Media Timeout (CRIMT): If the
CAP.CRMS.CRIMS bit is cleared to ‘0’, then the controller shall clear this field to
0h and the host should ignore this field.

If the CAP.CRMS.CRIMS bit is set to ‘1’, then this field contains the worst-case
time that host software should wait after CC.EN transitions from ‘0’ to ‘1’ for the
controller to become ready and be able to successfully process all commands
that do not access attached namespaces and Admin commands that do not
require access to media when the controller is in Controller Ready Independent
of Media mode (i.e., the CC.CRIME bit is set to ‘1’). Attached namespaces and
media required to process Admin commands may or may not be ready within this
time period (refer to section 3.5.3, section 3.5.4, and Figure 107).

This worst-case time may be experienced after events such as an abrupt
shutdown or activation of a new firmware image; typical times are expected to be
much shorter. This field is in 500 millisecond units.

The value of this field should not exceed FFh (i.e., 127.5 seconds).

NVM Express® Base Specification, Revision 2.0e

78

Figure 64: Offset 68h: CRTO – Controller Ready Timeouts

Bits Type Reset Description

15:0 RO
Impl
Spec

Controller Ready With Media Timeout (CRWMT): This field contains the worst-
case time that host software should wait after CC.EN transitions from ‘0’ to ‘1’
for:

a) the controller to become ready and be able to successfully process all
commands; and

b) all attached namespaces and media required to process Admin
commands to become ready,

independent of which ready mode (refer to CC.CRIME) the controller is in (refer
to section 3.5.3 and section 3.5.4).

This worst-case time may be experienced after events such as an abrupt
shutdown or activation of a new firmware image; typical times are expected to be
much shorter. This field is in 500 millisecond units.

The value of this field shall be greater than or equal to the value of the
CRTO.CRIMT field and may be significantly larger than the value of the
CRTO.CRIMT field.

3.1.4.22 Offset E00h: PMRCAP – Persistent Memory Region Capabilities

This property indicates capabilities of the Persistent Memory Region. If the controller does not support the
Persistent Memory Region feature, then this property shall be cleared to 0h.

Figure 65: Offset E00h: PMRCAP – Persistent Memory Region Capabilities

Bits Type Reset Description

31:25 RO 0h Reserved

24 RO
Impl
Spec

Controller Memory Space Supported (CMSS): If set to ‘1’, this bit indicates that
addresses supplied by the host are permitted to reference the Persistent Memory Region
only if the host has enabled the Persistent Memory Region’s controller memory space.

If the controller supports referencing the Persistent Memory Region with host-supplied
addresses, this bit shall bet set to ‘1’. Otherwise, this bit shall be cleared to ‘0’.

23:16 RO
Impl
Spec

Persistent Memory Region Timeout (PMRTO): This field contains the minimum
amount of time that host software should wait for the Persistent Memory Region to
become ready or not ready after PMRCTL.EN is modified. The time in this field is
expressed in Persistent Memory Region time units (refer to PMRCAP.PMRTU).

15:14 RO 00b Reserved

13:10 RO
Impl
Spec

Persistent Memory Region Write Barrier Mechanisms (PMRWBM): This field lists
mechanisms that may be used to ensure that previous writes to the Persistent Memory
Region have completed and are persistent when the Persistent Memory Region is ready
and operating normally. A bit in this field is set to ‘1’ if the corresponding mechanism to
ensure persistence is supported. A bit in this field is cleared to ‘0’ if the corresponding
mechanism to ensure persistence is not supported.

At least one bit in this field shall be set to ‘1’.

Bits Description

0

The completion of a memory read from any Persistent
Memory Region address ensures that all prior writes to the
Persistent Memory Region have completed and are
persistent.

1
The completion of a read to the PMRSTS property shall
ensure that all prior writes to the Persistent Memory Region
have completed and are persistent.

3:2 Reserved

NVM Express® Base Specification, Revision 2.0e

79

Figure 65: Offset E00h: PMRCAP – Persistent Memory Region Capabilities

Bits Type Reset Description

9:8 RO
Impl
Spec

Persistent Memory Region Time Units (PMRTU): Indicates Persistent Memory Region
time units.

Value Persistent Memory Region Time Units

00b 500 milliseconds

01b minutes

10b to 11b Reserved

7:5 RO
Impl
Spec

Base Indicator Register (BIR): This field indicates the Base Address Register (BAR)
that specifies the address and size of the Persistent Memory Region. Values 010b, 011b,
100b, and 101b are valid.

4 RO
Impl
Spec

Write Data Support (WDS): If this bit is set to ‘1’, then the controller supports data and
metadata in the Persistent Memory Region for commands that transfer data from the
host to the controller (e.g., Write). If this bit is cleared to ‘0’, then data and metadata for
commands that transfer data from the host to the controller shall not be transferred to
the Persistent Memory Region.

If PMRCAP.CMSS is cleared to ‘0’, this bit shall be cleared to ‘0’.

3 RO
Impl
Spec

Read Data Support (RDS): If this bit is set to ‘1’, then the controller supports data and
metadata in the Persistent Memory Region for commands that transfer data from the
controller to the host (e.g., Read). If this bit is cleared to ‘0’, then all data and metadata
for commands that transfer data from the controller to the host shall not be transferred
from the Persistent Memory Region.

If PMRCAP.CMSS is cleared to ‘0’, this bit shall be cleared to ‘0’.

2:0 RO 000b Reserved

3.1.4.23 Offset E04h: PMRCTL – Persistent Memory Region Control

This optional property controls the operation of the Persistent Memory Region. If the controller does not
support the Persistent Memory Region feature, then this property shall be cleared to 0h.

Figure 66: Offset E04h: PMRCTL – Persistent Memory Region Control

Bits Type Reset Description

31:1 RO 0h Reserved

0 RW 0b

Enable (EN): When set to ‘1’, then the Persistent Memory Region is ready to process
PCI Express memory read and write requests once PMRSTS.NRDY is cleared to ‘0’.
When cleared to ‘0’, then the Persistent Memory Region is disabled and PMRSTS.NRDY
shall be set to ‘1’ once the Persistent Memory Region is ready to be re-enabled.

3.1.4.24 Offset E08h: PMRSTS – Persistent Memory Region Status

This optional property provides the status of the Persistent Memory Region. If the controller does not
support the Persistent Memory Region feature, then this property shall be cleared to 0h.

Figure 67: Offset E08h: PMRSTS – Persistent Memory Region Status

Bits Type Reset Description

31:13 RO 0h Reserved

12 RO 0b

Controller Base Address Invalid (CBAI): This field indicates whether the controller has
failed to enable the Persistent Memory Region’s controller memory space because the
controller 64-bit base address specified by PMRMSCU.CBA and PMRMSCL.CBA are
invalid. If PMRCAP.CMSS is set to ‘1’, PMRMSCL.CMSE is set to ‘1’, and the controller
64-bit base address specified by PMRMSCU.CBA and PMRMSCL.CBA is invalid, this
bit shall be set to ‘1’. Otherwise, this bit shall be cleared to ‘0’.

NVM Express® Base Specification, Revision 2.0e

80

Figure 67: Offset E08h: PMRSTS – Persistent Memory Region Status

Bits Type Reset Description

11:9 RO 000b

Health Status (HSTS): If the Persistent Memory Region is ready, then this field indicates
the health status of the Persistent Memory Region. This field is always cleared to 000b
when the Persistent Memory Region is not ready.

The health status values are defined as:

Value Definition

000b
Normal Operation: The Persistent Memory Region is
operating normally.

001b

Restore Error: The Persistent Memory Region is operating
normally and is persistent; however, the contents of the
Persistent Memory Region may not have been restored
correctly (i.e., may not contain the contents prior to the last
power cycle, NVM Subsystem Reset, Controller Level Reset,
or Persistent Memory Region disable).

010b

Read Only: The Persistent Memory Region is read only. PCI
Express memory write requests do not update the Persistent
Memory Region. PCI Express memory read requests to the
Persistent Memory Region return correct data.

011b

Unreliable: The Persistent Memory Region has become
unreliable. PCI Express memory reads may return invalid
data or generate poisoned PCI Express TLP(s). Persistent
Memory Region memory writes may not update memory or
may update memory with undefined data. The Persistent
Memory Region may also have become non-persistent.

100b to 111b Reserved

8 RO 0b

Not Ready (NRDY): This bit indicates if the Persistent Memory Region is ready for use.
If this bit is cleared to ‘0’ and the PMRCTL.EN is set to ‘1’, then the Persistent Memory
Region is ready to accept and process PCI Express memory read and write requests. If
this bit is set to ‘1’ or the PMRCTL.EN bit is cleared to ‘0’, then the Persistent Memory
Region is not ready to process PCI Express memory read and write requests.

7:0 RO 0h

Error (ERR): When the Persistent Memory Region is ready and operating normally, this
field indicates whether previous memory writes to the Persistent Memory Region have
completed without error. If this field is cleared to 0h, then previous writes to the Persistent
Memory Region have completed without error and that the values written are persistent.
A non-zero value in this field indicates the occurrence of an error that may have caused
one or more of the previous writes to not have completed successfully. The meaning of
any particular non-zero value is vendor specific.

Once this field takes on a non-zero value, it maintains a non-zero value until the PCI
Function is reset.

3.1.4.25 Offset E0Ch: PMREBS – Persistent Memory Region Elasticity Buffer Size

This optional property identifies to the host the size of the PMR elasticity buffer. A value of 0h in this property
indicates to the host that no information regarding the presence or size of a PMR elasticity buffer is
available.

Figure 68: Offset E0Ch: PMREBS – Persistent Memory Region Elasticity Buffer Size

Bits Type Reset Description

31:8 RO
Impl
Spec

PMR Elasticity Buffer Size Base (PMRWBZ): Indicates the size of the PMR elasticity
buffer. The actual size of the PMR elasticity buffer is equal to the value in this field
multiplied by the value specified by the PMR Elasticity Buffer Size Units field.

7:5 RO 000b Reserved

NVM Express® Base Specification, Revision 2.0e

81

Figure 68: Offset E0Ch: PMREBS – Persistent Memory Region Elasticity Buffer Size

Bits Type Reset Description

4 RO
Impl
Spec

Read Bypass Behavior: If a memory read does not conflict with any memory write in
the PMR Elasticity Buffer (i.e., if the set of memory addresses specified by a read is
disjoint from the set of memory addresses specified by all writes in the PMR Elasticity
Buffer), and this bit is:

a) set to ‘1’, then memory reads not conflicting with memory writes in the PMR
Elasticity Buffer shall bypass those memory writes; and

b) cleared to ‘0’, then memory reads not conflicting with memory writes in the PMR
Elasticity Buffer may bypass those memory writes.

3:0 RO
Impl
Spec

PMR Elasticity Buffer Size Units (PMRSZU): Indicates the granularity of the PMR
Elasticity Buffer Size field.

Value Definition

0h Bytes

1h 1 KiB

2h 1 MiB

3h 1 GiB

4h to Fh Reserved

3.1.4.26 Offset E10h: PMRSWTP – Persistent Memory Region Sustained Write Throughput

This optional property identifies to the host the maximum PMR sustained write throughput. A value of 0h in
this property indicates to the host that no information regarding the PMR sustained write throughput is
available.

Figure 69: Offset E10h: PMRSWTP – Persistent Memory Region Sustained Write Throughput

Bits Type Reset Description

31:8 RO
Impl
Spec

PMR Sustained Write Throughput (PMRSWTV): Indicates the sustained write
throughput of the PMR at the maximum payload size specified by the applicable NVMe
Transport binding specification (e.g. the PCIe TLP payload size, as specified in the
Max_Payload_Size (MPS) field of the PCI Express Device Control (PXDC) register). The
actual sustained write throughput of the PMR is equal to the value in this field multiplied
by the units specified by the PMR Sustained Write Throughput Units field.

7:4 RO 0h Reserved

3:0 RO
Impl
Spec

PMR Sustained Write Throughput Units (PMRSWTU): Indicates the granularity of the
PMR Sustained Write Throughput field.

Value Definition

0h Bytes per second

1h 1 KiB / s

2h 1 MiB / s

3h 1 GiB / s

7h to Fh Reserved

3.1.4.27 Offset E14h: PMRMSCL – Persistent Memory Region Memory Space Control Lower

This optional property and the PMRMSCU property specify how the controller references the Persistent
Memory Region with host-supplied addresses. If the controller supports the Persistent Memory Region’s
controller memory space (PMRCAP.CMSS), this property is mandatory. Otherwise, this property is
reserved. The host shall access this register with aligned 32-bit accesses.

This property shall not be reset by Controller Reset.

NVM Express® Base Specification, Revision 2.0e

82

Figure 70: Offset E14h: PMRMSCL – Persistent Memory Region Memory Space Control Lower

Bits Type Reset Description

31:12 RW 0h

Controller Base Address (CBA): This field specifies the 20 least significant bits of the
52 most significant bits of the 64-bit base address for the Persistent Memory Region’s
controller address range. The Persistent Memory Region’s controller base address and
its size determine its controller address range.

The 64-bit base address specified by this field and PMRMSCU.CBA when the CMSE bit
is set to ‘1’ shall be valid only under the following conditions:

a) no part of the Persistent Memory Region’s controller address range is greater
than 264 − 1; and

b) if the Controller Memory Buffer’s controller memory space is enabled, then the
Persistent Memory Region’s controller address range does not overlap the
Controller Memory Buffer’s controller address range.

11:02 RO 0h Reserved

01 RW 0b

Controller Memory Space Enable (CMSE): This bit specifies whether addresses
supplied by the host are permitted to reference the Persistent Memory Region.
If this bit is set to ‘1’ and the controller base address is valid, then the Persistent Memory
Region’s controller memory space is enabled. Otherwise, the controller memory space
is not enabled.

If the Persistent Memory Region’s controller memory space is enabled, then addresses
supplied by the host that fall within the Persistent Memory Region’s controller address
range shall reference the Persistent Memory Region.

If the Persistent Memory Region’s controller memory space is not enabled, then no
address supplied by the host shall reference the Persistent Memory Region. Instead,
such addresses shall reference memory spaces other than the Persistent Memory
Region.

00 RO 0b Reserved

3.1.4.28 Offset E18h: PMRMSCU – Persistent Memory Region Memory Space Control Upper

This optional property and the PMRMSCL property specify how the controller references the Persistent
Memory Region with host-supplied addresses. If the controller supports the Persistent Memory Region’s
controller memory space (PMRCAP.CMSS), this property is mandatory. Otherwise, this property is
reserved. The host shall access this register with aligned 32-bit accesses.

This register shall not be reset by Controller Reset.

Figure 71: Offset E18h: PMRMSCU – Persistent Memory Region Memory Space Control Upper

Bits Type Reset Description

31:00 RW 0h

Controller Base Address (CBA): This field specifies the 32 most significant bits of the
52 most significant bits of the 64-bit base address for the Persistent Memory Region’s
controller address range. The Persistent Memory Region’s controller base address and
its size determine its controller address range.

3.2 NVM Subsystem Entities

 Namespaces

3.2.1.1 Namespace Overview

A namespace is a formatted quantity of non-volatile memory that may be directly accessed by a host. A
namespace ID (NSID) is an identifier used by a controller to provide access to a namespace.

3.2.1.2 Valid and Invalid NSIDs

Valid NSIDs are the range of possible NSIDs that may be used to refer to namespaces that exist in the
NVM subsystem. Any NSID is valid, except if that NSID is 0h or greater than the Number of Namespaces

NVM Express® Base Specification, Revision 2.0e

83

field reported in the Identify Controller data structure (refer to Figure 280). NSID FFFFFFFFh is a broadcast
value that is used to specify all namespaces. An invalid NSID is any value that is not a valid NSID and is
also not the broadcast value.

Valid NSIDs are:

a) allocated or unallocated in the NVM subsystem; and
b) active or inactive for a specific controller.

3.2.1.3 Allocated and Unallocated NSID Types

In the NVM subsystem, a valid NSID is:

a) an allocated NSID; or
b) an unallocated NSID.

Allocated NSIDs refer to namespaces that exist in the NVM subsystem. Unallocated NSIDs do not refer to
any namespaces that exist in the NVM subsystem.

3.2.1.4 Active and Inactive NSID Types

For a specific controller, an allocated NSID is:

a) an active NSID; or
b) an inactive NSID.

Active NSIDs for a controller refer to namespaces that are attached to that controller. Allocated NSIDs that
are inactive for a controller refer to namespaces that are not attached to that controller.

Unallocated NSIDs are inactive NSIDs for all controllers in the NVM subsystem.

An allocated NSID may be an active NSID for some controllers and an inactive NSID for other controllers
in the same NVM subsystem if the namespace that the NSID refers to is attached to some controllers, but
not all controllers, in the NVM subsystem.

Refer to section 8.11 for actions associated with a namespace being detached or deleted.

3.2.1.5 NSID and Namespace Relationships

Unless otherwise noted, specifying an inactive NSID in a command that uses the Namespace Identifier
(NSID) field shall cause the controller to abort the command with a status code of Invalid Field in Command.
Specifying an invalid NSID in a command that uses the NSID field shall cause the controller to abort the
command with a status code of Invalid Namespace or Format.

The following table summarizes the valid NSID types and Figure 72 visually shows the NSID types and how
they relate.

Figure 72: NSID Types and Relationship to Namespace

Valid NSID Type NSID relationship to namespace Reference

Unallocated Does not refer to any namespace that exists in the NVM subsystem 3.2.1.3

Allocated Refers to a namespace that exists in the NVM subsystem 3.2.1.3

Inactive Does not refer to a namespace that is attached to the controller
1
 3.2.1.4

Active Refers to a namespace that is attached to the controller 3.2.1.4

Notes:
1. If allocated, refers to a namespace that is not attached to the controller. If unallocated, does not refer to any

namespace.

NVM Express® Base Specification, Revision 2.0e

84

Figure 73: NSID Types

Inv. Valid Invalid

0 1 NN NN+1

NSID

Allocated Unallocated

Active Inactive

NVM
Subsystem

Controller

FFFFFFFFh

B

Broadcast Value

3.2.1.6 NSID and Namespace Usage

If Namespace Management (refer to section 8.11), ANA Reporting (refer to section 8.1), or NVM Sets (refer
to section 3.2) capabilities are supported, then NSIDs shall be unique within the NVM subsystem (e.g.,
NSID of 3 shall refer to the same physical namespace regardless of the accessing controller). If the
Namespace Management, ANA Reporting, and NVM Sets capabilities are not supported, then NSIDs:

a) for shared namespaces shall be unique within the NVM subsystem; and
b) for private namespaces are not required to be unique within the NVM subsystem.

The Identify command (refer to section 5.17) may be used to determine the active NSIDs for a controller
and the allocated NSIDs in the NVM subsystem.

If the MNAN field (refer to Figure 280) is cleared to 0h, then the maximum number of allocated NSIDs is
the same as the value reported in the NN field (refer to Figure 280). If the MNAN field is non-zero, then the
maximum number of allocated NSIDs may be less than the number of namespaces (e.g., an NVM
subsystem may support a maximum valid NSID value (i.e., the NN field) set to 1,000,000 but support a
maximum of 10 allocated NSID values).

To determine the active NSIDs for a particular controller, the host may follow either of the following methods:

1. Issue an Identify command with the CNS field cleared to 0h for each valid NSID (based on the
Number of Namespaces value (i.e., MNAM field or NN field) in the Identify Controller data
structure). If a non-zero data structure is returned for a particular NSID, then that is an active
NSID; or

2. Issue an Identify command with a CNS field set to 2h to retrieve a list of up to 1,024 active
NSIDs. If there are more than 1,024 active NSIDs, continue to issue Identify commands with a
CNS field set to 2h until all active NSIDs are retrieved.

To determine the allocated NSIDs in the NVM subsystem, the host may issue an Identify command with
the CNS field set to 10h to retrieve a list of up to 1,024 allocated NSIDs. If there are more than 1,024
allocated NSIDs, continue to issue Identify commands with a CNS field set to 10h until all allocated NSIDs
are retrieved.

NVM Express® Base Specification, Revision 2.0e

85

Namespace IDs may change across power off conditions. However, it is recommended that namespace
IDs remain static across power off conditions in order to avoid issues with host software. To determine if
the same namespace has been encountered, the host may use the:

a) UUID field in the Namespace Identification Descriptor (refer to Figure 282), if present;
b) NGUID field in the Identify Namespace data (refer to the applicable I/O Command Set specification)

or in the Namespace Identification Descriptor, if present; or
c) EUI64 field in the Identify Namespace data or in the Namespace Identification Descriptor, if present.

UIDREUSE bit in the NSFEAT field (refer to Figure 285 or the Identify Namespace data structure in the
NVM Command Set Specification, if applicable) indicates NGUID and EUI64 reuse characteristics.

If Asymmetric Namespace Access Reporting is supported (i.e., bit 3 set to ‘1’ in the CMIC field in the Identify
Controller data structure (refer to Figure 280)), refer to the applicable I/O Command Set specification for
additional detail, if any.

A namespace may or may not have a relationship to a Submission Queue; this relationship is determined
by the host software implementation. The controller shall support access to any attached namespace from
any I/O Submission Queue.

3.2.1.7 I/O Command Set Associations

A namespace is associated with exactly one I/O Command Set. For I/O commands and I/O Command Set
specific Admin commands, the I/O Command Set with which a submission queue entry is associated is
determined by the Namespace Identifier (NSID) field in the command.

An NVM subsystem may contain namespaces each of which is associated with a different I/O Command
Set. A controller may support attached namespaces that use any of the I/O Command Sets that the
controller simultaneously supports as indicated in the I/O Command Set Profile (refer to section 5.27.1.21).

 NVM Sets

An NVM Set is a collection of NVM that is separate (logically and potentially physically) from NVM in other
NVM Sets. One or more namespaces may be created within an NVM Set and those namespaces inherit
the attributes of the NVM Set. A namespace is wholly contained within a single NVM Set and shall not span
more than one NVM Set.

Figure 74 shows an example of three NVM Sets. NVM Set A contains three namespaces (NS A1, NS A2,
and NS A3). NVM Set B contains two namespaces (NS B1 and NS B2). NVM Set C contains one
namespace (NS C1). Each NVM Set shown also contains ‘Unallocated’ regions that consist of NVM that is
not yet allocated to a namespace.

NVM Express® Base Specification, Revision 2.0e

86

Figure 74: NVM Sets and Associated Namespaces

There is a subset of Admin commands that are NVM Set aware as described in Figure 75.

Figure 75: NVM Set Aware Admin Commands

Admin Command Details

Identify
• The Identify Namespace data structure includes the associated NVM Set

Identifier.

• The NVM Set List data structure includes attributes for each NVM Set.

Capacity Management

• The Create NVM Set action returns the NVM Set Identifier of the NVM Set
that is created.

• The Delete NVM Set action includes the NVM Set Identifier of the NVM Set
that is to be deleted.

Namespace Management • The create action includes the NVM Set Identifier as a host specified field.

Get Features and
Set Features

• The Read Recovery Level Feature specifies the associated NVM Set
Identifier.

• The Predictable Latency Mode Config Feature specifies the associated NVM
Set Identifier.

• The Predictable Latency Mode Window Feature specifies the associated
NVM Set Identifier.

Create I/O Submission Queue
• The Create I/O Submission Queue command includes the associated NVM

Set Identifier.

Get Log Page
• The Predictable Latency Per NVM Set log page specifies the associated

NVM Set Identifier.

The host determines the NVM Sets present and their attributes using the Identify command with CNS value
of 04h to retrieve the NVM Set List (refer to Figure 283). For each NVM Set, the attributes include:

• an identifier associated with the NVM Set;

• the optimal size for writes to the NVM Set;

• the total capacity of the NVM Set; and

NVM Express® Base Specification, Revision 2.0e

87

• the unallocated capacity for the NVM Set.

An NVM Set Identifier is a 16-bit value that specifies the NVM Set with which an action is associated. An
NVM Set Identifier is unique with the NVM subsystem. An NVM Set Identifier may be specified in NVM Set
aware Admin commands (refer to Figure 75). An NVM Set Identifier value of 0h is reserved and is not a
valid NVM Set Identifier. Unless otherwise specified, if the host specifies an NVM Set Identifier cleared to
0h for a command that requires an NVM Set Identifier, then that command shall abort with a status code of
Invalid Field in Command.

Each NVM Set is associated with exactly one Endurance Group (refer to section 3.2.3).

The NVM Set with which a namespace is associated is reported in the Identify Namespace data structure
(refer to the applicable NVMe I/O Command Set specification). When a host creates a namespace using
the Namespace Management command, the host specifies the NVM Set Identifier of the NVM Set that the
namespace is to be created in. The namespace that is created inherits attributes from the NVM Set (e.g.,
the optimal write size to the NVM).

If NVM Sets are supported, then all controllers in the NVM subsystem shall:

• Indicate support for NVM Sets in the Controller Attributes field in the Identify Controller data
structure;

• Support the NVM Set Identifier in all commands that use the NVM Set Identifier;

• Support the NVM Set List for the Identify command;

• Indicate the NVM Set Identifier with which the namespace is associated in the Identify Namespace
data structure;

• Support Endurance Groups; and

• For each NVM Set, indicate the associated Endurance Group as an attribute.

If support for NVM Sets is not reported (i.e., the NVM Sets bit is cleared to ‘0’ in the CTRATT field; refer to
Figure 280), then the NVM Set Identifier field shall be cleared to 0h in all commands and data structures
that support an NVM Set Identifier field.

 Endurance Groups

Endurance may be managed within a single NVM Set (refer to section 3.2.2) or across a collection of NVM
Sets. Each NVM Set is associated with an Endurance Group (refer to Figure 283). If two or more NVM Sets
have the same Endurance Group Identifier, then endurance is managed by the NVM subsystem across
that collection of NVM Sets. If only one NVM Set is associated with a specific Endurance Group Identifier,
then endurance is managed locally to that NVM Set. An Endurance Group shall be part of only one domain
(refer to section 3.2.4).

An Endurance Group Identifier is a 16-bit value that specifies the Endurance Group with which an action is
associated. An Endurance Group Identifier is unique within the NVM subsystem. An Endurance Group
Identifier value of 0h is reserved and is not a valid Endurance Group Identifier. Unless otherwise specified,
if the host specifies an Endurance Group Identifier cleared to 0h for a command that requires an Endurance
Group Identifier, then that command shall abort with a status code of Invalid Field in Command.

The information that describes an Endurance Group is indicated in the Endurance Group Information log
page (refer to section 5.16.1.10).

Figure 76 shows Endurance Groups added to the example in Figure 74. In this example, the endurance of
NVM Set A and NVM Set B are managed together as part of Endurance Group Y, while the endurance of
NVM Set C is managed only within NVM Set C which is the only NVM Set that is part of Endurance Group
Z.

NVM Express® Base Specification, Revision 2.0e

88

Figure 76: NVM Sets and Associated Namespaces

If Endurance Groups are supported, then the NVM subsystem and all controllers shall:

• indicate support for Endurance Groups in the Controller Attributes field in the Identify Controller
data structure;

• indicate the Endurance Group Identifier with which the namespace is associated in the Identify
Namespace data structure;

• support the Endurance Group Information log page; and

• support the Endurance Group Event Aggregate log page.

If Endurance Groups are not supported and the host sends a command in which an Endurance Group
Identifier field is defined (e.g., Get Log Page), then that field shall be ignored by the controller.

If Endurance Groups are not supported and the controller returns information to the host that contains an
Endurance Group Identifier field, then that field shall be cleared to 0h.

3.2.3.1 Configuring and Managing Endurance Group Events

The host may configure asynchronous events to be triggered when certain events occur for an Endurance
Group. The host submits a Set Features command specifying the Endurance Group Event Configuration
feature (refer to section 5.27.1.20), the Endurance Group, and the specific event(s) that shall trigger adding
an entry to the Endurance Group Event Aggregate log page (refer to section 5.16.1.15).

The host configures events using a Set Features command for each Endurance Group.

The host submits a Set Features command specifying the Asynchronous Event Configuration feature (refer
to section 5.27.1.8) with the Endurance Group Event Aggregate Log Change Notices bit set to ‘1’ to specify
that adding an entry to the Endurance Group Event Aggregate log page shall trigger an Endurance Group
Event Aggregate Log Page Change Notice event to the host (refer to Figure 358).

NVM Express® Base Specification, Revision 2.0e

89

The host determines the Endurance Groups that have outstanding events by reading the Endurance Group
Event Aggregate log page. An entry is returned for each Endurance Group that has an event outstanding.
The host may use the Endurance Group Identifier Maximum value reported in the Identify Controller data
structure to determine the maximum size of this log page.

To determine the specific event(s) that have occurred for a reported Endurance Group, the host reads the
Endurance Group Information log page (refer to Figure 222) for that Endurance Group. The Critical Warning
field indicates the event(s) that have occurred (e.g., that all namespaces in the Endurance Group have
been placed in read-only mode). All events for an Endurance Group are cleared if the controller successfully
processes a read for the Endurance Group Information log page for that Endurance Group, where the Get
Log Page command has the Retain Asynchronous Event bit cleared to ‘0’. If the Critical Warning field in the
Endurance Group Information log page is cleared to 0h, then events for that Endurance Group are not
reported in the Endurance Group Event Aggregate log page.

 Domains and Divisions

3.2.4.1 Overview

An NVM subsystem may be made up of a single domain or multiple domains (i.e., two or more). A domain
is the smallest indivisible unit that shares state (e.g., power state, capacity information). An NVM subsystem
that supports multiple domains shall support Asymmetric Namespace Access Reporting (refer to section
8.1).

A common example of a simple implementation of an NVM subsystem is one that consists of a single
domain (i.e., multiple domains are not supported).

Each domain is independent, and the boundaries between domains are communication boundaries (e.g.,
fault boundaries, management boundaries). If multiple domains are present in an NVM subsystem, then
those domains cooperate in the operation of that NVM subsystem. If a domain is unable to cooperate in the
operation of the NVM subsystem, then the NVM subsystem has become divided.

A division is an event (e.g., failure of a domain) or action (e.g. management action or reconfiguration) within
the NVM subsystem that affects communication between the domains contained in the NVM subsystem
(refer to Figure 77 and Figure 78). If a division exists, global state within the NVM subsystem may be
impacted (e.g., a controller may only have information about the state of the domains with which the
controller is able to communicate). A division event or action may:

• affect access to namespaces (refer to section 8.1); or

• impact operations that have NVM subsystem scope (e.g., TNVMCAP, sanitize, format, SMART
information).

A domain is comprised of:

• zero or more controllers; and

• zero or more NVM Endurance Groups.

If an NVM subsystem supports multiple domains, then all controllers in that NVM subsystem shall:

• set the MDS bit to ‘1’ in the CTRATT field in the Identify Controller data structure (refer to Figure
280);

• set the Domain Identifier in each Endurance Group descriptor, if supported, to a non-zero value;
and

• set the Domain Identifier in each Identify Controller data structure to a non-zero value.

If an NVM subsystem supports multiple domains, then controllers in that NVM subsystem may:

• support Endurance Groups (refer to Endurance Groups bit in the CTRATT field of Identify
Controller data structure).

For an NVM subsystem that supports multiple domains, each domain shall be assigned a domain identifier
that is unique within the NVM subsystem (refer to the Domain Identifier field in Figure 280 and section

NVM Express® Base Specification, Revision 2.0e

90

3.2.4.3). For an NVM subsystem that does not support multiple domains, Domain Identifier fields are
cleared to 0h.

Figure 77 shows an example of an NVM subsystem that consists of three domains. Domain 1 contains two
controllers and some amount of NVM storage capacity which has been allocated to two private namespaces
(i.e., NS A and NS C) and a shared namespace (i.e., NS B). Domain 2 contains two controllers and some
amount of NVM storage capacity which has been allocated to two shared namespaces (i.e., NS D and NS
E). Domain 3 contains one controller, and no NVM storage capacity.

Figure 77: Example 1 Domain Structure

NSID 1 NSID 2

PCI Function 0

NVMe Controller

NS
A

NS
B

NS
C

Port v Port w

PCI Function 0

NVMe Controller

PCI Function 0

NVMe Controller

PCI Function 0

NVMe Controller

PCI Function 0

NVMe Controller

Port x Port y Port z

Domain 1 Domain 2 Domain 3

Communication
boundary

Communication
boundary

NSID 3 NSID 2 NSID 2NSID 2 NSID 2NSID 4 NSID 4NSID 4

NS
D

Communication
boundary

Communication
boundary

To Domain 1To Domain 3

NS
E

If, in the example shown in Figure 77, a division event occurs that results in Domain 1 no longer being able
to communicate with Domain 2 and Domain 3, then the NVM subsystem would consist of two parts. The
first part consists of Domain 1 and the second part consists of Domain 2 and Domain 3.

Figure 78 shows an example of an NVM subsystem that consists of six domains, of which, three are
domains that contain controllers. Domain 1 is a domain that contains two controllers and some amount of
NVM storage capacity from which NVM Endurance Groups have been created that contain a private
namespace (i.e., NS A) and a shared namespace (i.e., NS C). Domain 2 is a domain that contains no
controllers and contains some amount of NVM storage capacity from which NVM Endurance Groups have
been created that contain a shared namespace (i.e., NS B). Domain 3 is a domain that contains two
controllers and no NVM storage capacity. Domain 4 is a domain that contains no controllers and contains
some amount of NVM storage capacity from which NVM Endurance Groups have been created that contain
two shared namespaces (i.e., NS D and NS E). Domain 5 is a domain that contains one controller and no
NVM storage capacity. Domain 6 is a domain that contains no controllers and no NVM storage capacity
allocated to an NVM Endurance Group (i.e., an empty domain).

NVM Express® Base Specification, Revision 2.0e

91

Figure 78: Example 2 Domain Structure

NSID 1 NSID 2

Fabric

NVMe Controller

NS

A

NS

B

Port v Port w

Fabric

NVMe Controller

Fabric

NVMe Controller

Fabric

NVMe Controller

Fabric

NVMe Controller

Port x Port y Port z

Domain 2 Domain 4

Communication

boundary

Communication

boundary

NSID 2 NSID 2NSID 2 NSID 2NSID 4 NSID 4NSID 4

NS

D

Communication

boundary

Communication

boundary

Domain 1 Domain 3 Domain 5

NS

C

NSID 3

Domain 6

NS

E

Key: - - - - (Dashed Line) – Communication Boundary

3.2.4.2 Domains and Reservations

If an NVM subsystem supports multiple domains and Persistent Reservations (refer to section 8.19), then
resumption after a division event (e.g., resumption of operation, resumption of communication) requires
that all persistent reservation state within the domains in the NVM subsystem that are no longer divided be
synchronized (i.e., updated).

If the reservation state for a namespace is not synchronized, then the ANA Group that contains that
namespace shall transition to the ANA Inaccessible state (refer to section 8.1.3.3) and remain in that state
until the Persistent Reservation state is synchronized. If the Persistent Reservation state is not able to be
synchronized, then:

• a transition to the ANA Persistent Loss state occurs and commands are processed as described
in section 8.1.3.4; or

• the controller may stop processing commands and set the Controller Fatal Status (CSTS.CFS) bit
to ‘1’ (refer to section 9.5).

3.2.4.3 Domain Identifier Use (Informative)

Domain Identifier values indicate the parts of the NVM subsystem that comprise a domain.

The host may use these values to determine which Endurance Groups (refer to section 3.2.3) are contained
in the same domain and which are contained in a different domain. Examples of host use of the domain
identifier include:

• host data redundancy software (e.g., RAID) that may use the Endurance Group’s Domain
Identifier to determine which Endurance Groups may fail together (e.g., Endurance Groups in the
same domain) and which Endurance Groups may fail independently (e.g., Endurance Groups in
different domains); and

• host application software may use the controller’s Domain Identifier to determine which
controllers share domains (e.g., controllers that may fail together) and which controllers are a part
of different domains (e.g., controllers that may fail independently).

NVM Express® Base Specification, Revision 2.0e

92

3.3 NVM Queue Models

The NVM Express interface is based on a paired Submission and Completion Queue mechanism.
Commands are placed by host software into a Submission Queue. Completions are placed into the
associated Completion Queue by the controller. When using a memory-based transport queue model,
multiple Submission Queues may utilize the same Completion Queue. When using a message-based
transport queue model each Submission Queue maps to a single Completion Queue.

 Memory-based Transport Queue Model (PCIe)

3.3.1.1 Queue Setup and Initialization

To setup and initialize I/O Submission Queues and I/O Completion Queues for use, host software follows
these steps:

1. Configures the Admin Submission and Completion Queues by initializing the Admin Queue
Attributes (AQA), Admin Submission Queue Base Address (ASQ), and Admin Completion Queue
Base Address (ACQ) properties appropriately;

2. Configures the size of the I/O Submission Queues (CC.IOSQES) and I/O Completion Queues
(CC.IOCQES);

3. Submits a Set Features command with the Number of Queues attribute set to the requested
number of I/O Submission Queues and I/O Completion Queues. The completion queue entry for
this Set Features command indicates the number of I/O Submission Queues and I/O Completion
Queues allocated by the controller;

4. Determines the maximum number of entries supported per queue (CAP.MQES) and whether the
queues are required to be physically contiguous (CAP.CQR);

5. Creates I/O Completion Queues within the limitations of the number allocated by the controller and
the queue attributes supported (maximum entries and physically contiguous requirements) by using
the Create I/O Completion Queue command; and

6. Creates I/O Submission Queues within the limitations of the number allocated by the controller and
the queue attributes supported (maximum entries and physically contiguous requirements) by using
the Create I/O Submission Queue command.

At the end of this process, I/O Submission Queues and I/O Completion Queues have been setup and
initialized and may be used to complete I/O commands.

3.3.1.2 Queue Usage

The submitter of entries to a memory-based transport queue uses the current Tail entry pointer to identify
the next open queue slot. The submitter increments the Tail entry pointer after placing the new entry to the
open queue slot. If the Tail entry pointer increment exceeds the queue size, the Tail entry shall roll to zero.
The submitter may continue to place entries in free queue slots as long as the Full queue condition is not
met (refer to section 3.3.1.5).

Note: The submitter shall take queue wrap conditions into account.

The consumer of entries on a memory-based transport queue uses the current Head entry pointer to identify
the slot containing the next entry to be consumed. The consumer increments the Head entry pointer after
consuming the next entry from the queue. If the Head entry pointer increment exceeds the queue size, the
Head entry pointer shall roll to zero. The consumer may continue to consume entries from the queue as
long as the Empty queue condition is not met (refer to section 3.3.1.3).

Note: The consumer shall take queue wrap conditions into account.

Creation and deletion of memory-based transport Submission Queue and associated Completion Queues
are required to be ordered correctly by host software. Host software creates the Completion Queue before
creating any associated Submission Queue. Submission Queues may be created at any time after the
associated Completion Queue is created. Host software deletes all associated Submission Queues prior to
deleting a Completion Queue. To abort all commands submitted to the Submission Queue host software
issues a Delete I/O Submission Queue command for that queue (refer to section 3.3.1.3).

NVM Express® Base Specification, Revision 2.0e

93

Host software writes the Submission Queue Tail Doorbell and the Completion Queue Head Doorbell (refer
to the Transport Specific Controller Properties section in the NVMe over PCIe Transport Specification) to
communicate new values of the corresponding entry pointers to the controller. If host software writes an
invalid value to the Submission Queue Tail Doorbell or Completion Queue Head Doorbell property and an
Asynchronous Event Request command is outstanding, then an asynchronous event is posted to the Admin
Completion Queue with a status code of Invalid Doorbell Write Value. The associated queue is then deleted
and recreated by host software. For a Submission Queue that experiences this error, the controller may
complete previously consumed commands; no additional commands are consumed. This condition may be
caused by host software attempting to add an entry to a full Submission Queue or remove an entry from an
empty Completion Queue.

Host software checks completion queue entry Phase Tag (P) bits in memory to determine whether new
completion queue entries have been posted (refer to section 3.3.3.2.2). The Completion Queue Tail pointer
is only used internally by the controller and is not visible to the host. The controller uses the SQ Head
Pointer (SQHD) field in completion queue entries to communicate new values of the Submission Queue
Head Pointer to the host. A new SQHD value indicates that submission queue entries have been consumed,
but does not indicate either execution or completion of any command. Refer to section 3.3.3.2.

A submission queue entry is submitted to the controller when the host writes the associated Submission
Queue Tail Doorbell with a new value that indicates that the Submission Queue Tail Pointer has moved to
or past the slot in which that submission queue entry was placed. A Submission Queue Tail Doorbell write
may indicate that one or more submission queue entries have been submitted.

A submission queue entry has been consumed by the controller when a completion queue entry is posted
that indicates that the Submission Queue Head Pointer has moved past the slot in which that submission
queue entry was placed. A completion queue entry may indicate that one or more submission queue entries
have been consumed.

A completion queue entry is posted to the Completion Queue when the controller write of that completion
queue entry to the next free Completion Queue slot inverts the Phase Tag (P) bit from its previous value in
memory (refer to section 3.3.3.2.2). The controller may generate an interrupt to the host to indicate that one
or more completion queue entries have been posted.

A completion queue entry has been consumed by the host when the host writes the associated Completion
Queue Head Doorbell with a new value that indicates that the Completion Queue Head Pointer has moved
past the slot in which that completion queue entry was placed. A Completion Queue Head Doorbell write
may indicate that one or more completion queue entries have been consumed.

Once a submission queue entry or a completion queue entry has been consumed, the slot in which it was
placed is free and available for reuse. Altering a submission queue entry after that entry has been submitted
but before that entry has been consumed results in undefined behavior. Altering a completion queue entry
after that entry has been posted but before that entry has been consumed results in undefined behavior.

3.3.1.2.1 Completion Queue Flow Control

If there are no free slots in a Completion Queue, then the controller shall not post status to that Completion
Queue until slots become available. In this case, the controller may stop processing additional submission
queue entries associated with the affected Completion Queue until slots become available. The controller
shall continue processing for other Submission Queues not associated with the affected Completion Queue.

3.3.1.3 Queue Abort

To abort a large number of commands, the recommended procedure is to delete and recreate the I/O
Submission Queue. Specifically, to abort all commands that are submitted to the I/O Submission Queue
host software should issue a Delete I/O Submission Queue command for that queue. After the queue has
been successfully deleted, indicating that all commands have been completed or aborted, then host
software should recreate the queue by submitting a Create I/O Submission Queue command. Host software
may then re-submit commands to the associated I/O Submission Queue.

NVM Express® Base Specification, Revision 2.0e

94

3.3.1.4 Empty Queue

The queue is Empty when the Head entry pointer equals the Tail entry pointer. Figure 79 defines the Empty
Queue condition.

Figure 79: Empty Queue Definition

3.3.1.5 Full Queue

The queue is Full when the Head equals one more than the Tail. The number of entries in a queue when
full is one less than the queue size. Figure 80 defines the Full Queue condition.

Note: Queue wrap conditions shall be taken into account when determining whether a queue is Full.

Figure 80: Full Queue Definition

 Message-based Transport Queue Model (Fabrics)

For NVMe over Fabrics, a queue is a unidirectional communication channel that is used to send capsules
between a host and a controller. A host uses Submission Queues to send command capsules (refer to
section 3.3.2.1.1) to a controller. A controller uses Completion Queues to send response capsules (refer to
section 3.3.2.1.2) to a host. Submission and Completion Queues are created in pairs using the Connect
command (refer to section 3.3.2.2).

The NVMe Transport is responsible for delivering command capsules to the controller and notifying the
controller of capsule arrival in a transport-specific fashion.

empty
empty

empty
empty

Queue Base Address

Head (Consumer)
Tail (Producer)

empty
empty

empty
empty

empty
empty

…
…

empty
empty

empty
empty

empty
empty

empty
empty

empty
empty

Queue Base Address

Head (Consumer)
Tail (Producer)

empty
empty

empty
empty

empty
empty

…
…

empty
empty

empty
empty

empty
empty

occupied
occupied

occupied
occupied

Queue Base Address

Head (Consumer)

Tail (Producer)

empty
empty

occupied
occupied

occupied
occupied

…
…

occupied
occupied

occupied
occupied

occupied
occupied

occupied
occupied

occupied
occupied

Queue Base Address

Head (Consumer)

Tail (Producer)

empty
empty

occupied
occupied

occupied
occupied

…
…

occupied
occupied

occupied
occupied

occupied
occupied

NVM Express® Base Specification, Revision 2.0e

95

Altering a command capsule between host submission to the Submission Queue and transport delivery of
that capsule to the controller results in undefined behavior.

NVMe Transports are not required to provide any additional end-to-end flow control. Specific NVMe
Transports may require low level flow control for congestion avoidance and reliability; any such additional
NVMe Transport flow control is outside the scope of this specification.

Flow control differs for Submission Queues (refer to section 3.3.2.1.1, section 3.3.2.6, and section 3.3.2.7)
and Completion Queues (refer to sections 0, section 3.3.2.8, and section 3.3.1.2.1).

3.3.2.1 Capsules and Data Transfers

This section describes capsules and data transfer mechanisms necessary to support message-based
transport queues. These mechanisms are used for Fabrics commands, Admin commands, and I/O
commands when using the message-based transport queue model.

A capsule is an NVMe unit of information exchanged between a host and a controller. A capsule may
contain commands, responses, SGLs, and/or data. The data may include user data (e.g., logical block data
and metadata that is transferred as a contiguous part of the logical block) and data structures associated
with the command.

The capsule size for the Admin Queue commands and responses is fixed and defined in the NVMe
Transport binding specification. The controller indicates in the Identify Controller data structure the capsule
command and response sizes that the host shall use with I/O commands.

The controller shall support SGL based data transfers for commands on both the Admin Queue and I/O
Queues. Data may be transferred within the capsule or through memory transactions based on the
underlying NVMe Transport as indicated in the SGL descriptors associated with the command capsule. The
SGL types supported by an NVMe Transport are specified in the NVMe Transport binding specification.

The value of unused and not reserved capsule fields (e.g., the capsule is larger than the command /
response and associated data) is undefined and shall not be interpreted by the recipient.

3.3.2.1.1 Command Capsules

A command capsule is sent from a host to a controller. It contains a submission queue entry (SQE) and
may optionally contain data or SGLs. The SQE is 64 bytes in size and contains the Admin command, I/O
command, or Fabrics command to be executed.

Figure 81: Command Capsule

Submission Queue Entry Data or SGLs (if present)

Byte 0 63 64 (N-1)

Command Capsule of Size N Bytes

The Command Identifier field in the SQE shall be unique among all outstanding commands associated with
that queue. If there is data or additional SGLs to be transferred within the capsule, then the SGL descriptor
in the SQE contains a Data Block, Segment Descriptor, or Last Segment Descriptor specifying an
appropriate Offset address. The definition for the submission queue entry when the command is a Fabrics
command is shown in Figure 82. The definition for the submission queue entry when the command is an
Admin or I/O command is shown in section 3.3.3.1. Bytes 03:00 share a common format across commands.

Figure 82: Fabrics Command Capsule – Submission Queue Entry Format

Bytes Description

03:00 Command Dword 0: Refer to Figure 83.

NVM Express® Base Specification, Revision 2.0e

96

Figure 82: Fabrics Command Capsule – Submission Queue Entry Format

Bytes Description

04
Fabrics Command Type (FCTYPE): This field specifies the Fabrics command transferred in the
capsule. The Fabrics command types are defined in Figure 380. If this field is set to a reserved
value, the command should be aborted with a status code of Invalid Field in Command.

23:05 Reserved

39:24

SGL Descriptor 1 (SGL1): This field contains a Transport SGL Data Block descriptor or a Keyed
SGL Data Block descriptor that describes the entire data transfer. Refer to section 4.1.2 for the
definition of SGL descriptors.

This field is used for Fabrics commands that transfer data. If a Fabrics command does not transfer
data, then this field is reserved.

63:40 Fabrics Command Type Specific: This field is Fabrics command type specific.

Figure 83: Fabrics Command Capsule – Command Dword 0

Bits Description

31:16 Command Identifier (CID): Refer to Figure 89.

15:14

PRP or SGL for Data Transfer (PSDT):

Value Description

00b

This value is used for Fabrics commands that do not transfer data.

If this value is used for Fabrics commands that transfer data, then SGLs are
used for this transfer. A host should use the value 10b rather than 00b for
Fabrics commands that transfer data.

01b Reserved

10b
This value is used for Fabrics commands that transfer data. SGLs are used for
this transfer.

11b Reserved

Value Description

13:10 Reserved

09:08
Fused Operation (FUSE): Refer to Figure 89. There are no fused Fabrics commands and as a
result this field is cleared to 00b.

07:00 Opcode (OPC): This field is set to 7Fh to indicate a Fabrics command.

3.3.2.1.2 Response Capsules

A response capsule is sent from the NVM subsystem to the host. It contains a completion queue entry
(CQE) and may optionally contain data. The CQE is the completion queue entry associated with a
previously issued command capsule.

If a command requests data and the SGL in the associated command capsule specifies a Data Block
descriptor with an Offset, the data is included in the response capsule. If the SGL(s) in the command
capsule specify a region in host memory, then data is transferred via memory transactions.

Figure 84: Response Capsule

Completion Queue Entry Data (if present)

Byte 0 15 16 (N-1)

Response Capsule of Size N Bytes

The completion queue entry is 16 bytes in size and contains a two byte status field.

NVM Express® Base Specification, Revision 2.0e

97

The definition for the completion queue entry for a Fabrics command is defined in Figure 85. The definition
for the completion queue entry when the command is an Admin or I/O command is defined in section
3.3.3.2, where the SQ Identifier and Phase Tag fields are reserved because they are not used in NVMe
over Fabrics. Use of the SQHD field depends on whether SQ flow control is disabled for the queue pair,
refer to section 6.3.

Figure 85: Fabrics Response Capsule – Completion Queue Entry Format

Bytes Description

07:00 The definition of this field is Fabrics response type specific.

09:08
SQ Head Pointer (SQHD): Indicates the current Submission Queue Head pointer for the
associated Submission Queue. This field is reserved if SQ flow control is disabled for the queue
pair (refer to section 6.3).

11:10 Reserved

13:12 Command Identifier (CID): Indicates the identifier of the command that is being completed.

15:14

Status (STS): Specifies status for the associated Fabrics command.

Bits Definition

15:01 Status field as defined in section 3.3.3.2.1.

00 Reserved

3.3.2.1.3 Data Transfers

Data may be transferred within capsules or by memory transfers. SGLs are used to specify the location of
data. Metadata, if transferred, is a contiguous part of the user data with which that metadata is associated.
The SGL descriptor(s) (refer to section 4.1.2) specify whether the command’s data is transferred through
memory or within the capsule. The capsule may contain either SGLs or data (not a mixture of both) following
the SQE. If additional SGLs are required, then the SGLs are included in the capsule immediately after the
SQE. If an invalid offset is specified in an SGL descriptor, then a status code of SGL Offset Invalid shall be
returned.

SGLs shall be supported within a capsule. The NVMe Transport binding specification defines the SGL
Descriptor Types and Sub Types that are supported for the corresponding NVMe Transport. The NVMe
Transport binding specification also specifies if SGLs may be supported in host memory.

3.3.2.1.3.1 Data and SGL Locations within a Command Capsule

The submission queue entry within the command capsule includes one SGL entry. If there are additional
SGL entries to be transferred in the command capsule, then those entries shall be contiguous and located
immediately after the submission queue entry.

An NVMe Transport binding specification defines the support for data as part of the command capsule. The
controller indicates the starting location of data within a command capsule via the In Capsule Data Offset
(ICDOFF) field in the Identify Controller data structure.

NVM Express® Base Specification, Revision 2.0e

98

There are restrictions for SGLs that the host should follow:

• if the ICDOFF field is a non-zero value, then all SGL descriptors following the submission queue
entry shall not have a total size greater than (ICDOFF * 16);

• if the SGL descriptors following the submission queue entry have a total size greater than (ICDOFF
* 16), then the controller shall abort the command with a status code of Invalid Number of SGL
Descriptors;

• the host shall not place more SGL Data Block or Keyed SGL Data Block descriptors within a
capsule than the maximum indicated in the Identify Controller data structure; and

• if the host places more SGL Data Block of Keyed SGL Data Block descriptors in a capsule than the
maximum indicated in the Maximum SGL Data Block Descriptors field in the Identify Controller data
structure, then the controller shall abort the command with a status code of Invalid Number of SGL
Descriptors.

The host shall start data (if present) in command capsules at byte offset (ICDOFF * 16) from the end of the
submission queue entry.

Figure 86: Data and SGL Locations within a Command Capsule

Submission Queue Entry
Additional SGLs

(if present)

Byte 0 63 64

Command Capsule of Size N Bytes

(ICDOFF * 16) + 64

Submission Queue Entry Data (if present)
Undefined

(if ICDOFF > 0)

Byte 0 63 64 (N-1)

Command Capsule of Size N Bytes

Undefined

Undefined

(M-1)

(N-1)(M-1)

3.3.2.1.3.2 Data Transfer Examples

The data transfer examples in Figure 87 and Figure 88 show SGL examples for a Write command where
data is transferred via a memory transaction or within the capsule. The SGL may use a key as part of the
data transfer depending on the requirements of the NVMe Transport used.

The first example shows an 8KiB write where all of the data is transferred via memory transactions. In this
case, there is one SGL descriptor that is contained within the submission queue entry at CMD.SGL1. The
SGL descriptor is a Keyed SGL Data Block descriptor. If more SGLs are required to complete the command,
the additional SGLs are contained in the command capsule.

NVM Express® Base Specification, Revision 2.0e

99

Figure 87: SGL Example Using Memory Transactions

Host DRAM

Data Block A

SGL Descriptor

Address = Data Block A
Keyed Data Block descriptor

specifies to transfer 8KiB

through memory

Length = 8KiB

SGL Identifier = 40h

Key = Tag A

The second example shows an 8KiB write where all of the data is transferred within the capsule. In this
case, the SGL descriptor is an SGL Data Block descriptor specifying an Offset of 20h based on an ICDOFF
value of 2h.

Figure 88: SGL Example Using In Capsule Data Transfer

Data Block A

Destination SGL Segment 0

Offset = 20h

SGL Data Block descriptor

specifies to transfer 8KiB within the

capsule at offset 20h.
Length = 8KiB

SGL Identifier = 01h

Submission Queue Entry

Byte 0

Data

63 64 (N-1)96

Undefined

3.3.2.2 Queue Creation

Message-based controllers use the Connect command (refer to section 6.3) to create controller Admin
Queues or I/O Queues. The creation of an Admin Queue establishes an association between a host and
the corresponding controller. The message-based transport queue model does not support the Admin
Submission Queue Base Address (ASQ), Admin Completion Queue Base Address (ACQ), and Admin
Queue Attributes (AQA) properties as all information necessary to establish an Admin Queue is contained
in the Connect command. The message-based transport queue model does not support the Admin
commands associated with I/O Queue creation and deletion (Create I/O Completion Queue, Create I/O
Submission Queue, Delete I/O Completion Queue, Delete I/O Submission Queue).

NVM Express® Base Specification, Revision 2.0e

100

An NVMe Transport connection is established between a host and an NVM subsystem prior to the transfer
of any capsules or data. The mechanism used to establish an NVMe Transport connection is NVMe
Transport specific and defined by the corresponding NVMe Transport binding specification. The NVMe
Transport may require a separate NVMe Transport connection for each Admin or I/O Queue or may utilize
the same NVMe Transport connection for all Admin and I/O Queues associated with a particular controller.
An NVMe Transport may also require that NVMe layer information be passed between the host and
controller in the process of establishing an NVMe Transport connection (e.g., exchange queue size to
appropriately size send and receive buffers).

The Connect command specifies the Queue ID and type (Admin or I/O), the size of the Submission and
Completion Queues, queue attributes, Host NQN, NVM Subsystem NQN, and Host Identifier. The Connect
command may specify a particular controller if the NVM subsystem supports a static controller model. The
Connect response indicates whether the connection was successfully established as well as whether NVMe
in-band authentication is required.

The Connect command is submitted to the same Admin Queue or I/O Queue that the Connect command
creates. The underlying NVMe Transport connection that is used for that queue is created first and the
Connect command and response capsules are sent over that NVMe Transport connection. The Connect
command shall be sent once to a queue.

When a Connect command successfully completes, the corresponding Submission and Completion
Queues are created. If NVMe in-band authentication is required as indicated in the Connect response, then
NVMe in-band authentication shall be performed before the queues may be used to perform other Fabrics
commands, Admin commands, or I/O commands. Once a Connect command for an Admin Queue has
completed successfully (and NVMe in-band authentication, if required, has succeeded), only Fabrics
commands may be submitted until the controller is ready (CSTS.RDY = 1). Both Fabrics commands and
Admin commands may be submitted to the Admin Queue while the controller is ready. A Connect command
for an I/O Queue may be submitted after the controller is ready. Once a Connect command for an I/O Queue
has completed successfully (and NVMe in-band authentication, if required, has succeeded), I/O commands
may be submitted to the queue.

The Connect response contains the controller ID allocated to the host. All subsequent Connect commands
that create an I/O Queue with that controller shall be from the same host, utilize the same NVMe Transport,
and have the same Host Identifier, Host NQN, and NVM Subsystem NQN; if any of these conditions are
not met, then the Connect command fails.

3.3.2.3 Queue Initialization and Queue State

When a Connect command successfully completes, the corresponding Admin Submission and Completion
Queue or I/O Submission and Completion Queues are created. If the host sends a Connect command
specifying the Queue ID of a queue which already exists, then the controller shall abort the command with
a status code of Command Sequence Error.

The Authentication Requirements (AUTHREQ) field in the Connect response indicates if NVMe in-band
authentication is required. If AUTHREQ is cleared to 0h, the created queue is ready for use after the
Connect command completes successfully. If AUTHREQ is set to a non-zero value, the created queue is
ready for use after NVMe in-band authentication has been performed successfully using the Authentication
Send and Authentication Receive Fabrics commands.

If a controller requires or is undergoing NVMe in-band authentication for a queue pair, then a controller
shall abort all commands received on that queue other than authentication commands with a status code
of Authentication Required. After the NVMe in-band authentication has been performed successfully on a
queue, then a controller shall abort all authentication commands on that queue with a status code of
Command Sequence Error.

When an Admin Queue is first created, the associated controller is disabled (i.e., CC.EN is initialized to ‘0’).
A disabled controller shall abort all commands other than Fabrics commands on the Admin Queue with a
status code of Command Sequence Error. After the controller is enabled, it shall accept all supported Admin
commands in addition to Fabrics commands.

NVM Express® Base Specification, Revision 2.0e

101

A created I/O queue shall abort all commands with a status code of Command Sequence Error if the
associated controller is disabled.

3.3.2.4 I/O Queue Deletion

NVMe over Fabrics deletes an individual I/O Queue and may delete the associated NVMe Transport
connection as a result of:

• the exchange of a Disconnect command and response (refer to section 6.4) between a host and
controller; or

• the detection and processing of a transport error on an NVMe Transport connection.

The host indicates support for the deletion of an individual I/O Queue by setting bit 3 to ‘1’ in the CATTR
field in the Connect command (refer to Figure 385) used to create the Admin Queue. The controller indicates
support for the deletion of an individual I/O Queue by setting bit 0 to ‘1’ in the OFCS field in the Identify
Controller Attributes region of the Identify Controller data structure (refer to Figure 280).

If both the host and the controller support deletion of an individual I/O Queue, then the termination of an
individual I/O Queue impacts only that I/O Queue (i.e., the association and all other I/O Queues and their
associated NVMe Transport connections are not impacted). If either the host or the controller does not
support deletion of an individual I/O Queue, then the deletion of an individual I/O Queue or the termination
of an NVMe Transport connection causes the association to be terminated.

NVMe over Fabrics uses the Disconnect command to delete an Individual I/O Queue. This command is
sent on the I/O Submission Queue to be deleted and affects only that I/O Submission Queue and its
associated I/O Completion Queue (i.e., other I/O Queues are not affected). To delete an I/O Queue, the
NVMe Transport connection for that I/O Queue is used. If all Queues associated with an NVMe Transport
connection are deleted, then the NVMe Transport connection may be deleted after completion of the
Disconnect command. Actions necessary to delete the NVMe Transport connection are transport specific.
The association between the host and the controller is not affected.

If a Disconnect command returns a status code other than success, the host may delete an I/O Queue
using other methods including:

• waiting a vendor specific amount of time and retry the Disconnect command;

• deleting the NVMe Transport connection (note: this may impact other I/O Queues);

• performing a Controller Level Reset (note: this impacts other I/O Queues); or

• ending the host to controller association.

If the transport requires a separate NVMe Transport connection for each Admin and I/O Queue (refer to
section 3.3.2.2), then the host should not delete an NVMe Transport connection until after:

• a Disconnect command has been submitted to the I/O Submission Queue; and

• the response for that Disconnect command has been received by the host on the corresponding
I/O Completion Queue or a vendor specific timeout (refer to section 3.9) has occurred while waiting
for that response.

If the transport requires a separate NVMe Transport connection for each Admin and I/O Queue, then the
controller should not delete an NVMe Transport connection until after:

• a Disconnect command has been received on the I/O Submission Queue and processed by the
controller;

• the responses for commands received by the controller on that I/O Submission Queue prior to
receiving the Disconnect command have been sent to the host on the corresponding I/O
Completion Queue; and

• the resulting response for that Disconnect command has been sent to the host on the
corresponding I/O Completion queue (i.e., this response is the last response sent). It is
recommended that the controller delay destroying the NVMe Transport connection to allow time for
the Disconnect command response to be received by the host (e.g., a transport specific event
occurs or a transport specific time period elapses).

NVM Express® Base Specification, Revision 2.0e

102

If the transport utilizes the same NVMe Transport connection for all Admin and I/O Queues associated with
a particular controller (refer to section 3.3.2.2), then the deletion of an individual I/O Queue has no impact
on the NVMe Transport connection.

A Disconnect command is the last I/O Submission Queue entry processed by the controller for an I/O
Queue. Controller processing of the Disconnect command completes or aborts all commands on the I/O
Queue on which the Disconnect command was received. The controller determines whether to complete
or abort each of those commands.

The response to the Disconnect command is the last I/O Completion Queue entry processed by the host
for an I/O Queue. To avoid command aborts the host should wait for outstanding commands on an I/O
Queue to complete before sending the Disconnect command.

If the controller detects an NVMe Transport connection loss, then the controller shall stop processing all
commands received on I/O Queues associated with that NVMe Transport connection. Until the controller
detects an NVMe Transport connection loss or sends a successful completion for a Disconnect command,
outstanding commands may continue being processed by the controller.

If the host detects an NVMe Transport connection loss before the responses are received for all outstanding
commands submitted to the associated I/O Queue, then there is no further information available to the host
about the state of those commands (e.g., each individual outstanding command may have been completed
or aborted by the controller).

If an NVMe Transport connection is lost as a result of an NVMe Transport error, then before performing
recovery actions related to commands sent on I/O queues associated with that NVMe Transport connection,
the host should wait for at least the longer of:

• the NVMe Keep Alive timeout; or

• the underlying fabric transport timeout, if any.

3.3.2.5 Submission Queue Flow Control Negotiation

Use of Submission Queue (SQ) flow control is negotiated for each queue pair by the Connect command
and the controller response to the Connect command. SQ flow control shall be used unless it is disabled
as a result of that negotiation. If SQ flow control is disabled, then the Submission Queue Head Pointer
(SQHD) field is reserved in all Fabrics response capsules for that queue pair after the response to the
Connect command (i.e., in all subsequent response capsules for that queue pair, the controller shall clear
the SQHD field to 0h and the host should ignore the SQHD field).

If the host requests that SQ flow control be disabled for a queue pair, then the host should size each
Submission Queue to support the maximum number of commands that the host could have outstanding at
one time for that Submission Queue.

The maximum size of the Admin Submission Queue is specified in the Admin Max SQ Size (ASQSZ) field
of the Discovery Log Page Entry for the NVM subsystem (refer to section 5.16.1.23).

The maximum size of an I/O Submission Queue is specified in the Maximum Queue Entries Supported
(MQES) field of the Controller Capabilities (CAP) property for the controller (refer to section 3.1.4.1).

The Maximum Outstanding Commands (MAXCMD) value in the Identify Controller data structure indicates
the maximum number of commands that the controller processes at one time for a particular I/O Queue.
The host may use this value to size I/O Submission Queues and optimize the number of commands
submitted at one time per queue to achieve the best performance.

If SQ flow control is disabled, then the host should limit the number of outstanding commands for a queue
pair to be less than the size of the Submission Queue. If the controller detects that the number of
outstanding commands for a queue pair is greater than or equal to the size of the Submission Queue, then
the controller shall:

a) stop processing commands and set the Controller Fatal Status (CSTS.CFS) bit to ‘1’ (refer to
section 9.5); and

NVM Express® Base Specification, Revision 2.0e

103

b) terminate the NVMe Transport connection and end the association between the host and the
controller.

3.3.2.6 Submission Queue Flow Control

This section applies only to Submission Queues that use SQ flow control.

The Submission Queue has a Head entry pointer and a Tail entry pointer that are used to manage the
queue and determine the number of Submission Queue capsules available to the host for new submissions.
The Head and Tail entry pointers are initialized to 0h when a queue is created. All arithmetic operations
and comparisons on entry pointers are performed modulo the queue size with queue wrap conditions taken
into account. The host increments the Tail entry pointer when the host adds a capsule to a queue. The
controller increments the Head entry pointer when that controller removes a capsule from the queue.

The Submission Queue Head entry pointer is maintained by the controller and is communicated to the host
in the SQHD field of completion queue entries. The host uses the received SQHD values for Submission
Queue management (e.g., to determine whether the Submission Queue is full).

The Submission Queue Tail entry pointer is local to the host and is not communicated to the controller.

The Submission Queue is full when the Head entry pointer equals one more than the Tail entry pointer (i.e.,
incrementing the Tail entry pointer has caused it to wrap around to just behind the Head entry pointer). A
full Submission Queue contains one less capsule than the queue size. A host may continue to submit
commands to a Submission Queue as long as the queue is not full.

If the controller detects that the host has submitted a command capsule to a full Submission Queue, then
the controller shall:

a) stop processing commands and set the Controller Fatal Status (CSTS.CFS) bit to ‘1’ (refer to
section 9.5); and

b) terminate the NVMe Transport connection and end the association between the host and the
controller.

The Submission Queue is empty when the Head entry pointer equals the Tail entry pointer.

3.3.2.7 Submission Queue Head Pointer Update Optimization

Submission Queue Head Pointer update optimization does not apply to queue pairs for which Submission
Queue (SQ) flow control is disabled, as the SQHD field is reserved if SQ flow control is disabled, refer to
section 3.3.2.5 and to section 6.3.

The NVMe Transport may omit transmission of the SQHD value for a response capsule that:

a) contains a Generic Command status (i.e., Status Code Type 0h) indicating successful
completion of a command (i.e., Status Code 00h);

b) is not a Connect response capsule; and
c) is not a Disconnect response capsule.

If a new SQHD value is not received in a response capsule, the host continues to use its previous SQHD
value. Thus, at the NVMe layer there is a logical progression of SQHD values despite the fact that the
NVMe Transport may not actually transfer the SQHD value in each response capsule.

The NVMe Transport may deliver response capsules that do not contain an SQHD value to the host in any
order. The applicable NVMe Transport binding specification defines how presence versus absence of an
SQHD value in a response capsule is indicated by the NVMe Transport.

Periodic SQHD updates at the host are required to avoid Submission Queue (SQ) starvation as SQHD
value transmission in responses is the only means of releasing SQ slots for host reuse.

An NVMe Transport may transmit an SQHD value in every response capsule. If an NVMe Transport does
not transmit an SQHD value in every response capsule, then an SQHD value should be transmitted
periodically (e.g., in at least one of every n response capsules on a CQ, where n is 10% of the size of the

NVM Express® Base Specification, Revision 2.0e

104

associated SQ) or more often. An SQHD value should always be transmitted if 90% or more of the slots in
the associated SQ are occupied at the subsystem.

3.3.2.8 Completion Queue Considerations

Completion Queue flow control (refer to section 3.3.1.2.1) is not used in the message-based transport
queue model. Message-based transport Completion Queues do not use either Head entry pointers or Tail
entry pointers.

The host should size each Completion Queue to support the maximum number of commands that the host
could have outstanding at one time for a particular Submission Queue. The Completion Queue size may
be larger than the size of the corresponding Submission Queue to accommodate responses for commands
that are being processed by the controller in addition to responses for commands that are still in the
Submission Queue.

If the size of a Completion Queue is too small for the number of outstanding commands and the controller
submits a response capsule to a full Completion Queue, then the results are undefined.

The Maximum Outstanding Commands (MAXCMD) value in the Identify Controller data structure indicates
the maximum number of commands that the controller processes at one time for a particular I/O Queue.
The host may use this value to size I/O Completion Queues and optimize the number of commands
submitted at one time per queue to achieve the best performance.

Altering a response capsule between controller submission to the Completion Queue and transport delivery
of that capsule to the host results in undefined behavior.

3.3.2.9 Transport Requirements

This section defines requirements that all NVMe Transports that support an NVMe over Fabrics
implementation shall meet.

The NVMe Transport may support NVMe Transport error detection and report errors to the NVMe layer in
command status values. The controller may record NVMe Transport specific errors in the Error Information
log page (refer to section 5.16.1.2). Transport errors that cause loss of a message or loss of data in a way
that the low-level NVMe Transport cannot replay or recover should cause:

• the deletion of the individual I/O Queues (refer to section 3.3.2.4) and the associated NVMe
Transport connection on which that NVMe Transport level error occurred; or

• termination of the NVMe Transport connection and the association between the host and controller.

The NVMe Transport shall provide reliable delivery of capsules between a host and NVM subsystem (and
allocated controller) over each connection. The NVMe Transport may deliver command capsules in any
order on each queue except for I/O commands that are part of fused operations (refer to section 3.4.2).

For command capsules that are part of fused operations for I/O commands, the NVMe Transport:

a) shall deliver the first and second command capsules for each fused operation to the queue in-
order; and

b) shall not deliver any other command capsule for the same Submission Queue between delivery
of the two command capsules for a fused operation.

The NVMe Transport shall provide reliable delivery of response capsules from an NVMe subsystem to a
host over each connection. The NVMe Transport shall deliver response capsules that include an SQ Head
Pointer (SQHD) value to the host in-order; this includes all Connect response capsules and all Disconnect
response capsules.

 Queueing Data Structures

3.3.3.1 Submission Queue Entry

Each Common Command Format command is 64 bytes in size.

NVM Express® Base Specification, Revision 2.0e

105

Command Dword 0, Namespace Identifier, Metadata Pointer, PRP Entry 1, PRP Entry 2, SGL Entry 1, and
Metadata SGL Segment Pointer have common definitions for all Admin commands and I/O commands for
all I/O Command Sets. Metadata Pointer, PRP Entry 1, PRP Entry 2, and Metadata SGL Segment Pointer
are not used by all commands. Command Dword 0 is defined in Figure 89.

Figure 89: Command Dword 0

Bits Description

31:16

Command Identifier (CID): This field specifies a unique identifier for the command when combined with
the Submission Queue identifier.

The value of FFFFh should not be used as the Error Information log page (refer to section 5.16.1.2) uses
this value to indicate an error is not associated with a particular command.

15:14

PRP or SGL for Data Transfer (PSDT): This field specifies whether PRPs or SGLs are used for any data
transfer associated with the command. PRPs shall be used for all Admin commands for NVMe over PCIe
implementations. SGLs shall be used for all Admin and I/O commands for NVMe over Fabrics
implementations (i.e., this field set to 01b). An NVMe Transport may support only specific values (refer to
the applicable NVMe Transport binding specification for details).

Value Definition

00b PRPs are used for this transfer.

01b

SGLs are used for this transfer. If used, Metadata Pointer (MPTR) contains an address of a
single contiguous physical buffer.

Refer to bit 17 of the SGLS field in the Identify Controller data structure (refer to Figure 280) for
alignment requirements.

10b
SGLs are used for this transfer. If used, Metadata Pointer (MPTR) contains an address of an
SGL segment containing exactly one SGL Descriptor that is qword aligned.

11b Reserved

If there is metadata that is not interleaved with the user data, as specified in the Format NVM command,
then the Metadata Pointer (MPTR) field is used to point to the metadata. The definition of the Metadata
Pointer field is dependent on the setting in this field. Refer to Figure 90.

13:10 Reserved

09:08

Fused Operation (FUSE): In a fused operation, a complex command is created by “fusing” together two
simpler commands. Refer to section 3.4.2. This field specifies whether this command is part of a fused
operation and if so, which command it is in the sequence.

Value Definition

00b Normal operation

01b Fused operation, first command

10b Fused operation, second command

11b Reserved

07:00 Opcode (OPC): This field specifies the opcode of the command to be executed.

The Common Command Format is defined in Figure 90. Any additional I/O Command Set defined in the
future may use an alternate command size or format.

SGLs shall not be used for Admin commands in NVMe over PCIe implementations.

Figure 90: Common Command Format

Bytes Description

03:00 Command Dword 0 (CDW0): This field is common to all commands and is defined in Figure 89.

NVM Express® Base Specification, Revision 2.0e

106

Figure 90: Common Command Format

Bytes Description

07:04

Namespace Identifier (NSID): This field specifies the namespace that this command applies to. If the
namespace identifier is not used for the command, then this field shall be cleared to 0h. The value
FFFFFFFFh in this field is a broadcast value (refer to section 3.2.1.2), where the scope (e.g., the NVM
subsystem, all attached namespaces, or all namespaces in the NVM subsystem) is dependent on the
command. Refer to Figure 144 and Figure 395 for commands that support the use of the value FFFFFFFFh
in this field.

Specifying an inactive namespace identifier (refer to section 3.2.1.4) in a command that uses the
namespace identifier shall cause the controller to abort the command with a status code of Invalid Field in
Command, unless otherwise specified. Specifying an invalid namespace identifier (refer to section 3.2.1.2)
in a command that uses the namespace identifier shall cause the controller to abort the command with a
status code of Invalid Namespace or Format, unless otherwise specified.

If the namespace identifier is used for the command (refer to Figure 144), the value FFFFFFFFh is not
supported for that command, and the host specifies a value of FFFFFFFFh, then the controller should abort
the command with a status code of Invalid Field in Command, unless otherwise specified.

If the namespace identifier is not used for the command and the host specifies a value from 1h to
FFFFFFFFh, then the controller should abort the command with a status code of Invalid Field in Command,
unless otherwise specified.

11:08 Command Dword 2 (CDW2): This field is command specific Dword2.

15:12 Command Dword 3 (CDW3): This field is command specific Dword3.

23:16

Metadata Pointer (MPTR): If CDW0.PSDT (refer to Figure 89) is cleared to 00b, then this field shall contain
the address of a contiguous physical buffer of metadata and that address shall be dword aligned (i.e., bits
1:0 cleared to 00b). The controller is not required to check that bits 1:0 are cleared to 00b. The controller
may report an error of Invalid Field in Command if bits 1:0 are not cleared to 00b. If the controller does not
report an error of Invalid Field in Command, then the controller shall operate as if bits 1:0 are cleared to
00b.

If CDW0.PSDT is set to 01b, then this field shall contain the address of a contiguous physical buffer of
metadata. Refer to bit 17 of the SGLS field in the Identify Controller data structure for alignment
requirements.

If CDW0.PSDT is set to 10b, then this field shall contain the address of an SGL segment that contains
exactly one SGL Descriptor. The address of that SGL segment shall be qword aligned (i.e., bits 2:0 cleared
to 000b). The SGL Descriptor contained in that SGL segment is the first SGL Descriptor of the metadata
for the command. If the SGL Descriptor contained in that SGL segment is an SGL Data Block descriptor,
then that SGL Data Block Descriptor is the only SGL Descriptor and therefore describes the entire metadata
data transfer. Refer to section 4.1.2. The controller is not required to check that bits 2:0 are cleared to 000b.
The controller may report an error of Invalid Field in Command if bits 2:0 are not cleared to 000b. If the
controller does not report an error of Invalid Field in Command, then the controller shall operate as if bits
2:0 are cleared to 000b.

NVM Express® Base Specification, Revision 2.0e

107

Figure 90: Common Command Format

Bytes Description

39:24

Data Pointer (DPTR): This field specifies the data used in the command.

If CDW0.PSDT is cleared to 00b, then the definition of this field is:

39:32

PRP Entry 2 (PRP2): This field:

• is reserved if the data transfer does not cross a memory page boundary;

• specifies the Page Base Address of the second memory page if the data
transfer crosses exactly one memory page boundary. E.g.,:

o the command data transfer length is equal in size to one memory
page and the offset portion of the PBAO field of PRP1 is non-
zero; or

o the Offset portion of the PBAO field of PRP1 is equal to 0h and
the command data transfer length is greater than one memory
page and less than or equal to two memory pages in size;

and

• is a PRP List pointer if the data transfer crosses more than one memory
page boundary. E.g.,:

o the command data transfer length is greater than or equal to two
memory pages in size but the offset portion of the PBAO field of
PRP1 is non-zero; or

o the command data transfer length is equal in size to more than
two memory pages and the Offset portion of the PBAO field of
PRP1 is equal to 0h.

31:24

PRP Entry 1 (PRP1): This field contains:

• the first PRP entry for the command; or

• a PRP List pointer,

depending on the command (e.g., the Create I/O Completion Queue command;
refer to Figure 160).

If CDW0.PSDT is set to 01b or 10b, then the definition of this field is:

39:24

SGL Entry 1 (SGL1): This field contains the first SGL segment for the command.
If the SGL segment is an SGL Data Block or Keyed SGL Data Block or Transport
SGL Data Block descriptor, then it describes the entire data transfer. If more than
one SGL segment is needed to describe the data transfer, then the first SGL
segment is a Segment, or Last Segment descriptor. Refer to section 4.1.2 for the
definition of SGL segments and descriptor types.

The NVMe Transport may support a subset of SGL Descriptor types and features
as defined in the NVMe Transport binding specification.

43:40 Command Dword 10 (CDW10): This field is command specific Dword 10.

47:44 Command Dword 11 (CDW11): This field is command specific Dword 11.

51:48 Command Dword 12 (CDW12): This field is command specific Dword 12.

55:52 Command Dword 13 (CDW13): This field is command specific Dword 13.

59:56 Command Dword 14 (CDW14): This field is command specific Dword 14.

63:60 Command Dword 15 (CDW15): This field is command specific Dword 15.

In addition to the fields commonly defined for the Common Command Format, Vendor Specific commands
may support the Number of Dwords in Data Transfer and Number of Dwords in Metadata Transfer fields. If
supported, the command format for the Vendor Specific commands are defined in Figure 91. For more
details, refer to section 8.23.

NVM Express® Base Specification, Revision 2.0e

108

Figure 91: Common Command Format – Vendor Specific Commands (Optional)

Bytes Description

03:00 Command Dword 0 (CDW0): This field is common to all commands and is defined in Figure 89.

07:04

Namespace Identifier (NSID): This field indicates the namespace ID that this command applies
to. If the namespace ID is not used for the command, then this field shall be cleared to 0h. Setting
this value to FFFFFFFFh causes the command to be applied to all namespaces attached to the
controller processing the command, unless otherwise specified.

The behavior of a controller in response to an inactive namespace ID for a vendor specific
command is vendor specific. Specifying an invalid namespace ID in a command that uses the
namespace ID shall cause the controller to abort the command with a status code of Invalid
Namespace or Format, unless otherwise specified.

15:08 Reserved

39:16 Refer to Figure 90 for the definition of these fields.

43:40
Number of Dwords in Data Transfer (NDT): This field indicates the number of dwords in the data
transfer.

47:44
Number of Dwords in Metadata Transfer (NDM): This field indicates the number of dwords in
the metadata transfer.

51:48 Command Dword 12 (CDW12): This field is command specific Dword 12.

55:52 Command Dword 13 (CDW13): This field is command specific Dword 13.

59:56 Command Dword 14 (CDW14): This field is command specific Dword 14.

63:60 Command Dword 15 (CDW15): This field is command specific Dword 15.

3.3.3.2 Common Completion Queue Entry

The Common Completion Queue Entry Layout is at least 16 bytes in size. Figure 92 describes the layout
of the first 16 bytes of the completion queue entry data structure which follows the Common Completion
Queue Entry Layout. The contents of Dword 0 and Dword 1 are command specific. If a command uses
Dword 0 or Dword 1, then the definition of these dwords is contained within the associated command
definition. If a command does not use Dword 0 or Dword 1, then the unused field(s) are reserved. Dword 2
is defined in Figure 93 and Dword 3 is defined in Figure 94.

If a completion queue entry is constructed via multiple writes, the Phase Tag bit shall be updated in the last
write of that completion queue entry.

Figure 92: Common Completion Queue Entry Layout – Admin and All I/O Command Sets

 31 23 15 7 0

DW0 Command Specific

DW1 Command Specific

DW2 SQ Identifier SQ Head Pointer

DW3 Status P Command Identifier

Figure 93: Completion Queue Entry: DW 2

Bits Description

31:16

SQ Identifier (SQID): Indicates the Submission Queue to which the associated command was
issued. This field is used by host software when more than one Submission Queue shares a single
Completion Queue to uniquely determine the command completed in combination with the
Command Identifier (CID).

This is a reserved field in NVMe over Fabrics implementations.

15:00

SQ Head Pointer (SQHD): Indicates the current Submission Queue Head pointer for the
Submission Queue indicated in the SQ Identifier field. This is used to indicate to the host the
submission queue entries that have been consumed and may be re-used for new entries.

Note: The value returned is the value of the SQ Head pointer when the completion queue entry
was created. By the time host software consumes the completion queue entry, the controller may
have an SQ Head pointer that has advanced beyond the value indicated.

NVM Express® Base Specification, Revision 2.0e

109

Figure 94: Completion Queue Entry: DW 3

Bits Description

31:17 Status : Indicates the status for the command that is being completed. Refer to section 3.3.3.2.1.

16
Phase Tag (P): Identifies whether a completion queue entry is new. Refer to section 3.3.3.2.2.

This is a reserved bit in NVMe over Fabrics implementations.

15:00

Command Identifier (CID): Indicates the identifier of the command that is being completed. This
identifier is assigned by host software when the command is submitted to the Submission Queue.
The combination of the SQ Identifier and Command Identifier uniquely identifies the command that
is being completed. The maximum number of requests outstanding for a Submission Queue at
one time is 65,535.

3.3.3.2.1 Status Field Definition

The Status field defines the status for the command indicated in the completion queue entry, defined in
Figure 95.

A value of 0h for the Status field indicates a successful command completion, with no fatal or non-fatal error
conditions. Unless otherwise noted, if a command fails to complete successfully for multiple reasons, then
the particular status code returned is chosen by the vendor.

Figure 95: Completion Queue Entry: Status Field

Bits Description

31

Do Not Retry (DNR): If set to ‘1’, indicates that if the same command is re-submitted to any
controller in the NVM subsystem, then that re-submitted command is expected to fail. If cleared to
‘0’, indicates that the same command may succeed if retried. If a command is aborted due to time
limited error recovery (refer to the Error Recovery section in the NVM Command Set Specification),
this bit should be cleared to ‘0’. If the SCT and SC fields are cleared to 0h, then this bit should be
cleared to ‘0’.

30
More (M): If set to ‘1’, there is more status information for this command as part of the Error
Information log page that may be retrieved with the Get Log Page command. If cleared to ‘0’, there
is no additional status information for this command. Refer to section 5.16.1.2.

29:28

Command Retry Delay (CRD): If the DNR bit is cleared to ‘0’ and the host has set the Advanced
Command Retry Enable (ACRE) field to 1h in the Host Behavior Support feature (refer to section
5.27.1.18), then:

a) a 00b CRD value indicates a command retry delay time of zero (i.e., the host may retry
the command immediately); and

b) a non-zero CRD value selects a field in the Identify Controller data structure (refer to
Figure 280) that indicates the command retry delay time:

• a 01b CRD value selects the Command Retry Delay Time 1 (CRDT1) field;

• a 10b CRD value selects the Command Retry Delay Time 2 (CRDT2) field; and

• a 11b CRD value selects the Command Retry Delay Time 3 (CRDT3) field.

The host should not retry the command until at least the amount of time indicated by the selected
field has elapsed. It is not an error for the host to retry the command prior to that time.

If the DNR bit is set to’1’ in the Status field or the ACRE field is cleared to 0h in the Host Behavior
Support feature, then this field is reserved.

If the SCT and SC fields are cleared to 0h, then this field should be cleared to 00b.

27:25
Status Code Type (SCT): Indicates the status code type of the completion queue entry. This
indicates the type of status code the controller is returning.

24:17
Status Code (SC): Indicates a status code identifying any error or status information for the
command indicated.

Completion queue entries indicate a Status Code Type (SCT) for the type of completion being reported.
Figure 96 specifies the status code type values and descriptions.

NVM Express® Base Specification, Revision 2.0e

110

Figure 96: Status Code – Status Code Type Values

Value Description Reference

0h

Generic Command Status: Indicates that the command specified by the Command and
Submission Queue identifiers in the completion queue entry has completed. These status
values are generic across all command types, and include such conditions as success,
opcode not supported, and invalid field.

3.3.3.2.1.1

1h

Command Specific Status: Indicates a status value that is specific to a particular
command opcode. These values may indicate additional processing is required. Status
values such as invalid firmware image or exceeded maximum number of queues is
reported with this type.

3.3.3.2.1.2

2h
Media and Data Integrity Errors: Any media specific errors that occur in the NVM or data
integrity type errors shall be of this type.

3.3.3.2.1.3

3h

Path Related Status: Indicates that the command specified by the Command and
Submission Queue identifier in the completion queue entry has completed. These status
values are generic across all command types. These values may indicate that additional
process is required and indicate a status value that is specific to:

• the connection between the host and the controller processing the command; or

• the characteristics that support Asymmetric Namespace Access Reporting (refer
to section 8.1), the characteristics of the relationship between the controller
processing the command and the specified namespace.

3.3.3.2.1.4

4h to 6h Reserved

7h Vendor Specific

The Status Code (SC) field in the completion queue entry indicates more detailed status information about
the completion being reported.

Each Status Code set of values is split into three ranges:

• 00h to 7Fh: Applicable to Admin Command Set, or across multiple command sets;

• 80h to BFh: I/O Command Set specific status codes; and

• C0h to FFh: Vendor Specific status codes.

Unless otherwise specified, if multiple status codes apply, then the controller selects the status code that is
returned.

3.3.3.2.1.1 Generic Command Status Definition

Completion queue entries with a Status Code Type (SCT) of Generic Command Status indicate a status
value associated with the command that is generic across many different types of commands.

Figure 97: Status Code – Generic Command Status Values

Value Description
I/O Command
Set Specific

I/O Command

Set(s)1

00h
Successful Completion: The command completed without
error.

No

01h
Invalid Command Opcode: A reserved coded value or an
unsupported value in the command opcode field.

No

02h

Invalid Field in Command: A reserved coded value or an
unsupported value in a defined field (other than the opcode
field). This status code should be used unless another status
code is explicitly specified for a particular condition. The field
may be in the command parameters as part of the submission
queue entry or in data structures pointed to by the command
parameters.

No

03h
Command ID Conflict: The command identifier is already in
use. Note: It is implementation specific how many commands
are searched for a conflict.

No

NVM Express® Base Specification, Revision 2.0e

111

Figure 97: Status Code – Generic Command Status Values

Value Description
I/O Command
Set Specific

I/O Command

Set(s)1

04h
Data Transfer Error: Transferring the data or metadata
associated with a command had an error.

No

05h
Commands Aborted due to Power Loss Notification:
Indicates that the command was aborted due to a power loss
notification.

No

06h

Internal Error: The command was not completed successfully
due to an internal error. Details on the internal device error
should be reported as an asynchronous event. Refer to Figure
150 for Internal Error Asynchronous Event Information.

No

07h

Command Abort Requested: The command was aborted due
to an Abort command being received that specified the
Submission Queue Identifier and Command Identifier of this
command (refer to section 5.1).

No

08h

Command Aborted due to SQ Deletion: The command was
aborted due to a Delete I/O Submission Queue request
received for the Submission Queue to which the command was
submitted.

No

09h
Command Aborted due to Failed Fused Command: The
command was aborted due to the other command in a fused
operation failing.

No

0Ah

Command Aborted due to Missing Fused Command: The
fused command was aborted due to the adjacent submission
queue entry not containing a fused command that is the other
command in a supported fused operation (refer to section
3.4.2).

No

0Bh
Invalid Namespace or Format: The namespace or the format
of that namespace is invalid.

No

0Ch

Command Sequence Error: The command was aborted due
to a protocol violation in a multi-command sequence (e.g., a
violation of the Security Send and Security Receive sequencing
rules in the TCG Storage Synchronous Interface
Communications protocol (refer to TCG Storage Architecture
Core Specification)).

No

0Dh

Invalid SGL Segment Descriptor: The command includes an
invalid SGL Last Segment or SGL Segment descriptor. This
may occur under various conditions, including:

a) the SGL segment pointed to by an SGL Last Segment
descriptor contains an SGL Segment descriptor or an
SGL Last Segment descriptor;

b) an SGL Last Segment descriptor contains an invalid
length (i.e., a length of 0h or 1h that is not a multiple
of 16); or

c) an SGL Segment descriptor or an SGL Last Segment
descriptor contains an invalid address (e.g., an
address that is not qword aligned).

No

0Eh

Invalid Number of SGL Descriptors: There is an SGL Last
Segment descriptor or an SGL Segment descriptor in a location
other than the last descriptor of a segment based on the length
indicated. This is also used for invalid SGLs in a command
capsule.

No

0Fh

Data SGL Length Invalid: This may occur if the length of a
data SGL is too short. This may occur if the length of a data
SGL is too long and the controller does not support SGL
transfers longer than the amount of data to be transferred as
indicated in the SGL Support field of the Identify Controller data
structure.

No

NVM Express® Base Specification, Revision 2.0e

112

Figure 97: Status Code – Generic Command Status Values

Value Description
I/O Command
Set Specific

I/O Command

Set(s)1

10h

Metadata SGL Length Invalid: This may occur if the length of
a metadata SGL is too short. This may occur if the length of a
metadata SGL is too long and the controller does not support
SGL transfers longer than the amount of data to be transferred
as indicated in the SGL Support field of the Identify Controller
data structure.

No

11h

SGL Descriptor Type Invalid: The type of an SGL Descriptor
is a type that is not supported by the controller, or the
combination of type and subtype is not supported by the
controller.

No

12h
Invalid Use of Controller Memory Buffer: The attempted use
of the Controller Memory Buffer is not supported by the
controller. Refer to section 8.5.

No

13h

PRP Offset Invalid: The Offset field for a PRP entry is invalid.
This may occur when there is a PRP entry with a non-zero offset
after the first entry or when the Offset field in any PRP entry is
not dword aligned (i.e., bits 1:0 are not cleared to 00b).

No

14h
Atomic Write Unit Exceeded: See the applicable I/O
Command Set specification for the description.

Yes NVM, ZNS

15h

Operation Denied: The command was denied due to lack of
access rights. Refer to the appropriate security specification
(e.g., TCG Storage Interface Interactions specification). For
media access commands, the Access Denied status code
should be used instead.

No

16h

SGL Offset Invalid: The offset specified in an SGL descriptor
is invalid. This may occur when using capsules for data
transfers in NVMe over Fabrics implementations and an invalid
offset in the capsule is specified.

No

17h Reserved No

18h
Host Identifier Inconsistent Format: The NVM subsystem
detected the simultaneous use of 64-bit and 128-bit Host
Identifier values on different controllers.

No

19h Keep Alive Timer Expired: The Keep Alive Timer expired. No

1Ah

Keep Alive Timeout Invalid: The Keep Alive Timeout value
specified is invalid. This may be due to an attempt to specify a
value of 0h on a transport that requires the Keep Alive Timer
feature to be enabled. This may be due to the value specified
being too large for the associated NVMe Transport as defined
in the NVMe Transport binding specification.

No

1Bh

Command Aborted due to Preempt and Abort: The
command was aborted due to a Reservation Acquire command
with the Reservation Acquire Action (RACQA) set to 010b
(Preempt and Abort).

No

1Ch
Sanitize Failed: The most recent sanitize operation failed and
no recovery action has been successfully completed.

No

1Dh
Sanitize In Progress: The requested function (e.g., command)
is prohibited while a sanitize operation is in progress. Refer to
section 8.21.1.

No

1Eh
SGL Data Block Granularity Invalid: See the applicable I/O
Command Set specification for the description.

Yes NVM, ZNS

NVM Express® Base Specification, Revision 2.0e

113

Figure 97: Status Code – Generic Command Status Values

Value Description
I/O Command
Set Specific

I/O Command

Set(s)1

1Fh

Command Not Supported for Queue in CMB: The
implementation does not support submission of the command
to a Submission Queue in the Controller Memory Buffer or
command completion to a Completion Queue in the Controller
Memory Buffer.

Note: NVM Express revision 1.3 and later use this status code
only for Sanitize commands.

No

20h

Namespace is Write Protected: The command is prohibited
while the namespace is write protected as a result of a change
in the namespace write protection state as defined by the
Namespace Write Protection State Machine (refer to Figure
436).

No

21h

Command Interrupted: Command processing was interrupted
and the controller is unable to successfully complete the
command. The host should retry the command.

If this status code is returned, then the controller shall clear the
Do Not Retry bit to ‘0’ in the Status field of the CQE (refer to
Figure 95). The controller shall not return this status code
unless the host has set the Advanced Command Retry Enable
(ACRE) field to 1h in the Host Behavior Support feature (refer
to section 5.27.1.18).

No

22h

Transient Transport Error: A transient transport error was
detected. If the command is retried on the same controller, the
command is likely to succeed. A command that fails with a
transient transport error four or more times should be treated
as a persistent transport error that is not likely to succeed if
retried on the same controller.

No

23h

Command Prohibited by Command and Feature
Lockdown: The command was aborted due to command
execution being prohibited by the Command and Feature
Lockdown (refer to section 8.4).

No

24h

Admin Command Media Not Ready: The Admin command
requires access to media and the media is not ready. The Do
Not Retry bit indicates whether re-issuing the command at a
later time may succeed. This status code shall only be returned:

a) for Admin commands; and
b) if the controller is in Controller Ready Independent of

Media mode (i.e., CC.CRIME bit is set to ‘1’).

This status code shall not be returned with the Do Not Retry bit
cleared to ‘0’ after the amount of time indicated by the Controller
Ready With Media Timeout (CRTO.CRWMT) field after the
controller is enabled (i.e., CC.EN transitions from ‘0’ to ‘1’).

Refer to Figure 107 for the list of Admin commands permitted
to return this status code.

No

25h to 7Fh Reserved

80h
LBA Out of Range: See the applicable I/O Command Set
specification for the description.

Yes NVM, ZNS

81h
Capacity Exceeded: The command attempted an operation
that exceeds the capacity of the namespace.

No

NVM Express® Base Specification, Revision 2.0e

114

Figure 97: Status Code – Generic Command Status Values

Value Description
I/O Command
Set Specific

I/O Command

Set(s)1

82h

Namespace Not Ready: The namespace is not ready to be
accessed as a result of a condition other than a condition that
is reported as an Asymmetric Namespace Access condition.
The Do Not Retry bit indicates whether re-issuing the command
at a later time may succeed.

No

83h
Reservation Conflict: The command was aborted due to a
conflict with a reservation held on the accessed namespace.
Refer to section 8.19.

No

84h
Format In Progress: A Format NVM command is in progress
on the namespace. The Do Not Retry bit shall be cleared to ‘0’
to indicate that the command may succeed if resubmitted.

Yes NVM, ZNS

85h
Invalid Value Size: See the applicable I/O Command Set
specification for the description.

Yes KV

86h
Invalid Key Size: See the applicable I/O Command Set
specification for the description.

Yes KV

87h
KV Key Does Not Exist: See the applicable I/O Command Set
specification for the description.

Yes KV

88h
Unrecovered Error: See the applicable I/O Command Set
specification for the description.

Yes KV

89h
Key Exists: See the applicable I/O Command Set specification
for the description.

Yes KV

90h to BFh Reserved

C0h to FFh Vendor Specific

Key:
NVM – NVM Command Set
ZNS – Zoned Namespace Command Set
KV – Key Value Command Set

Notes:
1. This column is blank unless the value is I/O Command Set specific

3.3.3.2.1.2 Command Specific Status Definition

Completion queue entries with a Status Code Type (SCT) of Command Specific Errors indicate an error
that is specific to a particular command opcode. Status codes of 00h to 7Fh are for Admin command errors.
Status codes of 80h to BFh are specific to the selected I/O command sets.

Figure 98: Status Code – Command Specific Status Values

Value Description Commands Affected

00h Completion Queue Invalid Create I/O Submission Queue

01h Invalid Queue Identifier
Create I/O Submission Queue, Create I/O
Completion Queue, Delete I/O Completion
Queue, Delete I/O Submission Queue

02h Invalid Queue Size
Create I/O Submission Queue, Create I/O
Completion Queue

03h Abort Command Limit Exceeded Abort

04h Reserved

05h Asynchronous Event Request Limit Exceeded Asynchronous Event Request

06h Invalid Firmware Slot Firmware Commit

07h Invalid Firmware Image Firmware Commit

08h Invalid Interrupt Vector Create I/O Completion Queue

09h Invalid Log Page Get Log Page

0Ah Invalid Format Format NVM, Namespace Management

0Bh Firmware Activation Requires Conventional Reset Firmware Commit, Sanitize

NVM Express® Base Specification, Revision 2.0e

115

Figure 98: Status Code – Command Specific Status Values

Value Description Commands Affected

0Ch Invalid Queue Deletion Delete I/O Completion Queue

0Dh Feature Identifier Not Saveable Set Features

0Eh Feature Not Changeable Set Features

0Fh Feature Not Namespace Specific Set Features

10h Firmware Activation Requires NVM Subsystem Reset Firmware Commit, Sanitize

11h Firmware Activation Requires Controller Level Reset Firmware Commit, Sanitize

12h Firmware Activation Requires Maximum Time Violation Firmware Commit

13h Firmware Activation Prohibited Firmware Commit

14h Overlapping Range
Firmware Commit, Firmware Image
Download, Set Features

15h Namespace Insufficient Capacity Namespace Management

16h Namespace Identifier Unavailable Namespace Management

17h Reserved

18h Namespace Already Attached Namespace Attachment

19h Namespace Is Private Namespace Attachment

1Ah Namespace Not Attached Namespace Attachment

1Bh Thin Provisioning Not Supported Namespace Management

1Ch Controller List Invalid Namespace Attachment

1Dh Device Self-test In Progress Device Self-test

1Eh Boot Partition Write Prohibited Firmware Commit

1Fh Invalid Controller Identifier Virtualization Management

20h Invalid Secondary Controller State Virtualization Management

21h Invalid Number of Controller Resources Virtualization Management

22h Invalid Resource Identifier Virtualization Management

23h
Sanitize Prohibited While Persistent Memory Region is
Enabled

Sanitize

24h ANA Group Identifier Invalid Namespace Management

25h ANA Attach Failed Namespace Attachment

26h Insufficient Capacity Capacity Management

27h Namespace Attachment Limit Exceeded Namespace Attachment

28h Prohibition of Command Execution Not Supported Lockdown

29h I/O Command Set Not Supported
Namespace Attachment, Namespace
Management

2Ah I/O Command Set Not Enabled Namespace Attachment

2Bh I/O Command Set Combination Rejected Set Features

2Ch Invalid I/O Command Set Identify

2Dh Identifier Unavailable Capacity Management

2Eh to 6Fh Reserved

70h to 7Fh Directive Specific NOTE 1

80h to BFh I/O Command Set Specific Refer to Figure 99

C0h to FFh Vendor Specific

Notes:
1. The Directives Specific range defines Directives specific status values. Refer to section 8.7.

Figure 99: Status Code – Command Specific Status Values, I/O Commands

Value Description

80h Conflicting Attributes

81h Invalid Protection Information

82h Attempted Write to Read Only Range

83h Command Size Limit Exceeded

84h to B7h Reserved

B8h Zoned Boundary Error

NVM Express® Base Specification, Revision 2.0e

116

Figure 99: Status Code – Command Specific Status Values, I/O Commands

Value Description

B9h Zone Is Full

BAh Zone Is Read Only

BBh Zone Is Offline

BCh Zone Invalid Write

BDh Too Many Active Zones

BEh Too Many Open Zones

BFh Invalid Zone State Transition

Figure 100: Status Code – Command Specific Status Values, Fabrics Commands

Value Description
Commands

Affected

80h
Incompatible Format: The NVM subsystem does not support the record format
specified by the host.

Connect,
Disconnect

81h

Controller Busy: The controller is already associated with a host (Connect
command). This value is also returned if there is no available controller (Connect
command).

The controller is not able to disconnect the I/O Queue at the current time
(Disconnect command).

Connect,
Disconnect

82h
Connect Invalid Parameters: One or more of the command parameters (e.g.,
Host NQN, Subsystem NQN, Host Identifier, Controller ID, Queue ID) specified
are not valid.

Connect

83h
Connect Restart Discovery: The NVM subsystem requested is not available.
The host should restart the discovery process.

Connect

84h
Connect Invalid Host: The host is not allowed to establish an association to any
controller in the NVM subsystem or the host is not allowed to establish an
association to the specified controller.

Connect

85h
Invalid Queue Type: The command was sent on the wrong queue type (e.g., a
Disconnect command was sent on the Admin queue).

Disconnect

86h to 8Fh Reserved

90h
Discover Restart: The snapshot of the records is now invalid or out of date. The
host should re-read the Discovery Log Page.

Get Log Page

91h
Authentication Required: NVMe in-band authentication is required and the
queue has not yet been authenticated.

NOTE 1

92h to AFh Reserved

B0h to BFh
Transport Specific: The status values in this range are NVMe Transport specific. Refer to the
appropriate NVMe Transport binding specification for the definition of these status values.

Notes:
1. All commands other than Connect, Authenticate Send, and Authenticate Receive.

3.3.3.2.1.3 Media and Data Integrity Errors Definition

Completion queue entries with a Status Code Type (SCT) of Media and Data Integrity Errors indicate an
error associated with the command that is due to an error associated with the NVM media or a data integrity
type error.

Figure 101: Status Code – Media and Data Integrity Error Values

Value Description
Command Set

Specific
Command

Set(s)

00h to 7Fh Reserved

80h
Write Fault: The write data could not be committed to the
media.

No

81h
Unrecovered Read Error: The read data could not be
recovered from the media.

No

NVM Express® Base Specification, Revision 2.0e

117

Figure 101: Status Code – Media and Data Integrity Error Values

Value Description
Command Set

Specific
Command

Set(s)

82h
End-to-end Guard Check Error: The command was aborted
due to an end-to-end guard check failure.

No

83h
End-to-end Application Tag Check Error: The command was
aborted due to an end-to-end application tag check failure.

No

84h
End-to-end Reference Tag Check Error: The command was
aborted due to an end-to-end reference tag check failure.

No

85h
Compare Failure: See the NVM Command Set Specification
for the description.

Yes NVM

86h

Access Denied: Access to the namespace and/or user data is
denied due to lack of access rights. Refer to the appropriate
security specification (e.g., TCG Storage Interface Interactions
Specification).

No

87h
Deallocated or Unwritten Logical Block: See the NVM
Command Set Specification for the description.

Yes NVM

88h
End-to-End Storage Tag Check Error: The command was
aborted due to an end-to-end storage tag check failure.

No

89h to BFh Reserved

C0h to FFh Vendor Specific

Key:
NVM – NVM Command Set

3.3.3.2.1.4 Path Related Status Definition

Completion queue entries with a Status Code Type (SCT) of Path Related Status (refer to Figure 102)
indicate a status value associated with the command that is generic across many different types of
commands and applies to a specific connection between the host and controller processing the command
or between the controller and the namespace. The command for which this status is returned may be retried
on a different controller in the same NVM subsystem if more than one controller is available to the host.

In a multipath environment, unless otherwise specified, errors of this type should be retried using a different
path, if one is available.

Figure 102: Status Code – Path Related Status Values

Value Description

00h
Internal Path Error: The command was not completed as the result of a controller internal error
that is specific to the controller processing the command. Retries for the request function should
be based on the setting of the DNR bit (refer to Figure 95).

01h

Asymmetric Access Persistent Loss: The requested function (e.g., command) is not able to
be performed as a result of the relationship between the controller and the namespace, NVM
Set, or Endurance Group being in the ANA Persistent Loss state (refer to section 8.1.3.4). The
command should not be re-submitted to the same controller.

02h

Asymmetric Access Inaccessible: The requested function (e.g., command) is not able to be
performed as a result of the relationship between the controller and the namespace, NVM Set,
or Endurance Group being in the ANA Inaccessible state (refer to section 8.1.3.3). The command
should not be re-submitted to the same controller.

03h

Asymmetric Access Transition: The requested function (e.g., command) is not able to be
performed as a result of the relationship between the controller and the namespace, NVM Set,
or Endurance Group transitioning between Asymmetric Namespace Access states (refer to
section 8.1.3.5). The requested function should be retried after the transition is complete.

04h to 5Fh Reserved

Controller detected Pathing errors

60h Controller Pathing Error: A pathing error was detected by the controller.

61h to 6Fh Reserved

NVM Express® Base Specification, Revision 2.0e

118

Figure 102: Status Code – Path Related Status Values

Value Description

Host detected Pathing errors

70h Host Pathing Error: A pathing error was detected by the host.

71h
Command Aborted By Host: The command was aborted as a result of host action (e.g., the
host disconnected the fabric connection).

72h to 7Fh Reserved

Other Pathing errors

80h to BFh I/O Command Set Specific

C0h to FFh Vendor Specific

3.3.3.2.2 Phase Tag

The Phase Tag bit indicates whether a completion queue entry is new. The Phase Tag bit for each
completion queue entry in:

• the Admin Completion Queue shall be initialized to ‘0’ by the host prior to setting CC.EN (refer to
Figure 48) to ‘1’; and

• an I/O Completion Queue shall be initialized to ‘0’ by the host prior to submitting the Create I/O
Completion Queue command for that queue.

When the controller posts a new completion queue entry to the Completion Queue, the controller shall
invert the Phase Tag bit in that completion queue entry (i.e., the inverting of the Phase Tag bit enables the
host to detect the new completion queue entry).

When a completion queue entry is posted to a completion queue slot in:

• the Admin Queue for the first time after CC.EN is set to ‘1’, the Phase Tag bit for that completion
queue entry is set to ‘1’; and

• an I/O Completion Queue for the first time after the Create I/O Completion Queue command
completed for that queue, the Phase Tag bit for that completion queue entry is set to ‘1’.

This continues for each completion queue entry that is posted until the controller posts a completion queue
entry to the highest numbered completion queue slot and wraps to completion queue slot number 0 as
described in section 3.3.1.2. When that queue wrap condition occurs, the Phase Tag bit is then cleared to
‘0’ in each completion queue entry that is posted. This continues until another queue wrap condition occurs.
Each time a queue wrap condition occurs, the value of the Phase Tag bit is inverted (i.e., changes from ‘1’
to ‘0’ or changes from ‘0’ to ‘1’).

3.3.3.2.2.1 Phase Tag Example

Figure 103 shows an example of how the Phase Tag bit changes over time as the Controller completes
commands and the host processes those completions. This example shows a Completion Queue consisting
of 6 entries.

 Figure 103: Phase Tag bit Transition Example

T
1 Condition

Completion Queue Entry/Slot number

0 1 2 3 4 5

0

Admin Queue: Host initializes
Completion Queue and sets
CC.EN to ‘1’

I/O Queue: Host initializes
Completion Queue and
submits Create I/O
Completion Queue command

P(0) (E)
HEAD->

TAIL->

P(0)

(E)
P(0)

(E)
P(0)

(E)
P(0)

(E)
P(0)

(E)

NVM Express® Base Specification, Revision 2.0e

119

 Figure 103: Phase Tag bit Transition Example

T
1 Condition

Completion Queue Entry/Slot number

0 1 2 3 4 5

1
Controller has completed 1
command and the host has
consumed 0 completions

P(1)

HEAD->
P(0) (E)

TAIL->
P(0)

(E)
P(0)

(E)
P(0)

(E)
P(0)

(E)

2
Controller has completed 6
commands and the host has
consumed 2 completions

P(1) (E)

TAIL->
P(1)

(E)
P(1)

HEAD->
P(1) P(1) P(1)

3
Controller has completed 7
commands and the host has
consumed 2 completions

P(0)
P(1) (E)
TAIL->

P(1)

HEAD->
P(1) P(1) P(1)

4
Controller has completed 7
commands and host has
consumed 4 completions

P(0)
P(1) (E)

TAIL->
P(1)

(E)
P(1)

(E)
P(1)

HEAD->
P(1)

5
Controller has completed 11
commands and host has
consumed 8 completions

P(0)

(E)
P(0)

(E)
P(0)

HEAD->
P(0) P(0)

P(1) (E)

TAIL->

6
Controller has completed 11
commands and host has
consumed 11 completions

P(0)

(E)
P(0)

(E)
P(0)

(E)
P(0)

(E)
P(0)

(E)

P(1) (E)
HEAD->

TAIL->

Key:
P(0) = Phase Tag bit for this completion queue entry is cleared to the value ‘0’.
P(1) = Phase Tag bit for this completion queue entry is set to the value ‘1’.
(E) = The Entry/Slot is empty.
HEAD-> = Completion Queue Head Pointer for this completion queue is set to indicate this slot.
TAIL-> = Completion Queue Tail Pointer for this completion queue is used within the controller to indicate this

slot.
Note:
T = Time sequence.

At time 0, the host initializes the Completion queue (i.e., clearing the Phase Tag bit to ‘0’ in each completion
queue entry in the completion queue). For the Admin Completion Queue, the host then sets CC.EN to ‘1’
to enable the controller. For an I/O Completion Queue, the host then sends the Create I/O Completion
Queue command. The queue, at this time, is in the Empty condition (refer to section 3.3.1.4).

At time 1, the controller has completed a command, but the host has not consumed that completion queue
entry. As a result of the command completion, the Phase Tag bit in completion queue entry 0 has been
inverted to ‘1’. Since no completion queue entries have been consumed, the Completion Queue Head
pointer still indicates completion queue entry 0. The controller has updated the internal Completion Queue
Tail Pointer to indicate that completion queue slot 1 is the next completion queue slot into which the
controller posts a completion queue entry.

At time 2, the controller has completed 5 additional commands (i.e., 6 commands have been completed)
and the host has consumed 2 of the completion queue entries. As a result of the 5 additional commands
having been completed, the Phase Tag bit has been inverted to ‘1’ in completion queue entry 1 through
completion queue entry 5. As a result of 2 completion queue entries having been consumed, the host has
updated the Completion Queue Head Pointer to indicate that completion queue entry 0 and completion
queue entry 1 have been consumed (i.e., completion queue entry 2 is the next completion queue entry for
the host to consume). The controller has updated the internal Completion Queue Tail Pointer to indicate
that completion queue slot 0 is the next completion queue slot into which the controller posts a completion
queue entry.

At time 3, the controller has completed 1 additional command (i.e., 7 commands have been completed) and
no additional completion queue entries have been consumed by the host (i.e., 2 completion queue entries
have been consumed). As a result of the additional command having been completed, the Phase Tag bit

NVM Express® Base Specification, Revision 2.0e

120

has been inverted to ‘0’ in completion queue entry 0 (i.e., accounting for the queue wrap condition). The
controller has updated the internal Completion Queue Tail Pointer to indicate that completion queue slot 1
is the next completion queue slot into which the controller posts a completion queue entry. The queue, at
this time, is in the Full condition (refer to section 3.3.1.5).

At time 4, the controller has completed no additional commands (i.e., 7 commands have been completed)
and the host has consumed 2 additional completion queue entries (i.e., 4 completion queue entries have
been consumed). As a result of 2 additional completion queue entries having been consumed, the host has
updated the Completion Queue Head Pointer to indicate that completion queue entry 2 and completion
queue entry 3 have now been consumed (i.e., completion queue entry 4 is the next completion queue entry
for the host to consume). The controller internal Completion Queue Tail Pointer has not changed.

At time 5, the controller has completed 11 commands and the host has consumed 8 of the completion
queue entries. As a result of the 4 additional commands having been completed, the Phase Tag bit has
been inverted to ‘0’ in completion queue entry 1 through completion queue entry 4. As a result of the 4
additional completion queue entries having been consumed, the host has updated the Completion Queue
Head Pointer to indicate that completion queue entry 5 through completion queue entry 1 (i.e., accounting
for the queue wrap condition) have now been consumed (i.e., completion queue entry 2 is the next
completion queue entry for the host to consume). The controller has updated the internal Completion Queue
Tail Pointer to indicate that completion queue slot 5 is the next completion queue slot into which the
controller posts a completion queue entry.

At time 6, the controller has completed 11 commands and the host has consumed all 11 of the completion
queue entries. As a result of no new command completions, there are no changes to the Phase Tag bit
values. As a result of the 3 additional completion queue entries having been consumed, the host has
updated the Completion Queue Head Pointer to indicate that completion queue entry 2 through completion
queue entry 4 have now been consumed (i.e., completion queue slot 5 is the next completion queue slot
from which the host consumes a completion queue entry). The queue, at this time, is in the Empty condition
(refer to section 3.3.1.4).

3.3.3.3 Queue Size

The Queue Size is indicated in a 16-bit 0’s based field that indicates the number of slots in the queue. The
minimum size for a queue is two slots. The maximum size for either an I/O Submission Queue or an I/O
Completion Queue is defined as 65,536 slots, limited by the maximum queue size supported by the
controller that is reported in the CAP.MQES field. The maximum size for the Admin Submission Queue and
Admin Completion Queue is defined as 4,096 slots. One slot in each queue is not available for use due to
Head and Tail entry pointer definition.

For Message-based controllers, the maximum size for the Admin Submission Queue is limited by the value
indicated in the ASQSZ field in the Discovery Log Page Entry data structure (refer to Figure 269).

3.3.3.4 Queue Identifier

Each queue is identified through a 16-bit ID value that is assigned to the queue when it is created. Both I/O
Submission Queue identifiers and I/O Completion Queue identifiers are a value from 1 to 65,535.

3.3.3.5 Queue Priority

If the weighted round robin with urgent priority class arbitration mechanism is supported, then host software
may assign a queue priority service class of Urgent, High, Medium, or Low. If the weighted round robin with
urgent priority class arbitration mechanism is not supported, then the priority setting is not used and is
ignored by the controller.

3.3.3.6 Queue Coordination

There is one Admin Queue pair associated with multiple I/O queue pairs. The Admin Submission Queue
and Completion Queue are used to carry out functions that impact the entire controller. An I/O Submission
Queue and Completion Queue may be used to carry out I/O (read/write) operations and may be distributed
across CPU cores and threads.

NVM Express® Base Specification, Revision 2.0e

121

An Admin command may impact one or more I/O queue pairs. The host should ensure that Admin actions
are coordinated with threads that are responsible for the I/O queue pairs to avoid unnecessary error
conditions. The details of this coordination are outside the scope of this specification.

3.4 Command Architecture Submission and Completion Mechanism

This section describes the command issue and completion mechanism. It also describes how commands
are built by host software and command completion processing.

Commands shall only be submitted by the host when the controller is ready as indicated in the Controller
Status property (CSTS.RDY) and after appropriate I/O Submission Queue(s) and I/O Completion Queue(s)
have been created.

 Command Ordering Requirements

Commands which are not part of a fused operation (refer to section 3.4.2) and which comply with atomic
operations requirements (refer to section 3.4.3), are processed as independent entities without reference
to other commands submitted to the same I/O Submission Queue or to commands submitted to other I/O
Submission Queues. For example, the controller is not responsible for checking the LBA of an NVM
Command Set Read command or Write command to ensure any type of ordering between commands. If a
Read command is submitted for LBA x and there is a Write command also submitted for LBA x, there is no
guarantee of the order of completion for those commands (the Read command may finish first or the Write
command may finish first). If there are ordering requirements between these commands, host software or
the associated application is required to enforce that ordering above the level of the controller.

 Fused Operations

Fused operations enable a more complex command by “fusing” together two simpler commands. This
feature is optional; support for this feature is indicated in the FUSES field in the Identify Controller data
structure in Figure 280.

Whether a command is part of a fused operation is specified by the Fused Operation (FUSE) field of
Command Dword 0 shown in Figure 89. The FUSE field also specifies whether the command is the first
command in the fused operation or the second command in the fused operation. If the FUSE field is set to
a non-zero value and the controller does not support the requested fused operation, then the controller
should abort the command with a status code of Invalid Field in Command.

In a fused operation, the requirements are:

• The commands shall be executed in sequence as an atomic unit. The controller shall behave as if
no other operations have been executed between these two commands;

• The operation ends at the point an error is encountered in either command. If the first command in
the sequence failed, then the second command in the sequence shall be aborted. If the second
command in the sequence failed, then the completion status of the first command is sequence
specific and is defined within the Fused Operation section of the applicable I/O Command Set
specification;

• The commands shall be inserted next to each other in the same Submission Queue. If the controller
processes a command violating this condition (e.g., a command with the FUSE field cleared to 00b
(i.e., Normal operation) is inserted immediately after a command specifying the FUSE field set to
01b (i.e., Fused operation, first command), or is inserted immediately before a command specifying
the FUSE field set to 10b (i.e., Fused operation, second command)), then the controller shall abort
the command specifying non-zero values of the FUSE field with a status code of Command Aborted
due to Missing Fused Command. If the first command is in the last slot in the Submission Queue,
then the second command shall be in the first slot in the Submission Queue as part of wrapping
around. In the memory-based transport queue model, the Submission Queue Tail doorbell pointer
update shall indicate both commands as part of one doorbell update. In the message-based
transport queue model, the command capsules submitted in-order.

• To abort the fused operation, the host submits an Abort command separately for each of the
commands; and

NVM Express® Base Specification, Revision 2.0e

122

• A completion queue entry is posted by the controller for each of the commands.

Refer to each I/O Command Set specification for applicability and additional details, if any.

 Atomic Operations

The definition for atomic operations is command set specific. Refer to each I/O Command Set specification
for applicability and additional details, if any.

 Command Arbitration

After a command has been submitted to the controller (refer to section 1.5.13), the controller transfers
submitted commands into the controller for subsequent processing using a vendor specific algorithm.

A command is being processed when the controller and/or namespace state is being accessed or modified
by the command such as:

• a Feature setting is being accessed;

• a Feature setting is being modified;

• user data (e.g., a logical block as defined by the NVM Command Set Specification) is being
accessed;or

• user data is being modified.

A command is completed when a completion queue entry for the command has been posted to the
corresponding Completion Queue. Upon completion, all controller state and/or namespace state
modifications made by that command are globally visible to all subsequently submitted commands.

A candidate command is a submitted command which has been transferred into the controller that the
controller deems ready for processing. The controller selects command(s) for processing from the pool of
submitted commands for each Submission Queue. The commands that comprise a fused operation shall
be processed together and in order by the controller. The controller may select candidate commands for
processing in any order. The order in which commands are selected for processing does not imply the order
in which commands are completed.

Arbitration is the method used to determine the Submission Queue from which the controller starts
processing the next candidate command(s). Once a Submission Queue is selected using arbitration, the
Arbitration Burst setting determines the maximum number of commands that the controller may start
processing from that Submission Queue before arbitration shall again take place. A fused operation may
be considered as one or two commands by the controller.

All controllers shall support the round robin command arbitration mechanism. A controller may optionally
implement weighted round robin with urgent priority class and/or a vendor specific arbitration mechanism.
The Arbitration Mechanism Supported field in the Controller Capabilities property (CC.AMS) indicates
optional arbitration mechanisms supported by the controller.

In order to make efficient use of the non-volatile memory, it is often advantageous to execute multiple
commands from a Submission Queue in parallel. For Submission Queues that are using weighted round
robin with urgent priority class or round robin arbitration, host software may configure an Arbitration Burst
setting. The Arbitration Burst setting indicates the maximum number of commands that the controller may
launch at one time from a particular Submission Queue. It is recommended that host software configure
the Arbitration Burst setting as close to the recommended value by the controller as possible (specified in
the Recommended Arbitration Burst field of the Identify Controller data structure in Figure 280), taking into
consideration any latency requirements. Refer to section 5.27.1.1.

3.4.4.1 Round Robin Arbitration

If the round robin arbitration mechanism is selected, the controller shall implement round robin command
arbitration amongst all Submission Queues, including the Admin Submission Queue. In this case, all
Submission Queues are treated with equal priority. The controller may select multiple candidate commands
for processing from each Submission Queue per round based on the Arbitration Burst setting.

NVM Express® Base Specification, Revision 2.0e

123

Figure 104: Round Robin Arbitration

3.4.4.2 Weighted Round Robin with Urgent Priority Class Arbitration

In this arbitration mechanism, there are three strict priority classes and three weighted round robin priority
levels. If Submission Queue A is of higher strict priority than Submission Queue B, then all candidate
commands in Submission Queue A shall start processing before candidate commands from Submission
Queue B start processing.

The highest strict priority class is the Admin class that includes any command submitted to the Admin
Submission Queue. This class has the highest strict priority above commands submitted to any other
Submission Queue.

The next highest strict priority class is the Urgent class. Any I/O Submission Queue assigned to the Urgent
priority class is serviced next after commands submitted to the Admin Submission Queue, and before any
commands submitted to a weighted round robin priority level. Host software should use care in assigning
any Submission Queue to the Urgent priority class since there is the potential to starve I/O Submission
Queues in the weighted round robin priority levels as there is no fairness protocol between Urgent and non
Urgent I/O Submission Queues.

The lowest strict priority class is the Weighted Round Robin class. This class consists of the three weighted
round robin priority levels (High, Medium, and Low) that share the remaining bandwidth using weighted
round robin arbitration. Host software controls the weights for the High, Medium, and Low service classes
via the Set Features command. Round robin is used to arbitrate within multiple Submission Queues
assigned to the same weighted round robin level. The number of candidate commands that may start
processing from each Submission Queue per round is either the Arbitration Burst setting or the remaining
weighted round robin credits, whichever is smaller.

ASQ

SQ

SQ

SQ

RR

NVM Express® Base Specification, Revision 2.0e

124

Figure 105: Weighted Round Robin with Urgent Priority Class Arbitration

In Figure 105, the Priority decision point selects the highest priority candidate command selected next to
start processing.

3.4.4.3 Vendor Specific Arbitration

A vendor may choose to implement a vendor specific arbitration mechanism. The mechanism(s) are outside
the scope of this specification.

3.5 Controller Initialization

This section describes the recommended procedure for initializing a controller.

 Memory-based Controller Initialization (PCIe)

Upon completion of the transport-specific controller initialization steps defined within the relevant NVMe
Transport binding specification, the host should perform the following sequence of actions to initialize the
controller to begin executing commands:

1. The host waits for the controller to indicate that any previous reset is complete by waiting for
CSTS.RDY to become ‘0’;

2. The host configures the Admin Queue by setting the Admin Queue Attributes (AQA), Admin
Submission Queue Base Address (ASQ), and Admin Completion Queue Base Address (ACQ) to
appropriate values;

3. The host determines the supported I/O Command Sets by checking the state of CAP.CSS and
appropriately initializing CC.CSS as follows:

ASQ

SQ

SQ

SQ

RR

SQ

SQ

SQ

RR

SQ

SQ

SQ

RR

WRR

Priority

Weight(High)

Admin

High

Priority

Medium

Priority

Low

Priority

Weight(Medium)

Weight(Low)

Strict

Priority 2

SQ

SQ

RRUrgent

Strict

Priority 3

Strict

Priority 1

NVM Express® Base Specification, Revision 2.0e

125

a. If the CAP.CSS bit 7 is set to ‘1’, then the CC.CSS field should be set to 111b;
b. If the CAP.CSS bit 6 is set to ‘1’, then the CC.CSS field should be set to 110b; and
c. If the CAP.CSS bit 6 is cleared to ‘0’ and bit 0 is set to ‘1’, then the CC.CSS field should be set

to 000b;

4. The controller settings should be configured. Specifically:

a. The arbitration mechanism should be selected in CC.AMS; and
b. The memory page size should be initialized in CC.MPS;

5. The host enables the controller by setting CC.EN to ‘1’;
6. The host waits for the controller to indicate that the controller is ready to process commands. The

controller is ready to process commands when CSTS.RDY is set to ‘1’;
7. The host determines the configuration of the controller by issuing the Identify command specifying

the Identify Controller data structure (i.e., CNS 01h);
8. The host determines any I/O Command Set specific configuration information as follows:

a. If the CAP.CSS bit 6 is set to ‘1’, then the host does the following:

i. Issue the Identify command specifying the Identify I/O Command Set data structure (CNS
1Ch); and

ii. Issue the Set Features command with the I/O Command Set Profile Feature Identifier (FID
19h) specifying the index of the I/O Command Set Combination (refer to Figure 294) to be
enabled;

and

b. For each I/O Command Set that is enabled (Note: the NVM Command Set is enabled if the
CC.CSS field is set to 000b):

i. Issue the Identify command specifying the I/O Command Set specific Active Namespace
ID list (CNS 07h) with the appropriate Command Set Identifier (CSI) value of that I/O
Command Set; and

ii. For each NSID that is returned:

1. If the enabled I/O Command Set is the NVM Command Set or an I/O Command Set
based on the NVM Command Set (e.g., the Zoned Namespace Command Set) issue
the Identify command specifying the Identify Namespace data structure (CNS 00h);
and

2. Issue the Identify command specifying each of the following data structures (refer to
Figure 278): the I/O Command Set specific Identify Namespace data structure, the I/O
Command Set specific Identify Controller data structure, and the I/O Command Set
independent Identify Namespace data structure;

9. If the controller implements I/O queues, then the host should determine the number of I/O
Submission Queues and I/O Completion Queues supported using the Set Features command with
the Number of Queues feature identifier. After determining the number of I/O Queues, the NVMe
Transport specific interrupt registers (e.g. MSI and/or MSI-X registers) should be configured;

10. If the controller implements I/O queues, then the host should allocate the appropriate number of
I/O Completion Queues based on the number required for the system configuration and the number
supported by the controller. The I/O Completion Queues are allocated using the Create I/O
Completion Queue command;

11. If the controller implements I/O queues, then the host should allocate the appropriate number of
I/O Submission Queues based on the number required for the system configuration and the number
supported by the controller. The I/O Submission Queues are allocated using the Create I/O
Submission Queue command; and

12. To enable asynchronous notification of optional events, the host should issue a Set Features
command specifying the events to enable. To enable asynchronous notification of events, the host
should submit an appropriate number of Asynchronous Event Request commands. This step may
be done at any point after the controller signals that the controller is ready (i.e., CSTS.RDY is set
to ‘1’).

NVM Express® Base Specification, Revision 2.0e

126

After performing these steps, the controller shall be ready to process Admin or I/O commands issued by
the host.

For exit of the D3 power state (refer to the PCI Express Base Specification), the initialization steps outlined
should be followed.

 Message-based Controller Initialization (Fabrics)

The host selects the NVM subsystem with which to create a host to controller association. The host first
establishes an NVMe Transport connection with the NVM subsystem. Next the host forms an association
with a controller and creates the Admin Queue using the Fabrics Connect command. Finally, the host
configures the controller and creates I/O Queues. Figure 106 is a ladder diagram that describes the queue
creation process for an Admin Queue or an I/O Queue.

Figure 106: Queue Creation Flow

ADMIN OR I/O QUEUE CREATED

HOST CONTROLLER

Controller ID and
AUTHREQ returned

If AUTHREQ 0

The controller initialization steps after an association is established are described below. For determining
capabilities or configuring properties, the host uses the Property Get command and Property Set command,
respectively.

1. NVMe in-band authentication is performed if required (refer to section 8.13.2);
2. The host determines the controller capabilities;
3. The host determines the supported I/O Command Sets by checking the state of CAP.CSS and

appropriately initializing CC.CSS as follows:

a. If the CAP.CSS bit 7 is set to ‘1’, then the CC.CSS field should be set to 111b;
b. If the CAP.CSS bit 6 is set to ‘1’, then the CC.CSS field should be set to 110b; and
c. If the CAP.CSS bit 6 is cleared to ‘0’ and bit 0 is set to ‘1’, then the CC.CSS field should be set

to 000b;

4. The host configures controller settings. Specific settings include:

a. The arbitration mechanism should be selected in CC.AMS; and
b. The memory page size should be initialized in CC.MPS;

NVM Express® Base Specification, Revision 2.0e

127

5. The controller should be enabled by setting CC.EN to ‘1’;
6. The host should wait for the controller to indicate the controller is ready to process commands. The

controller is ready to process commands when CSTS.RDY is set to ‘1’;
7. The host determines the configuration of the controller by issuing the Identify command specifying

the Identify Controller data structure (i.e., CNS 01h);
8. The host determines any I/O Command Set specific configuration information as follows:

a. If the CAP.CSS bit 6 is set to ‘1’, then the host does the following:

i. Issue the Identify command specifying the Identify I/O Command Set data structure (CNS
1Ch); and

ii. Issue the Set Features command with the I/O Command Set Profile Feature Identifier (FID
19h) specifying the index of the I/O Command Set Combination (refer to Figure 294) to be
enabled;

and

b. For each I/O Command Set that is enabled (Note: the NVM Command Set is enabled if the
CC.CSS field is set to 000b):

i. Issue the Identify command specifying the I/O Command Set specific Active Namespace
ID list (CNS 07h) with the appropriate Command Set Identifier (CSI) value of that I/O
Command Set; and

ii. For each NSID that is returned:

1. If the enabled I/O Command Set is the NVM Command Set or an I/O Command Set
based on the NVM Command Set (e.g., the Zoned Namespace Command Set) issue
the Identify command specifying the Identify Namespace data structure (CNS 00h);
and

2. Issue the Identify command specifying each of the following data structures (refer to
Figure 279): the I/O Command Set specific Identify Namespace data structure, the I/O
Command Set specific Identify Controller data structure, and the I/O Command Set
independent Identify Namespace data structure;

9. The host should determine:

a. the maximum I/O Queue size using CAP.MQES; and
b. the number of I/O Submission Queues and I/O Completion Queues supported using the

response from the Set Features command with the Number of Queues feature identifier;

10. The host should use the Connect command (refer to section 6.3) to create I/O Submission and
Completion Queue pairs; and

11. To enable asynchronous notification of optional events, the host should issue a Set Features
command specifying the events to enable. The host may submit one or more Asynchronous Event
Request commands to be notified of asynchronous events as described by section 5.2. This step
may be done at any point after the controller signals that the controller is ready (i.e., CSTS.RDY is
set to ‘1’).

The association may be removed if step 5 (i.e., setting CC.EN to ‘1’) is not completed within 2 minutes after
establishing the association.

 Controller Ready Modes During Initialization

There are two controller ready modes:

• Controller Ready With Media: By the time the controller becomes ready (i.e., by the time that
CSTS.RDY transitions from ‘0’ to ‘1’) after the controller is enabled (i.e., CC.EN transitions from ‘0’
to ‘1’), then:

a) the controller shall be able to process all commands without error as described in section
3.5.4.1; and

NVM Express® Base Specification, Revision 2.0e

128

b) all namespaces attached to the controller and all media required to process Admin
commands shall be ready (i.e., commands are not permitted to be aborted with a status
code of Namespace Not Ready with the Do Not Retry bit cleared to ‘0’ or Admin Command
Media Not Ready with the Do Not Retry bit cleared to ‘0’).

• Controller Ready Independent of Media: After the controller is enabled, all namespaces attached
to the controller and media required to process Admin commands may or may not become ready
by the time the controller becomes ready. Any Admin command or I/O command that specifies one
or more namespaces attached to the controller is permitted to be aborted with a status code of
Namespace Not Ready with the Do Not Retry bit cleared to ‘0’ until CRTO.CRWMT amount of time
after the controller is enabled.

Admin commands that require access to the media are permitted to be aborted with a status code
of Admin Command Media Not Ready with the Do Not Retry bit cleared to ‘0’ until CRTO.CRWMT
amount of time after the controller is enabled. Refer to Figure 107 for a list of Admin commands
that are permitted to be aborted with a status code of Admin Command Media Not Ready.

 The controller shall be able to process without error as described in section 3.5.4.1:

a) all Admin commands not listed in Figure 107 by the time the controller is ready;
b) all Admin commands listed in Figure 107 no later than CRTO.CRWMT amount of time after

the controller is enabled; and
c) all I/O commands no later than CRTO.CRWMT amount of time after the controller is

enabled.

Figure 107: Admin Commands Permitted to Return a Status Code of Admin Command

Media Not Ready

Admin Command Additional Restrictions

Capacity Management

Device Self-test

If the Device Self-Test would result in testing one or more namespaces,
then returning a status code of Admin Command Media Not Ready is
permitted. If the Device Self-Test would not result in testing any
namespaces, then returning a status code of Admin Command Media
Not Ready is not permitted.

Firmware Commit

Firmware Image Download

Get LBA Status

Get Log Page

Get Log Page is only permitted to return a status code of Admin
Command Media Not Ready for the following log pages:

• Device Self-test

• Firmware Slot Information

• Telemetry Controller-Initiated

• Telemetry Host-Initiated

• Predictable Latency Per NVM Set

• Predictable Latency Event Aggregate

• Persistent Event Log

• LBA Status Information

• Endurance Group Event Aggregate

• Media Unit Status

• Supported Capacity Configuration List

• Boot Partition

• Reservation Notification

• Rotational Media Information

• Vendor Specific

Namespace Attachment

Namespace Management

Format NVM

Sanitize

NVM Express® Base Specification, Revision 2.0e

129

Figure 107: Admin Commands Permitted to Return a Status Code of Admin Command

Media Not Ready

Admin Command Additional Restrictions

Security Receive1

Security Send1

Vendor Specific

Notes:
1. A host may require discovery operations performed via Security Send/Receive (e.g., TCG Level 0

Discovery) to be processed prior to media being ready. Therefore, it is recommended that controllers
not return Admin Command Media Not Ready for such discovery operations.

The Controller Ready Modes Supported (CAP.CRMS) field (refer to Figure 38) indicates which controller
ready modes are supported. The CAP.CRMS field consists of two bits:

• the Controller Ready With Media Support (CAP.CRMS.CRWMS) bit; and

• the Controller Ready Independent of Media Support (CAP.CRMS.CRIMS) bit.

Controllers shall set the CAP.CRMS.CRWMS bit to ‘1’ (i.e., set the CAP.CRMS field to 01b or 11b). The
CAP.CRMS.CRWMS bit was not defined prior to NVM Express Base Specification, Revision 2.0.
Controllers compliant with revisions earlier than NVM Express Base Specification, Revision 2.0 may clear
the CAP.CRMS.CRWMS field to 00b.

The Controller Ready Independent of Media Enable (CC.CRIME) bit (refer to Figure 48) controls the
controller ready mode based on the value of the CAP.CRMS field as follows:

a) If the CAP.CRMS field is cleared to 00b, the controller ready mode is not able to be selected. In
this case, the read-only CC.CRIME bit shall be cleared to ‘0’ and should be ignored by host
software;

b) If the CAP.CRMS field is set to 01b (i.e., the CAP.CRMS.CRIMS bit is cleared to ‘0’ and the
CAP.CRMS.CRWMS bit is set to ‘1’), then the controller is in Controller Ready With Media mode
and the read-only CC.CRIME bit shall be cleared to ‘0’; and

c) If the CAP.CRMS field is set to 11b, then both controller ready modes are supported, and the host
may select the controller ready mode by modifying the value of the CC.CRIME bit. In this situation,
the host should set the controller ready mode by writing to the CC.CRIME bit before the controller
is enabled (e.g., as part of the initialization sequence of actions described in Section 3.5).

 Controller Ready Timeouts During Initialization

The CAP.CRMS field was not defined prior to NVM Express Base Specification, Revision 2.0. Controllers
compliant with revisions earlier than NVM Express Base Specification, Revision 2.0 may clear the
CAP.CRMS field to 00b. This section is applicable to controllers that clear the CAP.CRMS field to 00b and
controllers that set CAP.CRMS to a non-zero value.

There are three controller ready timeout fields:

1. CAP.TO (refer to Figure 38);
2. CRTO.CRWMT (refer to Figure 64); and
3. CRTO.CRIMT (refer to Figure 64).

The details regarding these timeouts during controller initialization are as follows:

a) The CAP.TO field shall be set as described in Figure 38;
b) If the CAP.CRMS field is cleared to 00b’, then the worst-case time the host should wait after the

controller is enabled (i.e., CC.EN transitions from ‘0’ to ‘1’) for the controller to become ready
(CSTS.RDY transitions from ‘0’ to ‘1’) is indicated by CAP.TO.

c) If the controller is in Controller Ready With Media mode (i.e., the CC.CRIME bit is cleared to ‘0’), then:

i. the Controller Ready Independent of Media Timeout (CRTO.CRIMT) field is not applicable;
and

NVM Express® Base Specification, Revision 2.0e

130

ii. the Controller Ready With Media Timeout (CRTO.CRWMT) indicates the worst-case time
the host should wait after the controller is enabled for:

1. the controller to become ready and be able to process all commands without error
as described in section 3.5.4.1; and

2. all attached namespaces and media required to process Admin commands to
become ready;

and

d) If the controller is in Controller Ready Independent of Media mode (i.e., the CC.CRIME bit is set to
‘1’), then

i. the Controller Ready With Media Timeout (CRTO.CRWMT) field indicates the worst-case
time that host software should wait for all attached namespaces and media required to
process Admin commands to become ready after the controller is enabled; and

ii. the Controller Ready Independent of Media Timeout (CRTO.CRIMT) field indicates the
worst-case time the host should wait after the controller is enabled for the controller to
become ready and be able to process:

1. all commands that do not access attached namespaces; and
2. Admin commands that do not require access to media

without error as described in section 3.5.4.1.

Changes to the value of the CC.CRIME bit shall have no effect on the values of the CRTO.CRWMT and
CRTO.CRIMT fields. Changes to the value of the CC.CRIME bit may have an effect on the value of the
CAP.TO field (refer to Figure 38).

3.5.4.1 Handling Errors During Initialization

If the CAP.CRMS field is non-zero and the controller has been enabled by transitioning CC.EN from ‘0’ to
‘1’ and the controller encounters a failure that prevents:

a) at least one:

• command that does not access attached namespaces; or

• Admin command that does not require access to media (refer to Figure 107),

from being able to be processed without error by the amount of time indicated by the:

• Controller Ready Independent of Media Timeout (CRTO.CRIMT) field since the controller
was enabled if the controller is in Controller Ready Independent of Media mode (i.g., the
CC.CRIME bit is set to ‘1’); or

• Controller Ready With Media Timeout (CRTO.CRWMT) field since the controller was
enabled if the controller is in Controller Ready With Media mode (i.e., the CC.CRIME bit is
cleared to ‘0’);

b) at least one namespace attached to the controller from becoming ready by the amount of time
indicated by the Controller Ready With Media Timeout (CRTO.CRWMT) field since the controller
was enabled; or

c) media required by at least one Admin command from becoming ready by the amount of time
indicaated by the Controller Ready With media Timeout (CRTO.CRWMT) field since the controller
was enabled,

then:

a) if the controller has not become ready, then the controller shall become ready (i.e., set CSTS.RDY
to ‘1’) no later than CRTO.CRWMT amount of time after the controller was enabled; and

b) if the Persistent Event log page is supported, then the controller shall record an NVM Subsystem
Hardware Error Event with the NVM Subsystem Hardware Error Event code set to a value of
Controller Ready Timeout Exceeded in the Persistent Event log page (refer to Figure 238).

NVM Express® Base Specification, Revision 2.0e

131

3.6 Shutdown Processing

This section describes the recommended procedure for shutdown processing prior to a power-off condition.

 Memory-based Controller Shutdown (PCIe)

It is recommended that the host perform an orderly shutdown of the controller by following the procedure
in this section when a power-off or shutdown condition is imminent.

The host should perform the following actions in sequence for a normal controller shutdown:

1. If the controller is enabled (i.e., CC.EN (refer to Figure 48) is set to ‘1’):

a. Stop submitting any new I/O commands to the controller and allow any outstanding
commands to complete;

b. If the controller implements I/O queues, then the host should delete all I/O Submission
Queues, using the Delete I/O Submission Queue command (refer to section 5.7). A result
of the successful completion of the Delete I/O Submission Queue command is that any
remaining commands outstanding are aborted;

c. If the controller implements I/O queues, then the host should delete all I/O Completion
Queues, using the Delete I/O Completion Queue command (refer to section 5.6);

and

2. The host should set the Shutdown Notification (CC.SHN) field (refer to Figure 48) to 01b to indicate
a normal controller shutdown operation. The controller indicates when shutdown processing is
completed by updating the Shutdown Status (CSTS.SHST) field (refer to Figure 49) to 10b and the
Shutdown Type (CSTS.ST) field (refer to Figure 49) is cleared to ‘0’.

The host should perform the following actions in sequence for an abrupt shutdown:

1. If the controller is enabled (i.e., CC.EN is set to ‘1’), then stop submitting any new I/O commands
to the controller; and

2. The host should set the Shutdown Notification (CC.SHN) field to 10b to indicate an abrupt shutdown
operation. The controller indicates when shutdown processing is completed by updating the
Shutdown Status (CSTS.SHST) field to 10b and CSTS.ST is cleared to ‘0’.

For entry to the D3 power state (refer to the PCI Express Base Specification), the shutdown steps outlined
for a normal controller shutdown should be followed.

It is recommended that the host wait a minimum of the RTD3 Entry Latency reported in the Identify
Controller data structure (refer to Figure 280) for the shutdown operations to complete; if the value reported
in RTD3 Entry Latency is 0h, then the host should wait for a minimum of one second. It is not recommended
to disable the controller via the CC.EN field. This causes a Controller Reset which may impact the time
required to complete shutdown processing. While shutdown processing is in progress, the controller may
abort any command with a status code of Commands Aborted due to Power Loss Notification.

It is safe to power off the controller when CSTS.ST is cleared to ‘0’, and CSTS.SHST indicates controller
shutdown processing is complete (regardless of the value of CC.EN). It remains safe to power off the
controller until CC.EN transitions from ‘0’ to ‘1’.

To start executing commands on the controller after that controller reports controller shutdown processing
complete (i.e., CSTS.ST is cleared to ‘0’ and CSTS.SHST is set to 10b) utilizing CC.EN:

• if CC.EN is set to ‘1’, then a Controller Level Reset is required to clear CC.EN to ‘0’ on that
controller; and

• if CC.EN is cleared to ‘0’, then the controller is required to be enabled (i.e., CC.EN is set to ‘1’ from
‘0’). The CC.SHN is required to be cleared to 00b in the same write to the CC property.

The initialization sequence should then be executed on that controller.

NVM Express® Base Specification, Revision 2.0e

132

It is an implementation choice whether the host aborts all outstanding commands to the Admin Queue prior
to the controller shutdown. The only commands that should be outstanding to the Admin Queue when the
controller reports shutdown processing complete are Asynchronous Event Request commands.

 Message-based Controller Shutdown (Fabrics)

To initiate a shutdown of a controller, the host should use the Property Set command (refer to section 6.6)
to set the Shutdown Notification (CC.SHN) field to:

• 01b to initiate a normal shutdown operation; or

• 10b to initiate an abrupt shutdown.

After the host initiates a controller shutdown, the host may either disconnect at the NVMe Transport level
or the host may choose to poll CSTS.SHST to determine when the controller shutdown is complete (i.e.,
the controller should not initiate a disconnect at the NVMe Transport level). It is an implementation choice
whether the host aborts all outstanding commands prior to initiating the shutdown.

The CC.EN field is not used to shutdown the controller (i.e., it is used for Controller Reset).

From the time a controller shutdown is initiated until:

• a Controller Level Reset occurs; or

• the controller, if dynamic, is removed from the NVM subsystem,

the controller shall:

• process only Fabrics commands (refer to Figure 380); and

• disable the Keep Alive timer, if supported.

After CC.EN transitions to ‘0’ (i.e., due to Controller Level Reset), the association between the host and
controller shall be preserved for at least 2 minutes. After this time, the association may be removed if the
controller has not been re-enabled.

 NVM Subsystem Shutdown

An NVM Subsystem Shutdown initiates a shutdown of all controllers in a domain or NVM subsystem from
a single controller.

3.6.3.1 NVM Subsystem Shutdown in a Single Domain NVM Subsystem

A normal shutdown on all controllers within the NVM subsystem (i.e., normal NVM Subsystem Shutdown)
is initiated by:

• a host writing the value 4E726D6Ch ("Nrml") to NSSD.NSSC when CAP.CPS is set to 11b; or

• issuing an NVMe-MI Shutdown command to a Management Endpoint (refer to the NVM Express
Management Interface Specification) specifying a normal shutdown.

For each controller in the NVM subsystem for this normal NVM Subsystem Shutdown, if:

• CSTS.SHST is set to 00b; and

• An outstanding Asynchronous Event Request command exists,

then the controller shall issue a Normal NVM Subsystem Shutdown event prior to shutting down the
controller.

An abrupt shutdown on all controllers within the NVM subsystem (i.e., abrupt NVM Subsystem Shutdown)
is initiated by:

• a host writing the value 41627074h ("Abpt") to NSSD.NSSC when CAP.CPS is set to 11b; or

• issuing an NVMe-MI Shutdown command to a Management Endpoint (refer to the NVM Express
Management Interface Specification) specifying an abrupt shutdown.

For either a normal shutdown or an abrupt NVM Subsystem Shutdown, it is safe to power off the NVM
subsystem when CSTS.ST is set to ‘1’ and CSTS.SHST indicates shutdown processing complete (i.e.,

NVM Express® Base Specification, Revision 2.0e

133

CSTS.SHST is set to 10b) on any controller in the NVM subsystem. It remains safe to power off the NVM
subsystem until an NVM Subsystem Reset occurs.

If a normal or abrupt NVM Subsystem Shutdown is being processed or completed within the NVM
subsystem (i.e., CSTS.ST is set to ‘1’ and CSTS.SHST is set to 01b or 10b on all controllers in the NVM
subsystem), then:

• an NVM Subsystem Reset clears CSTS.SHST to 00b in all controllers in the NVM subsystem; and
• any other type of Controller Level Reset has no effect on the processing of that NVM Subsystem

Shutdown.

3.6.3.2 Domain Shutdown in a Multiple Domain NVM Subsystem

A normal NVM Subsystem Shutdown on this controller and all controllers within the associated domain is
initiated by:

• a host writing the value 4E726D6Ch ("Nrml") to NSSD.NSSC when CAP.CPS is set to 10b; or

• issuing an NVMe-MI Shutdown command to a Management Endpoint (refer to the NVM Express
Management Interface Specification) specifying a normal shutdown.

For each controller in the domain for this normal NVM subsystem shutdown, if:

• CSTS.SHST is cleared to 00b; and

• An outstanding Asynchronous Event Request command exists,

then the controller shall issue a Normal NVM Subsystem Shutdown event prior to shutting down the
controller.

An abrupt NVM Subsystem Shutdown to this controller and all controllers within the associated domain is
initiated by:

• a host writing the value 41627074h ("Abpt") to NSSD.NSSC when CAP.CPS is set to 10b; or

• issuing an NVMe-MI Shutdown command to a Management Endpoint (refer to the NVM Express
Management Interface Specification) specifying an abrupt shutdown.

For either a normal or abrupt NVM Subsystem Shutdown on the domain, it is safe to power off the domain
when CSTS.ST is set to ‘1’ and CSTS.SHST indicates shutdown processing complete (i.e., CSTS.SHST is
set to 10b) on any controller in the domain. It remains safe to power off the domain until an NVM Subsystem
Reset occurs on that domain.

If a normal or abrupt NVM Subsystem Shutdown is being processed or completed within a domain (i.e.,
CSTS.ST is set to ‘1’ and CSTS.SHST is set to 01b or 10b on all controllers in the domain), then:

• an NVM Subsystem Reset clears CSTS.SHST to 00b in all controllers in the Domain; and
• any other type of Controller Level Reset has no effect on the processing of that shutdown.

3.7 Resets

 NVM Subsystem Reset

3.7.1.1 Single Domain NVM Subsystems

The scope of an NVM Subsystem Reset depends on whether the NVM subsystem supports multiple
domains. In an NVM subsystem that does not support multiple domains, the scope of the NVM Subsystem
Reset is the entire NVM subsystem.

An NVM Subsystem Reset is initiated when:

• Main power is applied to the NVM subsystem;

• A value of 4E564D65h (“NVMe”) is written to the NSSR.NSSRC field;

• Requested using a method defined in the NVM Express Management Interface Specification; or

• A vendor specific event occurs.

NVM Express® Base Specification, Revision 2.0e

134

When an NVM Subsystem Reset occurs, the entire NVM subsystem is reset. This includes the initiation of
a Controller Level Reset on all controllers that make up the NVM subsystem, disabling of the Persistent
Memory Region associated with all controllers that make up the NVM subsystem, and any transport specific
actions defined in the applicable NVMe transport specification.

The occurrence of an NVM Subsystem Reset while power is applied to the NVM subsystem is reported by
the initial value of the CSTS.NSSRO field following the NVM Subsystem Reset. This field may be used by
host software to determine if the sudden loss of communication with a controller was due to an NVM
Subsystem Reset or some other condition.

The ability for host software to initiate an NVM Subsystem Reset by writing to the NSSR.NSSRC field is an
optional capability of a controller indicated by the state of the CAP.NSSRS field. An implementation may
protect the NVM subsystem from an inadvertent NVM Subsystem Reset by not providing this capability to
one or more controllers that make up the NVM subsystem.

The occurrence of a vendor specific event that results in an NVM Subsystem Reset is intended to allow
implementations to recover from a severe NVM subsystem internal error that prevents continued normal
operation (e.g., fatal hardware or firmware error).

3.7.1.2 Multiple Domain NVM Subsystems

The scope of an NVM Subsystem Reset depends on whether the NVM subsystem supports multiple
domains. In an NVM subsystem that supports multiple domains, the scope of the NVM Subsystem Reset
is either the controllers that are in a domain or the entire NVM subsystem.

An NVM Subsystem Reset on a domain is initiated when:

• Power is applied to that domain;

• A value of 4E564D65h (i.e., “NVMe”) is written to the NSSR.NSSRC field of one of the controllers
in that domain; or

• A vendor specific event occurs within that domain.

When an NVM Subsystem Reset occurs the entire domain is reset. This includes the initiation of a Controller
Level Reset on all controllers that are in the domain, disabling of the Persistent Memory Region associated
with all controllers that are in the domain, and any transport specific actions defined in the applicable NVMe
transport specification.

Alternatively, an NVM Subsystem Reset in an NVM subsystem that supports multiple domains may reset
the entire NVM subsystem.

The occurrence of an NVM Subsystem Reset while power is applied to the domain is reported by the initial
value of the CSTS.NSSRO field following the NVM Subsystem Reset. This field may be used by host
software to determine if the sudden loss of communication with a controller was due to an NVM Subsystem
Reset or some other condition.

The ability for host software to initiate an NVM Subsystem Reset by writing to the NSSR.NSSRC field is an
optional capability of a controller indicated by the state of the CAP.NSSRS field. An implementation may
protect the domain from an inadvertent NVM Subsystem Reset by not providing this capability to one or
more controllers that are in the domain.

 Controller Level Reset

The following methods initiate a Controller Level Reset:

• NVM Subsystem Reset;

• Controller Reset (i.e., host clears CC.EN from ‘1’ to ‘0’); and

• Transport specific reset types (refer to the applicable NVMe Transport binding specification), if any.

A Controller Level Reset consists of the following actions:

• The controller stops processing any outstanding Admin or I/O commands;

• All I/O Submission Queues are deleted;

NVM Express® Base Specification, Revision 2.0e

135

• All I/O Completion Queues are deleted;

• The controller is brought to an idle state. When this is complete, CSTS.RDY is cleared to ‘0’;
and

• All controller properties defined in section 3.1.4 and internal controller state are reset, with the
following exceptions:

o for memory-based controllers:

▪ the Admin Queue properties (AQA, ASQ, or ACQ) are not reset as part of a
Controller Reset;

▪ the Controller Memory Buffer Memory Space Control property (CMBMSC) is
reset as part of neither a Controller Reset nor a Function Level Reset (refer to
the NVM Express NVMe over PCIe Transport Specification); and

▪ the Persistent Memory Region Memory Space Control Upper property
(PMRMSCU) and the Persistent Memory Region Memory Space Control
Lower property (PMRMSCL) are not reset as part of a Controller Reset;

and

o for message-based controllers:

▪ there are no exceptions.

In all Controller Level Reset cases except a Controller Reset, the controller properties are reset as defined
by the applicable NVMe Transport binding specification.

To continue after a Controller Level Reset, the host should:

• update transport specific state and controller property state as appropriate;

• set CC.EN to ‘1’;

• wait for CSTS.RDY to be set to ‘1’;

• configure the controller using Admin commands as needed;

• create I/O Completion Queues and I/O Submission Queues as needed; and

• proceed with normal I/O operations.

Note that all Controller Level Reset cases except a Controller Reset result in the controller immediately
losing communication with the host. In all these cases, the controller is unable to indicate any aborts or
update any completion queue entries.

 Queue Level Reset

The host may reset and/or reconfigure the I/O Submission and I/O Completion Queues by resetting them.
A queue level reset is performed by deleting and then recreating the queue. In this process, the host should
wait for all pending commands to the appropriate I/O Submission Queue(s) to complete.

To perform the queue level reset on a controller using the memory-based transport model, the host submits
the Delete I/O Submission Queue or Delete I/O Completion Queue command to the Admin Queue
specifying the identifier of the queue to be deleted. After successful command completion of the queue
delete operation, the host then recreates the queue by submitting the Create I/O Submission Queue or
Create I/O Completion Queue command. As part of the creation operation, the host may modify the
attributes of the queue. Note that if a queue level reset is performed on an I/O Completion Queue, the I/O
Submission Queues that are utilizing the I/O Completion Queue should be deleted before the I/O
Completion Queue is reset and recreated after the I/O Completion Queue is recreated. The behavior of an
I/O Submission Queue without a corresponding I/O Completion Queue is undefined.

To perform the queue level reset on a controller using the message-based transport model, the host sends
a Disconnect command to the I/O Queue which is to be deleted. After successful command completion of
the Disconnect command, the host then recreates the I/O Submission Queue and I/O Completion Queue
by submitting the Connect command with a QID specified that is not 00h. As part of the Connect command,
the host may modify the attributes of the I/O queues.

NVM Express® Base Specification, Revision 2.0e

136

The host should ensure that the appropriate I/O Submission Queue or I/O Completion Queue is idle before
deleting that queue. Submitting a queue deletion command causes any pending commands to be aborted
by the controller; this may or may not result in a completion queue entry being posted for the aborted
command(s).

3.8 NVM Capacity Model

 Overview

NVM subsystems may report capacity-related information for multiple entities within the NVM subsystem.
This capacity reporting model includes capacity reporting for the NVM subsystem, the domain (refer to
section 3.2.4), the Endurance Group (refer to section 3.2.3), the NVM Set (refer to section 3.2.2), the
namespace (refer to section 3.2.1), and the Media Unit (refer to section 1.5.35). Some, all, or none of this
reporting may be supported by an NVM subsystem.

Figure 12 shows the hierarchical relationships of the entities within an NVM subsystem which are used to
manage NVM capacity.

The capacity in an NVM Set is able to be allocated to one or more namespaces, and each namespace
exists entirely in that NVM Set (refer to section 3.2.2). Not all of the capacity in the NVM Set is required to
be allocated to a namespace.

If the controller supports NVM Sets, then the capacity in an Endurance Group is able to be allocated to one
or more NVM Sets and each NVM Set exists entirely in that Endurance Group (refer to section 3.2.3). Not
all of the capacity in an Endurance Group is required to be allocated to an NVM Set.

If the controller supports Endurance Groups and does not indicate support for NVM Sets, then in all data
structures that contain an NVMSETID field, the NVMSETID field shall be cleared to 0h.

If the controller does not support Endurance Groups, then in all data structures that contain an ENDGID
field, the ENDGID field shall be cleared to 0h.

If the controller supports Endurance Groups, then the capacity in a domain is able to be allocated to one or
more Endurance Groups, and each Endurance Group exists entirely in that domain (refer to section 3.2.4).
Not all of the capacity in a domain is required to be allocated to an Endurance Group.

NVM subsystems may report the composition of Endurance Groups and NVM Sets in terms of Media Units.
Each Media Unit is allocated to exactly one Endurance Group. If NVM Sets are supported, each Media Unit
is allocated to exactly one NVM Set. Data is transferred to and from Media Units via Channels. Each Media
Unit is connected to one or more Channels. Each Channel is connected to one or more Media Units.

A host uses Capacity Management (refer to section 8.3) to allocate:

a) Domain capacity to Endurance Groups;
b) Endurance Group capacity to NVM Sets;
c) Media Units to Endurance Groups; and
d) Media Units to NVM Sets,

as part of creating those entities.

A host uses the Namespace Management create operation (refer to section 8.11) to allocate capacity to
namespaces.

 Media Unit Organization Examples

Allocation of Media Units is used to organize the physical NVM resources in an NVM subsystem to meet
particular performance goals.

The following examples show an NVM subsystem with all resources in a single domain. The domain has
four Channels, with four Media Units attached to each Channel.

NVM Express® Base Specification, Revision 2.0e

137

3.8.2.1 Simple NVM Subsystem

Figure 108 shows an example of a single domain NVM subsystem where endurance is managed across
all media units. The performance goal is maximum bandwidth, which is achieved by allowing each read or
write operation to simultaneously access all Media Units. All Media Units are in the same Endurance Group
and in the same NVM Set.

Figure 108: Simple NVM Subsystem

Endurance Group 1

NVM Subsystem (SSD)

Port

NVM Set 1

Controller

Key:

MU

Channel

NVM Set

Endurance
Group

Set 1

EG 1

The Capacity Configuration Descriptor for this example contains one Endurance Group Configuration
Descriptor. The Endurance Group Configuration Descriptor contains one NVM Set Identifier and four
Channel Configuration Descriptors. Each Channel Configuration Descriptor contains four Media Unit
Configuration Descriptors.

3.8.2.2 Vertically-Organized NVM Subsystem

Figure 109 shows an example of a single domain NVM subsystem where the performance goal is isolation
among four NVM Sets at the cost of bandwidth. Endurance is managed separately for each set. Media
Units sharing a Channel are allocated to the same Endurance Group. All Media Units in an Endurance
Group are allocated to the same NVM Set. The bandwidth for any NVM Set is likely to be less than or equal
to the bandwidth of the Channel of that NVM Set.

NVM Express® Base Specification, Revision 2.0e

138

Figure 109: Vertically-Organized NVM Subsystem

The Capacity Configuration Descriptor for this example contains four Endurance Group Configuration
Descriptors. Each Endurance Group Configuration Descriptor contains one NVM Set Identifier and one
Channel Configuration Descriptor. Each Channel Configuration Descriptor contains four Media Unit
Configuration Descriptors.

3.8.2.3 Horizontally-Organized Dual NAND NVM Subsystem

Figure 110 shows an example of a single domain NVM subsystem where the Media Units are NAND which
is capable of being operated as QLC or at a lower density. The performance goal is for maximum bandwidth
to a small NVM Set operating as SLC and to a larger NVM Set operating as QLC.

NVM Express® Base Specification, Revision 2.0e

139

Figure 110: Horizontally-Organized Dual NAND NVM Subsystem

Endurance Group 2 (QLC)

Endurance Group 1 (SLC)

NVM Set 2

NVM Set 1

NVM Subsystem (SSD)

Port

Controller

The Capacity Configuration Descriptor, for this example, contains two Endurance Group Configuration
Descriptors. The first Endurance Group Configuration Descriptor for this example:

• indicates a Capacity Adjustment Factor of approximately 400;

• contains one NVM Set Identifier; and

• contains four Channel Configuration Descriptors. Each Channel Configuration Descriptor
contains one Media Unit Configuration Descriptor.

The second Endurance Group Configuration Descriptor for this example:

• indicates a Capacity Adjustment Factor of 100;

• contains one NVM Set Identifier; and

• contains four Channel Configuration Descriptors. Each Channel Configuration Descriptor
contains three Media Unit Configuration Descriptors.

 Capacity Reporting

For an NVM subsystem that does not support multiple domains, the capacity information reported in the
Identify Controller data structure (i.e., the TNVMCAP field and the UNVMCAP field in Figure 280) describes
the capacity for the NVM subsystem. If the MEGCAP field is non-zero, that field indicates the largest entity
(e.g., Endurance Group, NVM Set, namespace) that may be created in the NVM subsystem.

For an NVM subsystem that supports multiple domains, the capacity information reported in the Identify
Controller data structure describes the capacity accessible by the controller processing the Identify
command. The host may use the Identify command to access the Domain List data structure (refer to
section 5.17.2.17) to determine the domains that are accessible by the controller and the capacity
information for each of those domains. If the Max Endurance Group Domain Capacity field is non-zero,
then the field describes the largest entity (e.g., Endurance Group, namespace) that may be created by this
controller in the domain described by that Domain Attributes Entry.

For an NVM subsystem that supports Endurance Groups (refer to section 3.2.3), the host may use the
Identify command to access the Endurance Group List data structure (refer to section 5.17.2.18) to
determine the Endurance Groups that are accessible by the controller. To determine the capacity
information for each Endurance Group, the host uses the Get Log Page command to access the Endurance
Group Information log page (refer to section 5.16.1.10).

NVM Express® Base Specification, Revision 2.0e

140

For an NVM subsystem that supports NVM Sets (refer to section 3.2.2), the host may use the Identify
command to access the NVM Set List data structure (refer to section 5.17.2.4) to determine the NVM Sets
that are accessible by the controller and the capacity information for each of those NVM Sets.

For the management of Endurance Groups, NVM Sets, and namespaces, Figure 111 describes the effects
of the support of NVM Sets, Endurance Groups, and domains on which capacity information is used for
each management operation.

Figure 111: Capacity Information Field Usage

Entity being
created / deleted

NVM Sets
supported

Endurance
Groups

supported

Domains
supported Capacity information used

1

Endurance Group 7 n/a Yes
No NVM subsystem

3

Yes Domain
4

NVM Set
7

 Yes Yes
2

 n/a Endurance Group
5

Namespace 8

No

No
No NVM subsystem

3

Yes Domain
4

Yes n/a Endurance Group
5

Yes Yes
2

 n/a NVM Set
6

Notes:
1. This information described in this column is used by the host for creating the entity (e.g., to determine if there

is sufficient available capacity) and this information is altered by the controller as a result of the creation or
deletion of the entity (e.g., unallocated capacity decreased as a result of entity creation, or unallocated capacity
increased as a result of entity deletion).

2. NVM Set support requires support for Endurance Groups as described in section 3.2.2.
3. Capacity information in the Identify Controller data structure (i.e., TNVMCAP field, UNVMCAP field, and

MEGCAP fields (refer to Figure 280)).
4. Capacity information in the Domain Attributes Entry (i.e., Total Domain Capacity field, Unallocated Domain

Capacity field, and Max Endurance Group Domain Capacity field (refer to Figure 292)).
5. Capacity information in the Endurance Group Information log page (i.e., TEGCAP field, UEGCAP field (refer

to Figure 222)).
6. Capacity information in the NVM Set Attributes Entry (i.e., Total NVM Set Capacity field, and Unallocated NVM

Set Capacity field (refer to Figure 284)).
7. Endurance Groups and NVM Sets are created and deleted using the Capacity Management command (refer

to section 5.3)
8. Namespaces are created and deleted using the Namespace Management command (refer to section 8.11).

Namespaces are deleted using the Capacity Management command.

3.9 Keep Alive

The Keep Alive capability uses the Keep Alive Timer as a watchdog timer intended to detect communication
failures (e.g., transport failure, host failure, or controller failure) between a host and a controller. If the Keep
Alive Timer feature is supported (i.e., the KAS field is set to a non-zero value (refer to Figure 280)), the
controller shall support the Keep Alive command.

The NVMe Transport binding specification for the associated NVMe Transport defines:

• the minimum Keep Alive Timeout value, if any;

• the maximum Keep Alive Timeout value, if any; and

• if the Keep Alive Timer feature is require to be supported and enabled.

NVMe Transports that do not detect a connection loss in a timely manner shall require that the Keep Alive
Timer feature be supported and enabled.

NVM Express® Base Specification, Revision 2.0e

141

 Keep Alive Timer Configuration

A host configures the Keep Alive Timer feature by specifying a Keep Alive Timeout value in:

• the KATO field of a Fabric Connect command (refer to section 6.3); or

• the KATO field of a Set Features command specifying the Keep Alive Timer feature (refer to section
5.27.1.12).

If an NVMe Transport binding specification requires the use of the Keep Alive Timer feature, and a
command attempts to disable the Keep Alive Timer by clearing the Keep Alive Timeout value to 0h, then
the controller shall abort that command with a status code of Keep Alive Timeout Invalid and the Keep Alive
Timeout value at the controller shall not be changed. If a command attempts to set the Keep Alive Timeout
value to a value that exceeds the maximum allowed by the associated NVMe Transport binding
specification, then the controller shall abort that command with a status code of Keep Alive Timeout Invalid
and the Keep Alive Timeout value at the controller shall not be changed. If a command sets the Keep Alive
Timeout value to a non-zero value that is less than the minimum supported by the NVMe Transport or less
than the minimum supported by the specific implementation, then the controller sets the Keep Alive Timeout
value to that minimum value.

As described in section 5.27.1.12, the controller rounds any Keep Alive Timeout value set by the host up
to the nearest granularity as reported in the Keep Alive Support (KAS) field (refer to Figure 280). To retrieve
the Keep Alive Timeout value being used by the controller, a host may issue a Get Features command for
the Keep Alive Timer feature.

 Keep Alive Timer Activation

The Keep Alive Timer is active if:

• CC.EN is set to ‘1’;

• CSTS.RDY is set to ‘1’;

• CC.SHN is cleared to ‘00b’;

• CSTS.SHST is cleared to ‘00b’; and

• The Keep Alive Timer feature is enabled as a result of the KATO field being set to a non-zero value
(refer to section 3.9.1).

Otherwise, the Keep Alive Timer is inactive, and a Keep Alive Timeout as described in sections 3.9.3 and
3.9.4 shall not occur. Activating an inactive Keep Alive Timer (e.g., a Set Features command successfully
sets the Keep Alive Timeout value to a non-zero value from a value of 0h, or enabling a controller that
supports NVMe over Fabrics where the Connect command specified a non-zero Keep Alive Timeout value
(refer to Figure 385)) shall initialize the Keep Alive Timer to the Keep Alive Timeout value.

While the Keep Alive Timer is active, the host should ensure that the Admin Submission Queue has space
for a Keep Alive command.

 Command Based Keep Alive

For Command Based Keep Alive, the Keep Alive command is sent periodically from the host to the controller
over the Admin Queue. The completion of the Keep Alive command indicates that the host and controller
are able to communicate. For message-based transports, the Keep Alive Timeout is the maximum time an
association remains established without processing a Keep Alive command.

3.9.3.1 Command Based Keep Alive on the Controller

The controller is using Command Based Keep Alive if the TBKAS bit is cleared to ‘0’ in the CTRATT field
in the Identify Controller data structure (refer to Figure 280).

For Command Based Keep Alive:

• The Keep Alive Timer in the controller starts when the Keep Alive Timer becomes active (refer to
section 3.9.2).

NVM Express® Base Specification, Revision 2.0e

142

• The Keep Alive Timer in the controller restarts if:

o a Keep Alive command completes successfully; or
o a Set Features command specifying the Keep Alive Timer feature and a non-zero KATO

field (refer to section 5.27.1.12) completes successfully.

• The Keep Alive Timer in the controller expires if:

o the Keep Alive Timer is active in the controller; and
o time equal to the Keep Alive Timeout value has elapsed since the Keep Alive Timer was

most recently started or restarted.

If the Keep Alive Timer in the controller expires, then the controller may consider a Keep Alive Timeout to
have occurred. Upon the occurrence of a Keep Alive Timeout, the controller shall perform the cleanup
actions described in section 3.9.5.

3.9.3.2 Command Based Keep Alive on the Host

The host may use Command Based Keep Alive regardless of the Keep Alive mode used by the controller.
To prevent the controller from detecting a Keep Alive Timeout during the use of Command Based Keep
Alive on the host, the host should send Keep Alive commands at half of the time equal to the Keep Alive
Timeout value to account for delays (e.g., transport roundtrip times, transport delays, command processing
times, and the Keep Alive Timer granularity).

For Command Based Keep Alive:

• The Keep Alive Timer in the host starts or restarts if:

o a Set Features command with Feature Identifier 0Fh and a non-zero Keep Alive Timeout
(KATO) field was submitted to the Admin submission queue; or

o a Keep Alive command was submitted to the Admin submission queue.

• The Keep Alive Timer in the host expires if:

o time equal to the Keep Alive Timeout value has elapsed since the Keep Alive Timer was
most recently started or restarted; and

o a completion of a Keep Alive command has not been received since the Keep Alive Timer
was most recently started or restarted.

If the Keep Alive Timer in the host expires, then the host may consider a Keep Alive Timeout to have
occurred. If a host detects a Keep Alive Timeout, the host should perform the actions described in section
3.9.5.

 Traffic Based Keep Alive

Traffic Based Keep Alive allows the host and controller to avoid a Keep Alive Timeout in the presence of
Admin or I/O command processing without sending Keep Alive commands.

3.9.4.1 Traffic Based Keep Alive on the Controller

Controller support for the Traffic Based Keep Alive is indicated by the TBKAS bit in the Controller Attributes
in the Identify Controller data structure (refer to Figure 280). If the Controller does not support Traffic Based
Keep Alive (i.e., the TBKAS bit is cleared to ‘0’), then the operation of the Keep Alive Timer feature is
described in section 3.9.3.

For Traffic Based Keep Alive:

• A Keep Alive Timeout Interval on the controller starts when the Keep Alive Timer becomes active
(refer to section 3.9.2).

• The controller may consider a Keep Alive Timeout to have occurred if:

o the Keep Alive Timer is active;
o time equal to the Keep Alive Timeout value has elapsed since the start of the most recent

Keep Alive Timeout Interval; and

NVM Express® Base Specification, Revision 2.0e

143

o no Admin command or I/O command was fetched by the controller during the Keep Alive
Timeout Interval.

• A Keep Alive Timeout Interval on the controller ends and:

o a new Keep Alive Timeout Interval does not start if:

▪ a Keep Alive Timeout occurs; or
▪ the Keep Alive Timer becomes inactive (refer to section 3.9.2).

o a new Keep Alive Timeout Interval starts if:

▪ a Keep Alive command completes successfully;
▪ a Set Features command specifying the Keep Alive Timer feature and a non-zero

KATO field (refer to section 5.27.1.12) completes successfully; or
▪ time equal to the Keep Alive Timeout value has elapsed since the start of the Keep

Alive Timeout Interval and a Keep Alive Timeout did not occur during the Keep
Alive Timeout Interval (e.g., an Admin command or an I/O command was fetched
by the controller during the Keep Alive Timeout Interval).

Upon the occurrence of a Keep Alive Timeout, the controller shall perform the cleanup actions described in
section 3.9.5.

3.9.4.2 Traffic Based Keep Alive on the Host

The host may use Traffic Based Keep Alive only if the controller is using Traffic Based Keep Alive. The host
should check for a command completion queue entry for any Admin commands and I/O commands at half
of the time equal to the Keep Alive Timeout value to account for delays (e.g., transport roundtrip times,
transport delays, command processing times, and the Keep Alive Timer granularity). To prevent the
controller from detecting a Keep Alive Timeout during the use of Traffic Based Keep Alive on the host, if no
Admin command and no I/O command is sent to the controller during half of the Keep Alive Timeout Interval,
the host should send a Keep Alive command.

For Traffic Based Keep Alive:

• The Keep Alive Timer in the host starts or restarts if:

o a Set Features command with Feature Identifier 0Fh and a non-zero Keep Alive Timeout
(KATO) field was submitted to the Admin submission queue;

o a Keep Alive command was submitted to the Admin submission queue; or
o time equal to the Keep Alive Timeout value has elapsed since the Keep Alive Timer was

most recently started or restarted, and a completion was received for an Admin command
or an I/O command since the Keep Alive Timer was most recently started or restarted.

• The Keep Alive Timer in the host expires if:

o time equal to the Keep Alive Timeout value has elapsed since the Keep Alive Timer was
most recently started or restarted; and

o the host did not receive a completion of any Admin command or any I/O command since
the Keep Alive Timer was most recently started or restarted.

If the Keep Alive Timer in the host expires, the host may consider a Keep Alive Timeout to have occurred.
If a host detects a Keep Alive Timeout, the host should perform the actions described in section 3.9.5.

 Keep Alive Timeout Cleanup

If a Keep Alive Timeout is detected:

a) by the controller, the controller shall:

• record an Error Information Log Entry with the status code Keep Alive Timeout Expired;

• stop processing commands;

• set the Controller Fatal Status (CSTS.CFS) bit to ‘1’; and

NVM Express® Base Specification, Revision 2.0e

144

• for message-based NVMe Transports:

o terminate the NVMe Transport connections for this association; and
o break the host to controller association;

and

b) by the host, the host assumes all outstanding commands are not completed and re-issues
commands as appropriate.

For message-based NVMe Transports, after completing these steps, a controller may accept a Connect
command (refer to section 6.3) for the Admin Queue from the same or another host in order to form a new
association.

3.10 Privileged Actions

Privileged actions are actions (e.g., command, property write) that affect or have the potential to affect the
state beyond the controller and attached namespaces.

Examples of privileged actions are:

• Admin commands including Namespace Management, Namespace Attachment, Virtualization
Management, Format NVM, Set Features with Feature Identifier 17h (i.e., Sanitize Config, refer to
section 5.27.1.19), Sanitize, and Capacity Management;

• Property Writes including NVM Subsystem Reset; and

• Some Vendor specific commands and properties.

3.11 Firmware Update Process

The process for a firmware update to be activated in a domain (refer to section 3.2.4) by a reset is:

1. The host issues a Firmware Image Download command to download the firmware image to a
controller. There may be multiple portions of the firmware image to download, thus the offset for
each portion of the firmware image being downloaded on that controller is specified in the Firmware
Image Download command. The data provided in the Firmware Image Download command should
conform to the Firmware Update Granularity indicated in the Identify Controller data structure or
the firmware update may fail;

2. After the firmware is downloaded to that controller, the next step is for the host to submit a Firmware
Commit command to that controller. The Firmware Commit command verifies that the last firmware
image downloaded is valid and commits that firmware image to the firmware slot indicated for future
use. A firmware image that does not start at offset zero, contains gaps, or contains overlapping
regions is considered invalid. A controller may employ additional vendor specific means (e.g.,
checksum, CRC, cryptographic hash, or a digital signature) to determine the validity of a firmware
image:

a. The Firmware Commit command may also be used to activate a firmware image associated
with a previously committed firmware slot;

3. The host performs an action that results in a Controller Level Reset (refer to section 3.7.2) on that
controller to cause the firmware image specified in the Firmware Slot field in the Firmware Commit
command to be activated:

a. In some cases a Conventional Reset (refer to the NVM Express NVMe over PCIe Transport
Specification) or NVM Subsystem Reset is required to activate a firmware image. This
requirement is indicated by Firmware Commit command specific status (refer to section
5.12.1);

and

4. After the reset has completed, host software re-initializes the controller. This includes re-allocating
I/O Submission and Completion Queues. Refer to sections 3.5.1 and 3.5.2.

NVM Express® Base Specification, Revision 2.0e

145

The process for a firmware update to be activated on a domain without a reset is:

1. The host issues a Firmware Image Download command to download the firmware image to a
controller. There may be multiple portions of the firmware image to download, thus the offset for
each portion of the firmware image being downloaded on that controller is specified in the Firmware
Image Download command. The data provided in the Firmware Image Download command should
conform to the Firmware Update Granularity indicated in the Identify Controller data structure or
the firmware update may fail;

2. The host submits a Firmware Commit command on that controller with a Commit Action of 011b
which specifies that the firmware image should be activated immediately without reset. The
downloaded firmware image should replace the firmware image in the firmware slot. If no firmware
image was downloaded since the last reset or Firmware Commit command, (i.e., the first step was
skipped), then that controller shall verify and activate the firmware image in the specified slot. If
that controller starts to activate the firmware image, any controllers affected by the new firmware
image send a Firmware Activation Starting asynchronous event to the host if Firmware Activation
Notices are enabled (refer to Figure 331):

a. The Firmware Commit command may also be used to activate a firmware image associated
with a previously committed firmware slot;

3. The controller completes the Firmware Commit command. The following actions are taken in
certain error scenarios:

a. If the firmware image is invalid, then the controller aborts the command with an appropriate
status code (e.g., Invalid Firmware Image);

b. If the firmware activation was not successful because a Controller Level Reset is required to
activate this firmware image, then the controller aborts the command with a status code of
Firmware Activation Requires Controller Level Reset and the firmware image is applied at the
next Controller Level Reset;

c. If the firmware activation was not successful because an NVM Subsystem Reset is required to
activate this firmware image, then the controller aborts the command with a status code of
Firmware Activation Requires NVM Subsystem Reset and the firmware image is applied at the
next NVM Subsystem Reset;

d. If the firmware activation was not successful because a Conventional Reset is required to
activate this firmware image, then the controller aborts the command with a status code of
Firmware Activation Requires Conventional Reset and the firmware image is applied at the
next Conventional Reset; and

e. If the firmware activation was not successful because the firmware activation time requires
more time than the time reported by the MTFA field in the Identify Controller data structure,
then the controller aborts the command with a status code of Firmware Activation Requires
Maximum Time Violation. In this case, the firmware image was committed to the specified
firmware slot. To activate that firmware image, the host may issue a Firmware Commit
command that specifies:

i. a Commit Action set to 010b (i.e., activate using a Controller Level Reset); and
ii. the same firmware slot.

If the controller transitions to the D3cold state (refer to the PCI Express Base Specification) after the
submission of a Firmware Commit command that attempts to activate a firmware image and before the
completion of that command, then the controller may resume operation with either the firmware image
active at the time the Firmware Commit command was submitted or the firmware image that was activated
by that command.

If the firmware image is not able to be successfully loaded, then the controller shall revert to the firmware
image present in the most recently activated firmware slot or the baseline read-only firmware image, if
available, and indicate the failure as an asynchronous event with a Firmware Image Load Error.

If a host overwrites (i.e., updates) the firmware image in the active firmware slot, then the previously active
firmware image may no longer be available. As a result, any action (e.g., power cycling the controller) that

NVM Express® Base Specification, Revision 2.0e

146

requires the use of that firmware slot may instead use the firmware image that is currently in that firmware
slot.

Host software should not overlap firmware/boot partition image update command sequences (refer to
section 1.5.24). During a firmware image update command sequence, if a Firmware Image Download
command or a Firmware Commit command is submitted for another firmware/boot partition image update
command sequence, the results of both that command and the in-progress firmware image update are
undefined.

Host software should use the same controller or Management Endpoint (refer to the NVM Express
Management Interface Specification) for all commands that are part of a firmware image update command
sequence. If the commands for a single firmware/boot partition image update command sequence are
submitted to more than one controller and/or Management Endpoint, the controller may abort the Firmware
Commit command with Invalid Firmware Image status.

After downloading a firmware image, host software issues a Firmware Commit command before
downloading additional firmware images. Processing of the first Firmware Image Download command after
completion of a Firmware Commit command shall cause the controller to discard remaining portions, if any,
of downloaded images. If a reset occurs between a firmware download and completion of the Firmware
Commit command, then the controller shall discard all portion(s), if any, of downloaded images.

NVM Express® Base Specification, Revision 2.0e

147

4 Data Structures

This section describes data structures used by the NVM Express.

4.1 Data Layout

This section describes the data structures used to describe the layout of data that can be understood by
the controller and the host.

 Physical Region Page Entry and List

A physical region page (PRP) entry is a pointer to a physical memory page. PRPs are used as a
scatter/gather mechanism for data transfers between the controller and memory. To enable efficient out of
order data transfers between the controller and the host, PRP entries are a fixed size.

The size of the physical memory page is configured by host software in CC.MPS. Figure 112 shows the
layout of a PRP entry that consists of a Page Base Address and an Offset. The size of the Offset field is
determined by the physical memory page size configured in CC.MPS.

Figure 112: PRP Entry Layout

63 n+1 n 0

Page Base Address Offset

The definition of a PRP entry is described in Figure 113.

Figure 113: PRP Entry – Page Base Address and Offset

Bits Description

63:00

Page Base Address and Offset (PBAO): This field indicates the 64-bit physical memory page
address. The least significant bits (n:0) of this field indicate the offset within the memory page
(e.g., if the memory page size is 4 KiB, then bits 11:00 form the Offset; if the memory page size is
8 KiB, then bits 12:00 form the Offset). If this entry is not the first PRP entry in the command or a
PRP List pointer in a command, then the Offset portion of this field shall be cleared to 0h. The
Offset shall be dword aligned, indicated by bits 1:0 being cleared to 00b.

Note: The controller is not required to check that bits 1:0 are cleared to 00b. The controller may
report an error of PRP Offset Invalid if bits 1:0 are not cleared to 00b. If the controller does not
report an error of PRP Offset Invalid, then the controller shall operate as if bits 1:0 are cleared to
00b.

A physical region page list (PRP List) is a set of PRP entries in a single page of contiguous memory. A PRP
List describes additional PRP entries that could not be described within the command itself. Any PRP
entries described within the command are not duplicated in a PRP List. If the amount of data to transfer
requires multiple PRP List memory pages, then the last PRP entry before the end of the memory page shall
be a pointer to the next PRP List, indicating the next segment of the PRP List. Figure 114 shows the layout
of a PRP List where each PRP entry identifies memory pages that are physically contiguous. Figure 115
shows the layout of a PRP List where each PRP entry identifies a different memory page (i.e., the memory
pages are not physically contiguous).

Figure 114: PRP List Layout for Physically Contiguous Memory Pages

63 n+1 n 0

Page Base Address p 0h

Page Base Address p+1 0h

…

Page Base Address p+q 0h

Page Base Address p+q+1 0h

NVM Express® Base Specification, Revision 2.0e

148

Figure 115: PRP List Layout for Physically Non-Contiguous Memory Pages

63 n+1 n 0

Page Base Address p 0h

Page Base Address q 0h

…

Page Base Address r 0h

Page Base Address s 0h

Dependent on the command definition, the first PRP entry contained within the command may have a non-
zero offset within the memory page. The first PRP List entry (i.e., the first pointer to a memory page
containing additional PRP entries) that if present is typically contained in the PRP Entry 2 location within
the command, shall be qword aligned and may also have a non-zero offset within the memory page.

PRP entries contained within a PRP List shall have a memory page offset of 0h. If a second PRP entry is
present within a command, it shall have a memory page offset of 0h. In both cases, the entries are memory
page aligned based on the value in CC.MPS. If the controller receives a non-zero offset for these PRP
entries the controller should return an error of PRP Offset Invalid.

PRP Lists shall be minimally sized with packed entries starting with entry 0. If more PRP List pages are
required, then the last entry of the PRP List contains the Page Base Address of the next PRP List page.
The next PRP List page shall be memory page aligned. The total number of PRP entries required by a
command is implied by the command parameters and memory page size.

 Scatter Gather List (SGL)

A Scatter Gather List (SGL) is a data structure in memory address space used to describe a data buffer.
The controller indicates the SGL types that the controller supports in the Identify Controller data structure.
A data buffer is either a source buffer or a destination buffer. An SGL contains one or more SGL segments.
The total length of the Data Block and Bit Bucket descriptors in an SGL shall be equal to or exceed the
amount of data requested to be transferred. If the amount of data requested to be transferred exceeds the
total length of the Data Block and Bit Bucket descriptors in an SGL, data shall not be transferred to or from
locations that are not described by the SGL.

An SGL segment is a qword aligned data structure in a contiguous region of physical memory describing
all, part of, or none of a data buffer and the next SGL segment, if any. An SGL segment consists of an array
of one or more SGL descriptors. Only the last descriptor in an SGL segment may be an SGL Segment
descriptor or an SGL Last Segment descriptor.

A last SGL segment is an SGL segment that does not contain an SGL Segment descriptor, or an SGL Last
Segment descriptor.

A controller may support byte or dword alignment and granularity of Data Blocks. If a controller supports
only dword alignment and granularity as indicated in the SGL Support field of the Identify Controller data
structure (refer to Figure 280), then the values in the Address and Length fields of all Data Block descriptors
shall have their two least significant bits cleared to 00b. This requirement applies to Data Block descriptors
that indicate data and/or metadata memory regions.

The SGL Descriptor Threshold (SDT) field in the Identify Controller data structure (refer to Figure 280)
indicates the recommended maximum number of SGL descriptors for a command. If the SDT field is set to
a non-zero value, and a command is submitted for which the sum of:

a) the number of SGL Bit Bucket descriptors with non-zero Length field contents; and
b) the number of SGL Data Block descriptors with a non-zero Length field contents,

exceeds the value of the SDT field, then the performance of the controller may be reduced.

The value of the SDT field shall be less than or equal to the value of the Maximum SGL Data Block
Descriptors (MSDBD) field in the Identify Controller data structure (refer to Figure 280 for the definition of
the MSDBD field).

NVM Express® Base Specification, Revision 2.0e

149

A Keyed SGL Data Block descriptor is a Data Block descriptor that includes a key that is used as part of
the host memory access. The maximum length that may be specified in a Keyed SGL Data Block descriptor
is (16 MiB – 1).

A Transport SGL Data Block descriptor is a Data Block descriptor that specifies a data block that is
transferred by the NVMe Transport using a transfer mechanism and data buffers that are specific to the
NVMe Transport.

The SGL Identifier Descriptor Sub Type field may indicate additional information about a descriptor. As an
example, the Sub Type may indicate that the Address field is an offset rather than an absolute address.
The Sub Type may also indicate NVMe Transport specific information.

The controller shall abort a command if:

• an SGL segment contains an SGL Segment descriptor or an SGL Last Segment descriptor in other
than the last descriptor in the segment;

• a last SGL segment contains an SGL Segment descriptor, or an SGL Last Segment descriptor; or

• an SGL descriptor has an unsupported format.

The controller should abort a command if:

• an SGL Data Block descriptor contains Address or Length fields with either of the two least
significant bits set to 1b and the controller supports only dword alignment and granularity as
indicated in the SGL Support field of the Identify Controller data structure. Refer to Figure 280.

Figure 116 defines the SGL segment.

Figure 116: SGL Segment

Bytes Description

15:00 SGL Descriptor 0

31:16 SGL Descriptor 1

… …

((n*16)+15):(n*16) SGL Descriptor n

An SGL segment contains one or more SGL descriptors. Figure 117 defines the generic SGL descriptor
format.

Figure 117: Generic SGL Descriptor Format

Bytes Description

14:00 Descriptor Type Specific

15

SGL Identifier: The definition of this field is described in the table below.

Bits Description

07:04 SGL Descriptor Type (refer to Figure 118)

03:00 SGL Descriptor Sub Type (refer to Figure 119)

The SGL Descriptor Type field defined in Figure 118 specifies the SGL descriptor type. If the SGL Descriptor
Type field is set to a reserved value or an unsupported value, then the SGL descriptor shall be processed
as having an SGL Descriptor Type error. If the SGL Descriptor Sub Type field is set to a reserved value or
an unsupported value, then the descriptor shall be processed as having an SGL Descriptor Type error.

An SGL descriptor set to all zeroes is an SGL Data Block descriptor with the Address field cleared to 0h
and the Length field cleared to 0h may be used as a NULL descriptor.

Figure 118: SGL Descriptor Type

Code Descriptor

0h SGL Data Block descriptor

1h SGL Bit Bucket descriptor

NVM Express® Base Specification, Revision 2.0e

150

Figure 118: SGL Descriptor Type

Code Descriptor

2h SGL Segment descriptor

3h SGL Last Segment descriptor

4h Keyed SGL Data Block descriptor

5h Transport SGL Data Block descriptor

6h to Eh Reserved

Fh Vendor specific

Figure 119 defines the SGL Descriptor Sub Type values and indicates the SGL Descriptor Types to which
each SGL Descriptor Sub Type applies.

Figure 119: SGL Descriptor Sub Type Values

SGL Descriptor
Sub Type

SGL Descriptor
Types

Sub Type Description

0h

0h, 2h, 3h, 4h
Address: The Address field specifies the starting 64-bit memory byte
address of the Data Block, Segment, or Last Segment descriptor.

1h For Type 1h, the Sub Type field shall be cleared to 0h.

All other values Reserved

1h

0h, 2h, 3h

Offset: The Address field contains an offset from the beginning of the
location where data may be transferred. For NVMe over PCIe
implementations, this Sub Type is reserved. For NVMe over Fabrics
implementations, refer to section 3.3.2.1.3.1.

1h
The controller shall abort the command with the status code of SGL
Descriptor Type Invalid.

4h
The controller shall abort the command with the status code of SGL
Descriptor Type Invalid.

All other values Reserved

Ah to Fh All
NVMe Transport Specific: The definitions for this range of Sub Types
are defined by the binding section for the associated NVMe Transport.

All other values All Reserved

The SGL Data Block descriptor, defined in Figure 120, describes a data block.

Figure 120: SGL Data Block descriptor

Bytes Description

07:00

Address: If the SGL Identifier Descriptor Sub Type field is cleared to 0h, then the Address field
specifies the starting 64-bit memory byte address of the data block. If the SGL Identifier Descriptor
Sub Type field is set to 1h, then the Address field contains an offset from the beginning of the
location where data may be transferred. If the controller requires dword alignment and granularity
as indicated in the SGL Support (SGLS) field of the Identify Controller data structure (refer to
Figure 280), then the two least significant bits shall be cleared to 00b.

If dword alignment and granularity is required, the controller may report an error of Invalid Field in
Command if bits 1:0 are not cleared to 00b. If the controller does not report an error of Invalid Field
in Command, then the controller shall operate as if bits 1:0 are cleared to 00b.

NVM Express® Base Specification, Revision 2.0e

151

Figure 120: SGL Data Block descriptor

Bytes Description

11:08

Length: The Length field specifies the length in bytes of the data block. A Length field cleared to
0h specifies that no data is transferred. An SGL Data Block descriptor specifying that no data is
transferred is a valid SGL Data Block descriptor. If the controller requires dword alignment and
granularity as specified in the SGL Support (SGLS) field the of Identify Controller data structure,
then the two least significant bits shall be cleared to 00b.

If dword alignment and granularity is required, the controller may report an error of Invalid Field in
Command if bits 1:0 are not cleared to 00b. If the controller does not report an error of Invalid Field
in Command, then the controller shall operate as if bits 1:0 are cleared to 00b.

If the value in the Address field plus the value in the Length field is greater than
1_00000000_00000000h, then the SGL Data Block descriptor shall be processed as having a
Data SGL Length Invalid or Metadata SGL Length Invalid error.

14:12 Reserved

15

SGL Identifier: The definition of this field is described in the table below.

Bits Description

07:04 SGL Descriptor Type: 0h as specified in Figure 118.

03:00 SGL Descriptor Sub Type: Valid values are specified in Figure 119.

The SGL Bit Bucket descriptor, defined in Figure 121, is used to ignore parts of source data.

Figure 121: SGL Bit Bucket descriptor

Bytes Description

07:00 Reserved

11:08

Length: The Length field specifies the amount of source data that is discarded. An SGL Bit Bucket
descriptor specifying that no source data be discarded (i.e., the length field cleared to 0h) is a valid
SGL Bit Bucket descriptor.

If the SGL Bit Bucket descriptor describes a destination data buffer (e.g., a read from the controller
to host memory), then the Length field specifies the number of bytes of the source data which the
controller shall discard (i.e., not transfer to the destination data buffer).

If the SGL Bit Bucket descriptor describes a source data buffer (e.g., a write from host memory to
the controller), then the Bit Bucket Descriptor shall be treated as if the Length field were cleared
to 0h (i.e., the Bit Bucket Descriptor has no effect).

If SGL Bit Bucket descriptors are supported, their length in a destination data buffer shall be
included in the specified length of data to be transferred (e.g., their length in a source data buffer
is not included in the transfer length specified by the NLB parameter).

14:12 Reserved

15

SGL Identifier: The definition of this field is described in the table below.

Bits Description

07:04 SGL Descriptor Type: 1h as specified in Figure 118.

03:00 SGL Descriptor Sub Type: Valid values are specified in Figure 119.

The SGL Segment descriptor, defined in Figure 122, describes the next SGL segment, which is not the last
SGL segment.

Figure 122: SGL Segment descriptor

Bytes Description

07:00

Address: If the SGL Identifier Descriptor Sub Type field is cleared to 0h, then the Address field
specifies the starting 64-bit memory byte address of the next SGL segment, which is an SGL
segment. If the SGL Identifier Descriptor Sub Type field is set to 1h, then the Address field contains
an offset from the beginning of the location where data may be transferred.

NVM Express® Base Specification, Revision 2.0e

152

Figure 122: SGL Segment descriptor

Bytes Description

11:08

Length: The Length field specifies the length in bytes of the next SGL segment. The Length field
shall be a non-zero value and a multiple of 16.

If the value in the Address field plus the value in the Length field is greater than
1_00000000_00000000h, then the SGL Segment descriptor shall be processed as having a Data
SGL Length Invalid or Metadata SGL Length Invalid error.

14:12 Reserved

15

SGL Identifier: The definition of this field is described in the table below.

Bits Description

07:04 SGL Descriptor Type: 2h as specified in Figure 118.

03:00 SGL Descriptor Sub Type: Valid values are specified in Figure 119.

The SGL Last Segment descriptor, defined in Figure 123, describes the next and last SGL segment. A last
SGL segment that contains an SGL Segment descriptor or an SGL Last Segment descriptor is processed
as an error.

Figure 123: SGL Last Segment descriptor

Bytes Description

07:00

Address: If the SGL Identifier Descriptor Sub Type field is cleared to 0h, then the Address field
specifies the starting 64-bit memory byte address of the next and last SGL segment, which is an
SGL segment. If the SGL Identifier Descriptor Sub Type field is set to 1h, then the Address field
contains an offset from the beginning of the location where data may be transferred.

11:08

Length: The Length field specifies the length in bytes of the next and last SGL segment. The
Length field shall be a non-zero value and a multiple of 16.

If the value in the Address field plus the value in the Length field is greater than
1_00000000_00000000h, then the SGL Last Segment descriptor shall be processed as having a
Data SGL Length Invalid or Metadata SGL Length Invalid error.

14:12 Reserved

15

SGL Identifier: The definition of this field is described in the table below.

Bits Description

07:04 SGL Descriptor Type: 3h as specified in Figure 118.

03:00 SGL Descriptor Sub Type: Valid values are specified in Figure 119.

The Keyed SGL Data Block descriptor, defined in Figure 124, describes a keyed data block.

Figure 124: Keyed SGL Data Block descriptor

Bytes Description

07:00 Address: The Address field specifies the starting 64-bit memory byte address of the data block.

10:08

Length: The Length field specifies the length in bytes of the data block. A Length field cleared to
0h specifies that no data is transferred. An SGL Data Block descriptor specifying that no data is
transferred is a valid SGL Data Block descriptor.

If the value in the Address field plus the value in the Length field is greater than
1_00000000_00000000h, then the SGL Data Block descriptor shall be processed as having a
Data SGL Length Invalid or Metadata SGL Length Invalid error.

14:11 Key: Specifies a 32-bit key that is associated with the data block.

15

SGL Identifier: The definition of this field is described in the table below.

Bits Description

07:04 SGL Descriptor Type: 4h as specified in Figure 118.

03:00 SGL Descriptor Sub Type: Valid values are specified in Figure 119.

NVM Express® Base Specification, Revision 2.0e

153

Figure 125: Transport SGL Data Block descriptor

Bytes Description

07:00 Reserved

11:08

Length: The Length field specifies the length in bytes of the data block. A Length field cleared to
0h specifies that no data is transferred. A Transport SGL Data Block descriptor specifying that no
data is transferred is a valid Transport SGL Data Block descriptor. If the controller requires dword
alignment and granularity as specified in the SGL Support field of Identify Controller (refer to Figure
280), then the two least significant bits shall be cleared to 00b.

The data transfer mechanism and data buffers for data specified by a Transport SGL Data Block
descriptor are defined by the binding section for the associated NVMe Transport.

14:12 Reserved

15

SGL Identifier: The definition of this field is described in the table below.

Bits Description

07:04 SGL Descriptor Type: 5h as specified in Figure 118.

03:00 SGL Descriptor Sub Type: Valid values are specified in Figure 119.

4.1.2.1 SGL Example

Figure 126 shows an example of a data read request using SGLs. In the example, the logical block size is
512B. The total length of the logical blocks accessed is 13 KiB, of which only 11 KiB is transferred to the
host. The Number of Logical Blocks (NLB) field in the command shall specify 26, indicating the total length
of the logical blocks accessed on the controller is 13 KiB. There are three SGL segments describing the
locations in memory where the logical block data is transferred.

The three SGL segments contain a total of three Data Block descriptors with lengths of 3 KiB, 4 KiB, and
4 KiB respectively. Segment 1 of the Destination SGL contains a Bit Bucket descriptor with a length of 2 KiB
that specifies to not transfer (i.e., ignore) 2 KiB of logical block data from the NVM. Segment 1 of the
destination SGL also contains a Last Segment descriptor specifying that the segment pointed to by the
descriptor is the last SGL segment.

NVM Express® Base Specification, Revision 2.0e

154

Figure 126: SGL Read Example

3KiB 4KiB 2KiB 4KiB

Bit Bucket data

not transfered

LBA x+26NVMe Logical Blocks

Data Block A Data Block C Data Block B

Host DRAM

SGL Data Block descriptor

specifies to transfer 3KiB

Segment descriptor

points to the next memory

location in the SGL

Bit Bucket descriptor specifies

to not transfer the next 2KiB of

logical block data

Data Block descriptor

specifies to transfer 4KiB

Last Segment descriptor

points to the last memory

location in the SGL

Data Block descriptor

specifies to transfer 4KiB

Address = A

0 Length = 3KiB

Address = Segment 1

2 Length = 48

Address = B

0 Length = 4KiB

1 Length = 2KiB

Address = Segment 2

3 Length = 16

Address = C

0 Length = 4KiB

Destination SGL Segment 2

Destination SGL Segment 1

Destination SGL Segment 0

LBA x

 Metadata Region (MR)

The definition for the Metadata Region is command set specific. Refer to each I/O Command Set
specification for applicability and additional details, if any.

4.2 Feature Values

The Get Features command (refer to section 5.15) and Set Features command (refer to section 5.27) may
be used to read and modify operating parameters of the controller. The operating parameters are grouped
and identified by Feature Identifiers. Each Feature Identifier contains one or more attributes that may affect
the behavior of the Feature.

NVM Express® Base Specification, Revision 2.0e

155

If bit 4 is set to ‘1’ in the Optional NVM Command Support (ONCS) field of the Identify Controller data
structure in Figure 280, then for each Feature, there are three settings: default, saved, and current. If bit 4
is cleared to ‘0’ in the Optional NVM Command Support field of the Identify Controller data structure, then
the controller only supports a current and default value for each Feature. In this case, the current value may
be persistent across power cycles and resets based on the information specified in Figure 321.

If bit 4 is set to ‘1’ in the ONCS field, then each Feature has supported capabilities (refer to Figure 200),
which are discovered using the Supported Capabilities value in the Select field in Get Features (refer to
Figure 197).

The default value for each Feature is vendor specific and set by the manufacturer unless otherwise
specified. The default value is not changeable.

The current value for a Feature is the value in active use by the controller for that Feature.

A Set Features command uses the value specified by the command to set:

a) the current value for that Feature; or
b) the current value for that Feature and the saved value for that Feature, if that Feature is saveable.

A Feature may be saveable. If a Feature is saveable (i.e., the controller supports the Save field in the Set
Features command and the Select field in the Get Features command), then any Feature Identifier that is
namespace specific may be saved on a per namespace basis.

If a Feature is not saveable, or does not have a saved value, then a Get Features command to read the
saved value returns the default value.

If a Feature is not saveable and is persistent as specified in Figure 321, then the current value of that
Feature shall be persistent across power cycles and resets.

The current value for a Feature, as a result of a Controller Level Reset, is indicated in Figure 127 for an
NVM subsystem that supports only a single controller (i.e., bit 1 of the CMIC field (refer to Figure 279) is
cleared to ‘0’).

The current value for a Feature, as a result of an NVM Subsystem Reset, is indicated in Figure 127, for an
NVM subsystem:

• that is able to support two or more controllers and does not support multiple domains; or

• supports multiple domains where the NVM Subsystem Reset results in a reset of the entire NVM
subsystem.

Figure 127: Current Value after Reset with Scope of Entire NVM Subsystem

Feature
Capability

Controller scope or Namespace
per controller scope

NVM
subsystem

scope

Endurance
Group
scope

NVM
Set

scope

Namespace
scope

Saveable

Set to:

• the saved value if a saved value is set; or

• the default value if a saved value is not set,

unless otherwise specified.

Non-saveable and
non-persistent

Set to the default value, unless otherwise specified.

The current value for a Feature, as a result of a Controller Level Reset, is indicated in Figure 128 for an
NVM subsystem that is able to support two or more controllers (i.e., bit 1 of the CMIC field is set to ‘1’).

The current value for a Feature, as a result of an NVM Subsystem Reset, is indicated in Figure 128 for an
NVM subsystem that supports:

• multiple domains where an NVM Subsystem Reset does not reset the entire NVM subsystem as
defined in section 3.7.1.2.

NVM Express® Base Specification, Revision 2.0e

156

Figure 128: Current Value after Reset with Scope of Subset of the NVM Subsystem

Feature
Capability

Controller scope or Namespace
per controller scope

NVM
subsystem

scope

Endurance
Group
scope

NVM Set
scope

Namespace
scope

Saveable

Set to:

• the saved value if a saved
value is set; or

• the default value if a
saved value is not set,

unless otherwise specified.

Unchanged, unless otherwise specified.

Non-saveable and
non-persistent

Set to the default value, unless
otherwise specified.

Concurrent access to Feature values by multiple hosts, for features with a scope other than controller
scope, requires some form of coordination between hosts. The procedure used to coordinate these hosts
is outside the scope of this specification.

Feature settings apply based on the feature scope (e.g., a feature is namespace specific if that feature has
a namespace scope) as defined in Figure 321.

For feature values that apply to the controller scope:

a) if the NSID field is cleared to 0h or set to FFFFFFFFh, then:

• the Set Features command shall set the specified feature value for the controller; and

• the Get Features command shall return the current setting of the requested feature value for
the controller;

and

b) if the NSID field is set to a valid namespace identifier (refer to section 3.2.1.2), then:

• the Set Features command shall abort with a status code of Feature Not Namespace Specific;
and

• the Get Features command shall return the current setting of the requested feature value for
the controller.

For feature values that apply to the namespace scope:

a) if the NSID field is set to an active namespace identifier (refer to section 3.2.1.4), then:

• the Set Features command shall set the specified feature value of the specified namespace;
and

• the Get Features command shall return the current setting of the requested feature value for
the specified namespace;

b) if the NSID field is set to FFFFFFFFh, then:

• for the Set Features command, the controller shall:

o if the MDS bit is set to ‘1’ in the Identify Controller data structure, abort the command with
Invalid Field in Command; or

o if the MDS bit is cleared to ‘0’ in the Identify Controller data structure, unless otherwise
specified, set the specified feature value for all namespaces attached to the controller
processing the command;

and

• for the Get Features command, the controller shall, unless otherwise specified in section
5.27.1, abort the command with a status code of Invalid Namespace or Format;

NVM Express® Base Specification, Revision 2.0e

157

and

c) if the NSID field is set to any other value, then the Set Features command and the Get Features
command is aborted by the controller as described in Figure 90.

For feature values that apply to NVM subsystem scope, Domain scope, NVM Set scope, or Endurance
Group scope:

a) the NSID field should be cleared to 0h; and
b) if the NSID field is set to a non-zero value, then the Set Features command and the Get Features

command are aborted by the controller as described in Figure 90.

There are mandatory and optional Feature Identifiers defined in Figure 321. If a Get Features command or
Set Features command is processed that specifies a Feature Identifier that is not supported, then the
controller shall abort the command with a status code of Invalid Field in Command.

4.3 Identifier Format and Layout (Informative)

This section provides guidance for proper implementation of various identifiers defined in the Identify
Controller, Identify Namespace, and Namespace Identification Descriptor data structures.

 PCI Vendor ID (VID) and PCI Subsystem Vendor ID (SSVID)

The PCI Vendor ID (VID, bytes 01:00) and PCI Subsystem Vendor ID (SSVID, bytes 03:02) are defined in
the Identify Controller data structure. The values are assigned by the PCI SIG. Each identifier is a 16-bit
number in little endian format.

Example:

• VID = ABCDh; and

• SSVID = 1234h.

Figure 129: PCI Vendor ID (VID) and PCI Subsystem

Vendor ID (SSVID)

Byte 00 01 02 03

Value CDh ABh 34h 12h

 Serial Number (SN) and Model Number (MN)

The Serial Number (SN, bytes 23:04) and Model Number (MN, bytes 63:24) are defined in the Identify
Controller data structure. The values are ASCII strings assigned by the vendor. Each identifier is in big
endian format.

Example (Value shown as ASCII characters):

• SN = “SN1”; and

• MN = “M2”.

Figure 130: Serial Number (SN) and Model Number (MN)

Bytes 04 05 06 23 to 07 24 25 63 to 26

Value 53h (‘S’) 4Eh (‘N’) 31h (‘1’) 20h (‘ ‘) 4Dh (‘M’) 32h (‘2’) 20h (‘ ‘)

 IEEE OUI Identifier (IEEE)

The IEEE OUI Identifier (OUI, bytes 75:73) is defined in the Identify Controller data structure. The value is
assigned by the IEEE Registration Authority. The identifier is in little endian format.

Example:

• OUI = ABCDEFh.

NVM Express® Base Specification, Revision 2.0e

158

Figure 131: IEEE OUI Identifier (IEEE)

Byte 73 74 75

Value EFh CDh ABh

 IEEE Extended Unique Identifier (EUI64)

The IEEE Extended Unique Identifier (EUI64, bytes 127:120) is defined in the Identify Namespace data
structure. Tutorials are available at https://standards.ieee.org/develop/regauth/tut/index.html. IEEE defines
three formats that may be used in this field: MA-L, MA-M, and MA-S. The examples in this section use the
MA-L format.

The MA-L format is defined as a string of eight octets:

Figure 132: IEEE Extended Unique Identifier (EUI64), MA-L Format

EUI[0] EUI[1] EUI[2] EUI[3] EUI[4] EUI[5] EUI[6] EUI[7]

OUI Extension Identifier

EUI64 is defined in big endian format. The OUI field differs from the OUI Identifier which is in little endian
format as described in section 4.3.3.

Example:

• OUI Identifier = ABCDEFh; and

• Extension Identifier = 0123456789h.

Figure 133: IEEE Extended Unique Identifier (EUI64), OUI Identifier

Byte 120 121 122 123 124 125

Value ABh CDh EFh 01h 23h 45h

Field OUI Extension Identifier

Figure 134: IEEE Extended

Unique Identifier (EUI64), Ext. ID

(cont)

Byte 126 127

Value 67h 89h

Field Ext ID (cont)

The MA-L format is similar to the World Wide Name (WWN) format defined as IEEE Registered designator
(NAA = 5) as shown below.

Figure 135: MA-L similarity to WWN

Byte 0 1 2 3 4 5 6 7

EUI64 OUI Extension Identifier

WWN
(NAA = 5)

5h OUI Vendor Specific Identifier

 Namespace Globally Unique Identifier (NGUID)

The Namespace Globally Unique Identifier (NGUID, bytes 119:104) is defined in the Identify Namespace
data structure. The NGUID is composed of an IEEE OUI, an extension identifier, and a vendor specific
extension identifier. The extension identifier and vendor specific extension identifier are both assigned by
the vendor and may be considered as a single field. NGUID is defined in big endian format. The OUI field
differs from the OUI Identifier which is in little endian format as described in section 4.3.3.

https://standards.ieee.org/develop/regauth/tut/index.html

NVM Express® Base Specification, Revision 2.0e

159

Example:

• OUI Identifier = ABCDEFh;

• Extension Identifier = 0123456789h; and

• Vendor Specific Extension Identifier = FEDCBA9876543210h.

Figure 136: Namespace Globally Unique Identifier (NGUID)

Byte 104 105 106 107 108 109

Value FEh DCh BAh 98h 76h 54h

Field Vendor Specific Extension Identifier

Figure 137: Namespace Globally Unique Identifier (NGUID), OUI

Byte 110 111 112 113 114 115

Value 32h 10h ABh CDh EFh 01h

Field VSP Ex ID (cont) OUI Ex ID

Figure 138: Namespace Globally Unique Identifier

(NGUID), Extension Identifier (continued)

Byte 116 117 118 119

Value 23h 45h 67h 89h

Field Extension Identifier (continued)

The NGUID format is similar to the World Wide Name (WWN) format as IEEE Registered Extended
designator (NAA = 6) as shown below.

Figure 139: Namespace Globally Unique Identifier (NGUID), NGUID similarity to WWN

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NGUID Vendor Specific Extension Identifier OUI Extension Identifier

WWN
(NAA = 6)

6h OUI Vendor Specific Identifier Vendor Specific Identifier Extension

 Universally Unique Identifier (UUID)

The Universally Unique Identifier is defined in RFC 4122 and contained in the Namespace Identification
Descriptor (refer to Figure 282). Byte ordering requirements for a UUID are described in RFC 4122.

4.4 List Data Structures

This section describes list data structures used in this specification.

 Controller List

A Controller List, defined in Figure 140, is an ordered list of ascending controller IDs. The controller identifier
is defined in bytes 79:78 of the Identify data structure in Figure 140. Unused entries are zero filled.

Figure 140: Controller List Format

Bytes Description

01:00
Number of Identifiers: This field contains the number of controller entries in the list. There may
be up to 2,047 identifiers in the list. A value of 0h indicates there are no controllers in the list.

03:02
Identifier 0: This field contains the NVM subsystem unique controller identifier for the first
controller in the list, if present.

05:04
Identifier 1: This field contains the NVM subsystem unique controller identifier for the second
controller in the list, if present.

… …

NVM Express® Base Specification, Revision 2.0e

160

Figure 140: Controller List Format

Bytes Description

(N*2+3):(N*2+2)
Identifier N: This field contains the NVM subsystem unique controller identifier for the N+1
controller in the list, if present.

 Namespace List

A Namespace List, defined in Figure 141, is an ordered list of namespace IDs. Unused entries are zero
filled.

Figure 141: Namespace List Format

Bytes Description

03:00 Identifier 0: This field contains the lowest namespace ID in the list or 0h if the list is empty.

07:04
Identifier 1: This field contains the second lowest namespace ID in the list or 0h if the list
contains less than two entries.

… …

(N*4+3):(N*4)
Identifier N: This field contains the N+1 lowest namespace ID in the list or 0h if the list contains
fewer than N entries.

4.5 NVMe Qualified Names

NVMe Qualified Names (NQNs) are used to uniquely describe a host or NVM subsystem for the purposes
of identification and authentication. The NVMe Qualified Name for the NVM subsystem is specified in the
Identify Controller data structure. An NQN is permanent for the lifetime of the host or NVM subsystem.

An NVMe Qualified Name is encoded as a UTF-8 string of Unicode characters (refer to section 1.4.2) with
the following properties:

• The encoding is UTF-8 (refer to RFC 3629);

• The following characters are used in formatting:

o dash (‘-‘=U+002d);
o dot (‘.’=U+002e); and
o colon (‘:’=U+003a);

• The maximum name is 223 bytes in length; and

• The string is null terminated.

There are two supported NQN formats. The first format may be used by any organization that owns a
domain name. This naming format may be used to create a human interpretable string to describe the host
or NVM subsystem. This format consists of:

• The string “nqn”;

• The string “.” (i.e., the ASCII period character);

• A date code, in “yyyy-mm” format. This date shall be during a time interval when the naming
authority owned the domain name used in this format. The date code uses the Gregorian
calendar. All digits and the dash shall be included;

• The string “.” (i.e., the ASCII period character);

• The reverse domain name of the naming authority that is creating the NQN; and

• A colon (:) prefixed string that the owner of the domain name assigns that does not exceed the
maximum length. The naming authority is responsible to ensure that the NQN is worldwide
unique.

The reverse domain name in an NQN that uses this format shall not be “org.nvmexpress”.

The following are examples of NVMe Qualified Names that may be generated by “Example NVMe, Inc.”

• The string “nqn.2014-08.com.example:nvme:nvm-subsystem-sn-d78432”; and

NVM Express® Base Specification, Revision 2.0e

161

• The string “nqn.2014-08.com.example:nvme.host.sys.xyz”.

The second format may be used to create a unique identifier when there is not a naming authority or there
is not a requirement for a human interpretable string. This format consists of:

• The string “nqn”;

• The string “.” (i.e., the ASCII period character);

• The string “2014-08.org.nvmexpress:uuid:”; and

• A 128-bit UUID based on the definition in RFC 4122 represented as a string formatted as
“11111111-2222-3333-4444-555555555555”.

The following is an example of an NVMe Qualified Name using the UUID-based format:

• The string “nqn.2014-08.org.nvmexpress:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6”.

NVMe hosts, controllers and NVM subsystems compare (e.g., for equality) NVMe Qualified Names used
by NVMe as binary strings without any text processing or text comparison logic that is specific to the
Unicode character set or locale (e.g., case folding or conversion to lower case, Unicode normalization). Any
such text processing:

a) may occur as part of entry of NVMe Qualified Names into NVMe hosts and NVM subsystems; and
b) should not occur as part of receiving NVMe Qualified Names via an NVMe connection, as shown

in Figure 142.

Upon entry (e.g., at point 1 in Figure 142, described as “input” in RFC4122), NVMe host software may
process an NVMe Qualified Name (e.g., for conversion to lower case based on the Unicode locale). Upon
entry (e.g., at point 3 in Figure 142, described as “input” in RFC4122), a controller may process an NVMe
Qualified Name (e.g., for conversion to lower case based on the Unicode locale). Upon receipt by the host
(e.g., at point 2 in Figure 142) of an NVMe Qualified Name from the controller, no text process (e.g., no
case folding) should occur. Upon receipt by the controller (e.g., at point 4 in Figure 142) of an NVMe
Qualified Name from the host, no text processing (e.g., no case folding) should occur.

Figure 142: NQN Processing

NQN Entry NQN Entry

Text

processed

upon entry

to Host

Text processed

upon entry to

subsystem

No text

processing

upon

receipt

No text

processing

upon receipt

Host Subsystem

1

2

3

4

 Unique Identifier

The NVM Subsystem NVMe Qualified Name specified in the Identify Controller data structure (refer to
Figure 280) should be used (e.g., by host software) as the unique identifier for the NVM subsystem. If the
controller is compliant with an NVM Express Specification prior to revision 1.2.1 (i.e., revisions where the
NVM Subsystem NQN was not defined), then the PCI Vendor ID, Serial Number, and Model Number fields
in the Identify Controller data structure and the NQN Starting String “nqn.2014.08.org.nvmexpress:” may
be combined by the host to form a globally unique value that identifies the NVM subsystem (e.g., for host
software that uses NQNs). The method shown in Figure 143 should be used by the host to construct an

NVM Express® Base Specification, Revision 2.0e

162

NVM Subsystem NQN for older NVM subsystems that do not provide an NQN in the Identify Controller data
structure. The mechanism used by the vendor to assign Serial Number and Model Number values to ensure
uniqueness is outside the scope of this specification.

Figure 143: NQN Construction for Older NVM Subsystems

Bytes Description

26:00
NQN Starting String (NSS): Contains the 27 letter ASCII string ”nqn.2014-
08.org.nvmexpress:”.

30:27
PCI Vendor ID (VID): Contains the company vendor identifier that is assigned by the PCI
SIG as a hexadecimal ASCII string.

34:31
PCI Subsystem Vendor ID (SSVID): Contains the company vendor identifier that is
assigned by the PCI SIG for the subsystem as a hexadecimal ASCII string.

54:35
Serial Number (SN): Contains the serial number for the NVM subsystem that is assigned
by the vendor as an ASCII string.

94:55
Model Number (MN): Contains the model number for the NVM subsystem that is
assigned by the vendor as an ASCII string.

222:95 Padding (PAD): Contains spaces (ASCII character 20h).

An NVM subsystem may contain multiple controllers. All controllers contained in the NVM subsystem share
the same NVM subsystem unique identifier. The Controller ID (CNTLID) value returned in the Identify
Controller data structure may be used to uniquely identify a controller within an NVM subsystem. The
Controller ID value when combined with the NVM subsystem identifier forms a globally unique value that
identifies the controller. The mechanism used by the vendor to assign Controller ID values is outside the
scope of this specification.

The Identify Namespace data structure (refer to the applicable I/O Command Set specification) contains
the IEEE Extended Unique Identifier (EUI64) and the Namespace Globally Unique Identifier (NGUID) fields.
The Namespace Identification Descriptor data structure (refer to Figure 282) contains the Namespace
UUID. EUI64 is an 8-byte EUI-64 identifier (refer to section 4.3.4), NGUID is a 16-byte identifier based on
EUI-64 (refer to section 4.3.5), and Namespace UUID is a 16-byte identifier described in RFC 4122 (refer
to section 4.3.6).

When creating a namespace, the controller shall indicate a globally unique value in one or more of the
following:

a) the EUI64 field;
b) the NGUID field; or
c) a Namespace Identification Descriptor with the Namespace Identifier Type field set to 3h.

If the EUI64 field is cleared to 0h and the NGUID field is cleared to 0h, then the namespace shall support
a valid Namespace UUID in the Namespace Identification Descriptor data structure.
If the UIDREUSE bit in the NSFEAT field is cleared to ‘0’, then a controller may reuse a non-zero
NGUID/EUI64 value for a new namespace after the original namespace using the value has been
deleted. If the UIDREUSE bit is set to ‘1’, then a controller shall not reuse a non-zero NGUID/EUI64 for a
new namespace after the original namespace using the value has been deleted.

NVM Express® Base Specification, Revision 2.0e

163

5 Admin Command Set

The Admin Command Set defines the commands that may be submitted to the Admin Submission Queue.

The submission queue entry (SQE) structure and the fields that are common to all Admin commands are
defined in section 3.3.3. The completion queue entry (CQE) structure and the fields that are common to all
Admin commands are defined in section 3.3.3.2. The command specific fields in the SQE and CQE
structures (i.e., SQE Command Dwords 10 to 15, CQE Dword 0, and CQE Dword 1) for the Admin
Command Set are defined in this section.

Admin commands should not be impacted by the state of I/O queues (e.g., a full I/O Completion Queue
should not delay or stall the Delete I/O Submission Queue command).

Figure 144 defines all Admin commands. Refer to Figure 22, Figure 28, and Figure 32 for mandatory,
optional, and prohibited commands for the various controller types.

Figure 144: Opcodes for Admin Commands

Opcode by Field
Combined

Opcode
1

Namespace
Identifier

Used
2

Command
Command Set

Specific
8

(07) (06:02) (01:00)

Generic
Command

Function
Data

Transfer3

0b 000 00b 00b 00h No Delete I/O Submission Queue No

0b 000 00b 01b 01h No Create I/O Submission Queue No

0b 000 00b 10b 02h Yes
10 Get Log Page No

0b 000 01b 00b 04h No Delete I/O Completion Queue No

0b 000 01b 01b 05h No Create I/O Completion Queue No

0b 000 01b 10b 06h NOTE 6 Identify No

0b 000 10b 00b 08h No Abort No

0b 000 10b 01b 09h Yes Set Features No

0b 000 10b 10b 0Ah Yes Get Features No

0b 000 11b 00b 0Ch No Asynchronous Event Request No

0b 000 11b 01b 0Dh Yes Namespace Management No

0b 001 00b 00b 10h No Firmware Commit No

0b 001 00b 01b 11h No Firmware Image Download No

0b 001 01b 00b 14h Yes Device Self-test No

0b 001 01b 01b 15h Yes
4

 Namespace Attachment No

0b 001 10b 00b 18h No Keep Alive No

0b 001 10b 01b 19h Yes
5

 Directive Send No

0b 001 10b 10b 1Ah Yes
5

 Directive Receive No

0b 001 11b 00b 1Ch No Virtualization Management No

0b 001 11b 01b 1Dh No NVMe-MI Send No

0b 001 11b 10b 1Eh No NVMe-MI Receive No

0b 010 00b 00b 20h No Capacity Management No

0b 010 01b 00b 24h No Lockdown No

0b 111 11b 00b 7Ch No Doorbell Buffer Config No

0b 111 11b 11b 7Fh No Fabrics Commands
9
 No

1b 000 00b 00b 80h Yes Format NVM No

1b 000 00b 01b 81h NOTE 7 Security Send No

1b 000 00b 10b 82h NOTE 7 Security Receive No

1b 000 01b 00b 84h No Sanitize No

1b 000 01b 10b 86h Yes
4 Get LBA Status NVM, ZNS

NVM Express® Base Specification, Revision 2.0e

164

Figure 144: Opcodes for Admin Commands

Opcode by Field
Combined

Opcode
1

Namespace
Identifier

Used
2

Command
Command Set

Specific
8

(07) (06:02) (01:00)

Generic
Command

Function
Data

Transfer3

 Vendor Specific

1b n/a NOTE 3 C0h to
FFh

 Vendor specific

Notes:
1. Opcodes not listed are reserved.
2. A subset of commands use the Namespace Identifier (NSID) field. If the Namespace Identifier field is used, then

the value FFFFFFFFh is supported in this field unless otherwise indicated in footnotes in this figure that a specific
command does not support that value or supports that value only under specific conditions. When this field is not
used, the field is cleared to 0h as described in Figure 90.

3. Indicates the data transfer direction of the command. All options to the command shall transfer data as specified
or transfer no data. All commands, including vendor specific commands, shall follow this convention: 00b = no
data transfer; 01b = host to controller; 10b = controller to host; 11b = bidirectional.

4. This command does not support the use of the Namespace Identifier (NSID) field set to FFFFFFFFh.
5. Support for the Namespace Identifier field set to FFFFFFFFh depends on the Directive Operation (refer to section

8.7).
6. Use of the Namespace Identifier field depends on the CNS value in the Identify Command as described in Figure

278.
7. The use of the Namespace Identifier is Security Protocol specific.
8. No = Not I/O Command Set specific, A = All I/O Command Sets, NVM = NVM Command Set specific, ZNS =

Zoned Namespace Command Set.
9. All Fabrics commands use the opcode 7Fh. Refer to section 6 for details.
10. Use of the Namespace Identifier field is specified further in section 5.16.1 and Figure 207.

Figure 145 lists the Admin commands that are allowed during the processing of a sanitize operation and
the Admin commands that should be allowed during the processing of a Format NVM command .

If a Format NVM command is in progress, then an Admin command not listed in Figure 145 that is submitted
for any namespace affected by that Format NVM command may be aborted. If aborted for that reason, then
a status code of Format in Progress should be returned.

If there are Admin commands not listed in Figure 145 being processed for a namespace, then a Format
NVM command which is submitted that affects that namespace may be aborted. If aborted for that reason,
then a status code of Command Sequence Error should be returned.

Figure 145: Sanitize Operations and Format NVM Command – Admin Commands Allowed

Admin Command
Additional Restrictions for a Format

NVM Command
Additional Restrictions for a

Sanitize Operation

Abort

Asynchronous Event Request

Create I/O Completion Queue

Create I/O Submission Queue

Device Self–test Only Controller DST should be allowed Prohibited

Delete I/O Completion Queue

Delete I/O Submission Queue

Get Features

NVM Express® Base Specification, Revision 2.0e

165

Figure 145: Sanitize Operations and Format NVM Command – Admin Commands Allowed

Admin Command
Additional Restrictions for a Format

NVM Command
Additional Restrictions for a

Sanitize Operation

Get Log Page

The log pages allowed for both Format NVM command and sanitize operations
are listed below.

Log Pages
Additional Restrictions for both
Format NVM command and
sanitize operations

Error Information Return 0h in the LBA field.

SMART / Health Information

Changed Namespace List

Reservation Notification

Asymmetric Namespace Access

Sanitize Status

Vendor specific Prohibited for Sanitize

Persistent Event Log Prohibited for Sanitize

Boot Partition

Identify

Keep Alive

NVMe-MI Receive Allowed unless explicitly prohibited in the NVM Express Management Interface
Specification. NVMe-MI Send

Sanitize Prohibited

Set Features Namespace Write Protection Config Feature is not allowed.

Opcode 7Fh

The Fabrics commands allowed are listed below. Refer to section 6.

Fabrics command
Additional Restrictions for a
Format NVM Command and a
Sanitize Operation

Property Set

Connect

Disconnect

Property Get

Authentication Send

Authentication Receive

Vendor Specific
Commands are allowed that do not
affect or retrieve user data.

Vendor Specific Commands are allowed that do not affect or retrieve user data.

5.1 Abort command

The Abort command is used to abort a specific command previously submitted to the Admin Submission
Queue or an I/O Submission Queue. An Abort command is a best effort command; the command to abort
may have already completed, currently be in execution, or may be deeply queued.

To abort a large number of commands (e.g., a larger number of commands than the limit listed in the ACL
field), the host should follow the procedures described in section 3.7.3 to delete the I/O Submission Queue
and recreate the I/O Submission Queue.

The Abort command uses the Command Dword 10 field. All other command specific fields are reserved.

The Abort Command Limit field in the Identify Controller data structure (refer to Figure 280) indicates the
controller limit on concurrent execution of Abort commands. A host should not allow the number of
outstanding Abort commands to exceed this value. The controller may complete any excess Abort
commands with Abort Command Limit Exceeded status.

NVM Express® Base Specification, Revision 2.0e

166

Figure 146: Abort – Command Dword 10

Bits Description

31:16
Command Identifier (CID): This field specifies the command identifier of the command to be
aborted, that was specified in the CDW0.CID field within the command itself.

15:00
Submission Queue Identifier (SQID): This field specifies the identifier of the Submission Queue
that the command to be aborted is associated with.

 Command Completion

Upon completion of the Abort command, the controller posts a completion queue entry to the Admin
Completion Queue indicating the status for the Abort command and indicating whether the command to
abort was aborted. Dword 0 of the completion queue entry indicates whether the command to abort was
aborted.

If the command to abort was successfully aborted, then a completion queue entry for the aborted command
shall be posted to the appropriate Admin or I/O Completion Queue with a status code of Command Abort
Requested before the completion queue entry for the Abort command is posted to the Admin Completion
Queue, and bit 0 of Dword 0 shall be cleared to ‘0’ in the completion queue entry for the Abort command.
If the command to abort was not aborted for any reason, then bit 0 of Dword 0 shall be set to ‘1’ in the
completion queue entry for the Abort command.

Command specific status values associated with the Abort command are defined in Figure 147.

Figure 147: Abort – Command Specific Status Values

Value Description

3h
Abort Command Limit Exceeded: The number of concurrently outstanding Abort commands
has exceeded the limit indicated in the Identify Controller data structure.

5.2 Asynchronous Event Request command

Asynchronous events are used to notify host software of status, error, and health information as these
events occur. To enable asynchronous events to be reported by the controller, host software needs to
submit one or more Asynchronous Event Request commands to the controller. The controller specifies an
event to the host by completing an Asynchronous Event Request command. Host software should expect
that the controller may not execute the command immediately; the command should be completed when
there is an event to be reported.

The Asynchronous Event Request command is submitted by host software to enable the reporting of
asynchronous events from the controller. This command has no timeout. The controller posts a completion
queue entry for this command when there is an asynchronous event to report to the host. If Asynchronous
Event Request commands are outstanding when the controller is reset, then each of those commands is
aborted and should not return a CQE.

All command specific fields are reserved.

Host software may submit multiple Asynchronous Event Request commands to reduce event reporting
latency. The total number of simultaneously outstanding Asynchronous Event Request commands is limited
by the value indicated in the Asynchronous Event Request Limit field in the Identify Controller data structure
in Figure 280.

Asynchronous events are grouped into event types. The event type is indicated in the Asynchronous Event
Type field in Dword 0 of the completion queue entry for the Asynchronous Event Request command. When
the controller posts a completion queue entry for an outstanding Asynchronous Event Request command
and thus reports an asynchronous event, then, except for immediate events, subsequent events of that
event type are automatically masked by the controller until the host clears that event. Unless otherwise
stated (e.g., for immediate events), an event is cleared by reading the log page associated with that event
(refer to section 0). If that log page is not accessible because media is not ready (i.e., the controller aborts
the Get Log Page command with a status code of Admin Command Media Not Ready), then the controller

NVM Express® Base Specification, Revision 2.0e

167

shall not post a completion queue entry for that asynchronous event until the controller is able to
successfully return the log page that is required to be read to clear the asynchronous event.

The following event types are defined:

a) Error event: Indicates a general error that is not associated with a specific command (refer to
Figure 150). The controller shall set the Log Page Identifier field to the identifier of the Error
Information log page (i.e., 01h). To clear this event, host software reads that log page (i.e., the
Error Information log page (refer to section 5.16.1.2)) using the Get Log Page command with the
Retain Asynchronous Event bit cleared to ‘0’;

b) SMART / Health Status event: Indicates a SMART or health status event (refer to Figure 151).
The controller shall set the Log Page Identifier field to the identifier of the SMART/Health
Information log page (i.e., 02h). To clear this event, host software reads that log page (i.e., the
SMART / Health Information log (refer to section 5.16.1.3)) using the Get Log Page command with
the Retain Asynchronous Event bit cleared to ‘0’. The SMART / Health conditions that trigger
asynchronous events may be configured in the Asynchronous Event Configuration feature using
the Set Features command (refer to section 5.27.1.8);

c) Notice event: Indicates a general event (refer to Figure 152). The controller shall set the Log Page
Identifier field to the log page identifier of the appropriate log page as described in Figure 152. To
clear this event, host software reads that log page (i.e., the appropriate log page as described in
Figure 152). The conditions that trigger asynchronous events may be configured in the
Asynchronous Event Configuration feature using the Set Features command (refer to section
5.27.1.8);

d) I/O Command Specific Status events: Events that are specific to an I/O command (refer to Figure
153);

e) Immediate events: Events that are only reported when an outstanding Asynchronous Event
Request command exists at the time the event occurs. If the event occurs and there is no
outstanding Asynchronous Event Request command, then the event shall not be reported. No log
page is associated with these events. These events include:

A. Normal NVM Subsystem Shutdown event;

and

f) Vendor Specific event: Indicates a vendor specific event. To clear this event, host software reads
the indicated vendor specific log page using the Get Log Page command with the Retain
Asynchronous Event bit cleared to ‘0’.

The Sanitize Operation Completed With Unexpected Deallocation asynchronous event shall be supported
if the controller supports the Sanitize Config feature (refer to section 5.27.1.19).

Asynchronous events are reported due to a new entry being added to a log page (e.g., Error Information
log page), a status change (e.g., status in the SMART / Health log page), or occurrence of a defined
condition (e.g., Firmware Activation Starting, NVM Subsystem Normal Shutdown). A status change may be
permanent (e.g., the media has become read only) or transient (e.g., the temperature reached or exceeded
a threshold for a period of time). Host software should modify the event threshold or mask the event for
transient and permanent status changes before clearing that event to avoid repeated reporting of
asynchronous events caused by clearing an asynchronous event in the absence of change to the status
that caused that event to be reported.

If an event occurs for which reporting is enabled and there are no Asynchronous Event Request commands
outstanding, the controller should retain the event information for that Asynchronous Event Type and use
that information as a response to the next Asynchronous Event Request command that is received. If a Get
Log Page command clears the event prior to receiving the Asynchronous Event Request command or if a
Controller Level Reset occurs, then a notification is not sent. If multiple events of the same type occur that
have identical responses to the Asynchronous Event Request command, then those events may be
reported as a single response to an Asynchronous Event Request command. If multiple events occur that
are of different types or have different responses to the Asynchronous Event Request command, then the
controller should retain a queue of those events for reporting in responses to subsequent Asynchronous
Event Request commands.

NVM Express® Base Specification, Revision 2.0e

168

 Command Completion

A completion queue entry is posted to the Admin Completion Queue if there is an asynchronous event to
report to the host. Command specific status values associated with Asynchronous Event Request are
defined in Figure 148.

Figure 148: Status Code – Command Specific Status Values

Value Description

05h
Asynchronous Event Request Limit Exceeded: The number of concurrently outstanding
Asynchronous Event Request commands has been exceeded.

Dword 0 of the completion queue entry contains information about the asynchronous event. The definition
of Dword 0 of the completion queue entry is in Figure 149.

Figure 149: Asynchronous Event Request – Completion Queue Entry Dword 0

Bits Description

31:24 Reserved

23:16

Log Page Identifier: Indicates the log page associated with the asynchronous event. This log
page needs to be read by the host to clear the event.

For asynchronous events not associated with a log page (refer to section 5.2), this field should be
ignored by the host.

15:08
Asynchronous Event Information: This field indicates additional information about the
asynchronous event for the event indicated in the Asynchronous Event Type field.

07:03 Reserved

02:00

Asynchronous Event Type: Indicates the event type of the asynchronous event.

Value Definition Reference

000b Error status Figure 150

001b SMART / Health status Figure 151

010b Notice Figure 152

011b Immediate Figure 154

100b to 101b Reserved

110b I/O Command specific status Figure 153

111b Vendor specific

The information in either Figure 150, Figure 151, Figure 152, or Figure 153 is returned in the Asynchronous
Event Information field, depending on the Asynchronous Event Type.

Figure 150: Asynchronous Event Information – Error Status

Value Description

00h
Write to Invalid Doorbell Register: Host software wrote the doorbell of a queue that was not
created.

01h

Invalid Doorbell Write Value: Host software attempted to write an invalid doorbell value. Some
possible causes of this error are:

• the value written was out of range of the corresponding queue’s base address and size;

• the value written is the same as the previously written doorbell value;

• the number of commands that would be added as part of a doorbell write would exceed
the number of available entries;

• host software attempts to add a command to a full Submission Queue; and

• host software attempts to remove a completion queue entry from an empty Completion
Queue.

02h Diagnostic Failure: A diagnostic failure was detected. This may include a self-test operation.

03h
Persistent Internal Error: A failure occurred that is persistent and the controller is unable to
isolate to a specific set of commands. If this error is indicated, then the CSTS.CFS bit may be
set to ‘1’ and the host should perform a reset as described in section 3.6.

NVM Express® Base Specification, Revision 2.0e

169

Figure 150: Asynchronous Event Information – Error Status

Value Description

04h
Transient Internal Error: A transient error occurred that is specific to a particular set of
commands; controller operation may continue without a reset.

05h
Firmware Image Load Error: The firmware image could not be loaded. The controller reverted
to the previously active firmware image or a baseline read-only firmware image.

06h to FFh Reserved

Figure 151: Asynchronous Event Information – SMART / Health Status

Value Description

00h

NVM subsystem Reliability: NVM subsystem reliability has been compromised. This may be
due to significant media errors, an internal error, the media being placed in read only mode, or a
volatile memory backup device failing. This status value shall not be used if the read-only
condition on the media is due to a change in the write protection state of a namespace (refer to
section 8.12.1).

01h
Temperature Threshold: A temperature is greater than or equal to an over temperature
threshold or less than or equal to an under temperature threshold (refer to section 5.27.1.3).

02h Spare Below Threshold: Available spare capacity has fallen below the threshold.

03h to FFh Reserved

Figure 152: Asynchronous Event Information – Notice

Value Description

00h

Namespace Attribute Changed: Indicates a change to one or more of the following:

• the Identify Namespace data structure (refer to the applicable NVMe I/O Command Set
specification) for one or more namespaces;

• the I/O Command Set Independent Identify Namespace data structure;

• the Namespace List returned when the Identify command is issued with the CNS field
set to 02h; or

• other data structures as specified in applicable NVMe I/O Command Set specifications.

To clear this event, host software issues a Get Log Page command for the Changed Namespace
List log page (refer to section 5.16.1.5) with the Retain Asynchronous Event bit cleared to ‘0’.

A controller shall not send this event if:

a) Namespace Status (refer to Figure 285) has changed and shutdown processing is either
occurring (i.e., CSTS.SHST is set to 01b) or complete (i.e., CSTS.SHST is set to 10b);

b) the ANAGRPID field (refer to Figure 285) has changed; or
c) an I/O Command Set specific change occurs (refer to the applicable I/O Command Set

specification).

A controller shall only send this event for changes to the Format Progress Indicator field when
bits 6:0 of that field transition from a non-zero value to 0h, or from 0h to a non-zero value.

01h

Firmware Activation Starting: The controller is starting a firmware activation process during
which command processing is paused. The host may use CSTS.PP to determine when command
processing has resumed. To clear this event, the host reads the Firmware Slot Information log
page with the Retain Asynchronous Event bit cleared to ‘0’.

02h

Telemetry Log Changed: The controller has saved the controller internal state in the Telemetry
Controller-Initiated log page and set the Telemetry Controller-Initiated Data Available field to 1h
in that log page. To clear this event, the host issues a Get Log Page command with Retain
Asynchronous Event bit cleared to ‘0’ for the Telemetry Controller-Initiated log.

NVM Express® Base Specification, Revision 2.0e

170

Figure 152: Asynchronous Event Information – Notice

Value Description

03h

Asymmetric Namespace Access Change: The Asymmetric Namespace Access information
(refer to section 5.16.1.13) related to an ANA Group that contains namespaces attached to this
controller has changed (e.g., an ANA state has changed, an ANAGRPID has changed). The
current Asymmetric Namespace Access information for attached namespaces is indicated in the
Asymmetric Namespace Access log page (refer to section 5.16.1.13). To clear this event, the
host issues a Get Log Page command (refer to section 0) with the Retain Asynchronous Event
bit cleared to ‘0’ for the Asymmetric Namespace Access log.

A controller shall not send this event if a Namespace Attribute Changed notice is sent for the
same event, such as a change due to:

a) the attachment of a namespace (refer to section 5.22);
b) the deletion of a namespace (refer to section 5.23); or
c) the detachment of a namespace (refer to section 5.22).

04h

Predictable Latency Event Aggregate Log Change: Indicates that event pending entries for
one or more NVM Sets (refer to section 5.16.1.12) have been added to the Predictable Latency
Event Aggregate log. To clear this event, the host reads the Predictable Latency Event Aggregate
log page with the Retain Asynchronous Event bit cleared to ‘0’.

05h
1
 LBA Status Information Alert: I/O Command Set specific definition.

06h

Endurance Group Event Aggregate Log Page Change: Indicates that event entries for one or
more Endurance Groups (refer to section 5.16.1.10) have been added to the Endurance Group
Event Aggregate log. To clear this event, the host issues a Get Log Page command with the
Retain Asynchronous Event bit cleared to ‘0’ for the Endurance Group Event Aggregate log.

07h to EEh Reserved

EFh
2
 Zone Descriptor Changed: I/O Command Set specific definition.

F0h
Discovery Log Page Change: A change has occurred to one or more of the Discovery Log
Pages. To clear this event, the host or Discovery controller reads the Discovery log page with the
Retain Asynchronous Event bit cleared to ‘0’.

F1h to FFh Reserved for future NVMe over Fabrics Asynchronous Event Notifications

NOTE:
1. Refer to the NVM Command Set Specification.
2. Refer to the Zoned Namespace Command Set Specification.

Figure 153: Asynchronous Event Information – I/O Command Specific Status

Value Description

00h

Reservation Log Page Available: Indicates that one or more Reservation Notification log pages
(refer to section 5.16.1.24) have been added to the Reservation Notification log. To clear this
event, the host reads the Reservation log page with the Retain Asynchronous Event bit cleared
to ‘0’.

01h

Sanitize Operation Completed: Indicates that a sanitize operation has completed (including any
associated additional media modification, refer to the No-Deallocate Modifies Media After Sanitize
field in Figure 280) without unexpected deallocation of all user data (refer to section 5.27.1.19) and
status is available in the Sanitize Status log page (refer to section 5.16.1.25). To clear this event,
the host reads the Sanitize Status log page with the Retain Asynchronous Event bit cleared to ‘0’.

02h

Sanitize Operation Completed With Unexpected Deallocation: Indicates that a sanitize
operation for which No-Deallocate After Sanitize (refer to Figure 308) was requested has completed
with the unexpected deallocation of all user data (refer to section 5.27.1.19) and status is available
in the Sanitize Status log page (refer to section 5.16.1.25). To clear this event, the host reads the
Sanitize Status log page with the Retain Asynchronous Event bit cleared to ‘0’.

03h to FFh Reserved

NVM Express® Base Specification, Revision 2.0e

171

Figure 154: Asynchronous Event Information – Immediate

Value Description

00h

NVM Subsystem Normal Shutdown: This controller has started performing a normal NVM
Subsystem Shutdown that is due to:

• the value 4E726D6Ch ("Nrml") has been written to the NSSD.NSSC field within the NVM
subsystem or Domain; or

• an NVMe-MI Shutdown command (refer to the NVM Express Management Interface
Specification) being processed.

Refer to section 3.6.3.

01h to FFh Reserved

5.3 Capacity Management command

Host software uses the Capacity Management command to configure Endurance Groups and NVM Sets in
an NVM subsystem by either selecting one of a set of supported configurations (i.e., Fixed Capacity
Management; refer to section 8.3.2) or by specifying the capacity of the Endurance Group or NVM Set to
be created (i.e., Variable Capacity Management; refer to section 8.3.3). The Capacity Management
command specifies the operations defined in Figure 155.

The Capacity Management command uses the Command Dword 10, Command Dword 11, and Command
Dword 12 fields. All other command specific fields are reserved.

For requirements to support the operations in Figure 155, refer to section 8.3.

Figure 155: Capacity Management – Command Dword 10

Bits Description

31:16 Element Identifier: This field contains a value specific to the value of the Operation field.1

15:04 Reserved

NVM Express® Base Specification, Revision 2.0e

172

Figure 155: Capacity Management – Command Dword 10

Bits Description

03:00

Operation: Specifies the operation to be performed by the controller:

Value Description Element Identifier Field

0h

Select Capacity Configuration: Endurance
Groups and NVM Sets are configured as indicated
by the Capacity Configuration Descriptor specified
by this command (refer to section 5.3.1).

Capacity Configuration Identifier (refer
to Figure 256).

1h

Create Endurance Group: An Endurance Group
is created (refer to section 8.3.3) with the capacity
specified by the Capacity Lower field (refer to
Figure 156) and the Capacity Upper field (refer to
Figure 157).

Domain Identifier (refer to section
3.2.4.3) of the domain in which the
Endurance Group is to be created. A
value of 0h specifies that the controller
selects the domain in which the
Endurance Group is created.

2h

Delete Endurance Group: The Endurance Group
specified by this command is deleted (refer to
section 8.3.3). All namespaces and NVM Sets
contained by the Endurance Group are deleted.

Endurance Group Identifier of the
Endurance Group to be deleted.

3h

Create NVM Set: An NVM Set is created (refer to
section 8.3.3) in the specified Endurance Group
with the capacity specified by the Capacity Lower
field and the Capacity Upper field.

If the controller does not support NVM Sets, then
this operation is not supported.

Endurance Group Identifier of the
Endurance Group in which the NVM
Set is to be created. A value of 0h
specifies that the controller selects the
Endurance Group in which the NVM
Set is created.

4h

Delete NVM Set: The NVM Set specified by this
command is deleted (refer to section 8.3.3). All
namespaces in the NVM Set are deleted.

If the controller does not support NVM Sets, then
this operation is not supported.

NVM Set identifier of the NVM Set to be
deleted.

5h to Fh Reserved

Notes:
1. If the Element Identifier field specifies a non-zero value which does not correspond to an existing capacity entity,

then the controller shall abort the command with a status code of Invalid Field in Command.

Figure 156: Capacity Management – Command Dword 11

Bits Description

31:00
Capacity Lower: This field specifies the least significant 32 bits of the capacity in bytes of the Endurance
Group or NVM Set to be created.

Figure 157: Capacity Management – Command Dword 12

Bits Description

31:00
Capacity Upper: This field specifies the most significant 32 bits of the capacity in bytes of the Endurance
Group or NVM Set to be created.

If the Operation field specifies the Create Endurance Group operation or the Create NVM Set operation,
then the Capacity Upper and Capacity Lower fields specify the capacity of the Endurance Group or NVM
Set to be created. If the Operation field specifies any other operation, then the Capacity Upper field and the
Capacity Lower field are reserved.

 Media Unit Configuration Selection

If:

a) the Operation field specifies the Select Capacity Configuration operation;

NVM Express® Base Specification, Revision 2.0e

173

b) the Element Identifier field specifies a Capacity Configuration Descriptor in the Supported
Capacity Configuration List; and

c) the Selected Configuration field of the Media Unit Status log page (refer to Figure 253) is cleared
to 0h,

then the controller shall perform all of the following actions in sequence:

1) Create an Endurance Group for each Endurance Group Configuration Descriptor in the selected
Capacity Configuration Descriptor.

2) Create an NVM Set for each NVM Set Identifier specified in each Endurance Group Configuration
Descriptor, if any.

If the Operation field specifies the Select Capacity Configuration operation and the Element Identifier field
is cleared to ‘0’, then the controller shall clear the configuration by performing all of the following actions in
sequence:

1) Delete all namespaces in the domain that contains the controller processing the command, as
described in section 8.11.

2) Delete all NVM Sets in the domain that contains the controller processing the command, if any.
3) Delete all Endurance Groups in the domain that contains the controller processing the command.
4) Clear the Selected Configuration field to 0h in the Media Unit Status log page.

If the Operation field specifies the Select Capacity Configuration operation and the Element Identifier field
specifies the value reported in the Selected Configuration field of the Media Unit Status log page (i.e., the
currently-selected configuration), then the controller shall complete the command without error and shall
make no change to the capacity configuration.

If the Operation field specifies the Select Capacity Configuration operation and:

a) the Element Identifier field does not specify either a value of 0h or the Capacity Configuration
Identifier of a Capacity Configuration Descriptor in the Capacity Configuration List; or

b) the Selected Configuration field of the Media Unit Status log page (refer to Figure 253) is not
cleared to 0h,

then the controller shall abort the command with a status code of Invalid Field in Command and no changes
shall be made to the configuration of any Media Unit.

 Endurance Group Operations

If the Operation field specifies the Create Endurance Group operation, the controller shall select a non-zero
Endurance Group Identifier not assigned to an existing Endurance Group in the specified domain (refer to
Figure 155) and indicate that value in Dword 0 of the completion queue entry (refer to Figure 159). If a non-
zero unassigned Endurance Group Identier is unavailable, then the controller shall abort the command with
a status code of Identifier Unavailable.

If the Operation field specifies the Create Endurance Group operation and Media Units are supported, then
the controller selects Media Units from the specified domain to be allocated to the Endurance Group.

If the Operation field specifies the Create Endurance Group operation and Media Units are not supported,
then the controller selects NVM capacity from the specified domain to be allocated to the Endurance Group.

If the Operation field specifies the Create Endurance Group operation and the Capacity Lower and Capacity
Upper fields specify a value that requires allocation of NVM capacity that is greater than the value in:

a) the Max Endurance Group Capacity (MEGCAP) field in the Identify Controller data structure;
b) the Unallocated NVM Capacity (UNVMCAP) field in the Identify Controller data structure; or
c) the Max Endurance Group Capacity (MEGCAP) field in the Domain Attributes Entry for the

domain in which the Endurance Group is being created,

then the controller:

a) shall abort the command with Insufficient Capacity status; and

NVM Express® Base Specification, Revision 2.0e

174

b) if the Error Information log page is supported, shall indicate in the Command Specific Information
field in the Error Information Log Entry data structure (refer to Figure 211) the total amount of
NVM capacity in bytes of the largest Endurance Group that is able to be created.

If the Operation field specifies the Delete Endurance Group operation and the Element Identifier field
specifies a value of 0h or the identifier of an Endurance Group that does not exist, then the controller shall
abort the command with Invalid Field in Command status.

 NVM Set Operations

If the Operation field specifies the Create NVM Set operation, the controller shall select a non-zero NVM
Set Identifier not assigned to an existing NVM Set in the specified Endurance Group (refer to Figure 155)
and indicate that value in the completion queue entry. If a non-zero unassigned NVM Set Identifier is
unavailable, then the controller shall abort the command with a status code of Identifier Unavailable.

If the Operation field specifies the Create NVM Set operation and the Capacity Lower and Capacity Upper
fields specify a value that requires allocation of NVM capacity that is greater than the value in the
Unallocated Endurance Group Capacity (UEGCAP) field in the Endurance Group Information log page
(refer to Figure 222) for the specified Endurance Group, then the controller:

a) if the Error Information log page is supported, shall indicate in the Command Specific Information
field in the Error Information Log Entry data structure (refer to Figure 211) the total amount of
NVM capacity in bytes of the largest NVM Set that is able to be created; and

b) shall abort the command with Insufficient Capacity status.

If the Operation field specifies the Create NVM Set operation and the Element Identifier field is cleared to
0h, then the controller shall choose an existing Endurance Group in an existing domain in which to create
the NVM Set.

If the Operation field specifies the Create NVM Set operation and Media Units are supported, then the
controller selects Media Units from the Endurance Group to be allocated to the NVM Set.

If the Operation field specifies the Create NVM Set operation and Media Units are not supported, then the
controller selects NVM capacity from the Endurance Group to be allocated to the NVM Set.

If the Operation field specifies the Delete NVM Set operation and the Element Identifier field specifies a
value of 0h or the identifier of an NVM Set that does not exist, then the controller shall abort the command
with Invalid Field in Command status.

If the controller does not support NVM Sets and the Operation field specifies either the Create NVM Set
operation or the Delete NVM Set operation, then the controller shall abort the command with Invalid Field
in Command status.

 Command Completion

Upon completion of the Capacity Management command, the controller posts a completion queue entry to
the Admin Completion Queue. Capacity Management command specific status values are defined in Figure
158.

Figure 158: Capacity Management – Command Specific Status Values

Value Description

26h

Insufficient Capacity: The requested operation requires more free space than is currently available.
The Command Specific Information field in the Error Information Log Entry data structure (refer to
Figure 211) specifies the total amount of NVM capacity in bytes required to create the Endurance
Group or NVM Set.

2Dh Identifer Unavailable: The number of Endurance Groups or NVM Sets supported has been exceeded.

Dword 0 of the completion queue entry contains the identifier of the Endurance Group or NVM Set created,
if any. Completion queue entry Dword 0 is defined in Figure 159.

NVM Express® Base Specification, Revision 2.0e

175

Figure 159: Capacity Management – Completion Queue Entry Dword 0

Bits Description

31:16 Reserved

15:00

Created Element Identifier: This field indicates the identifier of the NVM Set that was created if
the Create NVM Set operation was used.

This field indicates the identifier of the Endurance Group Identifier if the Create Endurance Group
operation was used.

This field is reserved for all other operations.

5.4 Create I/O Completion Queue command

The Create I/O Completion Queue command is used to create all I/O Completion Queues with the exception
of the Admin Completion Queue. The Admin Completion Queue is created by specifying its base address
in the ACQ property. If a PRP List is provided to describe the CQ, then the PRP List shall be maintained by
host software at the same location in host physical memory and the values in the PRP List shall not be
modified until the corresponding Delete I/O Completion Queue command for this CQ is completed
successfully or the controller is reset. If the PRP List values are modified, the behavior is undefined.

The Create I/O Completion Queue command uses the PRP Entry 1, Command Dword 10, and Command
Dword 11 fields. All other command specific fields are reserved.

Figure 160: Create I/O Completion Queue – PRP Entry 1

Bits Description

63:00

PRP Entry 1 (PRP1): If CDW11.PC is set to ‘1’, then this field specifies a 64-bit base memory
address pointer of the Completion Queue that is physically contiguous. The address pointer is
memory page aligned (based on the value in CC.MPS) unless otherwise specified. If CDW11.PC
is cleared to ‘0’, then this field specifies a PRP List pointer that describes the list of pages that
constitute the Completion Queue. The list of pages is memory page aligned (based on the value
in CC.MPS) unless otherwise specified. In both cases the PRP Entry shall have an offset of 0h. In
a non-contiguous Completion Queue, each PRP Entry in the PRP List shall have an offset of 0h.
If there is a PRP Entry with a non-zero offset, then the controller should return an error of PRP
Offset Invalid.

Figure 161: Create I/O Completion Queue – Command Dword 10

Bits Description

31:16
Queue Size (QSIZE): This field indicates the size of the Completion Queue to be created. If the
size is 0h or larger than the controller supports, the controller should return an error of Invalid
Queue Size. Refer to section 3.3.3.2.2. This is a 0’s based value.

15:00

Queue Identifier (QID): This field indicates the identifier to assign to the Completion Queue to be
created. This identifier corresponds to the Completion Queue Head Doorbell used for this
command (i.e., the value y in the CQyHDBL section of the NVMe over PCIe Transport
Specification). This value shall not exceed the value reported in the Number of Queues feature
(refer to section 5.27.1.5) for I/O Completion Queues. If the value specified is 0h, exceeds the
Number of Queues reported, or corresponds to an identifier already in use, the controller should
return an error of Invalid Queue Identifier.

Figure 162: Create I/O Completion Queue – Command Dword 11

Bits Description

31:16
Interrupt Vector (IV): This field’s value is transport specific and is described in the applicable
NVMe Transport binding specification if required. If not defined by the transport, then this field
shall be cleared to 0h.

15:02 Reserved

NVM Express® Base Specification, Revision 2.0e

176

Figure 162: Create I/O Completion Queue – Command Dword 11

Bits Description

01
Interrupts Enabled (IEN): If set to ‘1’, then interrupts are enabled for this Completion Queue. If
cleared to ‘0’, then interrupts are disabled for this Completion Queue.

00

Physically Contiguous (PC): If set to ‘1’, then the Completion Queue is physically contiguous
and PRP Entry 1 (PRP1) is the address of a contiguous physical buffer. If cleared to ‘0’, then the
Completion Queue is not physically contiguous and PRP Entry 1 (PRP1) is a PRP List pointer. If
this bit is cleared to ‘0’ and CAP.CQR is set to ‘1’, then the controller should return an error of
Invalid Field in Command.

If the:

• queue is located in the Controller Memory Buffer;

• PC is cleared to ‘0’; and

• CMBLOC.CQPDS is cleared to ‘0’,

then the controller shall abort the command with Invalid Use of Controller Memory Buffer status.

 Command Completion

If the command is completed, then the controller shall post a completion queue entry to the Admin
Completion Queue indicating the status for the command.

Create I/O Completion Queue command specific status values are defined in Figure 163.

Figure 163: Create I/O Completion Queue – Command Specific Status Values

Value Description

1h

Invalid Queue Identifier: The creation of the I/O Completion Queue failed due to an invalid
queue identifier specified as part of the command. An invalid queue identifier is one that identifies
the Admin Queue (i.e., 0h), is outside the range supported by the controller, or is a Completion
Queue Identifier that is already in use.

2h

Invalid Queue Size: The host attempted to create an I/O Completion Queue:

• with an invalid number of entries (e.g., a value of 0h or a value which exceeds the
maximum supported by the controller, specified in CAP.MQES); or

• before initializing the CC.IOCQES field.

8h
Invalid Interrupt Vector: The creation of the I/O Completion Queue failed due to an invalid
interrupt vector specified as part of the command.

5.5 Create I/O Submission Queue command

The Create I/O Submission Queue command is used to create I/O Submission Queues. The Admin
Submission Queue is created by specifying its base address in the ASQ property. If a PRP List is provided
to describe the SQ to be created, then the PRP List shall be maintained by host software at the same
location in host physical memory and the values in the PRP List shall not be modified until the corresponding
Delete I/O Submission Queue command for that SQ is completed or the controller is reset. If the PRP List
values are modified, the behavior is undefined.

NVM Express® Base Specification, Revision 2.0e

177

The Create I/O Submission Queue command uses the PRP Entry 1, Command Dword 10, Command
Dword 11, and Command Dword 12 fields. All other command specific fields are reserved.

Figure 164: Create I/O Submission Queue – PRP Entry 1

Bits Description

63:00

PRP Entry 1 (PRP1): If CDW11.PC is set to ‘1’, then this field specifies a 64-bit base memory
address pointer of the Submission Queue that is physically contiguous. The address pointer is
memory page aligned (based on the value in CC.MPS) unless otherwise specified. If CDW11.PC
is cleared to ‘0’, then this field specifies a PRP List pointer that describes the list of pages that
constitute the Submission Queue. The list of pages is memory page aligned (based on the value
in CC.MPS) unless otherwise specified. In both cases, the PRP Entry shall have an offset of 0h.
In a non-contiguous Submission Queue, each PRP Entry in the PRP List shall have an offset of
0h. If there is a PRP Entry with a non-zero offset, then the controller should return an error of PRP
Offset Invalid.

Figure 165: Create I/O Submission Queue – Command Dword 10

Bits Description

31:16
Queue Size (QSIZE): This field specifies the size of the Submission Queue to be created. If the
size is 0h or larger than the controller supports, the controller should return an error of Invalid
Queue Size. Refer to section 3.3.3.2.2. This is a 0’s based value.

15:00

Queue Identifier (QID): This field specifies the identifier to assign to the Submission Queue to be
created. This identifier corresponds to the Submission Queue Tail Doorbell used for this command
(i.e., the value y in SQyTDBL section of the NVMe over PCIe Transport Specification). This value
shall not exceed the value reported in the Number of Queues feature (refer to section 5.27.1.5) for
I/O Submission Queues. If the value specified is 0h, exceeds the Number of Queues reported, or
corresponds to an identifier already in use, the controller should return an error of Invalid Queue
Identifier.

Figure 166: Create I/O Submission Queue – Command Dword 11

Bits Description

31:16

Completion Queue Identifier (CQID): This field specifies the identifier of the I/O Completion
Queue to utilize for any command completions entries associated with this Submission Queue.
If the value specified:

a) is 0h (i.e., the Admin Completion Queue), then the controller should return an error of
Invalid Queue Identifier;

b) is outside the range supported by the controller, then the controller should return an error
of Invalid Queue Identifier; or

c) is within the range supported by the controller and does not specify an I/O Completion
Queue that has been created, then the controller should return an error of Completion
Queue Invalid.

15:03 Reserved

02:01

Queue Priority (QPRIO): This field specifies the priority class to use for commands within this
Submission Queue. This field is only used when the weighted round robin with urgent priority class
is the arbitration mechanism selected. This field shall be ignored by the controller if weighted round
robin with urgent priority class is not used. Refer to section 3.4.4.

Value Definition

00b Urgent

01b High

10b Medium

11b Low

NVM Express® Base Specification, Revision 2.0e

178

Figure 166: Create I/O Submission Queue – Command Dword 11

Bits Description

00

Physically Contiguous (PC): If set to ‘1’, then the Submission Queue is physically contiguous
and PRP Entry 1 (PRP1) is the address of a contiguous physical buffer. If cleared to ‘0’, then the
Submission Queue is not physically contiguous and PRP Entry 1 (PRP1) is a PRP List pointer. If
this bit is cleared to ‘0’ and CAP.CQR is set to ‘1’, then the controller should return an error of
Invalid Field in Command.

If the:

• queue is located in the Controller Memory Buffer;

• PC is cleared to ‘0’; and

• CMBLOC.CQPDS is cleared to ‘0’,

then the controller shall abort the command with Invalid Use of Controller Memory Buffer status.

Figure 167: Create I/O Submission Queue – Command Dword 12

Bits Description

31:16 Reserved

15:00

NVM Set Identifier (NVMSETID): This field indicates the identifier of the NVM Set to be
associated with this Submission Queue.

If this field is cleared to 0h or the SQ Associations capability is not supported (refer to section
8.22), then this Submission Queue is not associated with any specific NVM Set.

If this field is set to a non-zero value that is not specified in the NVM Set List (refer to Figure 283)
and the SQ Associations feature is supported (refer to section 8.22), then the controller shall abort
the command with a status code of Invalid Field in Command.

The host should not submit commands for namespaces associated with other NVM Sets in this
Submission Queue (refer to section 8.22).

 Command Completion

Upon completion of the Create I/O Submission Queue command, the controller posts a completion queue
entry to the Admin Completion Queue.

Create I/O Submission Queue command specific status values are defined in Figure 168.

Figure 168: Create I/O Submission Queue – Command Specific Status Values

Value Description

0h
Completion Queue Invalid: The Completion Queue identifier specified in the command has not been
created.

1h

Invalid Queue Identifier: The creation of the I/O Submission Queue failed due an invalid queue identifier
specified as part of the command. An invalid queue identifier is one that identifies the Admin Queue (i.e.,
0h), is outside the range supported by the controller, or is a Submission Queue Identifier that is already in
use.

2h

Invalid Queue Size: The host attempted to create an I/O Submission Queue:

• with an invalid number of entries (e.g., a value of 0h or a value which exceeds the maximum
supported by the controller, specified in CAP.MQES); or

• before initializing the CC.IOSQES field.

5.6 Delete I/O Completion Queue command

The Delete I/O Completion Queue command is used to delete an I/O Completion Queue. The Delete I/O
Completion Queue command uses the Command Dword 10 field. All other command specific fields are
reserved. After this command has completed, the PRP List that describes the Completion Queue may be
deallocated by host software.

NVM Express® Base Specification, Revision 2.0e

179

Host software shall ensure that any associated I/O Submission Queue is deleted prior to deleting a
Completion Queue. If there are any associated I/O Submission Queues present, then the Delete I/O
Completion Queue command shall abort with a status code of Invalid Queue Deletion.

Note: It is not possible to delete the Admin Completion Queue.

Figure 169: Delete I/O Completion Queue – Command Dword 10

Bits Description

31:16 Reserved

15:00
Queue Identifier (QID): This field indicates the identifier of the Completion Queue to be deleted.
The value of 0h (Admin Completion Queue) shall not be specified.

 Command Completion

Upon completion of the Delete I/O command, the controller posts a completion queue entry to the Admin
Completion Queue. Delete I/O Completion Queue command specific status values are defined in Figure
170.

Figure 170: Delete I/O Completion Queue – Command Specific Status Values

Value Description

01h
Invalid Queue Identifier: The Queue Identifier specified in the command is invalid. This error is also
indicated if the Admin Completion Queue identifier is specified.

0Ch
Invalid Queue Deletion: This error indicates that it is invalid to delete the I/O Completion Queue
specified. The typical reason for this error condition is that there is an associated I/O Submission
Queue that has not been deleted.

5.7 Delete I/O Submission Queue command

The Delete I/O Submission Queue command is used to delete an I/O Submission Queue. The Delete I/O
Submission Queue command uses the Command Dword 10 field. All other command specific fields are
reserved. After this command has completed, the PRP List that describes the Submission Queue may be
deallocated by host software.

Upon successful completion of the Delete I/O Submission Queue command, all I/O commands previously
submitted to the indicated Submission Queue shall be either explicitly completed or implicitly completed.
Prior to returning a completion queue entry for the Delete I/O Submission Queue command, other
commands previously submitted to the I/O Submission Queue to be deleted may be completed with
appropriate status (e.g., Successful Completion, Command Aborted due to SQ Deletion). After successful
completion of the Delete I/O Submission Queue command, the controller shall not post completion status
for any I/O commands that were submitted to the deleted I/O Submission Queue. The successful
completion of the Delete I/O Submission Queue command indicates an implicit completion status of
Command Aborted due to SQ Deletion for any previously submitted I/O commands that did not have a
completion queue entry posted by the controller.

Note: It is not possible to delete the Admin Submission Queue.

Figure 171: Delete I/O Submission Queue – Command Dword 10

Bits Description

31:16 Reserved

15:00
Queue Identifier (QID): This field indicates the identifier of the Submission Queue to be deleted.
The value of 0h (Admin Submission Queue) shall not be specified.

 Command Completion

After all commands submitted to the indicated I/O Submission Queue are either completed or aborted, a
completion queue entry is posted to the Admin Completion Queue when the queue has been deleted.
Delete I/O Submission Queue command specific status values are defined in Figure 172.

NVM Express® Base Specification, Revision 2.0e

180

Figure 172: Delete I/O Submission Queue – Command Specific Status Values

Value Description

1h
Invalid Queue Identifier: The Queue Identifier specified in the command is invalid. This error is also
indicated if the Admin Submission Queue identifier is specified.

5.8 Doorbell Buffer Config command

The Doorbell Buffer Config command is used to provide two separate memory buffers that mirror the
controller's doorbell properties defined in section 3.1.4. This command is intended for emulated controllers
and is not typically supported by a physical NVMe controller. The two buffers are known as “Shadow
Doorbell” and “EventIdx”, respectively. Refer to “Updating Controller Doorbell Properties using a Shadow
Doorbell Buffer” in the annex for an example of how these buffers may be used.

The Doorbell Buffer Config command uses the PRP Entry 1 and PRP Entry 2 fields. All other command
specific fields are reserved. The command is not namespace specific, does not support metadata, and does
not support SGLs. The settings are not retained across a Controller Level Reset.

Each buffer supplied with the Doorbell Buffer Config command shall be a single physical memory page as
defined by the CC.MPS field. The controller shall ensure that the following condition is satisfied:

 (4 << CAP.DSTRD) * (max(NSQA, NCQA)+1) <= (2^(12+CC.MPS))

Figure 173: Doorbell Buffer Config – Shadow Doorbell and EventIdx

Start

(Offset in Buffer)
1, 2

End

(Offset in Buffer)
1, 2

Description

2

00h 03h Submission Queue 0 Tail Doorbell or EventIdx (Admin)

00h + (1 *
(4 << CAP.DSTRD))

03h + (1 *
(4 << CAP.DSTRD))

Completion Queue 0 Head Doorbell or EventIdx (Admin)

00h + (2 *
(4 << CAP.DSTRD))

03h + (2 *
(4 << CAP.DSTRD))

Submission Queue 1 Tail Doorbell or EventIdx

00h + (3 *
(4 << CAP.DSTRD))

03h + (3 *
(4 << CAP.DSTRD))

Completion Queue 1 Head Doorbell or EventIdx

… … ...

00h + (2y *
(4 << CAP.DSTRD))

03h + (2y *
(4 << CAP.DSTRD))

Submission Queue y Tail Doorbell or EventIdx

00h + ((2y + 1) *
(4 << CAP.DSTRD))

03h + ((2y + 1) *
(4 << CAP.DSTRD))

Completion Queue y Head Doorbell or EventIdx

Notes:
1. The offsets in Start and End are referenced to the value provided in PRP1 for the doorbell buffer and to the

value provided in PRP2 for the EventIdx buffer.
2. The value of y is equal to max(NSQA, NCQA).

Figure 174: Doorbell Buffer Config – PRP Entry 1

Bits Description

63:00
PRP Entry 1 (PRP1): This field specifies a 64-bit base memory address pointer to the Shadow
Doorbell buffer with the definition specified in Figure 173. The Shadow Doorbell buffer is updated
by the host. This buffer shall be memory page aligned.

Figure 175: Doorbell Buffer Config – PRP Entry 2

Bits Description

63:00
PRP Entry 2 (PRP2): This field specifies a 64-bit base memory address pointer to the EventIdx
buffer with the definition specified in Figure 173. The EventIdx buffer is updated by the para-
virtualized controller. This buffer shall be memory page aligned.

NVM Express® Base Specification, Revision 2.0e

181

 Command Completion

When the command is completed, the controller posts a completion queue entry to the Admin Completion
Queue indicating the status for the command. If the Shadow Doorbell buffer or EventIdx buffer memory
addresses are invalid, then a status code of Invalid Field in Command shall be returned.

5.9 Device Self-test command

The Device Self-test command is used to start a device self-test operation or abort a device self-test
operation (refer to section 8.6). The Device Self-test command is used specifically to:

a) start a short device self-test operation;
b) start an extended device self-test operation;
c) start a vendor specific device self-test operation; or
d) abort a device self-test operation already in process.

The device self-test operation is performed by the controller that the Device Self-test command was
submitted to. The Namespace Identifier field controls which namespaces are included in the device self-
test operation as specified in Figure 176.

Figure 176: Device Self-test Namespace Test Action

NSID Value Description

00000000h
Specifies that the device self-test operation shall not include any namespaces, and only the
controller is included as part of the device self-test operation.

00000001h to
FFFFFFFEh

Specifies that the device self-test operation shall include the specified namespace. If this field
specifies an invalid namespace ID, then the controller shall abort the command with a status
code of Invalid Namespace or Format. If this field specifies an inactive namespace ID, then
the controller shall abort the command with a status code of Invalid Field in Command.

FFFFFFFFh
Specifies that the device self-test operation shall include all attached namespaces accessible
through the controller at the time the device self-test operation is started.

The Device Self-test command uses the Command Dword 10 field. All other command specific fields are
reserved.

Figure 177: Device Self-test – Command Dword 10

Bits Description

31:04 Reserved

03:00

Self-test Code (STC): This field specifies the action taken by the Device Self-test command.

Value Definition

0h Reserved

1h Start a short device self-test operation

2h Start an extended device self-test operation

3h to Dh Reserved

Eh Vendor specific

Fh Abort device self-test operation

The processing of a Device Self-test command and interactions with a device self-test operation already in
progress is defined in Figure 178.

Figure 178: Device Self-test – Command Processing

Self-test in

Progress
1

Self-test Code value in new
Drive Self-test command

Controller Action

Yes 1h – Short device self-test

NVM Express® Base Specification, Revision 2.0e

182

Figure 178: Device Self-test – Command Processing

Self-test in

Progress
1

Self-test Code value in new
Drive Self-test command

Controller Action

2h – Extended device self-test
Abort the new Device Self-test command with a status
code of Device Self-test in Progress.

Eh – Vendor specific Vendor specific

Fh – Abort device self-test

The controller takes the following actions in order:

1. Abort device self-test operation in progress;
2. Create log entry in the Newest Self-test Result

Data Structure in the Device Self-test Log;
3. Set the Current Device Self-test Status field in the

Device Self-test Log to 0h; and
4. Completes command successfully.

No

1h – Short device self-test

The controller takes the following actions in order:

1. Validate the command parameters;
2. Set the Current Device Self-test Status field in the

Device Self-test Log to 1h;
3. Start a device self-test operation; and
4. Completes command successfully.

2h – Extended device self-test

The controller takes the following actions in order:

1. Validate the command parameters;
2. Set the Current Device Self-test Status field in the

Device Self-test Log to 2h;
3. Start a device self-test operation; and
4. Completes command successfully.

Eh – Vendor specific Vendor specific

Fh – Abort device self-test
Completes command successfully. The Device Self-test
Log is not modified.

Notes:
1. If bit 0 is cleared to ‘0’ in the Device Self-test Options (DSTO) of the Identify Controller data structure (refer to

Figure 280), then the Self-test in Progress column represents that a device self-test operation is in progress on
the controller that the new Device Self-test command was received on. If bit 0 is set to ‘1’ in the Device Self-test
Options (DSTO) of the Identify Controller data structure, then the Self-test in Progress column represents that
a device self-test operation is in progress on the NVM subsystem.

 Command Completion

A completion queue entry is posted to the Admin Completion Queue after the appropriate actions are taken
as specified in Figure 178. Device Self-test command specific status values are defined in Figure 179.

Figure 179: Device Self-test – Command Specific Status Values

Value Description

1Dh
Device Self-test in Progress: The controller or NVM subsystem already has a device self-test
operation in process.

5.10 Directive Receive command

The Directive Receive command returns a data buffer that is dependent on the Directive Type. Refer to
section 8.7.

NVM Express® Base Specification, Revision 2.0e

183

The Directive Receive command uses the Data Pointer, Command Dword 10, and Command Dword 11
fields. Command Dword 12 and Dword 13 may be used based on the Directive Type field and the Directive
Operation field. All other command specific fields are reserved.

If the Number of Dwords (NUMD) field corresponds to a length that is less than the size of the data structure
to be returned, then only that specified portion of the data structure is transferred. If the NUMD field
corresponds to a length that is greater than the size of the associated data structure, then the entire contents
of the data structure are transferred and no additional data is transferred.

Figure 180: Directive Receive – Data Pointer

Bits Description

127:00
Data Pointer (DPTR): This field specifies the start of the data buffer. Refer to Figure 90 for the
definition of this field.

Figure 181: Directive Receive – Command Dword 10

Bits Description

31:00
Number of Dwords (NUMD): This field specifies the number of dwords to transfer. This is a 0’s
based value.

Figure 182: Directive Receive – Command Dword 11

Bits Description

31:16
Directive Specific (DSPEC): The interpretation of this field is Directive Type dependent. Refer to
section 8.7.

15:08
Directive Type (DTYPE): This field specifies the Directive Type. Refer to Figure 421 for the list of
Directive Types.

07:00
Directive Operation (DOPER): This field specifies the Directive Operation to perform. The
interpretation of this field is Directive Type dependent. Refer to section 8.7.

 Command Completion

When the command is completed, the controller posts a completion queue entry to the Admin Completion
Queue indicating the status for the command. Command specific status values that may be returned are
dependent on the Directive Type, refer to section 8.7.

5.11 Directive Send command

The Directive Send command transfers a data buffer that is dependent on the Directive Type to the
controller. Refer to section 8.7.

The Directive Send command uses the Data Pointer, Command Dword 10, and Command Dword 11 fields.
Command Dword 12 and Command Dword 13 may be used based on the Directive Type field and the
Directive Operation field. All other command specific fields are reserved.

Figure 183: Directive Send – Data Pointer

Bits Description

127:00
Data Pointer (DPTR): This field specifies the start of the data buffer. Refer to Figure 90 for the
definition of this field.

Figure 184: Directive Send – Command Dword 10

Bits Description

31:00
Number of Dwords (NUMD): This field specifies the number of dwords to transfer. This is a 0’s
based value.

NVM Express® Base Specification, Revision 2.0e

184

Figure 185: Directive Send – Command Dword 11

Bits Description

31:16
Directive Specific (DSPEC): The interpretation of this field is Directive Type dependent. Refer to
section 8.7.

15:08
Directive Type (DTYPE): This field specifies the Directive Type. Refer to Figure 421 for the list of
Directive Types.

07:00
Directive Operation (DOPER): This field specifies the Directive Operation to perform. The
interpretation of this field is Directive Type dependent. Refer to section 8.7.

 Command Completion

When the command is completed, the controller posts a completion queue entry to the Admin Completion
Queue indicating the status for the command. Command specific status values that may be returned are
dependent on the Directive Type, refer to section 8.7.

5.12 Firmware Commit command

Note: This command was known in NVM Express Base Specification revisions prior to revision 1.2 as
“Firmware Activate.”

The Firmware Commit command is used to modify the firmware image or Boot Partitions.

When modifying a firmware image, the Firmware Commit command verifies that a valid firmware image
has been downloaded and commits that revision to a specific firmware slot. The host may select the
firmware image to activate on the next Controller Level Reset as part of this command. The host may
determine the currently executing firmware revision by examining the Firmware Revision field in the Identify
Controller data structure in Figure 280. The host may determine the firmware revision to be executed on
the next Controller Level Reset by examining the Firmware Slot Information log page. All controllers in a
domain share firmware slots and the same firmware image is applied to all controllers in that domain (i.e.,
all the controllers in the NVM subsystem if multiple domains are not supported or all the controllers in that
domain if multiple domains are supported).

Activation of a firmware image may result in a change in controller behavior that is not expected by the host
(e.g., an incompatible change in the UUID List (refer to section 8.25.2)). In this case, if the Commit Action
field is set to 011b, then the controller shall abort the command with a status code of Firmware Activation
Requires Conventional Reset.

When modifying Boot Partitions, the host may select the Boot Partition to mark as active or replace. A Boot
Partition is only able to be written when unlocked (refer to section 8.2).

The Firmware Commit command uses the Command Dword 10 field. All other command specific fields are
reserved.

Figure 186: Firmware Commit – Command Dword 10

Bits Description

31
Boot Partition ID (BPID): Specifies the Boot Partition that shall be used for the Commit Action, if
applicable.

30:06 Reserved

NVM Express® Base Specification, Revision 2.0e

185

Figure 186: Firmware Commit – Command Dword 10

Bits Description

05:03

Commit Action (CA): This field specifies the action that is taken (refer to section 3.11) on the
image downloaded with the Firmware Image Download command or on a previously downloaded
and placed image. The actions are indicated in the following table.

Value Definition

000b
Downloaded image replaces the existing image, if any, in the specified
Firmware Slot. The newly placed image is not activated.

001b
Downloaded image replaces the existing image, if any, in the specified
Firmware Slot. The newly placed image is activated at the next
Controller Level Reset.

010b
The existing image in the specified Firmware Slot is activated at the next
Controller Level Reset.

011b

Downloaded image replaces the existing image, if any, in the specified
Firmware Slot and is then activated immediately. If there is not a newly
downloaded image, then the existing image in the specified firmware
slot is activated immediately.

100b to 101b Reserved

110b
Downloaded image replaces the Boot Partition specified by the Boot
Partition ID field.

111b
Mark the Boot Partition specified in the BPID field as active and update
BPINFO.ABPID.

02:00
Firmware Slot (FS): Specifies the firmware slot that shall be used for the Commit Action, if
applicable. If the value specified is 0h, then the controller shall choose the firmware slot (i.e., slot
1 to slot 7) to use for the operation.

 Command Completion

Upon completion of the Firmware Commit command, the controller posts a completion queue entry to the
Admin Completion Queue indicating the status for the command.

For Firmware Commit commands that specify activation of a new firmware image at the next Controller
Level Reset (i.e., the CA field was set to 001b or 010b) and complete with a status code value of 0h (i.e.,
Success Completion), a Controller Level Reset initiated by any of the methods defined in section 3.7.2
activates the specified firmware.

If the controller detects overlapping firmware/boot partition image update command sequences (refer to
section 1.5.24) of more than one firmware image and/or Boot Partition or the use of more than one controller
and/or Management Endpoint to update a single firmware image, then the results of that detection are
reported in Dword 0 of the completion queue entry as defined in Figure 187. Refer to section 3.11 and
section 8.2.2.

Figure 187: Firmware Commit – Completion Queue Entry Dword 0

Bits Description

31:02 Reserved

NVM Express® Base Specification, Revision 2.0e

186

Figure 187: Firmware Commit – Completion Queue Entry Dword 0

Bits Description

01:00

Multiple Update Detected (MUD): This field indicates if a controller detected overlapping firmware/boot
partition image update command sequences of Boot Partitions and/or firmware images (refer to section
3.11 and section 8.2.2). If the SMUD bit in the Firmware Update field of the Identify Controller data
structure is cleared to ‘0’, then this field shall be cleared to 00b.

This field is valid if the command is successful or aborted.

Bits Description

1

If set to ‘1’, then the controller detected an overlapping firmware/boot partition image update
command sequence due to processing a command from a Management Endpoint. If cleared
to ‘0’, then the controller did not detect an overlapping firmware/boot partition image update
command sequence due to processing a command from a Management Endpoint.

0

If set to ‘1’, then the controller detected an overlapping firmware/boot partition image update
command sequence due to processing a command from an Admin Submission Queue on a
controller. If cleared to ‘0’, then the controller did not detect an overlapping firmware/boot
partition image update command sequence due to processing a command from an Admin
Submission Queue on a controller.

Firmware Commit command specific status values (i.e., SCT field set to 1h) are shown in Figure 188.

Figure 188: Firmware Commit – Command Specific Status Values

Value Description

06h
Invalid Firmware Slot: The firmware slot indicated is invalid or read only. This error is indicated if the
firmware slot exceeds the number supported.

07h

Invalid Firmware Image: The firmware image specified for activation is:

• invalid and not loaded by the controller; or

• the specified firmware slot does not contain a firmware image.

0Bh

Firmware Activation Requires Conventional Reset: The firmware commit was successful, however,
activation of the firmware image requires a Conventional Reset (refer to the NVM Express NVMe over
PCIe Transport Specification). If a Function Level Reset (refer to the NVM Express NVMe over PCIe
Transport Specification) or Controller Reset occurs prior to a Conventional Reset, the controller shall
continue operation with the currently executing firmware image.

10h

Firmware Activation Requires NVM Subsystem Reset: The firmware commit was successful,
however, activation of the firmware image requires an NVM Subsystem Reset. If any other type of
Controller Level Reset occurs prior to an NVM Subsystem Reset, the controller shall continue operation
with the currently executing firmware image.

11h

Firmware Activation Requires Controller Level Reset: The firmware commit was successful;
however, the firmware image specified does not support being activated without a Controller Level
Reset. The firmware image shall be activated at the next Controller Level Reset. This status code
should be returned only if the Commit Action field in the Firmware Commit command is set to 011b
(i.e., activate immediately).

12h

Firmware Activation Requires Maximum Time Violation: The firmware commit was successful;
however, the firmware image was not activated. Activation of the specified firmware image requires
more time than the amount indicated in the Maximum Time for Firmware Activation (MTFA) field in the
Identify Controller data structure (refer to Figure 280). To activate the firmware image committed to the
specified firmware slot, a Firmware Commit command specifying a Commit Action set to 010b may be
issued as described in section 3.11.

13h
Firmware Activation Prohibited: The image specified is being prohibited from activation by the
controller for vendor specific reasons (e.g., controller does not support down revision firmware).

14h
Overlapping Range: This error is indicated if the controller detects that the firmware image has
overlapping ranges.

1Eh
Boot Partition Write Prohibited: This error is indicated if a command attempts to modify a Boot
Partition while locked (refer to section 8.2.3).

NVM Express® Base Specification, Revision 2.0e

187

5.13 Firmware Image Download command

The Firmware Image Download command is used to download all or a portion of an image for a future
update to the controller. The Firmware Image Download command may be submitted while other
commands on the Admin Submission Queue or I/O Submission Queues are outstanding. The Firmware
Image Download command downloads a new image (in whole or in part) to the controller.

The image may be constructed of multiple pieces that are individually downloaded with separate Firmware
Image Download commands. Each Firmware Image Download command includes a Dword Offset and
Number of Dwords that specify a dword range. The host software should ensure that image pieces do not
have dword ranges that overlap and that the NUMD field and OFST field meet the alignment and granularity
requirements indicated in the FWUG field (refer to Figure 280). Firmware portions may be submitted out of
order to the controller. Host software shall submit image portions in order when updating a Boot Partition.
If ranges overlap, the controller may return an error of Overlapping Range.

The new firmware image is not activated as part of the Firmware Image Download command. Refer to
section 3.11 for details on the firmware update process. The firmware update process does not modify the
contents of Boot Partitions. Refer to section 8.2.2 for details on the Boot Partition update process.

Host software should not overlap command sequences that update Boot Partitions and/or firmware images
(refer to section 3.11 and section 8.2.2).

After downloading an image, host software issues a Firmware Commit command before downloading
another image. Processing of the first Firmware Image Download command after completion of a Firmware
Commit command shall cause the controller to discard all remaining portion(s), if any, of downloaded
images. If a Controller Level Reset occurs between a firmware download and completion of the Firmware
Commit command, then the controller shall discard all portion(s), if any, of downloaded images.

The Firmware Image Download command uses the Data Pointer, Command Dword 10, and Command
Dword 11 fields. All other command specific fields are reserved.

Figure 189: Firmware Image Download – Data Pointer

Bits Description

127:00
Data Pointer (DPTR): This field specifies the location where data should be transferred from.
Refer to Figure 90 for the definition of this field.

Figure 190: Firmware Image Download – Command Dword 10

Bits Description

31:00

Number of Dwords (NUMD): This field specifies the number of dwords to transfer for this portion
of the firmware. This is a 0’s based value. If the value specified in this field does not meet the
requirement indicated by the FWUG field (refer to Figure 280), the firmware update may abort with
status code of Invalid Field in Command.

Figure 191: Firmware Image Download – Command Dword 11

Bits Description

31:00

Offset (OFST): This field specifies the number of dwords offset from the start of the firmware
image being downloaded to the controller. The offset is used to construct the complete firmware
image when the firmware is downloaded in multiple pieces. The piece corresponding to the start
of the firmware image shall have an Offset of 0h. If the value specified in this field does not meet
the requirement indicated by the FWUG field (refer to Figure 280), the firmware update may fail
with status code of Invalid Field in Command.

 Command Completion

Upon completion of the Firmware Image Download command, the controller posts a completion queue
entry to the Admin Completion Queue. Firmware Image Download command specific status values are
defined in Figure 192.

NVM Express® Base Specification, Revision 2.0e

188

Figure 192: Firmware Image Download – Command Specific Status Values

Value Description

14h

Overlapping Range: This error is indicated if the controller detects that the
firmware image has overlapping ranges. This error may indicate that the granularity
or alignment of the firmware image downloaded does not conform to the Firmware
Update Granularity field indicated in the Identify Controller data structure.

If the controller detects overlapping firmware/boot partition image update command sequences (refer to
section 1.5.24) of more than one firmware image and/or Boot Partition or the use of more than one controller
and/or Management Endpoint to update a single firmware image, then the results of that detection are
reported in Dword 0 of the completion queue entry as defined in Figure 187. Refer to section 3.11 and
section 8.2.2.

5.14 Format NVM command

The Format NVM command is used to low level format the NVM media. This command is used by the host
to change the attributes of the NVM media (e.g., the LBA data size and/or metadata size for the NVM
Command Set). A low level format may destroy all data and metadata associated with all namespaces or
only the specific namespace associated with the command (refer to the Format NVM Attributes field in the
Identify Controller data structure, Figure 280). After the Format NVM command successfully completes, the
controller shall not return any user data that was previously contained in an affected namespace.

As part of the Format NVM command, the host requests a format operation and may request a secure
erase of the contents of the NVM (refer to the SES field in Figure 194). There are two types of secure erase.
The User Data Erase erases all user content present in the NVM subsystem. The Cryptographic Erase
erases all user content present in the NVM subsystem by deleting the encryption key with which the user
data was previously encrypted.

The scope of the entire Format NVM command is determined by the value of the SES field (refer to Figure
194) and the setting of either FNA bit 0 or FNA bit 1 (refer to Figure 280) as follows:

a) If the Format NVM command does not specify Secure Erase (i.e., the SES field is cleared to 000b),
then the scope of the Format NVM command is indicated by the value of FNA bit 0 and the value
of FNA bit 1 is not applicable to this command.

b) If the Format NVM command specifies Secure Erase (i.e., the SES field is set to a non-zero value),
then the scope of the Format NVM command is indicated by the value of FNA bit 1 and the value
of FNA bit 0 is not applicable to this command.

Figure 193: Format NVM – Operation Scope

SES FNA Bit 0 FNA Bit 1 NSID Format Operation

000b
(i.e., not

a
secure
erase)

0

N/A

FFFFFFFFh
1

All namespaces attached to the controller. Other
namespaces are not affected.

0
Any allocated value

(refer to section 3.2.1.3)
The specified namespace. Other namespaces are
not affected.

1
Any allocated value

(refer to section 3.2.1.3)
or FFFFFFFFh

All namespaces that exist in the NVM subsystem.

001b or
010b
(i.e.,

secure
erase)

N/A

0 FFFFFFFFh
1

All namespaces attached to the controller. Other
namespaces are not affected.

0
Any allocated value

(refer to section 3.2.1.3)
The specified namespace. Other namespaces
are not affected.

1
Any allocated value

(refer to section 3.2.1.3)
or FFFFFFFFh

All namespaces that exist in the NVM
subsystem.

NVM Express® Base Specification, Revision 2.0e

189

Figure 193: Format NVM – Operation Scope

SES FNA Bit 0 FNA Bit 1 NSID Format Operation

All others
The controller shall abort the command with a
status code of Invalid Field in Command

Notes:
1. If bit 3 in the FNA field is set to ‘1’, then this value is not supported, and the command is aborted as described

in this section.

If the NVM subsystem supports multiple domains and the Format NVM command is not able to format the
specified namespaces as a result of the NVM subsystem being divided (refer to section 3.2.4), then the
Format NVM command shall be aborted with a status code of Asymmetric Access Inaccessible or
Asymmetric Access Persistent Loss.

The Format NVM command may be aborted with a status code defined in this specification under
circumstances defined by a security specification (e.g., invalid security state as specified in TCG Storage
Interface Interactions specification). If there are I/O commands being processed for a namespace, then a
Format NVM command that is submitted affecting that namespace may be aborted; if aborted, then a status
code of Command Sequence Error should be returned. If a Format NVM command is in progress, then an
I/O command that is submitted for any namespace affected by that Format NVM command may be aborted;
if aborted, then a status code of Format in Progress should be returned. Refer to section 5 for further
information about restrictions on Admin commands during Format NVM.

For a Format NVM command with the NSID field set to FFFFFFFFh that specifies secure erase:

a) if bit 1 is set to ‘1’ in the FNA field (refer to Figure 280) and there are no namespaces in the NVM
subsystem, then that Format NVM command shall complete without error; and

b) if bit 1 is cleared to ‘0’ in the FNA field and there are no attached namespaces, then that Format
NVM command shall complete without error.

For a Format NVM command with an NSID field set to FFFFFFFFh that does not specify a secure erase:

a) if bit 0 is set to ‘1’ in the FNA field and there are no namespaces in the NVM subsystem, then that
Format NVM command shall complete without error; and

b) if bit 0 is cleared to ‘0’ in the FNA field and there are no attached namespaces, then that Format
NVM command shall complete without error.

If a host does not set the LBA Format Extension Enable (LBAFEE) field to 1h in the Host Behavior Support

feature (refer to section 5.27.1.18), then the 0h value of the LBAFEE field disables any I/O Command Set

specific format that requires the LBAFEE field to be set to 1h (refer to the applicable I/O Command Set

specification). If a Format NVM command specifies a format that is disabled (e.g., the LBAFEE field is

cleared to 0h), then the controller shall abort that Format NVM command with a status code of Invalid

Namespace or Format.

If the format operation scope (refer to Figure 193) for a Format NVM command includes any namespace

that is write protected (refer to section 8.12), then the controller aborts that Format NVM command with a

status code of Namespace is Write Protected.

If bit 3 in the FNA field is set to ‘1’ and a Format NVM command has the NSID field set to FFFFFFFFh, then
the controller shall abort the command with a status code of Invalid Field in Command.

After successful completion of a Format NVM command, the settings specified in the Format NVM
command (e.g., PI, MSET, LBAF) are reported as part of the Identify Namespace data structures.

The Format NVM command uses the Command Dword 10 field. All other command specific fields are
reserved.

NVM Express® Base Specification, Revision 2.0e

190

Figure 194: Format NVM – Command Dword 10

Bits Description

31:14 Reserved

13:12

LBA Format Upper (LBAFU): This field specifies the most significant 2 bits of the Format Index
of the User Data Format to apply to the NVM media. This corresponds to the User Data Formats
indicated in the Identify command, refer to the Identify Namespace data structure and the LBA
Format data structure in the applicable I/O Command Set specification. If an unsupported User
Data Format is selected, the controller shall abort the command with a status code of Invalid
Format.

This field shall be ignored by the controller if the LBA Format Extension Enable (LBAFEE) field is
cleared to 0h in the Host Behavior Support feature (refer to section 5.27.1.18).

NOTE: This field applies to all User Data Formats. The original name has been retained for
historical continuity.

11:09

Secure Erase Settings (SES): This field specifies whether a secure erase should be performed
as part of the format and the type of the secure erase operation. The erase applies to all user data,
regardless of location (e.g., within an exposed LBA, within a cache, within deallocated logical
blocks, etc.).

Value Definition

000b No secure erase operation requested

001b

User Data Erase: All user data shall be erased, contents of the
user data after the erase is indeterminate (e.g., the user data
may be zero filled, one filled, etc.). If a User Data Erase is
requested and all affected user data is encrypted, then the
controller is allowed to use a cryptographic erase to perform the
requested User Data Erase.

010b
Cryptographic Erase: All user data shall be erased
cryptographically. This is accomplished by deleting the
encryption key.

011b to 111b Reserved

08 Protection Information Location (PIL): I/O Command Set specific definition.1

07:05 Protection Information (PI): I/O Command Set specific definition.1

04 Metadata Settings (MSET): I/O Command Set specific definition.1

03:00

LBA Format Lower (LBAFL): This field specifies the least significant 4 bits of the Format Index
of the User Data Format to apply to the NVM media. This corresponds to the User Data Formats
indicated in the Identify Namespace data structure, refer to the Identify Namespace data structure
and the I/O Command Set specific Format Data Structure in the applicable I/O Command Set
specification. If an unsupported User Data Format is selected, the controller shall abort the
command with a status code of Invalid Format.

NOTE: This field applies to all User Data Formats. The original name has been retained for
historical continuity.

NOTE:
1. I/O Command Set specific fields are described in the applicable I/O Command Set specification.

 Command Completion

A completion queue entry is posted to the Admin Completion Queue when the NVM media format is
complete. Format NVM command specific status values (i.e., SCT field set to 1h) are shown in Figure 195.

Figure 195: Format NVM – Command Specific Status Values

Value Description

0Ah

Invalid Format: The format specified is invalid. This may be due to various conditions, including:

1. specifying an invalid User Data Format number;
2. enabling protection information when there are not sufficient metadata resources; or
3. the specified format is not available in the current configuration.

NVM Express® Base Specification, Revision 2.0e

191

Figure 195: Format NVM – Command Specific Status Values

Value Description

0Ch
Command Sequence Error: The command was aborted due to a protocol violation in a multi-
command sequence.

15h
Operation Denied: The command was denied due to lack of access rights. Refer to the appropriate
security specification.

20h
Namespace is Write Protected: The command is prohibited while the namespace is write protected
(refer to section 8.12).

86h
Access Denied: Access to the namespace and/or user data is denied due to lack of access rights.
Refer to the appropriate security specification (e.g., TCG Storage Interface Interactions specification).

5.15 Get Features command

The Get Features command retrieves the attributes of the Feature specified.

The Get Features command uses the Data Pointer, Command Dword 10 and Command Dword 14 fields.
The use of the Command Dword 11 field is Feature specific. If not used by a Feature, then Command
Dword 11 is reserved unless otherwise stated. All other command specific fields are reserved.

The mandatory, optional, and prohibited Feature Identifiers for each type of controller are defined in section
3.1.3.1.3, section 3.1.3.2.3, and section 3.1.3.3.4.

Figure 196: Get Features – Data Pointer

Bits Description

127:00
Data Pointer (DPTR): This field specifies the start of the data buffer. Refer to Figure 90 for the
definition of this field. If no data structure is used as part of the specified feature (refer to the FID
field), then this field shall be ignored by the controller.

Figure 197: Get Features – Command Dword 10

Bits Description

31:11 Reserved

10:08

Select (SEL): This field specifies the attribute of the value requested in the returned data:

Select Description

000b Current

001b Default

010b Saved

011b Supported Capabilities

100b to 111b Reserved

Refer to section 5.15.1 and section 4.2 for details on the data returned in each case.

The controller indicates in bit 4 of the Optional NVM Command Support field of the Identify
Controller data structure in Figure 280 whether this field is supported.

If a Get Features command is received with the Select field set to 010b (i.e., saved) and the
controller does not support the Feature Identifier being saved or does not currently have any saved
values, then the controller shall operate as if the Select field is set to 001b (i.e., default).

07:00 Feature Identifier (FID): This field specifies the identifier of the Feature for which to provide data.

If the controller supports selection of a UUID by the Get Features command (refer to Figure 321 and section
8.25) and the controller supports selection of a UUID for the specified vendor specific Feature Identifier
(refer to Figure 321), then Command Dword 14 is used to specify a UUID Index value (refer to Figure 198).
If the controller does not support selection of a UUID by the Get Features command or the controller does
not support selection of a UUID for the specified vendor specific Feature Identifier, then Command Dword
14 does not specify a UUID Index value.

NVM Express® Base Specification, Revision 2.0e

192

Figure 198: Get Features – Command Dword 14

Bits Description

31:07 Reserved

06:00 UUID Index: Refer to Figure 483.

Figure 199 describes the Feature Identifiers whose attributes may be retrieved using the Get Features
command. The definition of the attributes returned and the associated format is specified in the section
indicated.

Figure 199: Get Features – Feature Identifiers

Description
Section Defining Format
of Attributes Returned

Arbitration 5.27.1.1

Power Management 5.27.1.2

Temperature Threshold 5.27.1.3

Volatile Write Cache 5.27.1.4

Number of Queues 5.27.1.5

Interrupt Coalescing 5.27.1.6

Interrupt Vector Configuration 5.27.1.7

Asynchronous Event Configuration 5.27.1.8

Autonomous Power State Transition 5.27.1.9

Host Memory Buffer 5.27.1.10

Timestamp 5.27.1.11

Keep Alive Timer 5.27.1.12

Host Controlled Thermal Management 5.27.1.13

Non-Operational Power State Config 5.27.1.14

Read Recovery Level Config 5.27.1.15

Predictable Latency Mode Config 5.27.1.16

Predictable Latency Mode Window 5.27.1.17

Host Behavior Support 5.27.1.18

Sanitize Config 5.27.1.19

Endurance Group Event Configuration 5.27.1.20

I/O Command Set Profile 5.27.1.21

Software Progress Marker 5.27.1.24

Host Identifier 5.27.1.25

Reservation Notification Mask 5.27.1.26

Reservation Persistence 5.27.1.27

Namespace Write Protection Config 5.27.1.28

Enhanced Controller Metadata 5.27.1.23.1

Controller Metadata 5.27.1.23.2

Namespace Metadata 5.27.1.23.3

Spinup Control 5.27.1.22

I/O Command Set specific features
I/O Command Set

specification

 Select field

A Select field cleared to 000b (i.e., current) returns the current operating attribute value for the Feature
Identifier specified.

A Select field set to 001b (i.e., default) returns the default attribute value for the Feature Identifier specified.

A Select field set to 010b (i.e., saved) returns the last saved attribute value for the Feature Identifier
specified (i.e., the last Set Features command completed without error, with the Save bit set to ‘1’ for the
Feature Identifier specified).

NVM Express® Base Specification, Revision 2.0e

193

A Select field set to 011b (i.e., supported capabilities) returns the capabilities supported for this Feature
Identifier. The capabilities supported are returned in Dword 0 of the completion queue entry of the Get
Features command (refer to Figure 200).

 Command Completion

Upon completion of the Get Features command, the controller posts a completion queue entry to the Admin
Completion Queue. If the Select field is not set to 011b, then Dword 0 of the completion queue entry may
contain feature-dependent information (refer to section 5.27.1).

If the Select field is set to 011b, then Figure 200 describes the contents of Dword 0 of the completion queue
entry.

Figure 200: Completion Queue Entry Dword 0 when Select is set to 11b

Bits Description

31:3 Reserved

2
Changeable: If set to ‘1’, then the feature values are changeable. If cleared to ‘0’, then the feature
values are not changeable. Changing a feature value is described in section 5.27.

1
NS Specific: If set to ‘1’, then the Feature Identifier is namespace specific and settings are applied
to individual namespaces. If cleared to ‘0’, then the Feature Identifier is not namespace specific and
its settings apply to the entire controller.

0
Saveable: If set to ‘1’, then the feature values are saveable. If cleared to ‘0’, then the feature values
are not saveable.

If the controller supports any changeable value of any attribute of a feature, then the controller reports that
feature as changeable (i.e., the controller sets the Changeable bit to '1' in Completion Queue Entry Dword
0 for a Get Features command that specifies that feature and has the Select field set to 011b), even if the
feature has been set to a value or values that are not changeable.

or some features (e.g., Namespace Write Protection Config (refer to section 5.27.1.28), the changeability
of feature values is value-dependent (e.g., the Permanent Write Protect (i.e., 011b) value of the Write
Protection State in the Namespace Write Protection Config feature is not changeable).

5.16 Get Log Page command

The Get Log Page command returns a data buffer containing the log page requested. The Get Log Page
command may be impacted by the ANA state (refer to section 8.1.4).

The Get Log Page command uses the Data Pointer, Command Dword 10, Command Dword 11, Command
Dword 12, Command Dword 13, and Command Dword 14 fields. All other command specific fields are
reserved.

There are mandatory and optional Log Page Identifiers defined in section 3.1.3.1.2, section 3.1.3.2.2, and
section 3.1.3.3.3. If a Get Log Page command is processed that specifies a Log Page Identifier that is not
supported, then the controller should abort the command with a status code of Invalid Log Page with the
exception defined in Figure 273.

The controller indicates support for the Log Page Offset and extended Number of Dwords (32 bits rather
than 12 bits) in the Log Page Attributes field of the Identify Controller data structure. If extended data is not
supported, then bits 27:16 of the Number of Dwords Lower field specify the Number of Dwords to transfer.

If the Log Page Offset is supported, then

• a byte offset shall be supported (i.e., Offset Type field cleared to ‘0’) for all log pages; and

• for each log page that has the IOS bit set to ‘1’ for the specified LID in the LID Supported and
Effects Data Structure log page (refer to Figure 209) an index offset shall be supported (i.e., Offset
Type field set to ‘1’).

NVM Express® Base Specification, Revision 2.0e

194

If the IOS bit is cleared to ‘0’ for the specified LID in the LID Supported and Effects Data Structure log page
and a Get Log Page command specifies Offset Type field set to ‘1’, then that command shall be aborted
with a status code of Invalid Field in Command.

Figure 201: Get Log Page – Data Pointer

Bits Description

127:00
Data Pointer (DPTR): This field specifies the start of the data buffer. Refer to Figure 90 for the
definition of this field.

Figure 202: Get Log Page – Command Dword 10

Bits Description

31:16

Number of Dwords Lower (NUMDL): This field specifies the least significant 16 bits of the
number of dwords to return unless otherwise specified. If host software specifies a size larger than
the log page requested, the controller returns the complete log page with undefined results for
dwords beyond the end of the log page. The combined NUMDL and NUMDU fields form a 0’s
based value.

15

Retain Asynchronous Event (RAE): This bit specifies whether to retain or clear an
Asynchronous Event. If this bit is cleared to ‘0’, the corresponding Asynchronous Event is cleared
by the controller upon successful command completions. If this bit is set to ‘1’, the corresponding
Asynchronous Event is retained (i.e., not cleared) by the controller upon command completion.

If the command does not complete successfully, the Asynchronous Event shall be retained by the
controller.

Host software should clear this bit to ‘0’ for log pages that are not used with Asynchronous Events.
Refer to section 5.2.

Refer to the NVM Express Admin Command Set section of the NVM Express Management
Interface Specification for the behavior associated with this bit when the Get Log Page command
is received on a Management Endpoint.

14:08
Log Specific Parameter (LSP): If not defined for the log specified by the Log Page Identifier field,
this field is reserved.

07:00 Log Page Identifier (LID): This field specifies the identifier of the log page to retrieve.

Figure 203: Get Log Page – Command Dword 11

Bits Description

31:16

Log Specific Identifier: This field specifies an identifier that is required for a particular log page.
The log pages that require a log specific identifier are indicated in the table below.

Log Page Identifier

Endurance Group Information
Endurance Group Identifier (refer to section 3.2.3)

Rotational Media Information

Predictable Latency Per NVM Set NVM Set Identifier (refer to section 3.2.2)

Media Unit Status Domain Identifier (refer to section 3.2.4)
1

Supported Capacity Configuration List Domain Identifier (refer to section 3.2.4)
1

15:00
Number of Dwords (NUMDU): This field specifies the most significant 16 bits of the number of dwords
to return unless otherwise specified.

Notes:
1. If the NVM subsystem does not support multiple domains, then this field is reserved. If this field specifies a

non-zero Domain Identifier that is not reported in the Domain List (refer to section 5.17.2.17), then the controller
shall abort the command with Invalid Field in Command.

NVM Express® Base Specification, Revision 2.0e

195

Figure 204: Get Log Page – Command Dword 12

Bits Description

31:00

Log Page Offset Lower (LPOL): The log page offset specifies the location within a log page to
start returning data from unless otherwise specified.

If the OT bit is cleared to ‘0’, then:

a) This field specifies the least significant 32 bits of the log page offset. The offset shall be
dword aligned, indicated by bits 1:0 being cleared to 00b;

b) The controller is not required to check that bits 1:0 are cleared to 00b. The controller may
report an error of Invalid Field in Command if bits 1:0 are not cleared to 00b. If the
controller does not report an error of Invalid Field in Command, then the controller shall
operate as if bits 1:0 are cleared to 00b; and

c) If the host specifies an offset (i.e., LPOL and LPOU) that is greater than the size of the
log page requested (e.g., a log page containing 100 bytes is requested starting at offset
200), then the controller shall abort the command with a status of Invalid Field in
Command.

If the OT bit is set to ‘1’, then:

a) This field specifies the least significant 32 bits of the index into the list of data structures
in the log page;

b) If the host specifies an index (i.e., LPOL and LPOU) that is greater than the number of
entries in the list of data structures in the log page requested (e.g., a log page containing
100 data structures is requested starting at index 200), then the controller shall abort the
command with a status code of Invalid Field in Command;

c) If the IOS bit for the specified LID in the LID Supported and Effects Data Structure log
page is cleared to ‘0’, then the controller shall abort the command with a status code of
Invalid Field in Command; and

d) Each log page that supports the use of an index offset value defines the contents of an
entry for the purposes of indexing into that log page.

Figure 205: Get Log Page – Command Dword 13

Bits Description

31:00
Log Page Offset Upper (LPOU): This field specifies the most significant 32 bits of either the log
page offset or the index into the list of data structures unless otherwise specified. Refer to the Log
Page Offset Lower definition.

If the controller supports selection of a UUID by the Get Log Page command (refer to Figure 207 and section
8.25), then Command Dword 14 is used to specify a UUID Index value (refer to Figure 206).

Figure 206: Get Log Page – Command Dword 14

Bits Description

31:24

Command Set Identifier (CSI): This field specifies the I/O Command Set (refer to Figure 279) to
be used by the command. This field is log page specific; refer to Figure 207 for log pages that use
this field. This field shall be ignored by the controller if the specified log page does not support the
use of this field (refer to Figure 207) or if the CC.CSS field is not set to 110b.

23

Offset Type (OT): If set to ‘1’ then the Log Page Offset Lower field and the Log Page Offset Upper
field specify the index into the list of data structures in the log page to be returned. If cleared to ‘0’,
then the Log Page Offset Lower field and the Log Page Offset Upper field specify the byte offset
into the log page to be returned.

22:07 Reserved

06:00 UUID Index: Refer to Figure 483.

NVM Express® Base Specification, Revision 2.0e

196

 Log Specific Information

Figure 207 defines the log pages that may be retrieved with the Get Log Page command and the scope of
the information that is returned in those log pages. Refer to section 3.1.3.1.2, section 3.1.3.2.2, and
3.1.3.3.3 for mandatory, optional, and prohibited log pages for the various controller types.

Log pages that indicate a scope of NVM subsystem return information that is global to the NVM subsystem.
Log pages that indicate a scope of Domain return information that is global to the Domain. Log pages that
indicate a scope of controller return information that is specific to the controller that is processing the
command. Log pages that indicate a scope of Namespace return information that is specific to the specified
namespace. For log pages that indicate multiple scopes, support for multiple domains or the namespace
identifier that is specified determines which information is returned. The definition of any individual field
within a log page may indicate a different scope that is specific to that individual field.

For log pages with a scope of NVM subsystem or controller (as shown in Figure 207), the controller should
abort commands that specify namespace identifiers other than 0h or FFFFFFFFh with status code Invalid
Field in Command. Otherwise the rules for namespace identifier usage in Figure 90 apply.

Figure 207: Get Log Page – Log Page Identifiers

Log Page
Identifier CSI

7
 Scope Log Page Name

Reference
Section

00h Y Controller Supported Log Pages 5.16.1.1

01h N Controller Error Information 5.16.1.2

02h N
Controller

1

SMART / Health Information 5.16.1.3
Namespace

2

03h N Domain / NVM subsystem
6
 Firmware Slot Information 5.16.1.4

04h N Controller Changed Namespace List 5.16.1.5

05h Y
Controller Commands Supported and

Effects
5.16.1.6

06h N
Controller

3

Device Self-test
5
 5.16.1.7

Domain / NVM subsystem
4, 6

07h N Vendor Specific Telemetry Host-Initiated
5
 5.16.1.8

08h N Vendor Specific Telemetry Controller-Initiated
5

 5.16.1.9

09h N Domain / NVM subsystem
6
 Endurance Group Information 5.16.1.10

0Ah N Domain / NVM subsystem
6

Predictable Latency Per NVM
Set

5.16.1.11

0Bh N Domain / NVM subsystem
6 Predictable Latency Event

Aggregate
5.16.1.12

0Ch N Controller
Asymmetric Namespace
Access

5.16.1.13

0Dh N NVM subsystem Persistent Event Log
5
 5.16.1.14

0Eh Refer to the NVM Command Set

0Fh N Domain / NVM subsystem
6

Endurance Group Event
Aggregate

5.16.1.15

10h N Domain / NVM subsystem
 5, 6

 Media Unit Status 5.16.1.16

11h N Domain / NVM subsystem
 6

Supported Capacity
Configuration List

5.16.1.17

12h Y Controller
Feature Identifiers Supported
and Effects

5.16.1.18

13h N Controller
NVMe-MI Commands
Supported and Effects

5.16.1.19

NVM Express® Base Specification, Revision 2.0e

197

Figure 207: Get Log Page – Log Page Identifiers

Log Page
Identifier CSI

7
 Scope Log Page Name

Reference
Section

14h Y NVM subsystem
Command and Feature

Lockdown
5

5.16.1.20

15h N Controller Boot Partition 5.16.1.21

16h N Endurance Group Rotational Media Information 5.16.1.22

17h to 6Fh Reserved

70h N Controller Discovery 5.16.1.23

71h to 7Fh Reserved

80h N Controller Reservation Notification 5.16.1.24

81h N NVM subsystem Sanitize Status 5.16.1.25

82h to BEh I/O Command Set Specific

BFh Refer to the Zoned Namespace Command Set

C0h to FFh Vendor specific
5

Key:
Namespace = The log page contains information about a specific namespace.
Endurance Group = The log page contains information about a specific Endurance Group.
Controller = The log page contains information about the controller that is processing the command.
Domain = The log page contains information about the Domain.
NVM subsystem = The log page contains information about the NVM subsystem.
Vendor Specific = The log page contains information that is vendor specific.

Notes:
1. For namespace identifiers of 0h or FFFFFFFFh.
2. For namespace identifiers other than 0h or FFFFFFFFh.
3. Bit 0 is cleared to ‘0’ in the DSTO field in the Identify Controller data structure (refer to Figure 280).
4. Bit 0 is set to ‘1’ in the DSTO field in the Identify Controller data structure.
5. Selection of a UUID may be supported. Refer to section 8.25.
6. For NVM subsystems that support multiple domains (refer to the MDS bit in the Identify Controller data

structure, Figure 280), Domain scope information is returned.
7. If multiple I/O Command Sets are supported, then the CSI field is used by the log page: Y = Yes, N = No.

If Yes, then refer to the definition of the log page for details on usage.

5.16.1.1 Supported Log Pages (Log Page Identifier 00h)

An NVM subsystem may support several interfaces for submitting a Get Log Page command such as an
Admin Submission Queue, PCIe VDM Management Endpoint, or SMBus/I2C Management Endpoint (refer
to the NVM Express Management Interface Specification for details on Management Endpoints) and may
have zero or more instances of each of those interfaces. The log pages supported on each instance of each
interface may be different. This log page is used to describe the log pages that are supported on the
interface to which the Get Log Page command was submitted and attributes specific to each log page. The
log page is defined in Figure 208. The attributes of each log page are described in a LID Supported and
Effects data structure defined in Figure 209.

If the UUID Selection Supported bit is set to ‘1’ for the Get Log Page command in the Commands Supported
and Effects log page (refer to section 5.16.1.6), then the log page data reflects the log pages that are
supported based on the value of the UUID Index field (refer to section 8.25).

For controllers that implement I/O Queues, the log pages that the controller supports are dependent on the
I/O Command Set that is based on:

• the I/O Command Set selected in CC.CSS, if CC.CSS is not set to 110b; and

• the Command Set Identifier (CSI) field in CDW 14, if CC.CSS is set to 110b.

NVM Express® Base Specification, Revision 2.0e

198

Figure 208: Supported Log Pages Log Page

Bytes Description

3:0
Log Page Identifier Supported 0: Contains the LID Supported and Effects data structure (refer
to Figure 209.) for the LID 0h.

7:4
Log Page Identifier Supported 1: Contains the LID Supported and Effects data structure (refer
to Figure 209.) for the LID 1h.

… …

1019:1016
Log Page Identifier Supported 254: Contains the LID Supported and Effects data structure
(refer to Figure 209.) for the LID FEh.

1023:1020
Log Page Identifier Supported 255: Contains the LID Supported and Effects data structure
(refer to Figure 209.) for the LID FFh.

Figure 209: LID Supported and Effects Data Structure

Bits Description

31:16 LID Specific Parameter (LIDSP): This field is specific to the log page identifier as defined in
Figure 210.

15:2 Reserved

1

Index Offset Supported (IOS): If this bit is set to ‘1’, then the controller supports an index offset
for this LID in a Get Log Page command (i.e., the OT bit in the Get Log Page command is allowed
to be set to ‘1’). If this bit is cleared to ‘0’, then the controller does not support an index offset for
this LID in a Get Log Page command (i.e., the OT bit in the Get Log Page command is only
allowed to be cleared to ‘0’).

If the controller does not support extended data for the Get Log Page command (refer to bit 2 in
the LPA field in Figure 280), then this bit shall be cleared to ‘0’.

0

LID Supported (LSUPP): If this bit is set to ‘1’, then the controller supports this LID for a Get Log
Page command. If this bit is cleared to ‘0’, then the controller does not support this LID for a Get
Log Page command, and the host should ignore other fields in this data structure.

Refer to section 3.1.3 for the LID support requirements for each controller type.

Figure 210: LID Supported and Effects Data Structure – LID Specific Parameter Field

Log Page
Identifier

LID Specific Parameter Field

0 to Ch Reserved

0Dh

The LID Specific Parameter field for log page identifier 0Dh (Persistent Event log page as
described in section 5.16.1.14) is defined as follows:

Bits Description

15:1 Reserved

0

Establish Context and Read 512 Bytes of Header Supported
(ECRH): If this bit is cleared to ‘0’, then the controller does not support
the Establish Context and Read 512 Bytes of Header action (refer to
Figure 228).

If this bit is set to ‘1’, then the controller supports:

• the Establish Context and Read 512 Bytes of Header action;
and

• the Generation Number field in the Persistent Event log page.

If the Persistent Event log page is supported by the controller, then
implementations compliant with NVM Express Base Specification,
Revision 2.0 and later shall set this bit to ‘1’.

0Eh to BFh Reserved

C0h to FFh Vendor specific

NVM Express® Base Specification, Revision 2.0e

199

5.16.1.2 Error Information (Log Page Identifier 01h)

This log page is used to describe extended error information for a command that completed with error or
report an error that is not specific to a particular command. Extended error information is provided when
the More (M) bit is set to ‘1’ in the Status field for the completion queue entry associated with the command
that completed with error or as part of an asynchronous event with an Error status type. This log page is
global to the controller.

This error log may return the last n errors. If host software specifies a data transfer of the size of n error
logs, then the error logs for the most recent n errors are returned. The ordering of the entries is based on
the time when the error occurred, with the most recent error being returned as the first log entry.

Each entry in the log page returned is defined in Figure 211. The log page is a set of 64-byte entries; the
maximum number of entries supported is indicated in the ELPE field in the Identify Controller data structure
(refer to Figure 280). If the log page is full when a new entry is generated, the controller should insert the
new entry into the log and discard the oldest entry.

The controller should clear this log page by removing all entries on power cycle and Controller Level Reset.

Figure 211: Error Information Log Entry Data Structure

Bytes Description

07:00

Error Count: This is a 64-bit incrementing error count, indicating a unique identifier for this error.
The error count starts at 1h, is incremented for each unique error log entry, and is retained across
power off conditions. A value of 0h indicates an invalid entry; this value is used when there are
lost entries or when there are fewer errors than the maximum number of entries the controller
supports.

If the value of this field is FFFFFFFF_FFFFFFFFh, then the field shall be set to 1h when
incremented (i.e., rolls over to 1h). Prior to NVMe 1.4, processing of incrementing beyond
FFFFFFFFh is unspecified.

09:08
Submission Queue ID: This field indicates the Submission Queue Identifier of the command that
the error information is associated with. If the error is not specific to a particular command, then
this field shall be set to FFFFh.

11:10
Command ID: This field indicates the Command Identifier of the command that the error is
associated with. If the error is not specific to a particular command, then this field shall be set to
FFFFh.

13:12

Bits Description

15:1
Status: This field indicates the Status field for the command that
completed. If the error is not specific to a particular command, then this
field reports the most applicable status value.

0
Phase Tag: This field may indicate the Phase Tag posted for the
command.

15:14

Parameter Error Location: This field indicates the byte and bit of the command parameter that
the error is associated with, if applicable. If the parameter spans multiple bytes or bits, then the
location indicates the least-significant byte and bit of the parameter.

Bits Description

15:11 Reserved

10:08
Bit Location: The offset in the byte specified by the Byte Location field
to the bit in that byte that contained the error.

07:00

Byte Location: The offset in the submission queue entry to the byte
in the command that contained the error. Valid values are based on
the SQES field (refer to Figure 280) (e.g., a value of 6 in SQES
indicates that the valid values for this field are 0 to 63).

If the error is not specific to a particular command, then this field shall be set to FFFFh.

23:16

LBA: This field indicates I/O Command Set specific data about the error condition, if applicable.
The description is described in the applicable I/O Command Set specification.

NOTE: The original field name has been retained for historical continuity.

NVM Express® Base Specification, Revision 2.0e

200

Figure 211: Error Information Log Entry Data Structure

Bytes Description

27:24
Namespace: This field indicates the NSID of the namespace that the error is associated with, if
applicable.

28
Vendor Specific Information Available: If there is additional vendor specific error information
available, this field provides the log page identifier associated with that page. A value of 0h
indicates that no additional information is available. Valid values are in the range of 80h to FFh.

29

Transport Type (TRTYPE): This field indicates the Transport Type of the transport associated
with the error. The values in this field are the same as the TRTYPE values in the Discovery Log
Page Entry (refer to section 5.16.1.21). If the error is not transport related, this field shall be
cleared to 0h. If the error is transport related, this field shall be set to the type of the transport as
defined in the TRTYPE field within Figure 269.

31:30 Reserved

39:32
Command Specific Information: This field contains command specific information. If used, the
command definition specifies the information returned.

41:40

Transport Type Specific Information: This field indicates additional transport type specific error
information. If multiple errors exist, then this field indicates additional information about the first
error. This field is transport type dependent (refer to TRTYPE) as follows:

Transport
Type

Description

All other
values

Reserved

3h
This field indicates, the offset, in bytes, from the start of the
Transport Header to the start of the field that is in error. If multiple
errors exist, then this field indicates the lowest offset that is in error.

63:42 Reserved

5.16.1.3 SMART / Health Information (Log Page Identifier 02h)

This log page is used to provide SMART and general health information. The information provided is over
the life of the controller and is retained across power cycles unless otherwise specified. To request the
controller log page, the namespace identifier specified is FFFFFFFFh or 0h. For compatibility with
implementations compliant with NVM Express Base Specification, Revision 1.4 and earlier, hosts should
use a namespace identifier of FFFFFFFFh to request the controller log page. The controller may also
support requesting the log page on a per namespace basis, as indicated by bit 0 of the LPA field in the
Identify Controller data structure in Figure 280.

If the log page is not supported on a per namespace basis, specifying a namespace identifier other than 0h
or FFFFFFFFh should abort the command with a status code of Invalid Field in Command. If the controller
does not abort the command, then the controller returns the controller log page. There is no namespace
specific information defined in the SMART / Health Information log page in this revision of the specification,
thus the controller log page and namespaces specific log page contain identical information.

Critical warnings regarding the health of the NVM subsystem may be indicated via an asynchronous event
notification to the host. The warnings that results in an asynchronous event notification to the host are
configured using the Set Features command; refer to section 5.27.1.8.

Performance may be calculated using parameters returned as part of the SMART / Health Information log.
Specifically, the number of Read or Write commands, the amount of data read or written, and the amount
of controller busy time enables both I/Os per second and bandwidth to be calculated.

The log page returned is defined in Figure 212.

NVM Express® Base Specification, Revision 2.0e

201

Figure 212: SMART / Health Information Log Page

Bytes Description

00

Critical Warning: This field indicates critical warnings for the state of the controller. Each bit
corresponds to a critical warning type; multiple bits may be set to ‘1’. If a bit is cleared to ‘0’,
then that critical warning does not apply. Critical warnings may result in an asynchronous
event notification to the host. Bits in this field represent the state at the time the Get Log Page
command is processed and may not reflect the state at the time a related asynchronous event
notification, if any, occurs or occurred.

Bits Definition

7:6 Reserved

5
If set to ‘1’, then the Persistent Memory Region has become read-only or unreliable
(refer to section 8.14).

4
If set to ‘1’, then the volatile memory backup device has failed. This field is only valid
if the controller has a volatile memory backup solution.

3
If set to ‘1’, then all of the media has been placed in read only mode. The controller
shall not set this bit to '1' if the read-only condition on the media is a result of a
change in the write protection state of a namespace (refer to section 8.12.1).

2
If set to ‘1’, then the NVM subsystem reliability has been degraded due to significant
media related errors or any internal error that degrades NVM subsystem reliability.

1

If set to ‘1’, then a temperature is:

a) greater than or equal to an over temperature threshold; or
b) less than or equal to an under temperature threshold,

(refer to section 5.27.1.3).

0 If set to ‘1’, then the available spare capacity has fallen below the threshold.

02:01

Composite Temperature: Contains a value corresponding to a temperature in Kelvins that
represents the current composite temperature of the controller and namespace(s) associated
with that controller. The manner in which this value is computed is implementation specific
and may not represent the actual temperature of any physical point in the NVM subsystem.
The value of this field may be used to trigger an asynchronous event (refer to section 5.27.1.3).

Warning and critical overheating composite temperature threshold values are reported by the
WCTEMP and CCTEMP fields in the Identify Controller data structure in Figure 280.

03
Available Spare: Contains a normalized percentage (0% to 100%) of the remaining spare
capacity available.

04
Available Spare Threshold: When the Available Spare falls below the threshold indicated in
this field, an asynchronous event completion may occur. The value is indicated as a
normalized percentage (0% to 100%). The values 101 to 255 are reserved.

05

Percentage Used: Contains a vendor specific estimate of the percentage of NVM subsystem
life used based on the actual usage and the manufacturer’s prediction of NVM life. A value of
100 indicates that the estimated endurance of the NVM in the NVM subsystem has been
consumed, but may not indicate an NVM subsystem failure. The value is allowed to exceed
100. Percentages greater than 254 shall be represented as 255. This value shall be updated
once per power-on hour (when the controller is not in a sleep state).

Refer to the JEDEC JESD218A standard for SSD device life and endurance measurement
techniques.

NVM Express® Base Specification, Revision 2.0e

202

Figure 212: SMART / Health Information Log Page

Bytes Description

06

Endurance Group Critical Warning Summary: This field indicates critical warnings for the
state of Endurance Groups. Each bit corresponds to a critical warning type, multiple bits may
be set to ‘1’. If a bit is cleared to ‘0’, then that critical warning does not apply to any Endurance
Group. Critical warnings may result in an asynchronous event notification to the host. Bits in
this field represent the current associated state and are not persistent.

If a bit is set to ‘1’ in one or more Endurance Groups, then the corresponding bit shall be set
to ‘1’ in this field.

Bits Definition

7:4 Reserved

3
If set to ‘1’, then the namespaces in one or more Endurance Groups have been
placed in read only mode not as a result of a change in the write protection state
of a namespace (refer to section 8.12.1).

2
If set to ‘1’, then the reliability of one or more Endurance Groups has been
degraded due to significant media related errors or any internal error that
degrades NVM subsystem reliability.

1 Reserved

0
If set to ‘1’, then the available spare capacity of one or more Endurance Groups
has fallen below the threshold.

31:07 Reserved

47:32

Data Units Read: Contains the number of 512 byte data units the host has read from the
controller as part of processing a SMART Data Units Read Command; this value does not
include metadata. This value is reported in thousands (i.e., a value of 1 corresponds to 1,000
units of 512 bytes read) and is rounded up (e.g., one indicates that the number of 512 byte
data units read is from 1 to 1,000, three indicates that the number of 512 byte data units read
is from 2,001 to 3,000).

Refer to the specific I/O Command Set specification for the list of SMART Data Units Read
Commands that affect this field.

A value of 0h in this field indicates that the number of SMART Data Units Read is not reported.

63:48

Data Units Written: Contains the number of 512 byte data units the host has written to the
controller as part of processing a User Data Out Command; this value does not include
metadata. This value is reported in thousands (i.e., a value of 1 corresponds to 1,000 units of
512 bytes written) and is rounded up (e.g., one indicates that the number of 512 byte data
units written is from 1 to 1,000, three indicates that the number of 512 byte data units written
is from 2,001 to 3,000).

Refer to the specific I/O Command Set specification for the list of User Data Out Commands
that affect this field.

A value of 0h in this field indicates that the number of Data Units Written is not reported.

79:64

Host Read Commands: Contains the number of SMART Host Read Commands completed
by the controller.

Refer to the specific I/O Command Set specification for the list of SMART Host Read
Commands that affect this field.

95:80

Host Write Commands: Contains the number of User Data Out Commands completed by
the controller.

Refer to the specific I/O Command Set specification for the list of User Data Out Commands
that affect this field.

111:96

Controller Busy Time: Contains the amount of time the controller is busy with I/O commands.
The controller is busy when there is a command outstanding to an I/O Queue (specifically, a
command was issued via an I/O Submission Queue Tail doorbell write and the corresponding
completion queue entry has not been posted yet to the associated I/O Completion Queue).
This value is reported in minutes.

127:112 Power Cycles: Contains the number of power cycles.

NVM Express® Base Specification, Revision 2.0e

203

Figure 212: SMART / Health Information Log Page

Bytes Description

143:128
Power On Hours: Contains the number of power-on hours. This may not include time that
the controller was powered and in a non-operational power state.

159:144

Unsafe Shutdowns: Contains the number of unsafe shutdowns. This count is incremented
when the controller does not report it is safe to power down prior to loss of main power.

If the Controller Power Scope (i.e., CAP.CPS) field is cleared to 00b (i.e., Not Reported) or
set to 01b (i.e., Controller scope), then the controller reports that it is safe to power down the
controller when the controller is shutdown (i.e., CSTS.SHST field is set to 10b).

If CAP.CPS field is set to 10b (i.e., Domain scope), then the controller reports that it is safe to
power down the domain when all controllers in that domain are shutdown (e.g., NVM
Subsystem Shutdown processing is complete).

If CAP.CPS field is set to 11b (i.e., NVM subsystem scope), then the controller reports that it
is safe to power down the NVM subsystem when all controllers in the NVM subsystem are
shutdown (e.g., NVM Subsystem Shutdown processing is complete).

175:160

Media and Data Integrity Errors: Contains the number of occurrences where the controller
detected an unrecovered data integrity error. Errors such as uncorrectable ECC, CRC
checksum failure, or LBA tag mismatch are included in this field. Errors introduced as a result
of a Write Uncorrectable command (refer to the NVM Command Set Specification) may or
may not be included in this field.

191:176
Number of Error Information Log Entries: Contains the number of Error Information log
Entries over the life of the controller.

195:192

Warning Composite Temperature Time: Contains the amount of time in minutes that the
controller is operational and the Composite Temperature is greater than or equal to the
Warning Composite Temperature Threshold (WCTEMP) field and less than the Critical
Composite Temperature Threshold (CCTEMP) field in the Identify Controller data structure in
Figure 280.

If the value of the WCTEMP or CCTEMP field is 0h, then this field is always cleared to 0h
regardless of the Composite Temperature value.

199:196

Critical Composite Temperature Time: Contains the amount of time in minutes that the
controller is operational and the Composite Temperature is greater than or equal to the Critical
Composite Temperature Threshold (CCTEMP) field in the Identify Controller data structure in
Figure 280.

If the value of the CCTEMP field is 0h, then this field is always cleared to 0h regardless of the
Composite Temperature value.

201:200
Temperature Sensor 1: Contains the current temperature reported by temperature sensor 1.
This field is defined by Figure 213.

203:202
Temperature Sensor 2: Contains the current temperature reported by temperature sensor 2.
This field is defined by Figure 213.

205:204
Temperature Sensor 3: Contains the current temperature reported by temperature sensor 3.
This field is defined by Figure 213.

207:206
Temperature Sensor 4: Contains the current temperature reported by temperature sensor 4.
This field is defined by Figure 213.

209:208
Temperature Sensor 5: Contains the current temperature reported by temperature sensor 5.
This field is defined by Figure 213.

211:210
Temperature Sensor 6: Contains the current temperature reported by temperature sensor 6.
This field is defined by Figure 213.

213:212
Temperature Sensor 7: Contains the current temperature reported by temperature sensor 7.
This field is defined by Figure 213.

215:214
Temperature Sensor 8: Contains the current temperature reported by temperature sensor 8.
This field is defined by Figure 213.

NVM Express® Base Specification, Revision 2.0e

204

Figure 212: SMART / Health Information Log Page

Bytes Description

219:216

Thermal Management Temperature 1 Transition Count: Contains the number of times the
controller transitioned to lower power active power states or performed vendor specific thermal
management actions while minimizing the impact on performance in order to attempt to
reduce the Composite Temperature because of the host controlled thermal management
feature (refer to section 8.15.5) (i.e., the Composite Temperature rose above the Thermal
Management Temperature 1). This counter shall not wrap once the value FFFFFFFFh is
reached. A value of 0h, indicates that this transition has never occurred or this field is not
implemented.

223:220

Thermal Management Temperature 2 Transition Count: Contains the number of times the
controller transitioned to lower power active power states or performed vendor specific thermal
management actions regardless of the impact on performance (e.g., heavy throttling) in order
to attempt to reduce the Composite Temperature because of the host controlled thermal
management feature (refer to section 8.15.5) (i.e., the Composite Temperature rose above
the Thermal Management Temperature 2). This counter shall not wrap once the value
FFFFFFFFh is reached. A value of 0h, indicates that this transition has never occurred or this
field is not implemented.

227:224

Total Time For Thermal Management Temperature 1: Contains the number of seconds that
the controller had transitioned to lower power active power states or performed vendor specific
thermal management actions while minimizing the impact on performance in order to attempt
to reduce the Composite Temperature because of the host controlled thermal management
feature (refer to section 8.15.5). This counter shall not wrap once the value FFFFFFFFh is
reached. A value of 0h, indicates that this transition has never occurred or this field is not
implemented.

231:228

Total Time For Thermal Management Temperature 2: Contains the number of seconds that
the controller had transitioned to lower power active power states or performed vendor specific
thermal management actions regardless of the impact on performance (e.g., heavy throttling)
in order to attempt to reduce the Composite Temperature because of the host controlled
thermal management feature (refer to section 8.15.5). This counter shall not wrap once the
value FFFFFFFFh is reached. A value of 0h, indicates that this transition has never occurred
or this field is not implemented.

511:232 Reserved

Figure 213: Temperature Sensor Data Structure

Bits Description

15:00

Temperature Sensor Temperature (TST): Contains the current temperature in Kelvins reported
by the temperature sensor.

The physical point in the NVM subsystem whose temperature is reported by the temperature
sensor and the temperature accuracy is implementation specific. An implementation that does
not implement the temperature sensor reports a value of 0h. The temperature reported by a
temperature sensor may be used to trigger an asynchronous event (refer to section 5.27.1.3).

NVM Express® Base Specification, Revision 2.0e

205

5.16.1.4 Firmware Slot Information (Log Page Identifier 03h)

This log page is used to describe the firmware revision stored in each firmware slot supported. The firmware
revision is indicated as an ASCII string. The log page also indicates the active slot number. The log page
returned is defined in Figure 214.

Figure 214: Firmware Slot Information Log Page

Bytes Description

00

Active Firmware Info (AFI): Specifies information about the active firmware revision.
Bit 7 is reserved.

Bits 6:4 indicates the firmware slot that is going to be activated at the next Controller Level Reset.
If this field is 0h, then the controller does not indicate the firmware slot that is going to be activated
at the next Controller Level Reset.

Bit 3 is reserved.

Bits 2:0 indicates the firmware slot from which the actively running firmware revision was loaded.

07:01 Reserved

15:08
Firmware Revision for Slot 1 (FRS1): Contains the revision of the firmware downloaded to
firmware slot 1. If no valid firmware revision is present or if this slot is unsupported, this field shall
be cleared to 0h.

23:16
Firmware Revision for Slot 2 (FRS2): Contains the revision of the firmware downloaded to
firmware slot 2. If no valid firmware revision is present or if this slot is unsupported, this field shall
be cleared to 0h.

31:24
Firmware Revision for Slot 3 (FRS3): Contains the revision of the firmware downloaded to
firmware slot 3. If no valid firmware revision is present or if this slot is unsupported, this field shall
be cleared to 0h.

39:32
Firmware Revision for Slot 4 (FRS4): Contains the revision of the firmware downloaded to
firmware slot 4. If no valid firmware revision is present or if this slot is unsupported, this field shall
be cleared to 0h.

47:40
Firmware Revision for Slot 5 (FRS5): Contains the revision of the firmware downloaded to
firmware slot 5. If no valid firmware revision is present or if this slot is unsupported, this field shall
be cleared to 0h.

55:48
Firmware Revision for Slot 6 (FRS6): Contains the revision of the firmware downloaded to
firmware slot 6. If no valid firmware revision is present or if this slot is unsupported, this field shall
be cleared to 0h.

63:56
Firmware Revision for Slot 7 (FRS7): Contains the revision of the firmware downloaded to
firmware slot 7. If no valid firmware revision is present or if this slot is unsupported, this field shall
be cleared to 0h.

511:64 Reserved

5.16.1.5 Changed Namespace List (Log Page Identifier 04h)

This log page is used to describe namespaces attached to the controller that have:

a) changed information in their Identify Namespace data structures (refer to in Figure 152) since the
last time the log page was read;

b) changed information in their I/O Command Set Independent Identify Namespace data structure
since the last time the log page was read;

c) been added; and
d) been deleted.

The log page contains a Namespace List with up to 1,024 entries. If more than 1,024 namespaces have
changed attributes since the last time the log page was read, the first entry in the log page shall be set to
FFFFFFFFh and the remainder of the list shall be zero filled.

5.16.1.6 Commands Supported and Effects (Log Page Identifier 05h)

This log page is used to describe the commands that the controller supports and the effects of those
commands on the state of the NVM subsystem. The log page is 4,096 bytes in size. There is one

NVM Express® Base Specification, Revision 2.0e

206

Commands Supported and Effects data structure per Admin command opcode value. For controllers that
implement I/O Queues, there is one Commands Supported and Effects data structure per I/O command
opcode value for a specified I/O Command Set based on:

a) the I/O Command Set selected in CC.CSS, if CC.CSS is not set to 110b; and
b) the Command Set Identifier field in CDW 14, if CC.CSS is set to 110b.

Figure 215: Commands Supported and Effects Log Page

Bytes Description

03:00
Admin Command Supported 0 (ACS0): Contains the Commands Supported and Effects data
structure (refer to Figure 216) for the Admin command with an opcode value of 0h.

07:04
Admin Command Supported 1 (ACS1): Contains the Commands Supported and Effects data
structure (refer to Figure 216) for the Admin command with an opcode value of 1h.

… …

1019:1016
Admin Command Supported 254 (ACS254): Contains the Commands Supported and Effects data
structure (refer to Figure 216) for the Admin command with an opcode value of 254.

1023:1020
Admin Command Supported 255 (ACS255): Contains the Commands Supported and Effects data
structure (refer to Figure 216) for the Admin command with an opcode value of 255.

1027:1024
I/O Command Supported 0 (IOCS0): Contains the Commands Supported and Effects data
structure (refer to Figure 216) for the I/O command with an opcode value of 0h.

1031:1028
I/O Command Supported 1 (IOCS1): Contains the Commands Supported and Effects data
structure (refer to Figure 216) for the I/O command with an opcode value of 1h.

… …

2043:2040
I/O Command Supported 254 (IOCS254): Contains the Commands Supported and Effects data
structure (refer to Figure 216) for the I/O command with an opcode value of 254.

2047:2044
I/O Command Supported 255 (IOCS255): Contains the Commands Supported and Effects data
structure (refer to Figure 216) for the I/O command with an opcode value of 255.

4095:2048 Reserved

The Commands Supported and Effects data structure describes the overall possible effect of a command,
including any optional features of the command.

Host software may take command effects into account when determining how to submit commands and
actions to take after the command is complete. It is recommended that if a command may change a
particular capability that host software re-enumerate and/or re-initialize the associated capability after the
command is complete. For example, if a namespace capability change may occur, then host software is
recommended to pause the use of the associated namespace, submit the command that may cause a
namespace capability change and wait for its completion, and then re-issue the Identify command.

If the namespace is attached to multiple controllers, the host(s) associated with those controllers should
coordinate their commands to meet the Command Submission and Execution requirements (refer to Figure
216). The details of this coordination are outside the scope of this specification.

NVM Express® Base Specification, Revision 2.0e

207

Figure 216: Commands Supported and Effects Data Structure

Bits Description

31:20

Command Scope (CSP): This field defines the scope for the associated command. If the value
of this field is 0h then no scope is reported. A command may have multiple scopes depending on
the effects of the command based on the parameters passed to that command. For a command
that supports multiple scopes, multiple bits may set to ‘1’.

Bits Description

11:6 Reserved

5
NVM Subsystem Scope: If set to ‘1’, then the command performs actions that may
impact the whole NVM subsystem. If cleared to ‘0’ and the CSP field is non-zero,
then the command performs actions that does not impact the whole NVM subsystem.

4
Domain Scope: If set to ‘1’, then the command performs actions that may impact a
single Domain. If cleared to ‘0’ and the CSP field is non-zero, then the command
performs actions that does not impact a single Domain.

3
Endurance Group Scope: If set to ‘1’, then the command performs actions that may
impact Endurance Groups. If cleared to ‘0’ and the CSP field is non-zero, then the
command performs actions that does not impact a single Endurance Group.

2
NVM Set Scope: If set to ‘1’, then the command performs actions that may impact
NVM Sets. If cleared to ‘0’ and the CSP field is non-zero, then the command performs
actions that do not impact NVM Sets.

1
Controller Scope: If set to ‘1’, then the command performs actions that may impact
controllers. If cleared to ‘0’ and the CSP field is non-zero, then the command
performs actions that do not impact controllers.

0
Namespace Scope: If set to ‘1’, then the command performs actions that may impact
namespaces. If cleared to ‘0’ and the CSP field is non-zero, then the command
performs actions that do not impact namespaces.

19
UUID Selection Supported: If set to ‘1’, then the controller supports selection of a UUID by this
command (refer to section 8.25). If cleared to ‘0’, then the controller does not support selection
of a UUID by this command.

18:16

Command Submission and Execution (CSE): This field defines the command submission and
execution recommendations for the associated command.

Value Definition

000b No command submission or execution restriction

001b

The command associated with this structure should only be
submitted when there is no other outstanding command affecting
the same namespace and another command should not be
submitted that affects the same namespace until this command
is complete.

010b

The command associated with this structure should only be
submitted when there is no other outstanding command that
affects any namespace and another command should not be
submitted that affects any namespace until this command is
complete.

011b to 111b Reserved

15:05 Reserved

04

Controller Capability Change (CCC): If this bit is set to ‘1’, then this command may change
controller capabilities. If this bit is cleared to ‘0’, then this command does not modify controller
capabilities. Controller capability changes include a firmware update that changes the capabilities
reported in the CAP property.

03

Namespace Inventory Change (NIC): If this bit is set to ‘1’, then this command may change the
number of namespaces or capabilities for multiple namespaces. If this bit is cleared to ‘0’, then
this command does not modify the number of namespaces or capabilities for multiple
namespaces. Namespace inventory changes include adding or removing namespaces.

02

Namespace Capability Change (NCC): If this bit is set to ‘1’, then this command may change
the capabilities of a single namespace. If this bit is cleared to ‘0’, then this command does not
modify any namespace capabilities for the specified namespace. Namespace capability changes
include a logical format change.

NVM Express® Base Specification, Revision 2.0e

208

Figure 216: Commands Supported and Effects Data Structure

Bits Description

01

Logical Block Content Change (LBCC): If this bit is set to ‘1’, then this command may modify
user data content in one or more namespaces. If this bit is cleared to ‘0’, then this command does
not modify user data content in any namespace. User data content changes include a write to
user data.

NOTE: This field applies to all user data content changes. The original name has been retained
for historical continuity.

00
Command Supported (CSUPP): If this bit is set to ‘1’, then this command is supported by the
controller. If this bit is cleared to ‘0’, then this command is not supported by the controller and all
other fields in this structure shall be cleared to 0h.

5.16.1.7 Device Self-test (Log Page Identifier 06h)

This log page is used to indicate:

a) the status of any device self-test operation in progress and the percentage complete of that
operation; and

b) the results of the last 20 device self-test operations.

The Self-test Result Data Structure contained in the Newest Self-test Result Data Structure field is always
the result of the last completed or aborted self-test operation. The next Self-test Result Data Structure field
in the Device Self-test log page contains the results of the second newest self-test operation and so on. If
fewer than 20 self-test operations have completed or been aborted, then the Device Self-test Status field
shall be set to Fh in the unused Self-test Result Data Structure fields and all other fields in that Self-test
Result Data Structure should be ignored by the host.

Figure 217: Device Self-test Log Page

Bytes Description

00

Current Device Self-Test Operation: This field defines the current device self-test operation.

Bits 7:4 are reserved.

Bits 3:0 indicates the status of the current device self-test operation as defined in the following
table. If a device self-test operation is in process (i.e., this field is set to 1h or 2h), then the
controller shall not set this field to 0h until a new Self-test Result Data Structure is created (i.e.,
if a device self-test operation completes or is aborted, then the controller shall create a Self-test
Result Data Structure prior to setting this field to 0h).

Value Definition

0h No device self-test operation in progress

1h Short device self-test operation in progress

2h Extended device self-test operation in progress

3h to Dh Reserved

Eh Vendor specific

Fh Reserved

01

Current Device Self-Test Completion: This field defines the completion status of the current
device self-test.

Bit 7 is reserved.

Bits 6:0 indicates the percentage of the device self-test operation that is complete (e.g., a value
of 25 indicates that 25% of the device self-test operation is complete and 75% remains to be
tested). If bits 3:0 in the Current Device Self-Test Operation field are cleared to 0h (i.e., there is
no device self-test operation in progress), then this field should be ignored by the host.

03:02 Reserved

31:04 Newest Self-test Result Data Structure (refer to Figure 218)

59:32 2nd newest Self-test Result Data Structure (refer to Figure 218)

… …

535:508 19th newest Self-test Result Data Structure (refer to Figure 218)

NVM Express® Base Specification, Revision 2.0e

209

Figure 217: Device Self-test Log Page

Bytes Description

563:536 20th newest Self-test Result Data Structure (refer to Figure 218)

Figure 218: Self-test Result Data Structure

Bytes Description

00

Device Self-test Status: This field indicates the device self-test code and the status of the
operation.

Bits 7:4 indicates the Self-test Code value that was specified in the Device Self-test command
that started the device self-test operation that this Self-test Result Data Structure describes.

Value Definition

0h Reserved

1h Short device self-test operation

2h Extended device self-test operation

3h to Dh Reserved

Eh Vendor specific

Fh Reserved

Bits 3:0 indicates the result of the device self-test operation that this Self-test Result Data
Structure describes.

Value Definition

0h Operation completed without error

1h Operation was aborted by a Device Self-test command

2h Operation was aborted by a Controller Level Reset

3h
Operation was aborted due to a removal of a namespace from the
namespace inventory

4h Operation was aborted due to the processing of a Format NVM command

5h
A fatal error or unknown test error occurred while the controller was
executing the device self-test operation and the operation did not complete

6h
Operation completed with a segment that failed and the segment that
failed is not known

7h
Operation completed with one or more failed segments and the first
segment that failed is indicated in the Segment Number field

8h Operation was aborted for unknown reason

9h Operation was aborted due to a sanitize operation

Ah to Eh Reserved

Fh Entry not used (does not contain a test result)

01
Segment Number: This field indicates the segment number (refer to section 8.6) where the first
self-test failure occurred. If Device Self-test Status field bits [3:0] are not set to 7h, then this field
should be ignored by the host.

02

Valid Diagnostic Information: This field indicates the diagnostic failure information that is
reported.

Bits 7:4 are reserved.

Bit 3 (SC Valid): If set to ‘1’, then the contents of Status Code field are valid. If cleared to ‘0’,
then the contents of the Status Code field are invalid.

Bit 2 (SCT Valid): If set to ‘1’, then the contents of the Status Code Type field are valid. If cleared
to ‘0’, then the contents of the Status Code Type field are invalid.

Bit 1 (FLBA Valid): If set to ‘1’, then the contents of the Failing LBA field are valid. If cleared to
‘0’, then the contents of the Failing LBA field are invalid.

Bit 0 (NSID Valid): If set to ‘1’, then the contents of the Namespace Identifier field are valid. If
cleared to ‘0’, then the contents of the Namespace Identifier field are invalid.

03 Reserved

NVM Express® Base Specification, Revision 2.0e

210

Figure 218: Self-test Result Data Structure

Bytes Description

11:04
Power On Hours (POH): This field indicates the number of power-on hours at the time the
device self-test operation was completed or aborted. This does not include time that the controller
was powered and in a low power state condition.

15:12
Namespace Identifier (NSID): This field indicates the namespace that the Failing LBA occurred
on. The contents of this field are valid only when the NSID Valid bit is set to ‘1’.

23:16

Failing LBA: This field is I/O Command Set specific and is described in the applicable I/O
Command Set specification.

NOTE: The original field name has been retained for historical continuity.

24

Status Code Type: This field may contain additional information related to errors or conditions.
Bits 7:3 are reserved.

Bits 2:0 may contain additional information relating to errors or conditions that occurred during
the device self-test operation represented in the same format used in the Status Code Type field
of the completion queue entry (refer to Figure 96). The contents of this field are valid only when
the SCT Valid bit is set to ‘1’.

25

Status Code: This field may contain additional information relating to errors or conditions that
occurred during the device self-test operation represented in the same format used in the Status
Code field of the completion queue entry (refer to section 3.3.3.2.1). The contents of this field
are valid only when the SC Valid bit is set to ‘1’.

27:26 Vendor Specific

5.16.1.8 Telemetry Host-Initiated (Log Page Identifier 07h)

This log page consists of a header describing the log and zero or more Telemetry Data Blocks (refer to
section 8.24). All Telemetry Data Blocks are 512 bytes in size. The controller shall initiate a capture of the
controller’s internal controller state to this log if the controller processes a Get Log Page command for this
log with the Create Telemetry Host-Initiated Data bit set to ‘1’ in the Log Specific Parameter field. If the host
specifies a Log Page Offset Lower value that is not a multiple of 512 bytes in the Get Log Page command
for this log, then the controller shall abort the command with a status code of Invalid Field in Command.
This log page is global to the controller or global to the NVM subsystem.

The Log Specific Parameter field in Command Dword 10 (refer to Figure 202) for this log page is defined
in Figure 219.

Figure 219: Telemetry Host-Initiated Log Specific Parameter Field

Bits Description

14:09 Reserved

08

Create Telemetry Host-Initiated Data: If set to ‘1’, then the controller shall capture the Telemetry
Host-Initiated Data representing the internal state of the controller at the time the associated Get
Log Page command is processed. If cleared to ‘0’, then the controller shall not update the
Telemetry Host-Initiated Data. The Host-Initiated Data shall not change until the controller
processes:

a) a subsequent Telemetry Host-Initiated Log with this bit set to ‘1’;
b) a Firmware Commit command; or
c) a power on reset.

The Telemetry Host-Initiated Data consists of:

a) Three areas, if bit 6 of the Log Page Attributes field is cleared to ‘0’: Telemetry Host-Initiated Data
Area 1, Telemetry Host-Initiated Data Area 2, and Telemetry Host-Initiated Data Area 3; or

b) Four areas, if bit 6 of the Log Page Attributes field is set to ‘1’: Telemetry Host-Initiated Data Area
1, Telemetry Host-Initiated Data Area 2, Telemetry Host-Initiated Data Area 3 and Telemetry Host-
Initiated Data Area 4.

NVM Express® Base Specification, Revision 2.0e

211

All areas start at Telemetry Host-Initiated Data Area Block 1. The last block of each area is indicated in
Telemetry Host-Initiated Data Area y Last Block, respectively. The telemetry data captured and its size is
implementation dependent.

The size of the log page is variable and:

• If bit 6 is cleared to ‘0’ in the Log Page Attributes field, the size may be calculated using the
Telemetry Host-Initiated Data Area 3 Last Block field.

• If bit 6 of the Log Page Attributes field is set to ‘1’ and the Extended Telemetry Data Area 4
Supported (ETDAS) field is set to 1h in the Host Behavior Support feature (refer to section
5.21.1.22), then the size of the log page may be calculated using the Telemetry Host-Initiated Data
Area 4 Last Block field.

• If bit 6 of the Log Page Attributes field is set to ‘1’ and the Extended Telemetry Data Area 4
Supported (ETDAS) field is cleared to 0h in the Host Behavior Support feature (refer to section
5.21.1.22), then the size of the log page may be calculated using the Telemetry Host-Initiated Data
Area 3 Last Block field.

The controller shall return data for all blocks requested:

• If bit 6 of the Log Page Attributes field is cleared to ‘0’, then the data beyond the last block in
Telemetry Host-Initiated Data Area 3 Last Block is undefined.

• If bit 6 of the Log Page Attributes field is set to ‘1’ and the Extended Telemetry Data Area 4
Supported (ETDAS) field is set to 1h in the Host Behavior Support feature, then the data beyond
the last block in Telemetry Host-Initiated Data Area 4 Last Block is undefined.

• If bit 6 of the Log Page Attributes field is set to ‘1’ and the Extended Telemetry Data Area 4
Supported (ETDAS) field is cleared to 0h in the Host Behavior Support feature, then the data
beyond the last block in Telemetry Host-Initiated Data Area 3 Last Block is undefined.

If the host requests a data transfer that is not a multiple of 512 bytes, then the controller shall return an
error of Invalid Field in Command.

Figure 220: Telemetry Host-Initiated Log Page

Bytes Description

00 Log Page Identifier: This field shall be set to 07h.

04:01 Reserved

07:05

IEEE OUI Identifier (IEEE): Contains the Organization Unique Identifier (OUI) for the
controller vendor that is able to interpret the data. If cleared to 0h, no IEEE OUI Identifier
is present. The OUI shall be a valid IEEE/RAC assigned identifier that is registered at
http://standards.ieee.org/develop/regauth/oui/public.html.

09:08

Telemetry Host-Initiated Data Area 1 Last Block: Contains the value of the last block
of Telemetry Host-Initiated Data Area 1. If the Telemetry Host-Initiated Data Area 1 does
not contain data, then this field shall be cleared to 0h.

If this field is not 0h, then Telemetry Host-Initiated Data Area 1 begins at block 1h and
ends at the block indicated in this field.

11:10

Telemetry Host-Initiated Data Area 2 Last Block: Contains the value of the last block
of Telemetry Host-Initiated Data Area 2. This value shall be greater than or equal to the
value in the Telemetry Host-Initiated Data Area 1 Last Block field.

If this field is not 0h, then Telemetry Host-Initiated Data Area 2 begins at block 1h and
ends at the block indicated in this field.

13:12

Telemetry Host-Initiated Data Area 3 Last Block: Contains the value of the last block
of Telemetry Host-Initiated Data Area 3. This value shall be greater than or equal to the
value in the Telemetry Host-Initiated Data Area 2 Last Block field.

If this field is not 0h, then Telemetry Host-Initiated Data Area 3 begins at block 1h and
ends at the block contained in this field.

15:14 Reserved

http://standards.ieee.org/develop/regauth/oui/public.html

NVM Express® Base Specification, Revision 2.0e

212

Figure 220: Telemetry Host-Initiated Log Page

Bytes Description

19:16

Telemetry Host-Initiated Data Area 4 Last Block: Contains the value of the last block
of Telemetry Host-Initiated Data Area 4. If bit 6 of the Log Page Attributes field is set to
‘1’, then this value shall be greater than or equal to the value in the Telemetry Host-
Initiated Data Area 3 Last Block field.

If this field is not 0h, then Telemetry Host-Initiated Data Area 4 begins at block 1h and
ends at the block contained in this field.

380:20 Reserved

381

Telemetry Host-Initiated Data Generation Number: Contains a value that is
incremented each time the controller captures its internal controller state for this log page.
If the value of this field is FFh, then the field shall be cleared to 0h when incremented (i.e.,
rolls over to 0h).

382
Telemetry Controller-Initiated Data Available: Contains the value of Telemetry
Controller-Initiated Data Available field in the Telemetry Controller-Initiated log (refer to
Figure 221).

383
Telemetry Controller-Initiated Data Generation Number: Contains the value of the
Telemetry Controller-Initiated Data Generation Number field in the Telemetry Controller-
Initiated log (refer to Figure 221).

511:384
Reason Identifier: Contains a vendor specific identifier that describes the operating
conditions of the controller at the time of capture. The Reason Identifier field should
provide an identification of unique operating conditions of the controller.

1023:512
Telemetry Host-Initiated Data Block 1: Contains Telemetry Data Block 1 for the
Telemetry Host-Initiated Log.

1535:1024
Telemetry Host-Initiated Data Block 2: Contains Telemetry Data Block 2 for the
Telemetry Host-Initiated Log.

… …

(n*512)+511:(n*512)
Telemetry Host-Initiated Data Block n: Contains Telemetry Data Block n for the
Telemetry Host-Initiated Log.

5.16.1.9 Telemetry Controller-Initiated (Log Page Identifier 08h)

This log page consists of a header describing the log and zero or more Telemetry Data Blocks (refer to
section 8.23). All Telemetry Data Blocks are 512 bytes in size. This log is a controller initiated capture of
the controller’s internal state. The Telemetry Controller-Initiated Data for Data Area 1 through Data Area 3
shall persist across all resets. The Telemetry Controller-Initiated Data for Data Area 4 may persist across
Controller Level Resets. If the host specifies a Log Page Offset Lower value that is not a multiple of 512
bytes in the Get Log Page command for this log, then the controller shall return an error of Invalid Field in
Command. This log page is global to the controller.

The Telemetry Controller-Initiated Data consists of:

a) three areas, if bit 6 of the Log Page Attributes field is cleared to ‘0’: Telemetry Controller-Initiated
Data Area 1, Telemetry Controller-Initiated Data Area 2, and Telemetry Controller-Initiated Data
Area 3; or

b) four areas, if bit 6 of the Log Page Attributes field is set to ‘1’: Telemetry Controller-Initiated Data
Area 1, Telemetry Controller-Initiated Data Area 2, Telemetry Controller-Initiated Data Area 3 and
Telemetry Controller-Initiated Data Area 4.

All areas start at Telemetry Controller-Initiated Data Area Block 1. The last block of each area is indicated
in the Telemetry Controller-Initiated Data Area y Last Block, respectively. The telemetry data captured and
its size is implementation dependent.

The size of the log page is variable and:

• If bit 6 is cleared to ‘0’ in the Log Page Attributes field, the size may be calculated using the
Telemetry Controller-Initiated Data Area 3 Last Block field.

• If bit 6 of the Log Page Attributes field is set to ‘1’ and the Extended Telemetry Data Area 4
Supported (ETDAS) field is set to 1h in the Host Behavior Support feature (refer to section

NVM Express® Base Specification, Revision 2.0e

213

5.27.1.18), then the size of the log page may be calculated using the Telemetry Controller-Initiated
Data Area 4 Last Block field.

• If bit 6 of the Log Page Attributes field is set to ‘1’ and the Extended Telemetry Data Area 4
Supported (ETDAS) field is cleared to 0h in the Host Behavior Support feature (refer to section
5.27.1.18), then the size of the log page may be calculated using the Telemetry Controller-Initiated
Data Area 3 Last Block field.

The controller shall return data for all blocks requested:

• If bit 6 of the Log Page Attributes field is cleared to ‘0’, then the data beyond the last block in
Telemetry Controller-Initiated Data Area 3 Last Block is undefined.

• If bit 6 of the Log Page Attributes field is set to ‘1’, then the data beyond the last block in Telemetry
Controller-Initiated Data Area 4 Last Block is undefined.

• If bit 6 of the Log Page Attributes field is set to ‘1’ and the Extended Telemetry Data Area 4
Supported (ETDAS) field is cleared to 0h in the Host Behavior Support feature, then the data
beyond the last block in Telemetry Controller-Initiated Data Area 3 Last Block is undefined.

If the host requests a data transfer that is not a multiple of 512 bytes, then the controller shall abort the
command with the status code of Invalid Field in Command.

Figure 221: Telemetry Controller-Initiated Log Page

Bytes Description

00 Log Page Identifier: This field shall be set to 08h.

04:01 Reserved

07:05

IEEE OUI Identifier (IEEE): Contains the Organization Unique Identifier (OUI) for the
controller vendor that is able to interpret the data. If cleared to 0h, no IEEE OUI Identifier
is present. The OUI shall be a valid IEEE/RAC assigned identifier that is registered at
http://standards.ieee.org/develop/regauth/oui/public.html.

09:08

Telemetry Controller-Initiated Data Area 1 Last Block: Contains the value of the last
block of Telemetry Controller-Initiated Data Area 1. If the Telemetry Controller-Initiated
Data Area 1 does not contain data, then this field shall be cleared to 0h.

If this field is not 0h, then Telemetry Controller-Initiated Data Area 1 begins at block 1
and ends at the block indicated in this field.

11:10

Telemetry Controller-Initiated Data Area 2 Last Block: Contains the value of the last
block of Telemetry Controller-Initiated Data Area 2. This value shall be greater than or
equal to the value in the Telemetry Controller-Initiated Data Area 1 Last Block field.

If this field is not 0h, then Telemetry Controller-Initiated Data Area 2 begins at block 1h
and ends at the block indicated in this field.

13:12

Telemetry Controller-Initiated Data Area 3 Last Block: Contains the value of the last
block of Telemetry Controller-Initiated Data Area 3. This value shall be greater than or
equal to the value in the Telemetry Controller-Initiated Data Area 2 Last Block field.

If this field is not 0h, then Telemetry Controller-Initiated Data Area 3 begins at block 1h
and ends at the block indicated in this field.

15:14 Reserved

19:16

Telemetry Controller-Initiated Data Area 4 Last Block: Contains the value of the last
block of Telemetry Controller-Initiated Data Area 4. If bit 6 of the Log Page Attributes
field is set to ‘1’, then this value shall be greater than or equal to the value in the
Telemetry Controller-Initiated Data Area 3 Last Block field.

If this field is not 0h, then Telemetry Controller-Initiated Data Area 4 begins at block 1h
and ends at the block contained in this field.

381:20 Reserved

382

Telemetry Controller-Initiated Data Available: If this field is cleared to 0h, the log does
not contain saved internal controller state. If this field is set to 1h, the log contains saved
internal controller state. If this field is set to 1h, it shall not be cleared to 0h until a Get
Log Page command with Retain Asynchronous Event bit cleared to ‘0’ for the Telemetry
Controller-Initiated log completes successfully. This value is persistent across power
states and reset.

http://standards.ieee.org/develop/regauth/oui/public.html

NVM Express® Base Specification, Revision 2.0e

214

Figure 221: Telemetry Controller-Initiated Log Page

Bytes Description

Other values are reserved.

383

Telemetry Controller-Initiated Data Generation Number: Contains a value that is
incremented each time the controller initiates a capture of its internal controller state into
the Telemetry Controller-Initiated Data Blocks. If the value of this field is FFh, then the
field shall be cleared to 0h when incremented (i.e., rolls over to 0h). This field is persistent
across power cycles.

511:384

Reason Identifier: Contains a vendor specific identifier that describes the operating
conditions of the controller at the time of capture. The Controller-Initiated Reason
Identifier field should provide an identification of unique operating conditions of the
controller.

1023:512
Telemetry Controller-Initiated Data Block 1: Contains Telemetry Data Block 1 for the
Telemetry Controller -Initiated Log captured at a vendor specific time.

1535:1024
Telemetry Controller-Initiated Data Block 2: Contains Telemetry Data Block 2 for the
Telemetry Controller -Initiated Log captured at a vendor specific time.

… …

(n*512)+511:(n*512)
Telemetry Controller-Initiated Data Block n: Contains Telemetry Data Block n for the
Telemetry Controller-Initiated log captured at a vendor specific time.

5.16.1.10 Endurance Group Information (Log Page Identifier 09h)

This log page is used to provide endurance information based on the Endurance Group (refer to section
3.2.3). An Endurance Group contains capacity that may be allocated to zero or more NVM Sets. Capacity
that has not been allocated to an NVM Set is unallocated Endurance Group capacity. The information
provided is over the life of the Endurance Group. The Endurance Group Identifier is specified in the Log
Specific Identifier field in Command Dword 11 of the Get Log Page command. The log page is 512 bytes
in size.

Figure 222: Endurance Group Information Log Page

Bytes Description

00

Critical Warning: This field indicates critical warnings for the state of the Endurance Group. Each
bit corresponds to a critical warning type; multiple bits may be set to ‘1’. If a bit is cleared to ‘0’,
then that critical warning does not apply. Critical warnings may result in an asynchronous event
notification to the host. Bits in this field represent the state at the time the Get Log Page command
is processed and may not reflect the state at the time a related asynchronous event notification,
if any, occurs or occurred.

If a bit is set to ‘1’ in all Endurance Groups in the NVM subsystem, then the corresponding bit
shall be set to ‘1’ in the Critical Warning field of the SMART / Health Information log page (refer
to Figure 212).

Bits Definition

7:4 Reserved

3

If set to ‘1’, then all namespaces in the Endurance Group have been placed in
read only mode for reasons other than a change in the write protect state of the
namespace. The controller shall not set this bit to '1' if the read-only condition on
the Endurance Group is a result of a change in the write protection state of all
namespaces in the Endurance Group.

2
If set to ‘1’, then the Endurance Group reliability has been degraded due to
significant media related errors or any internal error that degrades NVM
subsystem reliability.

1 Reserved

0
If set to ‘1’, then the available spare capacity of the Endurance Group has fallen
below the threshold.

NVM Express® Base Specification, Revision 2.0e

215

Figure 222: Endurance Group Information Log Page

Bytes Description

01

Endurance Group Features (EGFEAT): This field defines features of the Endurance Group.

Bits Definition

7:1 Reserved

0

Endurance Group Media (EGRMEDIA): If set to ‘1’ indicates that the
Endurance Group stores data on rotational media (refer to section 8.20). If
cleared to ‘0’, then the Endurance Group does not store data on rotational
media.

02 Reserved

03
Available Spare: Contains a normalized percentage (0% to 100%) of the remaining spare
capacity available for the Endurance Group.

04
Available Spare Threshold: If the Available Spare falls below the threshold indicated in this field,
an asynchronous event completion may occur. The value is indicated as a normalized percentage
(0% to 100%). The values 101 to 255 are reserved.

05

Percentage Used: Contains a vendor specific estimate of the percentage of life used for the
Endurance Group based on the actual usage and the manufacturer’s prediction of NVM life. A
value of 100 indicates that the estimated endurance of the NVM in the Endurance Group has
been consumed, but may not indicate an NVM failure. The value is allowed to exceed 100.
Percentages greater than 254 shall be represented as 255. This value shall be updated once per
power-on hour when the controller is not in a sleep state.

Refer to the JEDEC JESD218A standard for SSD device life and endurance measurement
techniques.

07:06
Domain Identifier: This field indicates the identifier of the domain that contains this Endurance
Group. If the NVM subsystem supports multiple domains, this field shall be set to a non-zero
value. If cleared to 0h, the NVM subsystem does not support multiple domains.

31:08 Reserved

47:32

Endurance Estimate: This field is an estimate of the total number of data bytes that may be
written to the Endurance Group over the lifetime of the Endurance Group assuming a write
amplification of 1 (i.e., no increase in the number of write operations performed by the device
beyond the number of write operations requested by a host). This value is reported in billions (i.e.,
a value of 1 corresponds to 1,000,000,000 bytes written) and is rounded up (e.g., one indicates
the number of bytes written is from 1 to 1,000,000,000, three indicates the number of bytes written
is from 2,000,000,001 to 3,000,000,000).

A value of 0h indicates that the controller does not report an Endurance Estimate.

63:48

Data Units Read: Contains the total number of data bytes that have been read from the
Endurance Group. This value does not include controller reads due to internal operations such
as garbage collection. This value is reported in billions (i.e., a value of 1 corresponds to
1,000,000,000 bytes read) and is rounded up (e.g., one indicates the number of bytes read is
from 1 to 1,000,000,000, three indicates the number of bytes read is from 2,000,000,001 to
3,000,000,000).

A value of 0h indicates that the controller does not report the number of Data Units Read.

79:64

Data Units Written: Contains the total number of data bytes that have been written to the
Endurance Group. This value does not include controller writes due to internal operations such
as garbage collection. This value is reported in billions (i.e., a value of 1 corresponds to
1,000,000,000 bytes written) and is rounded up (e.g., one indicates the number of bytes written
is from 1 to 1,000,000,000, three indicates the number of bytes written is from 2,000,000,001 to
3,000,000,000).

A value of 0h indicates that the controller does not report the number of Data Units Written.

95:80

Media Units Written: Contains the total number of data bytes that have been written to the
Endurance Group including both host and controller writes (e.g., garbage collection). This value
is reported in billions (i.e., a value of 1 corresponds to 1,000,000,000 bytes written) and is rounded
up (e.g., one indicates the number of bytes written is from 1 to 1,000,000,000, three indicates the
number of bytes written is from 2,000,000,001 to 3,000,000,000).

A value of 0h indicates that controller does not report the number of Media Units Written.

NVM Express® Base Specification, Revision 2.0e

216

Figure 222: Endurance Group Information Log Page

Bytes Description

111:96

Host Read Commands: Contains the number of Endurance Group Host Read Commands
completed by the controller.

Refer to the specific I/O Command Set specification for the list of Endurance Group Host Read
Commands that affect this field.

127:112

Host Write Commands: Contains the number of User Data Out Commands completed by the
controller.

Refer to the specific I/O Command Set specification for the list of User Data Out Commands that
affect this field.

143:128
Media and Data Integrity Errors: Contains the number of occurrences where the controller
detected an unrecovered data integrity error for the Endurance Group. Errors such as
uncorrectable ECC, CRC checksum failure, or LBA tag mismatch are included in this field.

159:144
Number of Error Information Log Entries: Contains the number of Error Information Log
Entries over the life of the controller for the Endurance Group.

175:160
Total Endurance Group Capacity (TEGCAP): This field indicates the total NVM capacity in this
Endurance Group. The value is in bytes. If this field is cleared to 0h, the NVM subsystem does
not report the total NVM capacity in this Endurance Group.

191:176
Unallocated Endurance Group Capacity (UEGCAP): This field indicates the unallocated NVM
capacity in this Endurance Group. The value is in bytes. If this field is cleared to 0h, the NVM
subsystem does not report the unallocated NVM capacity in this Endurance Group.

511:192 Reserved

5.16.1.11 Predictable Latency Per NVM Set (Log Page Identifier 0Ah)

This log page may be used to determine the current window for the specified NVM Set when Predictable
Latency Mode is enabled and any events that have occurred for the specified NVM Set. There is one log
page for each NVM Set when Predictable Latency Mode is supported. Command Dword 11 (refer to Figure
203) specifies the NVM Set for which the log page is to be returned. The log page is 512 bytes in size.

The log page indicates typical values and reliable estimates for attributes associated with the Deterministic
Window and the Non-Deterministic Window of the specified NVM Set. The Typical, Maximum, and Minimum
values are static and worst-case values over the lifetime of the NVM subsystem.

After the controller successfully completes a read of this log page with Retain Asynchronous Event bit
cleared to ‘0’, then reported events are cleared to ‘0’ for the specified NVM Set and the field corresponding
to the specified NVM Set is cleared to ‘0’ in the Predictable Latency Event Aggregate log page. Co-
ordination between two or more hosts is beyond the scope of this specification.

Figure 223: Predictable Latency Per NVM Set Log Page

Bytes Description

00

Status: This field indicates the status of the specified NVM Set.

Bits 7:3 are reserved.

Bits 2:0 indicate the window for the NVM Set when Predictable Latency Mode is enabled.

Value Definition

000b Not used (Predictable Latency Mode not enabled)

001b Deterministic Window (DTWIN)

010b Non-Deterministic Window (NDWIN)

011b to 111b Reserved

01 Reserved

NVM Express® Base Specification, Revision 2.0e

217

Figure 223: Predictable Latency Per NVM Set Log Page

Bytes Description

03:02

Event Type: This field specifies the event(s) that occurred for the NVM Set indicated. Multiple
bits may be set to ‘1’. All bits are cleared to ‘0’ after the log page is read with Retain Asynchronous
Event bit cleared to ‘0’.

Bits Description

15 Autonomous transition from DTWIN to NDWIN due to Deterministic Excursion

14
Autonomous transition from DTWIN to NDWIN due to typical or maximum
value exceeded

13:03 Reserved

02 DTWIN Time Warning

01 DTWIN Writes Warning

00 DTWIN Reads Warning

31:04 Reserved

Typical, Maximum, and Minimum Values

39:32
DTWIN Reads Typical: Indicates the typical number of 4 KiB random reads that may be
performed in the Deterministic Window. Refer to section 8.16.

47:40
DTWIN Writes Typical: Indicates the typical number of writes in units of the Optimal Write Size
that may be performed in the Deterministic Window. Refer to section 8.16.

55:48
DTWIN Time Maximum: Indicates the maximum time in milliseconds that the NVM Set is able to
remain in a Deterministic Window before entering a Non-Deterministic Window. Refer to section
8.16.

63:56

NDWIN Time Minimum High: Indicates the minimum time in milliseconds that the NVM Set
needs to remain in the Non-Deterministic Window before entering a Deterministic Window. This
is the time necessary to prepare for remaining in the Deterministic Window for DTWIN Time
Maximum. Refer to section 8.16.

71:64

NDWIN Time Minimum Low: Indicates the minimum time in milliseconds that the NVM Set needs
to remain in the Non-Deterministic Window before entering a Deterministic Window. This is
regardless of the amount of time spent in the previous Deterministic Window. Refer to section
8.16.

127:72 Reserved

Reliable Estimates

135:128
DTWIN Reads Estimate: Indicates a reliable estimate of the number of 4 KiB random reads
remaining in the current Deterministic Window, if applicable. This value decrements from DTWIN
Reads Typical to 0h based on host read activity and operating conditions. Refer to section 8.16.1.

143:136

DTWIN Writes Estimate: Indicates a reliable estimate of the number of writes in units of the
Optimal Write Size remaining in the current Deterministic Window, if applicable. This value
decrements from DTWIN Writes Typical to 0h based on host write activity and operating
conditions. Refer to section 8.16.1.

151:144
DTWIN Time Estimate: Indicates a reliable estimate of the time in milliseconds remaining in the
current Deterministic Window, if applicable. Refer to section 8.16.1.

511:152 Reserved

5.16.1.12 Predictable Latency Event Aggregate (Log Page Identifier 0Bh)

This log page indicates if a Predictable Latency Event (refer to section 8.16) has occurred for a particular
NVM Set. If a Predictable Latency Event has occurred, the details of the particular event are included in the
Predictable Latency Per NVM Set log page for that NVM Set. An asynchronous event is generated when
an entry for an NVM Set is newly added to this log page.

This log page shall not contain an entry (i.e., an NVM Set Identifier) that is cleared to 0h.

If there is an enabled Predictable Latency Event pending for an NVM Set, then the Predictable Latency
Event Aggregate log page includes an entry for that NVM Set. The log page is an ordered list by NVM Set
Identifier. For example, if Predictable Latency Events are pending for NVM Set 27, 13, and 17, then the log
page shall have entries in numerical order of 13, 17, and 27. A particular NVM Set is removed from this log
page after the Get Log Page command with the Retain Asynchronous Event bit cleared to ‘0’ for the
Predictable Latency Per NVM Set log page for that NVM Set is completed successfully.

NVM Express® Base Specification, Revision 2.0e

218

The log page size is limited by the NVM Set Identifier Maximum value reported in the Identify Controller
data structure (refer to Figure 280). If the host reads beyond the end of the log page, zeroes are returned.
The log page is defined in Figure 224.

Figure 224: Predictable Latency Event Aggregate Log Page

Bytes Description

07:00
Number of Entries: This field indicates the number of entries in the list. The maximum number
of entries in the list corresponds to the NVM Set Identifier Maximum field reported in the Identify
Controller data structure. A value of 0h indicates there are no entries in the list.

09:08
Entry 1: Indicates the NVM Set that has a Predictable Latency Event pending that has the
numerically smallest NVM Set Identifier.

11:10
Entry 2: Indicates the NVM Set that has a Predictable Latency Event pending that has the second
numerically smallest NVM Set Identifier, if any.

13:12
Entry 3: Indicates the NVM Set that has a Predictable Latency Event pending that has the third
numerically smallest NVM Set Identifier, if any.

15:14
Entry 4: Indicates the NVM Set that has a Predictable Latency Event pending that has the fourth
numerically smallest NVM Set Identifier, if any.

… …

5.16.1.13 Asymmetric Namespace Access (Log Page Identifier 0Ch)

This log page consists of a header describing the log and descriptors containing the asymmetric namespace
access information for ANA Groups (refer to section 8.1.2) that contain namespaces that are attached to
the controller processing the command. If ANA Reporting (refer to section 8.1) is supported, this log page
is supported. ANA Group Descriptors shall be returned in ascending ANA Group Identifier order.

If the Index Offset Supported bit is cleared to ‘0’ in the LID Support and Effects data structure for this log
page (refer to Figure 209), then:

• if the RGO bit is cleared to ‘0’ in Command Dword 10, then the LPOL field in Command Dword 12
and the LPOU field in Command Dword 13 of the Get Log Page command should be cleared to
0h.

If the Index Offset Supported bit is set to ‘1’ in the LID Supported and Effects data structure for this log page
(refer to Figure 209) and the OT bit is set to ‘1’, then, an index value specified in the Log Page Offset Lower
(LPOL) field (refer to Figure 229) and Log Page Offset Upper (LPOU) field (refer to Figure 230) in the Get
Log Page command shall be used to index to the header or an ANA Group Descriptor within the list of ANA
Group Descriptors as shown in Figure 226 (e.g., specifying an index offset of 0 returns this log page starting
at byte offset 0h, specifying an index offset of 1 returns this log page starting at the offset of ANA Group
Descriptor 0, specifying an index offset of 2 returns this log page starting at the offset of ANA Group
Descriptor 1, etc.). Due to the complexity of using a byte offset with a variable sized ANA Group Descriptor,
the host should use an index offset by setting the OT bit to ‘1’ in Command Dword 14 of the Get Log Page
command.

If the host performs multiple Get Log Page commands to read the ANA log page (e.g., using the LPOL field
or the LPOU field), the host should re-read the header of the log page and ensure that the Change Count
field in the Asymmetric Namespace Access log matches the original value read. If it does not match, then
the data captured is not consistent and the ANA log page should be re-read.

The Log Specific Parameter field in Command Dword 10 (refer to Figure 202) for this log page is defined
in Figure 225.

Figure 225: Asymmetric Namespace Access Log Specific Parameter Field

Bits Description

14:09 Reserved

NVM Express® Base Specification, Revision 2.0e

219

Figure 225: Asymmetric Namespace Access Log Specific Parameter Field

Bits Description

08

Return Groups Only (RGO): If set to ‘1’, then the controller shall return ANA Group Descriptors
with the Number of NSID Values field in each ANA Group Descriptor cleared to 0h (i.e., no
Namespace Identifiers are returned). If cleared to ‘0’, then the controller shall return ANA Group
Descriptors that contain the Namespace Identifiers of attached namespaces that are members of
the ANA Group described by that ANA Group Descriptor and the Number of NSID Values field
set to the number of Namespace Identifier values in that ANA Group Descriptor.

Figure 226: Asymmetric Namespace Access Log Page

Bytes Description

Header

07:00

Change Count: This field contains a 64-bit incrementing Asymmetric Namespace Access log
change count, indicating an identifier for this set of asymmetric namespace access information.
The count starts at 0h following a Controller Level Reset and is incremented each time the
contents of the log page change (e.g., not only if an Asymmetric Namespace Access Change
Asynchronous Event Notification is generated). If the value of this field is
FFFFFFFF_FFFFFFFFh, then the field shall be cleared to 0h when incremented (i.e., rolls over
to 0h).

09:08

Number of ANA Group Descriptors (NAGD): This field indicates the number of ANA Group
Descriptors available in the log page. The log page shall contain one ANA Group Descriptor for
each ANA Group that contains namespaces that are attached to the controller.

If, for an ANA Group, there are no namespaces attached to the controller processing the
command, then no ANA Group Descriptor is returned for that ANA Group (i.e., an ANA Group
Descriptor is returned only if that ANA Group contains namespaces that are attached to the
controller processing the command.

If no namespaces are attached to the controller, then the log page does not contain any ANA
Group Descriptors and this field is cleared to 0h.

15:10 Reserved

List of ANA Group Descriptors

n:16 ANA Group Descriptor 0, if any

m:n+1 ANA Group Descriptor 1, if any

… …

x:y ANA Group Descriptor NAGD-1, if any

The format of the ANA Group Descriptor is defined in Figure 227. Namespace Identifiers shall be listed in
ascending NSID order.

Figure 227: ANA Group Descriptor format

Bytes Description

03:00
ANA Group ID: The ANA Group Identifier associated with all namespaces in the ANA Group
(refer to section 8.1.2) described by this ANA Group Descriptor.

07:04

Number of NSID Values: This field indicates the number of Namespace Identifier values in this
ANA Group Descriptor.

If the RGO bit is set to ‘1’, then this field is cleared to 0h.

15:08

Change Count: This field contains a 64-bit incrementing count, indicating an identifier for the
information contained in this ANA Group Descriptor. A value of 0h indicates that the controller
does not report a Change Count for this ANA Group Descriptor. If a Change Count is reported,
then the count starts at 1h following a Controller Level Reset and is incremented each time the
data in this ANA Group Descriptor change. If the value of this field is FFFFFFFF_FFFFFFFFh,
then the field shall be set to 1h when incremented (i.e., rolls over to 1h).

If this field contains 0h, the host should examine this ANA Group Descriptor for any changes and
not use this field as an indicator that a change has occurred.

NVM Express® Base Specification, Revision 2.0e

220

Figure 227: ANA Group Descriptor format

Bytes Description

16

Bits Definition

07:04 Reserved

03:00

Asymmetric Namespace Access State: This field indicates the
Asymmetric Namespace Access state for all namespaces in this ANA
Group when accessed through this controller.

Value Description Reference

01h ANA Optimized state 8.1.3.1

02h ANA Non-Optimized state 8.1.3.2

03h ANA Inaccessible state 8.1.3.3

04h ANA Persistent Loss state 8.1.3.4

0Fh ANA Change state 8.1.3.5

All other
values

Reserved

31:17 Reserved

35:32
Namespace Identifier 0: The Namespace Identifier of the first namespace that is a member of
this ANA Group.

39:36
Namespace Identifier 1: The Namespace Identifier of the second namespace, if any, that is a
member of this ANA Group.

… …

((n*4) + 35):
((n*4) + 32)

Namespace Identifier n: The Namespace Identifier of the n+1 namespace that is a member of
this ANA Group.

5.16.1.14 Persistent Event (Log Page Identifier 0Dh)

The Persistent Event log page contains information about significant events not specific to a particular
command. The information in this log page shall be retained across power cycles and resets. NVM
subsystems should be designed for minimal loss of event information upon power failure. This log page
consists of a header describing the log and zero or more Persistent Events (refer to section 5.16.1.14.1).

This log page is global to the NVM subsystem.

The Log Specific Parameter field in Command Dword 10 (refer to Figure 202) for this log page is defined
in Figure 228.

A sanitize operation may alter this log page (e.g., remove or modify events to prevent derivation of user
data from log page information, refer to section 8.21). The events removed from this log page by a sanitize
operation are unspecified.

Persistent Event Log events specified in this section should be reported in an order such that more recent
events are generally reported earlier in the log data than older events. The method by which the NVM
subsystem determines the order in which events occurred is vendor specific.

The number of events supported is vendor specific. The supported maximum size for the Persistent Event
Log is indicated in the PELS field of the Identify Controller data structure (refer to Figure 280). The number
of events supported and the supported maximum size should be large enough that the number of events
or the size of the Persistent Event Log data does not reach the maximum supported size over the usable
life of the NVM subsystem.

The controller shall log all supported events at each event occurrence unless the controller determines that
the same event is occurring at a frequency that exceeds a vendor specific threshold for the frequency of
event creation. If the same event is occurring at a frequency that exceeds a vendor specific threshold then
the vendor may suppress further entries for the same event. A controller may indicate if events have been
suppressed in vendor specific event data.

It is vendor specific which events are deleted (e.g., important events may be retained and events that are
newer than an important event that was retained may be deleted) to make room for future events if:

NVM Express® Base Specification, Revision 2.0e

221

a) the size of the Persistent Event Log data reaches the maximum supported size;
b) the number of events reaches the largest reportable number of events; or
c) an event category reaches the largest reportable number of events for that category (e.g.,

information regarding 1,000 occurrences of changes to the timestamp is stored in internal data
structures and extracted for reporting as Timestamp Change events in the Persistent Event Log
and more than 1,000 Timestamp Change events have occurred).

Events that affect multiple controllers (e.g., an NVM Subsystem Reset) should be logged once by a
controller selected by the vendor and not logged by any other controllers.

The Action field in the Log Specific Parameter field (refer to Figure 228) specifies whether:

a) A persistent event log reporting context is created at the start of processing this Get Log Page
command and log page data, if any, is read from the log page data associated with that log reporting
context;

b) Log page data is read from the log page data associated with a preexisting log reporting context;
or

c) The persistent event log reporting context, if any, is released.

The persistent event log reporting context is vendor specific information that the controller creates for
determining what information is included in the persistent event log page data (e.g., the persistent event
log reporting context may be the persistent event log page data or may contain a set of pointers to the
events to report).

The controller should retain the persistent event log reporting context:

a) Until the controller processes:

a) a Get Log Page command requesting the Persistent Event log page with the Action field set to
02h (i.e., Release Context);

b) an NVM Subsystem Reset; or
c) a Controller Level Reset;

or

b) For a vendor specific time long enough to allow retrieval of the Persistent Event log page data.

Persistent Event Log events that occur while a persistent event log reporting context exists shall not be
reported in the existing reporting context but shall be logged.

The host is expected to issue a Get Log Page command with the Action field set to 02h to release the
persistent event log reporting context after reading the persistent event log page data.

If the Persistent Event Log is not read with a single Get Log Page command, then host software should
read the Generation Number field in the Persistent Event Log header after establishing a reporting context
but before reading the remainder of the log and then re-read the Generation Number field after it has read
the entire log. If the generation numbers do not match, then:

• the reporting context may have been lost while reading the log;

• the Persistent Event Log contents read may be invalid; and

• host software should re-read the log.

NVM Express® Base Specification, Revision 2.0e

222

Figure 228: Persistent Event Log Specific Parameter Field

Bits Description

14:10 Reserved

09:08

Action: This field specifies the action the controller shall take during processing this Get Log
Page command.

Value Definition

00b

Read Log Data: Return Persistent Event log page data starting at the address
indicated by the LPOU field and the LPOL field in the Get Log Page command. If
the controller does not have a persistent event log reporting context, then the
controller shall abort the command with a status code of Command Sequence Error.

01b

Establish Context and Read Log Data: The controller shall:

a) determine the length of the Persistent Event log page data;
b) determine the set of events to report in the Persistent Event log page data;

and
c) establish a persistent event log reporting context to store information

describing the Persistent Event log page data to be reported and track
Persistent Event log page data accesses.

After establishing a persistent event log reporting context, the controller shall return
Persistent Event log page data starting at the address indicated by the LPOU field
and the LPOL field in the Get Log Page command.

If a persistent event log reporting context already exists, then the controller shall
abort the command with a status code of Command Sequence Error.

10b

Release Context: The controller shall:

• release the persistent event log reporting context, if any. It is not an error
if the controller does not have a persistent event log reporting context; and

• not return any Persistent Event log page data (i.e., the controller ignores
the NUMDU field, NUMDL field, LPOL field, and the LPOU field).

11b

Establish Context and Read 512 Bytes of Header: The controller shall:

a) determine the length of the Persistent Event log page data;
b) determine the set of events to report in the Persistent Event log page data;

and
c) if a reporting context does not already exist, then establish a persistent

event log reporting context to store information describing the Persistent
Event log page data to be reported and track Persistent Event log page
data accesses.

If a persistent event log reporting context did not already exist when the Get Log
Page command was processed, then the controller shall:

a) establish a persistent event log reporting context; and

b) after establishing the context, return 512 bytes of the Persistent Event Log
Header starting at offset 0h with the Reporting Context Exists bit cleared
to ‘0’ with a status code of Successful Completion.

If a persistent event log reporting context already existed when the Get Log Page
command was processed, then the controller shall return 512 bytes of the
Persistent Event Log Header starting at offset 0h with the Reporting Context Exists
bit set to ‘1’ with a status code of Successful Completion.

The 512 bytes of the Persistent Event Log Header shall be returned regardless of
the values in the LPOL, LPOU, NUMDL, and NUMDU fields (i.e., the controller shall
ignore the LPOL, LPOU, NUMDL, and NUMDU fields). Hosts should ensure
allocation of at least 512 bytes in the data buffer to avoid possible data corruption.

The log page returned is defined in Figure 229.

NVM Express® Base Specification, Revision 2.0e

223

Figure 229: Persistent Event Log Page

Bytes Description

Persistent Event Log Header

00 Log Page Identifier: This field shall be set to 0Dh.

03:01 Reserved

07:04 Total Number of Events (TNEV): Contains the number of event entries in the log.

15:08
Total Log Length (TLL): Contains the total number of bytes of persistent event log page
data available, including the header.

16

Log Revision: Contains a number indicating the revision of the Get Log Page data structure
that this log page data complies with. Shall be set to 03h. This revision applies to the
Persistent Event Log and the Persistent Event Format (refer to Figure 230). This revision
does not apply to the contents of the Event Data field in the Persistent Event Format as that
field is covered by the Event Type Revision (refer to Figure 230).

17 Reserved

19:18
Log Header Length: This field contains the length in bytes of the log header information
that follows. The total length of the log header in bytes is the value in this field plus 20.

27:20
Timestamp: Shall contain a timestamp of the time at which the persistent event log reporting
context was established. The value returned shall use the Timestamp data structure defined
in Figure 345.

43:28
Power on Hours (POH): This field indicates the number of power-on hours at the time the
Persistent Event log was retrieved. This may not include time that the controller was powered
and in a non-operational state.

51:44 Power Cycle Count: Contains the number of power cycles for this controller.

53:52
PCI Vendor ID (VID): This is the same value as reported in the Identify Controller data
structure PCI Vendor ID field (i.e., bytes 01:00).

55:54
PCI Subsystem Vendor ID (SSVID): This is the same value as reported in the Identify
Controller data structure PCI Subsystem Vendor ID field (i.e., bytes 03:02).

75:56
Serial Number (SN): This field contains the same value as reported in the Serial Number
field of the Identify Controller data structure, bytes 23:04.

115:76
Model Number (MN): This field contains the same value as reported in the Model Number
field of the Identify Controller data structure, bytes 63:24.

371:116

NVM Subsystem NVMe Qualified Name (SUBNQN): This field contains the same value
as reported in the NVM Subsystem NVMe Qualified Name field of the Identify Controller data
structure, bytes 1023:768. If the NVM Subsystem NVMe Qualified Name field of the Identify
Controller data structure is not supported, then all bytes of this field shall be cleared to 0h.

373:372

Generation Number: Contains a value that is incremented each time a persistent event log
reporting context is established and the log page returns different data than when this log
page last established a reporting context. If the value of this field is FFFFh, then the field
shall be cleared to 0h when incremented (i.e., rolls over to 0h).

NVM Express® Base Specification, Revision 2.0e

224

Figure 229: Persistent Event Log Page

Bytes Description

377:374

Reporting Context Information (RCI): This field contains information about the persistent
event log reporting context.

Bits Definition

31:19 Reserved

18

Reporting Context Exists (RCE): This bit indicates the persistent event log
reporting context. If this bit is set to ‘1’, then a persistent event log reporting
context already existed when the Get Log Page command that requested this log
page was processed. If this bit is cleared to ‘0’, then a persistent event log
reporting context did not already exist when the Get Log Page command that
requested this log page was processed.

17:16

Reporting Context Port Identifier Type (RCPIT): If the RCE bit is set to ‘1’,
then this field indicates the type of port identifier reported in the Reporting Context
Port Identifier (RCPID) field. If the RCE bit is cleared to ‘0’, then this field shall be
cleared to 00b.

Value Definition

00b A persistent event log reporting context does not already exist.

01b The reporting context was established by an NVM subsystem port.

10b
The reporting context was established by a Management Endpoint
(refer to the NVM Express Management Interface Specification).

11b Reserved

15:00

Reporting Context Port Identifier (RCPID): If the RCE bit is cleared to ‘0’, then
this field shall be cleared to 0h.

If the RCE bit is set to ‘1’, then this field contains a Port Identifier of the type
indicated in the RCPIT field.

If the RCPIT field is set to 01b, then this field shall contain the Port Identifier of
the NVM subsystem port that established the reporting context as defined in the
Primary Controller Capabilities data structure (refer to section 5.17.2.13).

If the RCPIT field is set to 10b, then:

• the least-significant byte of this field shall contain the Port Identifier of
the Management Endpoint (refer to the NVM Express Management
Interface Specification); and

• the most-significant byte of this field shall be cleared to 0h.

479:378 Reserved

NVM Express® Base Specification, Revision 2.0e

225

Figure 229: Persistent Event Log Page

Bytes Description

511:480

Supported Events Bitmap: This field contains a bitmap indicating support for the persistent
event log events. Each bit in the bitmap corresponds to the value for the event type (refer to
Figure 231) (e.g., bit 222 decimal, DEh, corresponds to event type value DEh, Vendor
Specific Event). A bit set to ‘1’ indicates that the corresponding event is supported. A bit
cleared to ‘0’ indicates that the corresponding event is not supported.

Bits Definition Reference

255:224 Reserved

223 TCG Defined

TCG Storage
Interface

Interactions
Specification

222 Vendor Specific Event Supported 5.16.1.14.1.14

221:14 Reserved

13 Thermal Excursion Event Support 5.16.1.14.1.13

12 Telemetry Log Create Event Support 5.16.1.14.1.12

11 Set Feature Event Support 5.16.1.14.1.11

10 Sanitize Completion Event Support 5.16.1.14.1.10

09 Sanitize Start Event Support 5.16.1.14.1.9

08 Format NVM Completion Event Support 5.16.1.14.1.8

07 Format NVM Start Event Support 5.16.1.14.1.7

06 Change Namespace Event Support 5.16.1.14.1.6

05 NVM Subsystem Hardware Error Event Support 5.16.1.14.1.5

04 Power-on or Reset Event Supported 5.16.1.14.1.4

03 Timestamp Change Event Supported 5.16.1.14.1.3

02 Firmware Commit Event Supported 5.16.1.14.1.2

01 SMART / Health Log Snapshot Event Supported 5.16.1.14.1.1

00 Reserved

Persistent Event Log Events

(M-1)+512:512
Persistent Event 0: This field contains the first persistent event log entry (refer to Figure
230) where M is the length of this persistent event.

… …

(TLL-1):(TLL-K)
Persistent Event N: This field contains the last persistent event log entry (refer to Figure
230) where K is the length of this persistent event and TLL is the size specified in the Total
Log Length field.

The format of the Persistent Events in the Persistent Event log is shown in Figure 230.

Figure 230: Persistent Event Format

Bytes Description

Persistent Event Log Event Header

00
Event Type: This field indicates the event type for this entry. Refer to section 5.16.1.14.1 for
the definition of the event types.

01
Event Type Revision: This field contains a number indicating the revision of the event data
structure for the event indicated by the Event Type field that this event data complies with.

02

Event Header Length (EHL): This field contains the length in bytes of the event header
information that follows. The total length of the event header in bytes is the value in this field
plus 3. The host should use the value in this field to calculate the offset to the start of the
Vendor Specific Information field.

NVM Express® Base Specification, Revision 2.0e

226

Figure 230: Persistent Event Format

Bytes Description

03

Event Header Additional Information (EHAI): This field indicates if additional
information is present in this event header.

Bits Definition

7:2 Reserved

1:0

Port Identifier Type (PIT): This field indicates the type of port identifier
reported in the Port Identifier (PELPID) field. Implementations that are
compliant with NVM Express Base Specification Revision 2.0 and later shall
set this field to a non-zero value.

Value Definition

00b
The Port Identifier Type is not reported and the Port
Identifier (PELPID) field does not apply.

01b This event is associated with an NVM subsystem port.

10b
This event is associated with a Management Endpoint
(refer to the NVM Express Management Interface
Specification).

11b This event is not associated with any port.

05:04

Controller Identifier: This field contains the NVM subsystem unique controller identifier for
the controller that created this event. If the event is controller specific, then the event data is
associated with that controller. If the event is not controller specific, then this is the controller
that the NVM subsystem selected for creating the event.

13:06
Event Timestamp: This field contains a timestamp of the time when this event occurred
using the Timestamp data structure defined in Figure 344.

15:14

Port Identifier (PELPID): If the PIT field in the EHAI field is cleared to 00b or set to 11b,
then this field shall be cleared to 0h.

If the PIT field in the EHAI field is not cleared to 00b or set to 11b, then this field contains a
Port Identifier of the type indicated in the PIT field.

If the PIT field in the EHAI field is set to 01b, then this field shall contain the Port Identifier of
the NVM subsystem port associated with this event as defined in the Primary Controller
Capabilities data structure (refer to section 5.17.2.13).

If the PIT field in the EHAI field is set to 10b, then:

• the least-significant byte of this field shall contain the Port Identifier of the
Management Endpoint associated with this event (refer to the NVM Express
Management Interface Specification); and

• the most-significant byte of this field shall be cleared to 0h.

19:16 Reserved

21:20

Vendor Specific Information Length (VSIL): This field indicates the length in bytes of the
Vendor Specific Information. If no Vendor Specific Information is present, then this field shall
be cleared to 0h. The length of the Vendor Specific Information is included in the Event
Length field (bytes 23:22). Information associated with this event that is not able to be
described in the event data structure fields may be reported in Vendor Specific Information
fields in this event.

23:22
Event Length (EL): This field indicates the length in bytes of the vendor specific information,
if any, and the persistent event log event data that follows. The total length of the event in
bytes is the value in this field plus the value in the Event Header Length field plus 3.

Vendor Specific Information, if any

EHL+2+VSIL:EHL+3
Vendor Specific Information: This field contains the vendor specific information, if any.
This field is omitted if there is no vendor specific information (i.e., if VSIL is cleared to 0h).

Persistent Event Log Event Data

EHL+EL+2:
EHL+3+VSIL

Event Data: This field contains persistent event log events (refer to section 5.16.1.14.1).

NVM Express® Base Specification, Revision 2.0e

227

5.16.1.14.1 Persistent Event Log Events

The values that may be reported in the Event Type field (refer to section 5.16.1.14) of the event header for
events in the Persistent Event log are defined in Figure 231.

Figure 231: Persistent Event Log Event Types

Type O/M
1
 Event Reference Section

00h Reserved

01h NOTE 2 SMART / Health Log Snapshot 5.16.1.14.1.1

02h M Firmware Commit 5.16.1.14.1.2

03h M Timestamp Change 5.16.1.14.1.3

04h M Power-on or Reset 5.16.1.14.1.4

05h M NVM Subsystem Hardware Error 5.16.1.14.1.5

06h NOTE 3 Change Namespace 5.16.1.14.1.6

07h NOTE 3 Format NVM Start 5.16.1.14.1.7

08h NOTE 3 Format NVM Completion 5.16.1.14.1.8

09h NOTE 3 Sanitize Start 5.16.1.14.1.9

0Ah NOTE 3 Sanitize Completion 5.16.1.14.1.10

0Bh O Set Feature 5.16.1.14.1.11

0Ch O Telemetry Log Created 5.16.1.14.1.12

0Dh O Thermal Excursion 5.16.1.14.1.13

0Eh to DDh Reserved

DEh O Vendor Specific Event 5.16.1.14.1.14

DFh O TCG Defined 5.16.1.14.1.15

E0h to FFh Reserved

Notes:
1. O/M definition: O = Optional, M = Mandatory.
2. Mandatory for NVMe over PCIe implementations, Optional for NVMe over Fabrics implementations.
3. Mandatory if the command used to initiate the activity reported by the event is supported.

5.16.1.14.1.1 SMART / Health Log Snapshot Event (Event Type 01h)

NVM subsystems that support the Persistent Event Log shall create a SMART / Health Log Snapshot Event:

a) If virtualization management is not implemented, then for every controller in the NVM subsystem;
or

b) If virtualization management is implemented, then for every primary controller,

at least once every 24 power on hours at a time determined by the controller.

The SMART / Health Log Snapshot Event shall set the Persistent Event Log Event Header:

a) Event Type field to 01h; and
b) Event Type Revision field to 01h.

The SMART / Health Log Snapshot Event data is specified in Figure 232.

Figure 232: SMART / Health Log Snapshot Event Data Format (Event Type 01h)

Bytes Description

511:00
Event Data: Contains a snapshot of the SMART/Health Information Log data specified in Figure
212.

5.16.1.14.1.2 Firmware Commit Event (Event Type 02h)

A firmware commit event shall be recorded in the Persistent Event Log when a Firmware Commit command
is completed. The Firmware Commit Event shall set the Persistent Event Log Event Format Header:

a) Event Type field to 02h; and
b) Event Type Revision field to 01h.

NVM Express® Base Specification, Revision 2.0e

228

The Firmware Commit Event data is specified in Figure 233.

Figure 233: Firmware Commit Event Data Format (Event Type 02h)

Bytes Description

07:00
Old Firmware Revision: Contains the firmware revision of the active firmware before this
firmware commit event.

15:08
New Firmware Revision: Contains the firmware revision for the firmware that was requested to
become active.

16
Firmware Commit Action: Contains the value from the Commit Action field in the Firmware
Commit command.

17
Firmware Slot: Contains the value from the Firmware Slot field in the Firmware Commit
command.

18
Status Code Type for Firmware Commit Command: Contains the status code type from the
completion queue entry for the Firmware Commit command.

19
Status Returned for Firmware Commit Command: Contains the status code from the
completion queue entry for the Firmware Commit command.

21:20
Vendor Assigned Firmware Commit Result Code: Contains a vendor specific value that
provides more information about the result of the firmware commit. A value of 0h indicates that no
vendor assigned firmware commit result code is provided.

5.16.1.14.1.3 Timestamp Change Event (Event Type 03h)

The Timestamp Change Event (refer to Figure 234) contains the current timestamp, reported in the event
header, and the timestamp from the time at which the timestamp was changed (i.e., the old timestamp).

The Timestamp Change Event shall set the Persistent Event Log Event Format Header:

a) Event Type field to 03h; and
b) Event Type Revision field to 01h.

The Timestamp Change Event data is specified in Figure 234.

Figure 234: Timestamp Change Event Format (Event Type 03h)

Bytes Description

07:00
Previous Timestamp: Contains a timestamp of the time immediately before the timestamp was
changed (i.e, the old timestamp) using the Timestamp data structure as defined in Figure 344.

15:08
Milliseconds Since Reset: Contains the time since the last Controller Level Reset reported in
milliseconds.

5.16.1.14.1.4 Power-on or Reset Event (Event Type 04h)

A Power-on or Reset event shall be recorded in the Persistent Event Log when an NVM Subsystem Reset
(e.g., due to a power-on) or a Controller Level Reset is completed. The Power-on or Reset Event reports
information about resets due to power-on or other events that cause resets (refer to section 3.6) followed
by descriptors reporting information about the controller at the time the reset occurred, including timestamp
values for all controllers for use in synchronization of timestamp values across controllers.

The controller shall set the Persistent Event Log Event Format Header:

a) Event Type field to 04h; and
b) Event Type Revision field to 01h.

The Power-on or Reset Event data is specified in Figure 235.

Figure 235: Power-on or Reset Event (Event Type 04h)

Bytes Description

07:00
Firmware Revision: Contains the firmware revision that becomes effective when CC.EN
transitions from ‘0’ to ‘1’.

NVM Express® Base Specification, Revision 2.0e

229

Figure 235: Power-on or Reset Event (Event Type 04h)

Bytes Description

EL-VSIL-1:081

Reset Information List: Contains a list of one or more Controller Reset Information
descriptors (refer to Figure 236). If virtualization management is not implemented, then the
list shall contain a Controller Reset Information descriptor for every controller in the NVM
subsystem. If virtualization management is implemented, then the list shall contain a
Controller Reset Information descriptor for every primary controller.

The Controller Reset Information descriptor is shown in Figure 236.

Notes:
1. Refer to Figure 230 for the definitions of EL and VSIL.

Figure 236: Controller Reset Information descriptor

Bytes Description

01:00
Controller ID: Contains the Controller ID for the controller with the timestamp in the
Controller Timestamp field.

02

Firmware Activation: Contains a code indicating if this event triggered a firmware activation.

Code Definition

00h
Indicates that this event did not trigger a firmware
activation on the controller.

01h
Indicates that new firmware was activated on the
controller due to this power on or reset.

02h
Indicates that an attempt to activate new firmware on
the controller due to this power-on or reset failed.

03h to FFh Reserved

03

Operation in Progress:

Bits 7:1 are reserved.

Bit 0: A value of ‘1’ indicates that a Format NVM command was in progress for a namespace
attached to the controller when this reset event occurred. A value of ‘0’ indicates that no
Format NVM commands were in progress for any namespace attached to the controller when
this reset event occurred.

15:04 Reserved

19:16
Controller Power Cycle: Contains the power cycle count for the controller indicated in the
Controller ID field.

27:20

Power on milliseconds: Contains the power on hours in milliseconds since being
manufactured. This may not include time that the controller was powered and in a non-
operational power state.

The resolution of this field is vendor specific (e.g., an NVM subsystem that only counts power
on time in hours only reports values corresponding to whole hours).

35:28
Controller Timestamp: Contains a timestamp for the controller specified in the Controller
ID field at the time when this event occurred using the Timestamp data structure defined in
Figure 344.

5.16.1.14.1.5 NVM Subsystem Hardware Error Event (Event Type 05h)

An NVM Subsystem Hardware Error event shall be recorded in the Persistent Event Log when a supported
NVM subsystem hardware error event is detected. Which of the NVM subsystem hardware error events
are supported is vendor specific. The NVM subsystem hardware error event shall set the Persistent Event
Log Event Format Header:

• Event Type field to 05h; and

• Event Type Revision Field to 01h.

All detected NVM Subsystem Hardware Error events supported by the NVM subsystem shall be logged
unless otherwise specified (e.g., suppressed due to reoccurrence frequency (refer to section 5.16.1.14)).

NVM Express® Base Specification, Revision 2.0e

230

NVM Subsystem Hardware Error event fields reporting information that is not available (e.g., due to a PCIe
optional feature that is not implemented) shall be cleared to 0h unless otherwise specified in the NVM
Subsystem Hardware Error Event code description.

The NVM Subsystem Hardware Error Event data is specified in Figure 237.

Figure 237: NVM Subsystem Hardware Error Event Format (Event Type 05h)

Bytes Description

01:00
NVM Subsystem Hardware Error Event Code: This field contains a code (refer to Figure
238) indicating the type of NVM subsystem hardware error that is being reported.

03: 02 Reserved

M+3:04

Additional Hardware Error Information: This field contains additional information about
the hardware error event indicated in the NVM Subsystem Hardware Error Event Code field
(refer to Figure 238). Where M is the number of bytes of additional hardware error
information.

This field is omitted if the subsystem hardware error being reported does not contain
additional hardware error information (i.e., if the number of bytes of additional hardware error
information, M, is 0h).

Figure 238: NVM Subsystem Hardware Error Event Codes

Code Description

00h Reserved

01h

PCIe Correctable Error: Indicates that the NVM subsystem has detected that a PCIe
correctable error occurred.

Refer to Figure 239 for the format of the Additional Hardware Error Information field.

02h

PCIe Uncorrectable Non fatal Error: Indicates that the NVM subsystem has detected that a
PCIe uncorrectable non-fatal error occurred.

Refer to Figure 239 for the format of the Additional Hardware Error Information field.

03h

PCIe Uncorrectable Fatal Error: Indicates that the NVM subsystem has detected that a PCIe
uncorrectable fatal error occurred.

Refer to Figure 239 for the format of the Additional Hardware Error Information field.

04h

PCIe Link Status Change: Indicates that a change in the values reported in the PCI Express
Link Status register (refer to the PCI Express Link Status section in the NVMe over PCIe
Transport Specification) have changed due to an attempt to correct unreliable link operation.

The Additional Hardware Error Information field shall be set to the contents of the PCI Express
Link Status register at the time of the event.

05h

PCIe Link Not Active: Indicates that the Data Link Control and Management State Machine
(refer to PCI Express Base Specification) has transitioned out of the DL_Active state without
a corresponding event (e.g., without an indication from the host that the link is to be disabled).

This NVM subsystem hardware error event does not contain additional hardware error
information.

06h

Critical Warning Condition: Indicates the NVM subsystem has detected a condition that
causes a bit in the Critical Warning field of the SMART / Health Information log (refer to section
5.16.1.3) to be set to ‘1’.

Bits in this field represent the associated state at the time of this event.

The Additional Hardware Error Information field shall be set at the time of the event using the
same format as is specified for the Critical Warning field of the SMART / Health Information
log.

NVM Express® Base Specification, Revision 2.0e

231

Figure 238: NVM Subsystem Hardware Error Event Codes

Code Description

07h

Endurance Group Critical Warning Condition: Indicates that the NVM subsystem has
detected a condition that causes a bit in the Critical Warning field of an Endurance Group
Information log page (refer to section 5.16.1.10) to be set to ‘1’.

Bits in this field represent the state at the time this event is added to the Persistent Event log
page.

The Additional Hardware Error Information field shall be four bytes long and contain the
following information:

Bytes Definition

0
Shall be set at the time this event is added to the Persistent Event log
page using the same format as is specified for the Critical Warning field of
the Endurance Group Information log page.

1 Reserved

3:2
Shall be set to the Endurance Group Identifier for the associated
Endurance Group.

08h

Unsafe Shutdown: Indicates that the controller incremented the Unsafe Shutdowns field
value in the SMART / Health Information Log.

The Additional Hardware Error Information field shall be set to the value from the Unsafe
Shutdowns field in the SMART / Health Information log at the time of the event.

09h

Controller Fatal Status: Indicates that the Controller Fatal Status (CSTS.CFS) bit has been
set to ‘1’.

This NVM subsystem hardware error event does not contain additional hardware error
information.

0Ah

Media and Data Integrity Status: Indicates that a completion queue entry contained a Media
and Data Integrity status code (refer to Figure 101) other than 86h (i.e., Access Denied) or
87h (i.e., Deallocated or Unwritten logical Block).

The Additional Hardware Error Information field shall be set to the contents of the completion
queue entry.

0Bh

Controller Ready Timeout Exceeded: Indicates that:

a) the controller was not ready to process at least one command without error as
described in section 3.5.4.1 within the amount of time indicated by:

• the Controller Ready With Media Timeout (CRTO.CRWMT) field in
Controller Ready With Media mode (CC.CRIME is cleared to ‘0’); or

• the Controller Ready Independent of Media Timeout (CRTO.CRIMT) field
in Controller Ready Independent of Media mode (CC.CRIME is set to ‘1’),

since the controller was enabled; or
b) at least one namespace attached to the controller or media required to process at

least one Admin command was not ready within the amount of time indicated by the
Controller Ready With Media Timeout (CRTO.CRWMT) field since the controller was
enabled by transitioning CC.EN from ‘0’ to ‘1’.

Refer to Figure 240 for the format of the Additional Hardware Error Information field.

0Ch to FFh Reserved

Figure 239: Additional Hardware Error Information for correctable and uncorrectable PCIe

errors

Bytes Value

01:00
PCIe Device Status Register: Contains the contents of the PCI Device Status Register
(refer to the PCI Express Base Specification) at the time of the event.

NVM Express® Base Specification, Revision 2.0e

232

Figure 239: Additional Hardware Error Information for correctable and uncorrectable PCIe

errors

Bytes Value

02

Bits 7:1 Reserved

Bit 0 PCIe AER Supported: set to ‘1’ indicates that PCIe AER (refer to the PCI Express
Base Specification) is supported and that the PCIe AER Error Status field, PCIe AER Error
Mask field, PCIe AER Header Log Register field, and the PCIe AER TLP Prefix Log Register
field are reported. Bit 0 cleared to ‘0’ indicates that PCIe AER is not supported and that the
PCIe AER Error Status field, PCIe AER Error Mask field, PCIe AER Header Log Register
field, and PCIe AER TLP Prefix Log Register field are not reported (i.e., bytes 79:16 are not
reported).

15:03 Reserved

31:16

PCIe AER Error Status: Contains the contents of:

a) the PCIe AER Correctable Error Status Register (refer to the Advanced Error
Reporting Capability section in the NVMe over PCIe Transport Specification) at the
time of the event if the error is a correctable error; or

b) The PCIe AER Uncorrectable Error Status Register (refer to the Advanced Error
Reporting Capability section in the NVMe over PCIe Transport Specification), at the
time of the event if the error is an uncorrectable error.

47:32

PCIe AER Error Mask: Contains the contents of

a) the PCIe AER Correctable Error Mask Register (refer to the Advanced Error
Reporting Capability section in the NVMe over PCIe Transport Specification) at the
time of the event if the error is a correctable error; or

b) the PCIe AER Uncorrectable Error Mask Register (refer to the Advanced Error
Reporting Capability section in the NVMe over PCIe Transport Specification) at the
time of the event if the error is an uncorrectable error.

63:48
PCIe AER Header Log Register: Contains the contents of the PCIe AER Header Log
Register (refer to the Advanced Error Reporting Capability section in the NVMe over PCIe
Transport Specification), if supported, at the time of the event.

79:64
PCIe AER TLP Prefix Log Register: Contains the contents of the PCIe AER TLP Prefix Log
Register (refer to the Advanced Error Reporting Capability section in the NVMe over PCIe
Transport Specification), if supported, at the time of the event.

NVM Express® Base Specification, Revision 2.0e

233

Figure 240: Additional Hardware Error Information for Controller Ready Timeout

Exceeded errors

Bytes Value

0

Controller State: Indicates the state of the controller at the time the Controller Ready
Timeout Exceeded error occurred.

Bits Description

7:4 Reserved

3

Controller Not Ready: Indicates the controller was not ready to process
at least one command without error as described in section 3.5.4.1 within
the amount of time indicated by:

a) the Controller Ready With Media Timeout (CRTO.CRWMT)
field in Controller Ready With Media mode (CC.CRIME is
cleared to ‘0’); or

b) the Controller Ready Independent of Media Timeout
(CRTO.CRIMT) fied in Controller Ready Independent of Media
mode (CC.CRIME is set to ‘1’),

since the controller was enabled.

2

Admin Command Media Not Ready: Indicates media required to
process at least one Admin command was not ready within the amount
of time indicated by the Controller Ready With Media Timeout
(CRTO.CRWMT) field since the controller was enabled by transitioning
CC.EN from ‘0’ to ‘1’.

1

Namespace Not Ready: Indicates at least one namespace attached to
the controller was not ready within the amount of time indicated by the
Controller Ready With Media Timeout (CRTO.CRWMT) field since the
controller was enabled by transitioning CC.EN from ‘0’ to ‘1’.

0
Controller Ready Independent of Media Enable: Indicates the value
of the CC.CRIME bit when the Controller Ready Timeout Exceeded error
occurred.

3:1 Reserved

5.16.1.14.1.6 Change Namespace Event (Event Type 06h)

The Changed Namespace Event (refer to Figure 241) persists the host parameters used for successful
Namespace Management commands. The event contains a Persistent Event Log Event header and the
Change Namespace Event data.

The Changed Namespace Event shall set the Persistent Event Log Event Format Header:

• Event Type field to 06h; and

• Event Type Revision Field to 02h.

Figure 241: Change Namespace Event Data Format (Event Type 06h)

Bytes Value

03:00
Namespace Management CDW10: Contains the value from command Dword 10 of the
Namespace Management command that initiated the namespace change event (refer to Figure
303).

07:04 Reserved

15:08

Namespace Size (NSZE): For a create operation, contains the NSZE value from the Identify
Namespace data structure in the Namespace Management command (refer to Figure 305). For
a delete operation that specifies a single namespace this field contains the value from the NSZE
field of the Identify Namespace data structure (refer to the I/O Command Set specific Identify
Namespace data structure in the applicable I/O Command Set specification) for the namespace
being deleted. For a delete operation that specifies all namespaces this field is reserved.

23:16 Reserved

NVM Express® Base Specification, Revision 2.0e

234

Figure 241: Change Namespace Event Data Format (Event Type 06h)

Bytes Value

31:24

Namespace Capacity (NCAP): For a creation operation, contains the NCAP value from the
Identify Namespace data structure in the Namespace Management command (refer to Figure
305). For a delete operation that specifies a single namespace this field contains the value from
the NCAP field of the Identify Namespace data structure (refer to the I/O Command Set specific
Identify Namespace data structure in the applicable I/O Command Set specification) for the
namespace being deleted. For a delete operation that specifies all namespaces this field is
reserved. For I/O Command Sets that don’t define this field, it is considered reserved.

32

Formatted LBA Size (FLBAS): Refer to the applicable I/O Command Set specification for details.
For I/O Command Sets that don’t define this field, it is considered reserved.

NOTE: This field applies to all User Data Formats. The original name has been retained for
historical continuity.

33
End-to-end Data Protection Type Settings (DPS): Refer to the applicable I/O Command Set
specification for details. For I/O Command Sets that don’t define this field, it is considered
reserved.

34

Namespace Multi-path I/O and Namespace Sharing Capabilities (NMIC): For a create
operation, contains the NMIC value from the Namespace Management – Host Software Specified
Fields data structure defined in the applicable I/O Command Set specification. For a delete
operation that specifies a single namespace this field contains the value from the NMIC field of

the I/O Command Set Independent Identify Namespace data (refer to Figure 2851) for the

namespace being deleted. For a delete operation that specifies all namespaces this field is
reserved.

35 Reserved

39:36

ANA Group Identifier (ANAGRPID): For a create operation, contains the ANAGRPID value from
the Namespace Management – Host Software Specified Fields data structure defined in the
applicable I/O Command Set specification, if specified, or contains the ANAGRPID value from the

I/O Command Set Independent Identify Namespace data (refer to Figure 2851) after the

namespace was created if an ANA Group Identifier was not specified in the command. For a
delete operation that specifies a single namespace this field contains the value from the
ANAGRPID field of the I/O Command Set Independent Identify Namespace data (refer to Figure
2851) for the namespace being deleted. For a delete operation that specifies all namespaces this
field is reserved.

If ANA Groups are not supported, then the ANAGRPID field shall be cleared to 0h.

41:40

NVM Set Identifier (NVMSETID): For a create operation, contains the NVMSETID value from the
Namespace Management – Host Software Specified Fields data structure defined in the
applicable I/O Command Set specification. For a delete operation that specifies a single
namespace this field contains the value from the NVMSETID field of the Identify Namespace data

(refer to Figure 2851) for the namespace being deleted. For a delete operation that specifies all

namespaces this field is reserved.

43:42

Endurance Group Identifier (ENDGID): For a create operation, contains the ENDGID value from
the Namespace Management – Host Software Specified Fields data structure defined in the
applicable I/O Command Set specification. For a delete operation that specifies a single
namespace, this field contains the value from the ENDGID field of the Identify Namespace data

structure (refer to Figure 2851) for the namespace being deleted. For a delete operation that

specifies all namespaces this field is reserved.

47:44
Namespace ID (NSID): For a create operation, contains the NSID for the namespace that was
created. For a delete operation, contains the NSID for the namespace being deleted or
FFFFFFFFh for a delete operation specifying all namespaces.

Notes:
1. For controllers that implement the NVM Command Set, this field contains the value of the associated

field from the Identify Namespace data structure (refer to the NVM Command Set Identify Namespace
data structure in the NVM Command Set Specification).

NVM Express® Base Specification, Revision 2.0e

235

5.16.1.14.1.7 Format NVM Start Event (Event Type 07h)

A Format NVM Start event shall be recorded in the Persistent Event Log after successfully validating the
command parameters of a Format NVM Command (refer to section 5.14) and before modifying any of the
contents of the NVM.

The Format NVM Start event shall set the Persistent Event Log Event Format Header:

• Event Type field to 07h; and

• Event Type Revision field to 01h.

Figure 242: Format NVM Start Event Data Format (Event Type 07h)

Bytes Description

03:00
Namespace Identifier: Contains the namespace identifier specified in the Format NVM
command.

04 Format NVM Attributes (FNA): Contains the value from the identify controller FNA field.

07:05 Reserved

11:08
Format NVM CDW10: Contains the value from command Dword 10 of the Format NVM
command (refer to Figure 194).

5.16.1.14.1.8 Format NVM Completion Event (Event Type 08h)

A Format NVM Completion event shall be recorded in the Persistent Event Log at the completion of a
Format NVM command that resulted in modification of the contents of the NVM.

The Format NVM Completion event shall set the Persistent Event Log Event Format Header:

• Event Type field to 08h; and

• Event Type Revision field to 02h.

Figure 243: Format NVM Completion Event Data Format (Event Type 08h)

Bytes Description

03:00 Namespace Identifier: Contains the namespace identifier specified in the Format NVM command.

04

Smallest Format Progress Indicator: For a Format NVM command that formats a single
namespace, this field contains the smallest numerical value that was available for reporting in bits
6:0 of the FPI field in the Identify Namespace data structure (i.e., if the format did not complete
successfully and the FPI field is supported, then this field contains the percentage of the
namespace that remained to be formatted at the time the Format NVM command completed, refer
to Figure 285) during the format operation. For a Format NVM command that formats all
namespaces this field shall be cleared to 0h.

05

Format NVM Status: Contains the status of the format operation.

Bits Definition

7:2 Reserved

1

Incomplete Format: If set to ‘1’, then the format operation modified some or all
of the user data but did not complete successfully. If set to ‘1’, then the Format
NVM Error bit shall be set to ‘1’. If cleared to ‘0’, then the format operation either
did not modify any user data or the format operation completed successfully.

0
Format NVM Error: If set to ‘1’, then the format operation did not complete
successfully. If cleared to ‘0’, then the format operation completed successfully.

07:06

Completion Information: Contains a vendor specific value that may provide more information
about the completion of the format operation (e.g., if the format operation did not complete
successfully, then this field may contain a vendor specific code that indicates a vendor specific
reason).

NVM Express® Base Specification, Revision 2.0e

236

Figure 243: Format NVM Completion Event Data Format (Event Type 08h)

Bytes Description

09:08

Bits Description

15:1

Status: This field indicates the value that was reported in the Status field for the
completion queue entry, if any, for the Format NVM command associated with
this event. If no completion queue entry was reported, then this field shall be
cleared to 0h.

0 Phase Tag: This field may indicate the Phase Tag posted for the command.

11:10 Reserved

5.16.1.14.1.9 Sanitize Start Event (Event Type 09h)

A Sanitize Start event shall be recorded in the Persistent Event Log at the start of a sanitize operation.

The Sanitize Start event shall set the Persistent Event Log Event Format Header:

• Event Type field to 09h; and

• Event Type Revision field to 01h.

Figure 244: Sanitize Start Event Data Format (Event Type 09h)

Bytes Description

03:00 SANICAP: Contains the contents of the SANICAP field from the Identify Controller data structure.

07:04
Sanitize CDW10: Contains the value from command Dword 10 of the Sanitize command (refer
to Figure 308).

11:08
Sanitize CDW11: Contains the value from command Dword 11 of the Sanitize command (refer
to Figure 309).

5.16.1.14.1.10 Sanitize Completion Event (Event Type 0Ah)

A Sanitize Completion event shall be recorded in the Persistent Event Log at the completion of a sanitize
operation.

The Sanitize Completion event shall set the Persistent Event Log Event Format Header:

• Event Type field to 0Ah; and

• Event Type Revision field to 01h.

Figure 245: Sanitize Completion Event Data Format (Event Type 0Ah)

Bytes Description

1:0
Sanitize Progress: Contains the sanitize progress at the time of this event using the format
specified for the SPROG field in the Sanitize Status log page (refer to section 5.16.1.25).

3:2
Sanitize Status: Contains the sanitize status for the time of this event using the format specified
for the SSTAT field in the Sanitize Status log page. (e.g., the Global Data Erase bit indicates the
status at the time of this event).

5:4

Completion Information: Contains a vendor specific value that may provide more information
about the completion of the sanitize operation (e.g., if the sanitize operation did not complete
successfully, then this field may contain a vendor specific code that indicates a vendor specific
reason).

7:6 Reserved

5.16.1.14.1.11 Set Feature Event (Event Type 0Bh)

The Set Feature Event persists the data of a successful Set Features command. The event contains a
Persistent Event Log Event header and the Set Feature Event data (refer to Figure 246).

The Set Feature Event shall set the Persistent Event Log Event Format Header:

• Event Type field to 0Bh; and

NVM Express® Base Specification, Revision 2.0e

237

• Event Type Revision Field to 01h.

A Set Feature Event shall be recorded in the Persistent Event Log when the following criteria are met:

a) A Set Features command completes successfully;
b) The Feature Identifier in that Set Features command is supported to be logged in the Persistent

Event Log; and
c) There is a change to the controller settings for the Feature Identifier in that Set Features command

(i.e., the same setting is not set again).

A Set Feature Event may be recorded in the Persistent Event Log when there is no change to the controller
settings for the Feature Identifier in that Set Features command if the following criteria are met:

a) A Set Features command completes successfully; and
b) The Feature Identifier in that Set Features command is supported to be logged in the Persistent

Event Log.

The Feature Identifiers that may be supported to be logged in the Persistent Event Log are shown in Figure
25, Figure 30, and Figure 34.

The Command Dwords and Memory Buffer logged in the Set Feature Event data use the same formats as
the formats defined by the Set Features and Get Features commands.

Figure 246: Set Feature Event Data Format

Bytes Description

03:00

Set Feature Event Layout: Defines the number of Command Dwords and the
amount of data in the Memory Buffer from the Set Features command associated
with this event.

Bits Definition

31:16
Memory Buffer Count: Defines the number of bytes from the
memory buffer that are logged in the Memory Buffer field. A value
of 0h indicates that the Memory Buffer field does not exist.

15:04 Reserved

03

Logged Command Completion Dword 0: If set to ‘1’, then
Dword 0 of the command completion for the Set Features
command is included in the log. If cleared to ‘0’, then Dword 0 of
the command completion command for the Set Features
command is not included in the log.

02:00

Dword Count: contains the number of consecutive Dwords
starting with Dword 10 from the Set Features command that are
reported in the Command Dwords field. The values 0h and 7h are
reserved.

(Dword Count * 4)+3: 4

Command Dwords: Contains a sequential list of Command Dwords from the Set
Features command starting with Command Dword 10. The number of entries in
the list is specified by the Command Dword Count field. All non-reserved
Command Dwords specified by the Set Features command for the Feature
Identifier shall be logged. The Command Dwords are ordered as defined by the
Common Command Format in Figure 90.

(Memory Buffer Count) +
(Dword Count * 4) + 3:
(Dword Count * 4) + 4

Memory Buffer: Contains the data in the memory buffer for the Set Features
command.

If the Memory Buffer Count field is cleared to 0h, then this field does not exist in
the logged event.

Memory Buffer Count +
(Dword Count * 4)+7:

Memory Buffer Count +
(Dword Count * 4)+4

Command Completion Dword 0: If the Logged Command Completion Dword 0
bit is set to ‘1’, then this field contains the Dword 0 value from the Set Features
command completion. If the Logged Command Completion Dword 0 bit is cleared
to ‘0’, then this field is not logged.

NVM Express® Base Specification, Revision 2.0e

238

5.16.1.14.1.12 Telemetry Log Create Event (Event Type 0Ch)

A Telemetry Log Create event may be created if the controller determines that a Telemetry Host-Initiated
log page (refer to section 5.16.1.8) or that a Telemetry Controller-Initiated log page (refer to section
5.16.1.9) has been generated.

The Telemetry Log Create Event shall set the Persistent Event Log Event Format Header:

• Event Type field to 0Ch; and

• Event Type Revision Field to 01h.

Figure 247: Telemetry Log Create Event Data Format (Event Type 0Ch)

Bytes Description

511:00
Telemetry Initiated Log: Contains a copy of the values from the first 512 bytes of the
Telemetry Host-Initiated log page (refer to Figure 220) or the first 512 bytes of the Telemetry
Controller-Initiated log page (refer to Figure 221).

5.16.1.14.1.13 Thermal Excursion Event (Event Type 0Dh)

A Thermal Excursion event shall be recorded in the Persistent Event Log if the Composite Temperature
has transitioned from a temperature that is less than:

a) the WCTEMP, if any, (refer to Figure 280) to a temperature that is greater than or equal to the
WCTEMP, if any; or

b) the CCTEMP, if any, (refer to Figure 280), to a temperature that is greater than or equal to the
CCTEMP, if any,

unless recording of the event causes a vendor specific frequency of threshold reports for this threshold to
be exceeded.

A Thermal Excursion event may be recorded in the Persistent Event Log if the Composite Temperature has
transitioned from a temperature:

a) that is less than TMT1 (refer to section 5.27.1.13), if any, to a temperature that is greater than or
equal to TMT1, if any (i.e., light throttling has started);

b) that is less than TMT2 (refer to section 5.27.1.13), if any, to a temperature that is greater than or
equal to TMT2, if any (i.e., heavy throttling has started);

c) that is less than a vendor specific temperature where thermal throttling occurs due to self-throttling
to a temperature that is greater than that vendor specific temperature (i.e., self-throttling has
started);

d) outside of a temperature threshold to a value that is within all temperature thresholds (i.e., the
temperature returns to normal);

e) at which thermal throttling is occurring to a temperature at which thermal throttling is stopped; or
f) that is greater than an under temperature threshold (refer to section 5.27.1.3) to a temperature that

is less than or equal to an under temperature threshold,

unless recording of the event causes a vendor specific frequency of threshold reports for this threshold to
be exceeded.

The Thermal Excursion event shall set the Persistent Event Log Event Format Header;

• Event Type field to 0Dh; and

• Event Type Revision field to 01h.

Figure 248: Thermal Excursion Event Data Format (Event Type 0Dh)

Bytes Description

0
Over Temperature: Contains the absolute value of the difference (i.e., delta) in Kelvins between
the temperature indicated in the threshold field and temperature measured at the time of the event.

NVM Express® Base Specification, Revision 2.0e

239

Figure 248: Thermal Excursion Event Data Format (Event Type 0Dh)

Bytes Description

1

Threshold: Contains an indicator for the temperature threshold crossing that is being reported.

Value Definition

High Temperature Transitions

1h
The Composite Temperature has transitioned from a temperature that is less
than WCTEMP to a temperature that is greater than or equal to WCTEMP.

2h
The Composite Temperature has transitioned from a temperature that is less
than CCTEMP to a temperature that is greater than or equal to CCTEMP.

3h

The Composite Temperature has transitioned from a temperature that is less
than TMT1 to a temperature is greater than or equal to TMT1 (i.e., vendor
specific thermal management actions that minimize the impact on
performance, such as light throttling, have started).

4h

The Composite Temperature has transitioned from a temperature that is less
than TMT2 to a temperature that is greater than or equal to TMT2 (i.e.,
vendor specific thermal management actions that may impact performance,
such as heavy throttling, have started).

5h

The Composite Temperature has transitioned from a temperature where no
vendor specific thermal management actions are taken to a temperature that
is greater than or equal to a vendor specific temperature at which vendor
specific thermal management actions have started (e.g., self-throttling).

Normal Temperature Transitions

88h

The Composite Temperature has transitioned from a temperature that is
greater than or equal to WCTEMP or is less than or equal to an under
temperature threshold to a temperature that is between WCTEMP and that
under temperature threshold (i.e., the temperature has transitioned to a
normal temperature).

89h

The Composite Temperature has transitioned from a temperature that is
greater than a temperature where thermal management actions are being
performed and that is not greater than or equal to WCTEMP to a temperature
where thermal management actions are stopped.

Low Temperature Transitions

B0h
The Composite Temperature has transition from a temperature that is
greater than an under temperature threshold to a temperature that is less
than or equal to an under temperature threshold.

F0h to FFh Vendor specific

All other
values

Reserved

5.16.1.14.1.14 Vendor Specific Event (Event Type DEh)

The Vendor Specific Event (refer to Figure 249) contains a set of Vendor Specific Event Descriptors that
describe an event that the vendor has determined is a significant event which should be reported to a host
in the persistent event log and that is not described by any of the other persistent event log events.

The Vendor Specific Event Descriptors follow the format shown in Figure 250 and contain vendor specific
data of the type indicated in the Vendor Specific Event Data Type field of the Vendor Specific Event
Descriptor.

If a UUID Index is specified in the Get Log Page command (refer to section 0), then the controller shall
return:

a) Vendor specific events based on that UUID index; and
b) Vendor specific events defined by the NVM subsystem manufacturer.

The controller shall set the Vendor Specific Event Format Header:

a) Event Type field to DEh; and
b) Event Type Revision field to 01h.

NVM Express® Base Specification, Revision 2.0e

240

The Vendor Specific Event data is specified in Figure 249.

Figure 249: Vendor Specific Event Format (Event Type DEh)

Bytes Description

M-1:0
Vendor Specific Event Descriptor 0: Contains the first vendor specific event descriptor (refer
to Figure 250). Where M is the length of this vendor specific event descriptor.

…

EL-VSIL-1:

EL-VSIL-K
1

Vendor Specific Event Descriptor N: Contains the last vendor specific event descriptor (refer
to Figure 250). Where K is the length of this vendor specific event descriptor (refer to Figure
250).

Notes:
1. Refer to Figure 230 for the definitions of EL and VSIL.

The format of the Vendor Specific Event Descriptor is shown in Figure 250.

Figure 250: Vendor Specific Event Descriptor Format

Bytes Description

01:00
Vendor Specific Event Code: Contains a vendor specific code that uniquely identifies the
type of event that is described in the data that follows. All vendor specific events of the same
type should report the same Vendor Specific Event Code field value.

02
Vendor Specific Event Data Type: Contains a code indicating the type of data reported in
the Vendor Specific Event Data field (refer to Figure 251).

03
UUID Index: UUID Index (refer to Figure 483) at the time of this event for the vendor that
defined this event.

05:04
Vendor Specific Event Data Length (VSEDL): Contains the length in bytes of the Vendor
Specific Event Data field.

Vendor Specific Event Data, if any (i.e., VSEDL > 0)

VSEDL+5:06
Vendor Specific Event Data: Contains vendor specific data that is associated with this
event and is of the type specified in the Vendor Specific Event Data Type field.

The Vendor Specific Event Data Types that are able to be reported in a Vendor Specific Event Descriptor
are shown in Figure 251.

Figure 251: Vendor Specific Event Data Type Codes

Code Description

00h Reserved

01h

Event Name: The Vendor Specific Event Data field contains a null terminated ASCII string
with a vendor specific name for the value in the Vendor Specific Event Code field.

The value reported in this field shall be the same for every vendor specific event containing
a vendor specific event code that is the same as the value in the Vendor Specific Event Code
field in this event.

If a Vendor Specific Event Descriptor specifying this data type is reported, then that
descriptor shall be the first Vendor Specific Event Descriptor in that event.

02h ASCII String: The Vendor Specific Event Data field contains a null terminated ASCII string.

03h
Binary: The Vendor Specific Event Data field contains binary data. The byte ordering in the
binary data is determined by the NVM subsystem vendor.

04h
Signed Integer: The Vendor Specific Event Data field contains a 64-bit signed integer in
two’s complement form.

05h to FFh Reserved

5.16.1.14.1.15 TCG Defined Event (Event Type DFh)

The TCG Defined Event shall set the Persistent Event Log Event Format Header:

• Event Type field to DFh.

NVM Express® Base Specification, Revision 2.0e

241

The Event Type Revision Field and the TCG Defined Event data are reserved for TCG.

5.16.1.15 Endurance Group Event Aggregate (Log Page Identifier 0Fh)

This log page indicates if an Endurance Group Event (refer to section 3.2.3) has occurred for a particular
Endurance Group. If an Endurance Group Event has occurred, the details of the particular event are
included in the Endurance Group Information log page for that Endurance Group. An asynchronous event
is generated when an entry for an Endurance Group is newly added to this log page.

If there is an enabled Endurance Group Event pending for an Endurance Group, then the Endurance Group
Event Aggregate log page includes an entry for that Endurance Group. The log page is an ordered list by
Endurance Group Identifier. For example, if Endurance Group Events are pending for Endurance Group 2,
1, and 7, then the log page shall have entries in numerical order of 1, 2, and 7. A particular Endurance
Group entry is removed from this log page after the Get Log Page command is completed successfully with
the Retain Asynchronous Event bit cleared to ‘0’ for the Endurance Group Information log page for that
Endurance Group.

The log page size is limited by the Endurance Group Identifier Maximum value reported in the Identify
Controller data structure (refer to Figure 280). If the host reads beyond the end of the log page, zeroes are
returned. The log page is defined in Figure 252.

Figure 252: Endurance Group Event Aggregate Log Page

Bytes Description

07:00
Number of Entries: This field indicates the number of entries in the list. The maximum number
of entries in the list corresponds to the Endurance Group Identifier Maximum field reported in
the Identify Controller data structure. A value of 0h indicates there are no entries in the list.

09:08
Entry 1: Indicates the Endurance Group that has an Endurance Group Event pending that has
the numerically smallest Endurance Group Identifier, if any.

11:10
Entry 2: Indicates the Endurance Group that has an Endurance Group Event pending that has
the second numerically smallest Endurance Group Identifier, if any.

13:12
Entry 3: Indicates the Endurance Group that has an Endurance Group Event pending that has
the third numerically smallest Endurance Group Identifier, if any.

15:14
Entry 4: Indicates the Endurance Group that has an Endurance Group Event pending that has
the fourth numerically smallest Endurance Group Identifier, if any.

… …

2*n+7:2*n+6
Entry n: Indicates the Endurance Group that has an Endurance Group Event pending that has
the numerically largest Endurance Group Identifier, if any.

5.16.1.16 Media Unit Status (Log Page Identifier 10h)

This log page is used to describe the configuration and wear of Media Units (refer to section 8.3). The log
page contains one Media Unit Status Descriptor for each Media Unit accessible by the specified domain.
Each Media Unit Status Descriptor (refer to Figure 254) indicates the configuration of the Media Unit (e.g.,
to which Endurance Group the Media Unit is assigned, to which NVM Set the Media Unit is assigned, to
which Channels the Media Unit is attached) and indications of wear (e.g., the Available Spare field and the
Percentage Used field). The indications of wear change as the Media Unit is written and read.

If the NVM subsystem supports multiple domains, then the controller reports the Media Unit Status log page
for the domain specified in the Log Specific Identifier field (refer to Figure 203), if accessible. If the
information is not accessible, then the log page is not available (refer to section 8.1.4). If the Log Specific
Identifier field is cleared to 0h, then the specified domain is the domain containing the controller that is
processing the command.

Media Unit Identifier values (refer to Figure 254) begin with 0h and increase sequentially. If the NVM
subsystem supports multiple domains, then the Media Unit Identifier values are unique within the specified
domain. If the NVM subsystem does not support multiple domains, then the Media Unit Identifier values are
unique within the NVM subsystem.

Media Unit Status Descriptors are listed in ascending order by Media Unit Identifier.

NVM Express® Base Specification, Revision 2.0e

242

Requirements for supporting the Media Unit Status log page are defined in section 8.3.

Figure 253: Media Unit Status Log Page

Bytes Description

01:00
Number of Media Unit Status Descriptors (NMU): This field indicates the number of
Media Unit Status Descriptors in the log page. If this field is cleared to 0h, then no
Media Unit Status Descriptors are reported.

03:02
Number of Channels (CCHANS): This field indicates the number of Channels
accessible by the controller. A value of 0h indicates that the number of Channels
accessible by the controller is not reported.

05:04

Selected Configuration: This field indicates the Configuration Identifier selected by
the most recent successful completion of the Capacity Management command Select
Capacity Configuration operation. If a Select Capacity Configuration operation has not
been completed, this field may indicate a non-zero value (i.e., a configuration was
selected by default). If a Configuration Identifier is not selected, then this field shall be
cleared to 0h.

15:6 Reserved

NOTE 1
Media Unit Status Descriptor 0: This field contains the first Media Unit Status
Descriptor (refer to Figure 254), if any.

NOTE 1
Media Unit Status Descriptor 1: This field contains the second Media Unit Status
Descriptor, if any.

…

NOTE 1
Media Unit Status Descriptor NMU-1: This field contains the last Media Unit Status
Descriptor, if any.

Notes:
1. Media Unit Status Descriptors may be different lengths.

The Media Unit Status Descriptor is defined in Figure 254.

If the Selected Configuration field is cleared to 0h, then the following fields in each Media Unit Status
Descriptor shall be cleared to 0h:

a) Endurance Group Identifier (ENDGID);
b) NVM Set Identifier (NVMSETID);
c) Capacity Adjustment Factor; and
d) Number of Channels (MUCS).

Channel Identifier values begin with 0h and increase sequentially. If the NVM subsystem supports multiple
domains, then Channel Identifier values are unique within the specified domain. If the NVM subsystem does
not support multiple domains, then Channel Identifier values are unique within the NVM subsystem.

In the Media Unit Status Descriptor, Channel Identifiers are listed in ascending order by value, and each
Channel Identifier shall appear only once.

Figure 254: Media Unit Status Descriptor

Bytes Description

01:00 Media Unit Identifier: This field indicates the identifier of the Media Unit.

03:02
Domain Identifier: This field indicates the identifier of the domain that contains this Media
Unit. Refer to section 3.2.4.3. A value of 0h indicates that a Domain Identifier is not reported.
If multiple domains are not supported, then this field shall be cleared to 0h.

05:04

Endurance Group Identifier (ENDGID): This field indicates the identifier of the Endurance
Group that contains this Media Unit. Refer to section 3.2.3. The value shall be less than or
equal to the value of the Endurance Group Identifier Maximum field (refer to Figure 280). A
value of 0h indicates that this Media Unit is not part of an Endurance Group.

07:06

NVM Set Identifier (NVMSETID): This field indicates the identifier of the NVM Set that
contains this Media Unit. Refer to section 3.2.2. This field shall indicate a value less than or
equal to the value of the NVM Set Identifier Maximum field (refer to Figure 280).

If the controller does not support NVM Sets, then this field shall be cleared to 0h.

NVM Express® Base Specification, Revision 2.0e

243

Figure 254: Media Unit Status Descriptor

Bytes Description

09:08

Capacity Adjustment Factor: This field indicates the capacity adjustment factor (refer to
section 8.3.1) for this Endurance Group.

A value of FFFFh indicates that value and all higher values.

A value of 0h indicates that the Capacity Adjustment Factor is not reported.

All Media Unit Status Descriptors which indicate the same Endurance Group Identifier shall
indicate the same value in their Capacity Adjustment Factor fields.

10

Available Spare: Contains a normalized percentage (0 to 100%) of the remaining spare
capacity available for the Media Unit. The relationship between this value and the value in the
Available Spare field in the Endurance Group Information log page (refer to section 5.14.1.9)
is outside the scope of this specification.

11

Percentage Used: Contains a vendor specific estimate of the percentage of life used for the
Media Unit based on the actual usage and the manufacturer’s prediction of NVM life. A value
of 100 indicates that the estimated endurance of the NVM in the Media Unit has been
consumed, but may not indicate an NVM failure. The value is allowed to exceed 100.
Percentages greater than 254 shall be represented as 255. This value shall be updated once
per power-on hour when the controller is not in a sleep state.

Refer to the JEDEC JESD218A standard for SSD device life and endurance measurement
techniques.

The relationship between this value and the value in the Percentage Used field in the
Endurance Group Information log page is outside the scope of this specification.

12
Number of Channels (MUCS): This field indicates the number of Channels attached to this
Media Unit. If this field is cleared to 0h, then no Channel Identifiers are reported for this Media
Unit.

13
Channel Identifiers Offset (CIO): This field indicates the offset of the Channel 0 Identifier
field from the beginning of the Media Unit Status Descriptor. This field shall be a non-zero
value and a multiple of 16.

CIO-1:14 Reserved

Channel Identifiers

CIO+1 : CIO
Channel 0 Identifier: This field contains the identifier for the first Channel attached to this
Media Unit, if any.

CIO+3 : CIO+2
Channel 1 Identifier: This field contains the identifier for the second Channel attached to this
Media Unit, if reported, if any.

 …

(MUCS*2)+CIO-1 :
(MUCS*2)+CIO-2

Channel MUCS-1 Identifier: This field contains the identifier for the last Channel attached to
this Media Unit, if any.

5.16.1.17 Supported Capacity Configuration List (Log Page Identifier 11h)

This log page is used to provide a list of Supported Capacity Configuration Descriptors (refer to Figure 255).
Each entry in the list defines a different configuration of Endurance Groups supported by the specified
domain.

If the NVM subsystem supports multiple domains, then the controller reports the Supported Capacity
Configuration List log page for the domain specified in the Log Specific Identifier field (refer to Figure 203),
if accessible. If the information is not accessible, then the log page is not available (refer to section 8.1.3).
If the Log Specific Identifier field is cleared to 0h, then the specified domain is the domain containing the
controller that is processing the command.

If the NVM subsystem supports multiple domains, then Capacity Configuration Identifier values are unique
within the specified domain. If the NVM subsystem does not support multiple domains, then Capacity
Configuration Identifier values are unique within the NVM subsystem.

In the Supported Capacity Configuration List (refer to Figure 255), Capacity Configuration Descriptors shall
be listed in ascending order by Capacity Configuration Identifier, and each Capacity Configuration Identifier
shall appear only once.

NVM Express® Base Specification, Revision 2.0e

244

Figure 255: Supported Capacity Configuration List Log Page

Bytes Description

0
Number of Supported Capacity Configurations (SCCN): This field indicates the number of
Capacity Configuration Descriptors in the list. If this field is cleared to 0h, then no Capacity
Configuration Descriptors are reported.

15:1 Reserved

NOTE 1
Capacity Configuration 0 Descriptor: This field indicates the first Capacity Configuration
Descriptor (refer to Figure 256) in the list, if any.

NOTE 1
Capacity Configuration 1 Descriptor: This field indicates the second Capacity Configuration
Descriptor in the list, if any.

…

NOTE 1
Capacity Configuration SCCN-1 Descriptor: This field indicates the last Capacity
Configuration Descriptor in the list, if any.

Notes:
1. Capacity Configuration Descriptors may be different lengths.

The Capacity Configuration Descriptor (refer to Figure 256) indicates the details of a particular configuration
of Endurance Groups and contains one Endurance Group Configuration Descriptor for each Endurance
Group accessible by the controller processing the command.

In the Capacity Configuration Descriptor (refer to Figure 256), Endurance Group Configuration Descriptors
shall be listed in ascending order by Endurance Group Identifier, and each Endurance Group Identifier shall
appear only once.

Figure 256: Capacity Configuration Descriptor

Bytes Description

1:0 Capacity Configuration Identifier: This field indicates the identifier for this Capacity Configuration.

3:2

Domain Identifier: This field indicates the identifier of the domain (refer to section 3.2.4.3)
containing the Endurance Group configurations described by this Capacity Configuration Descriptor.
A value of 0h indicates that a Domain Identifier is not reported. If multiple domains are not supported,
then this field shall be cleared to 0h.

5:4
Number of Endurance Group Configuration Descriptors (EGCN): This field indicates the number
of Endurance Group Configuration Descriptors in the list. If this field is cleared to 0h, then no
Endurance Group Configuration Descriptors are reported.

31:6 Reserved

NOTE 1
Endurance Group Configuration 0 Descriptor: This field indicates the first Endurance Group
Configuration Descriptor (refer to Figure 257) in the list, if any.

NOTE 1
Endurance Group Configuration 1 Descriptor: This field indicates the second Endurance Group
Configuration Descriptor in the list, if any.

…

NOTE 1
Endurance Group Configuration EGCN-1 Descriptor: This field indicates the last Endurance
Group Configuration Descriptor in the list, if any.

Notes:
1. Endurance Group Configuration Descriptors may be different lengths.

The Endurance Group Configuration Descriptor is defined in Figure 257.

In the Endurance Group Configuration Descriptor (refer to Figure 257), NVM Set Identifiers shall be listed
in ascending order by value, and each NVM Set Identifier shall appear only once.

In the Endurance Group Configuration Descriptor, Channel Configuration Descriptors shall be listed in
ascending order by Channel Identifier value, and each Channel Identifier shall appear only once.

NVM Express® Base Specification, Revision 2.0e

245

Figure 257: Endurance Group Configuration Descriptor

Bytes Description

1:0

Endurance Group Identifier (ENDGID): This field indicates the identifier of the
Endurance Group (refer to section 3.2.3) described by this Endurance Group
Configuration Descriptor. This field shall indicate a value greater than or equal to 1h and
less than or equal to the value of the Endurance Group Identifier Maximum field (refer to
Figure 280).

3:2

Capacity Adjustment Factor: This field indicates the capacity adjustment factor (refer
to section 8.3.1) for this Endurance Group.

A value of FFFFh indicates that value and all higher values.

A value of 0h indicates that the Capacity Adjustment Factor is not reported.

15:4 Reserved

31:16
Total Endurance Group Capacity (TEGCAP): This field indicates the total NVM
capacity in this Endurance Group. The value is in bytes. If this field is cleared to 0h, the
NVM subsystem does not report the total NVM capacity in this Endurance Group.

47:32
Spare Endurance Group Capacity (SEGCAP): This field indicates the spare NVM
capacity in this Endurance Group. The value is in bytes. If this field is cleared to 0h, the
NVM subsystem does not report the unallocated NVM capacity in this Endurance Group.

63:48

Endurance Estimate: This field is an estimate of the total number of data bytes that may
be written to the Endurance Group over the lifetime of the Endurance Group assuming a
write amplification of 1 (i.e., no increase in the number of write operations performed by
the device beyond the number of write operations requested by a host). This value is
reported in billions (i.e., a value of 1h corresponds to 1,000,000,000 bytes written) and
is rounded up (e.g., a value of 1h indicates the number of bytes written is from 1 to
1,000,000,000, 2h indicates the number of bytes written is from 1,000,000,001 to
2,000,000,000).

A value of FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFFh means that value and all
higher values.

A value of 0h indicates that the Endurance Estimate is not reported.

The relationship between this value and the value in the Endurance Estimate field in the
Endurance Group Information log page (refer to section 5.14.1.9) is outside the scope of
this specification.

79:64 Reserved

NVM Set Identifiers

81:80
Number of NVM Sets (EGSETS): This field indicates the number of NVM Set Identifiers
in this Endurance Group Configuration Descriptor. A value of 0h indicates that no NVM
Set Identifiers are reported for this Endurance Group.

83:82
NVM Set 0 Identifier: This field indicates the identifier of the first NVM Set assigned to
this Endurance Group, if reported. Refer to section 3.2.2.

85:84
NVM Set 1 Identifier: This field indicates the identifier of the second NVM Set assigned
to this Endurance Group, if reported.

 …

(EGSETS*2)+81 :
(EGSETS*2)+80

NVM Set EGSETS-1 Identifier: This field indicates the identifier of the last NVM Set
assigned to this Endurance Group, if reported.

Channel Configuration Descriptors

(EGSETS*2)+83 :
(EGSETS*2)+82

Number of Channels (EGCHANS): This field indicates the number of Channel
Configuration Descriptors in this Endurance Group Configuration Descriptor. If this field
is cleared to 0h, then no Channel Configuration Descriptors are reported for this
Endurance Group.

NOTE 1
Channel 0 Configuration Descriptor: This field contains the Channel Configuration
Descriptor (refer to Figure 258) for the first Channel in this Endurance Group, if any.

NOTE 1
Channel 1 Configuration Descriptor: This field contains the Channel Configuration
Descriptor for the second Channel in this Endurance Group, if any.

 …

NVM Express® Base Specification, Revision 2.0e

246

Figure 257: Endurance Group Configuration Descriptor

Bytes Description

NOTE 1
Channel EGCHANS-1 Configuration Descriptor: This field contains the Channel
Configuration Descriptor for the last Channel in this Endurance Group, if any.

Notes:
1. Channel Configuration Descriptors may be different lengths.

The Channel Configuration Descriptor (refer to Figure 258) lists the Media Units attached to a Channel.
Media Unit Configuration Descriptors (refer to Figure 259) shall be listed in ascending order by Media Unit
Identifier, and each Media Unit Identifier shall appear only once.

Figure 258: Channel Configuration Descriptor

Bytes Description

1:0
Channel Identifier: This field indicates the identifier of this Channel. A value of FFFFh
indicates that the Channel Identifier is not specified.

3:2
Number of Channel Media Units (CHMUS): This field indicates the number of Media
Units that are attached to this Channel. If this field is cleared to 0h, then no Media Unit
Configuration Descriptors are reported for this Channel.

NOTE 1
Media Unit 0 Configuration Descriptor: This field contains the Media Unit Configuration
Descriptor (refer to Figure 259) for the first Media Unit attached to this Channel, if any.

NOTE 1
Media Unit 1 Configuration Descriptor: This field contains the Media Unit Configuration
Descriptor for the second Media Unit attached to this Channel, if reported.

 …

NOTE 1
Media Unit CHMUS-1 Configuration Descriptor: This field contains the Media Unit
Configuration Descriptor for the last Media Unit attached to this Channel, if any.

Notes:
1. Media Unit Configuration Descriptors may be different lengths.

The Media Unit Configuration Descriptor is defined in Figure 259.

Figure 259: Media Unit Configuration Descriptor

Bytes Description

1:0 Media Unit Identifier: This field indicates the identifier of this Media Unit.

5:2 Reserved

7:6

Media Unit Descriptor Length (MUDL): This field contains the length in bytes of the
descriptor information that follows. The total length of the Media Unit Configuration
Descriptor in bytes is the value in this field plus 8.

This field shall be cleared to 0h.

5.16.1.18 Feature Identifiers Supported and Effects (Log Page Identifier 12h)

An NVM subsystem may support several interfaces for submitting a Get Log Page command such as an
Admin Submission Queue, PCIe VDM Management Endpoint, or SMBus/I2C Management Endpoint (refer
the NVM Express Management Interface Specification for details on Management Endpoints) and may
have zero or more instances of each of those interfaces. The feature identifiers (FIDs) supported on each
instance of each interface may be different. This log page describes the FIDs that are supported on the
interface to which the Get Log Page command was submitted and the effects of those features on the state
of the NVM subsystem. The log page is defined in Figure 260. Each Feature Identifier’s effects are
described in a FID Supported and Effects data structure defined in Figure 261.

If the UUID Selection Supported bit is set to ‘1’ for the Get Log Page command in the Commands Supported
and Effects log page (refer to section 5.16.1.6), then the log page data reflects the FIDs that are supported
based on the value of the UUID Index field (refer to section 8.25).

For controllers that implement I/O Queues, the features that the controller supports are dependent on the
I/O Command Set that is based on:

NVM Express® Base Specification, Revision 2.0e

247

• the I/O Command Set selected in CC.CSS, if CC.CSS is not set to 110b; and

• the Command Set Identifier (CSI) field in CDW 14, if CC.CSS is set to 110b.

If CC.CSS is set to 110b, I/O Command Sets that have not been enabled by the I/O Command Set Profile
(FID 19h) (refer to section 5.27.1.21) are treated as unsupported.

Figure 260: Feature Identifiers Effects Log Page

Bytes Description

03:00
Feature Identifier Supported 0: Contains the FID Supported and Effects data structure (refer to
Figure 261) for FID 0h.

07:04
Feature Identifier Supported 1: Contains the FID Supported and Effects data structure (refer to
Figure 261) for FID 1h.

… …

1019:1016
Feature Identifier Supported 254: Contains the FID Supported and Effects data structure (refer to
Figure 261) for FID FEh.

1023:1020
Feature Identifier Supported 255: Contains the FID Supported and Effects data structure (refer to
Figure 261) for FID FFh.

The FID Supported and Effects data structure describes the effect of a Set Features command for the FID,
including any optional features of the FID.

Figure 261: FID Supported and Effects Data Structure

Bits Description

31:20

FID Scope (FSP): This field defines the scope for the associated feature identifier. If the value of
this field is 0h, then no scope is reported. If this field is non-zero, then only one bit shall be set to
‘1’.

Bits Description

11:6 Reserved

5

NVM Subsystem Scope: If set to ‘1’, then modifying the attributes of the feature
identified by this FID may impact the whole NVM subsystem. If cleared to ‘0’ and the
FSP field is non-zero, then modifying the attributes of the feature identified by this
FID does not impact the whole NVM subsystem.

4

Domain Scope: If set to ‘1’, then modifying the attributes of the feature identified by
this FID may impact a single Domain. If cleared to ‘0’ and the FSP field is non-zero,
then modifying the attributes of the feature identified by this FID does not impact a
single Domain.

3

Endurance Group Scope: If set to ‘1’, then modifying the attributes of the feature
identified by this FID may impact Endurance Groups. If cleared to ‘0’ and the FSP
field is non-zero, then modifying the attributes of the feature identified by this FID
does not impact Endurance Groups.

2

NVM Set Scope: If set to ‘1’, then modifying the attributes of the feature identified by
this FID may impact NVM Sets. If cleared to ‘0’ and the FSP field is non-zero, then
modifying the attributes of the feature identified by this FID does not impact NVM
Sets.

1
Controller Scope: If set to ‘1’, then modifying the attributes of the feature identified
by this FID may impact the controller. If cleared to ‘0’ and the FSP field is non-zero,
then the feature identified by this FID does not have controller scope.

0

Namespace Scope: If set to ‘1’, then modifying the attributes of the feature identified
by this FID may impact namespaces. If cleared to ‘0’ and the FSP field is non-zero,
then modifying the attributes of the feature identified by this FID does not impact
namespaces.

19

UUID Selection Supported: If set to ‘1’, then the controller supports the selection of a UUID
(refer to section 8.25) by a Get Features command or a Set Features command using this FID. If
cleared to ‘0’, then the controller does not support the selection of a UUID by a Get Features
command or a Set Features command using this FID.

18:05 Reserved

NVM Express® Base Specification, Revision 2.0e

248

Figure 261: FID Supported and Effects Data Structure

Bits Description

04

Controller Capability Change (CCC): If this bit is set to ‘1’, then changing the attributes of the
feature identified by this FID may change controller capabilities. If this bit is cleared to ‘0’, then
changing the attributes of the feature identified by this FID does not modify controller capabilities.
Controller capability changes include a firmware update that changes the capabilities reported in
the CAP property.

03

Namespace Inventory Change (NIC): If this bit is set to ‘1’, then changing the attributes of the
feature identified by this FID may change the number of namespaces or capabilities for multiple
namespaces. If this bit is cleared to ‘0’, then changing the attributes of the feature identified by
this FID does not modify the number of namespaces or capabilities for multiple namespaces.
Namespace inventory changes include adding or removing namespaces.

02

Namespace Capability Change (NCC): If this bit is set to ‘1’, then changing the attributes of the
feature identified by this FID may change the capabilities of a single namespace. If this bit is
cleared to ‘0’, then changing the attributes of the feature identified by this FID does not modify
any namespace capabilities for the specified namespace. Namespace capability changes include
a logical format change.

01

User Data Content Change (UDCC): If this bit is set to ‘1’, then changing the attributes of the
feature identified by this FID may modify user data content in one or more namespaces. If this bit
is cleared to ‘0’, then changing the attributes of the feature identified by this FID does not modify
user data content in any namespace.

00

FID Supported (FSUPP): If this bit is set to ‘1’, then this FID is supported by the controller. If this
bit is cleared to ‘0’, then this FID is not supported by the controller and all other fields in this
structure shall be cleared to 0h.

Refer to section 3.1.3 for the FID support requirements for each controller type.

5.16.1.19 NVMe-MI Commands Supported and Effects (Log Page Identifier 13h)

This log page describes the Management Interface Command Set commands (refer to the NVM Express
Management Interface Specification) that the controller supports using the NVMe-MI Send and NVMe-MI
Receive commands and the effects of those Management Interface Command Set commands on the state
of the NVM subsystem. The log page is defined in Figure 262.

Figure 262: NVMe-MI Commands Supported and Effects Log Page

Bytes Description

03:00
Management Interface Command Supported 0: Contains the NVMe-MI Commands Supported
and Effects data structure (refer to Figure 263) for the Management Interface command with an
opcode value of 0h.

07:04
Management Interface Command Supported 1: Contains the NVMe-MI Commands Supported
and Effects data structure (refer to Figure 263) for the Management Interface command with an
opcode value of 1h.

… …

1019:1016
Management Interface Command Supported 254: Contains the NVMe-MI Commands
Supported and Effects data structure (refer to Figure 263) for the Management Interface command
with an opcode value of 254.

1023:1020
Management Interface Command Supported 255: Contains the NVMe-MI Commands
Supported and Effects data structure (refer to Figure 263) for the Management Interface command
with an opcode value of 255.

4095:1024 Reserved

The NVMe-MI Commands Supported and Effects data structure describes the overall possible effect of a
Management Interface command using the using the NVMe-MI Send command, including any optional
features of the command.

NVM Express® Base Specification, Revision 2.0e

249

Figure 263: NVMe-MI Commands Supported and Effects Data Structure

Bits Description

31:20

Command Scope (CSP): This field defines the scope for the associated NVMe-MI Send
command that specifies the Management Interface command opcode for this data structure. If
the value of this field is 0h, then no scope is reported. If this field is non-zero, then only one bit
shall be set to ‘1’.

Bits Description

11:6 Reserved

5

NVM Subsystem Scope: If set to ‘1’, then the command performs actions that
may impact the whole NVM subsystem. If cleared to ‘0’ and the CSP field is
non-zero, then the command performs actions that do not impact the whole
NVM subsystem.

4
Domain Scope: If set to ‘1’, then the command has Domain scope. If cleared
to ‘0’ and the CSP field is non-zero, then the command does not have Domain
scope.

3
Endurance Group Scope: If set to ‘1’, then the command has Endurance
Group scope. If cleared to ‘0’ and the CSP field is non-zero, then the command
does not have Endurance Group scope.

2
NVM Set Scope: If set to ‘1’, then the command has NVM Set scope. If cleared
to ‘0’ and the CSP field is non-zero, then the command does not have NVM
Set scope.

1
Controller Scope: If set to ‘1’, then the command has controller scope. If
cleared to ‘0’ and the CSP field is non-zero, then the command does not have
controller scope.

0
Namespace Scope: If set to ‘1’, then the command has namespace scope. If
cleared to ‘0’ and the CSP field is non-zero, then the command does not have
namespace scope.

19:05 Reserved

04

Controller Capability Change (CCC): If this bit is set to ‘1’, then this command may change
controller capabilities. If this bit is cleared to ‘0’, then this command does not modify controller
capabilities. Controller capability changes include a firmware update that changes the capabilities
reported in the CAP property.

03

Namespace Inventory Change (NIC): If this bit is set to ‘1’, then this command may change the
number of namespaces or capabilities for multiple namespaces. If this bit is cleared to ‘0’, then
this command does not modify the number of namespaces or capabilities for multiple
namespaces. Namespace inventory changes include adding or removing namespaces.

02

Namespace Capability Change (NCC): If this bit is set to ‘1’, then this command may change
the capabilities of a single namespace. If this bit is cleared to ‘0’, then this command does not
modify any namespace capabilities for the specified namespace. Namespace capability changes
include a logical format change.

01
User Data Content Change (UDCC): If this bit is set to ‘1’, then this command may modify user
data content in one or more namespaces. If this bit is cleared to ‘0’, then this command does not
modify user data content in any namespace. User data content changes include a write operation.

00
Command Supported (CSUPP): If this bit is set to ‘1’, then this command is supported by the
controller. If this bit is cleared to ‘0’, then this command is not supported by the controller and all
other fields in this structure shall be cleared to 0h.

5.16.1.20 Command and Feature Lockdown (Log Page Identifier 14h)

This log page is used to indicate which commands and Set Features Feature Identifiers are supported to
be prohibited from execution using the Command and Feature Lockdown capability (refer to section 8.4)
and which commands are currently prohibited if received on an NVM Express controller Admin
Submission Queue or received out-of-band on a Management Endpoint (refer to the NVM Express
Management Interface Specification). This log page uses the Log Specific Parameter field in Command
Dword 10 (refer to Figure 202) as defined in Figure 264. This log page may use the UUID Index field in
the Get Log Page command to specify the scope and content of the list returned in the Command and
Feature Identifier List field of this log page. The UUID Index field may be used if the Scope field is set to
2h, allowing returning of vendor specific Set Features Feature Identifier lockdown information.

NVM Express® Base Specification, Revision 2.0e

250

Figure 264: Command and Feature Lockdown Log Specific Parameter Field

Bits Description

14 Reserved

13:12

Contents (CNTTS): This field in combination with the Scope field specifies the contents of the
Command and Feature Identifier List field in the log page.

Value Command and Feature Identifier List Definition

00b
List of command opcodes or Feature Identifiers specified
by the Scope field that are able to be prohibited.

01b
List of command opcodes or Feature Identifiers specified
by the Scope field that are currently prohibited if received
on an NVM Express controller Admin submission queue.

10b
List of command opcodes or Feature Identifiers specified
by the Scope field that are currently prohibited if received
out-of-band on a Management Endpoint.

11b Reserved

11:08

Scope (SCP): This field in combination with the Contents field specifies the contents of the
Command and Feature Identifier List field in the log page.

Value Command and Feature Identifier List Contents

0h List of Admin Command Set opcodes

1h Reserved

2h List of Feature Identifiers

3h
List of Management Interface Command Set opcodes (refer to the NVM
Express Management Interface Specification)

4h
List of PCIe Command Set opcodes (refer to the NVM Express
Management Interface Specification)

5h to Fh Reserved

If a UUID Index is specified in the Get Log Page command (refer to section 0) and the Scope field is set to
2h, then the controller should return vendor specific Set Features lockdown information based on that UUID
index. If the Scope field is not set to 2h, then the controller ignores the UUID index field.

If a controller processes this command with the Contents field set to 10b and the NVM subsystem does not
contain a Management Endpoint, then the command shall be aborted with a status code of Invalid Field in
Command.

The log page returned is defined in Figure 265.

NVM Express® Base Specification, Revision 2.0e

251

Figure 265: Command and Feature Lockdown Log Page

Bytes Description

Bits Description

7:6 Reserved

5:4

Contents Selected (CS): This field in combination with the Scope Selected field indicates
the contents of the Command and Feature Identifier List field in the log page. The Content
Selected field is specified by the contents of the Contents field in the Log Specific
Parameter field of the Get Log Page command.

Value Description

00b
List contains command opcodes or Set Features Feature Identifiers
based on the Scope Selected field that are supported to be prohibited

01b
List contains command opcodes or Set Features Feature Identifiers
based on the Scope Selected field that are currently prohibited if received
on an NVM Express controller submission queue

10b
List contains command opcodes or Set Features Feature Identifiers
based on the Scope field that are currently prohibited if received out-of-
band on a Management Endpoint

11b Reserved

3:0

Scope Selected (SS): This field in combination with the Contents Selected field indicates
what the Command and Feature Identifier List field contains in the log page. The Scope
Selected field is specified by the contents of the Scope field in the Log Specific Parameter
field of the Get Log Page command.

Value Description

0h List contains Admin Command Set opcodes

1h Reserved

2h List contains Set Features Feature Identifiers

3h List contains Management Interface Command Set opcodes

4h List contains PCIe Command Set opcodes

5h to Fh Reserved

2:1 Reserved

3
Length (LNGTH): This field indicates the length in bytes (n) of the Command and Feature Identifier
List field that follow in the log page. If the Command and Feature Identifier List field contains no
coded values, then this field shall be cleared to 0h.

n+3:4

Command and Feature Identifier List (CFIL): The contents of this field are dependent on the
setting of the Contents Selected field and Scope Selected field. This field contains a list of coded
values identified by the Scope Selected field and the Content Selected field. The list shall be in
order from lowest numerical value to highest numerical value.

511:n+4 Reserved

5.16.1.21 Boot Partition (Log Page Identifier 15h)

The Boot Partition log page provides read only access to the Boot Partition (refer to section 8.2) accessible
by this controller through the BPRSEL register (refer to section 3.1.4.14).

This log page consists of a header describing the Boot Partition and Boot Partition data as defined by Figure
267. The Boot Partition Identifier bit in the Log Specific Parameter field determines the Boot Partition.

A host reading this log page has no effects on the BPINFO (refer to section 3.1.4.13), BPRSEL, and BPMBL
(refer to section 3.1.4.15) registers.

The Log Specific Parameter field in Command Dword 10 (refer to Figure 202) for this log page is defined
in Figure 266.

Figure 266: Boot Partition Log Specific Parameter Field

Bits Description

14:09 Reserved

NVM Express® Base Specification, Revision 2.0e

252

Figure 266: Boot Partition Log Specific Parameter Field

Bits Description

08
Boot Partition Identifier: This bit specifies the Boot Partition identifier for the Boot
Partition to return.

Figure 267: Boot Partition Log Page

Bytes Description

Boot Partition Header

00 Log Page Identifier: This field shall be set to 15h.

03:01 Reserved

07:04

Boot Partition Information: Contains defines the characteristics of Boot Partitions.

Bits Description

31
Active Boot Partition ID (ABPID): This bit indicates the identifier of the
active Boot Partition.

30:15 Reserved

14:00
Boot Partition Size (BPSZ): This field defines the size of the Boot
Partition Data field in multiples of 128 KiB.

15:08 Reserved

Boot Partition Data

BPSZ*128 KiB + 15:16 Boot Partition Data: Contains the contents of the specified Boot Partition.

5.16.1.22 Rotational Media Information Log (Log Page Identifier 16h)

This log page provides rotational media information (refer to section 8.20) for Endurance Groups that store
data on rotational media. The information provided is retained across power cycles and resets.

The Endurance Group Identifier is specified in the Log Specific Identifier field in Command Dword 11 of the
Get Log Page command.

If the NVM subsystem does not contain any Endurance Groups that store data on rotational media, then
the Rotational Media Information Log should not be supported.

Figure 268: Rotational Media Information Log Page

Bytes Description

1:0
Endurance Group Identifier: The Endurance Group Identifier specified by the Get Log Page
command.

3:2 Number of Actuators: Contains the number of actuators in this Endurance Group.

5:4

Nominal Rotational Speed (NRS):

Value Description

0000h Not reported

0001h
This value is prohibited to maintain backward compatibility with other
standards. This value shall not be used.

FFFFh Reserved

All other values
Nominal rotational speed in revolutions per minute while the current
Power State is 0 (refer to section 5.27.1.2).

7:6 Reserved

11:8

Spinup Count: Contains the total number of successful spinup events for this Endurance
Group over the lifetime of the Endurance Group. If the Spinup Count is less than FFFFFFFFh,
then the controller shall increment this count by one for each successful spinup event.

A successful spinup event occurs when the controller power state transitions from a non-
operational power state to an operational power state.

NVM Express® Base Specification, Revision 2.0e

253

Figure 268: Rotational Media Information Log Page

Bytes Description

15:12

Failed Spinup Count: Contains the total number of failed spinup events for this Endurance
Group over the lifetime of the Endurance Group. If the Failed Spinup Count is less than
FFFFFFFFh, then the controller shall increment this count by one for each failed spinup event.

A failed spinup event occurs when the controller fails an attempt to transition from a non-
operational power state to an operational power state.

19:16

Load Count: Contains the total number successful actuator load events for this Endurance
Group over the lifetime of the Endurance Group. If the Load Count is less than FFFFFFFFh,
then the controller shall increment this count by one for each successful actuator load event.

A successful actuator load event occurs if an actuator transitions from a non-operational state
to an operational state.

23:20

Failed Load Count: Contains the number of failed actuator load events for this Endurance
Group over the lifetime of the Endurance Group. If the Failed Load Count is less than
FFFFFFFFh, then the controller shall increment this count by one for each failed actuator
load event.

A failed actuator load event occurs if an actuator fails an attempt to transition from a non-
operational state to an operational state.

511:24 Reserved

5.16.1.23 Discovery Log Page (Log Page Identifier 70h)

The Discovery Log Page shall only be supported by Discovery controllers. The Discovery Log Page shall
not be supported by controllers that expose namespaces for NVMe over PCIe or NVMe over Fabrics. The
Discovery Log Page provides an inventory of NVM subsystems with which a host may attempt to form an
association. The Discovery Log Page may be specific to the host requesting the log. The Discovery Log
Page is persistent across power cycles.

The Log Page Offset may be used to retrieve specific records. The number of records is returned in the
header of the log page. The format for a Discovery Log Page Entry is defined in Figure 269. The format for
the Discovery Log Page is defined in Figure 270.

A single Get Log Page command used to read the Discovery Log Page shall be atomic. If the host reads
the Discovery Log Page using multiple Get Log Page commands the host should ensure that there has not
been a change in the contents of the data. The host should read the Discovery Log Page contents in order
(i.e., with increasing Log Page Offset values) and then re-read the Generation Counter after the entire log
page is transferred. If the Generation Counter does not match the original value read, the host should
discard the log page read as the entries may be inconsistent. If the log page contents change during this
command sequence, the controller may return a status code of Discover Restart.

Every record indicates via the SUBTYPE field if that record is referring to another Discovery Service or if
the record indicates an NVM subsystem composed of controllers that may expose namespaces. A referral
to another Discovery Service (i.e., SUBTYPE 01h) is a mechanism to find additional Discovery subsystems.
An NVM subsystem entry (i.e., SUBTYPE 02h) is a mechanism to find NVM subsystems that contain
controllers that may expose namespaces. Referrals shall not be deeper than eight levels.

If an NVM subsystem supports the dynamic controller model, then all entries for that NVM subsystem shall
have the Controller ID field set to FFFFh. For a particular NVM subsystem port and NVMe Transport
address in an NVM subsystem, there shall be no more than one entry with the Controller ID field set to:

• FFFFh if that NVM subsystem supports the dynamic controller model; or

• FFFEh if that NVM subsystem supports the static controller model.

NVM Express® Base Specification, Revision 2.0e

254

Figure 269: Discovery Log Page Entry Data Structure

Bytes Description

00

Transport Type (TRTYPE): Specifies the NVMe Transport type.

Value Definition

00 Reserved

01 RDMA Transport (refer to the NVMe RDMA Transport specification)

02 Fibre Channel Transport (refer to INCITS 556)

03 TCP Transport (refer to the NVMe TCP Transport specification)

04 to 253 Reserved

254
Intra-host Transport (i.e., loopback) (NOTE: This is a reserved value for use
by host software.)

255 Reserved

01

Address Family (ADRFAM): Specifies the address family.

Value Definition

00 Reserved

01
AF_INET: IPv4 address family. IPv4address format syntax specified in
section 3.2.2 of IETF RFC 3986.

02
AF_INET6: IPv6 address family. IPv6address format syntax specified in
section 3.2.2 of IETF RFC 3986.

03 AF_IB: InfiniBand address family.

04 Fibre Channel address family.

05 to 253 Reserved

254
Intra-host Transport (i.e., loopback) (NOTE: This is a reserved value for use
by host software.)

255 Reserved

02

Subsystem Type (SUBTYPE): Specifies the type of the NVM subsystem that is indicated in this
entry.

Value Definition

00 Reserved.

01
The entry describes a referral to another Discovery Service composed of
Discovery controllers for additional records.

02
The entry describes an NVM subsystem that is not associated with
Discovery controllers and whose controllers may have attached
namespaces.

03 to 255 Reserved

03

Transport Requirements (TREQ): Indicates requirements for the NVMe Transport.

Bits 7:3 are reserved.

Bit 2 if set to ‘1’ indicates that the controller is capable of disabling SQ flow control. A controller
that is capable of disabling SQ flow control may accept or reject a host request to disable SQ
flow control. If cleared to ‘0’, then the controller requires use of SQ flow control.

Bits 1:0 indicate whether connections shall be made over a fabric secure channel (which includes
authentication) (refer to section 8.13).

Value Definition

00b Not specified

01b Required

10b Not required (i.e., not supported or supported but not required)

11b Reserved

05:04
Port ID (PORTID): Specifies a particular NVM subsystem port. Different NVMe Transports or
address families may utilize the same Port ID value (e.g., a Port ID may support both iWARP and
RoCE).

NVM Express® Base Specification, Revision 2.0e

255

Figure 269: Discovery Log Page Entry Data Structure

Bytes Description

07:06

Controller ID (CNTLID): Specifies the controller ID. If the NVM subsystem uses a dynamic
controller model, then this field shall be set to FFFFh. If the NVM subsystem uses a static
controller model, then this field may be set to a specific controller ID (values 0h to FFEFh are
valid). If the NVM subsystem uses a static controller model and the value indicated is FFFEh,
then the host should remember the Controller ID returned as part of the Fabrics Connect
command in order to re-establish an association in the future with the same controller.

09:08
Admin Max SQ Size (ASQSZ): Specifies the maximum size of an Admin Submission Queue.
This applies to all controllers in the NVM subsystem. The value shall be a minimum of 32 entries.

31:10 Reserved

63:32
Transport Service Identifier (TRSVCID): Specifies the NVMe Transport service identifier as an
ASCII string. The NVMe Transport service identifier is specified by the associated NVMe
Transport binding specification.

255:64 Reserved

511:256
NVM Subsystem Qualified Name (SUBNQN): NVMe Qualified Name (NQN) that uniquely
identifies the NVM subsystem. Refer to section 4.4. For a Discovery Service, the value returned
shall be the well-known Discovery Service NQN (nqn.2014-08.org.nvmexpress.discovery).

767:512

Transport Address (TRADDR): Specifies the address of the NVM subsystem that may be used
for a Connect command as an ASCII string. The Address Family field describes the reference for
parsing this field. Refer to section 1.4.2 for ASCII string requirements. For the definition of this
field, refer to the appropriate NVMe Transport binding specification.

1023:768
Transport Specific Address Subtype (TSAS): Specifies NVMe Transport specific information
about the address. For the definition of this field, refer to the appropriate NVMe Transport binding
specification.

Figure 270: Discovery Log Page

Bytes Description

07:00

Generation Counter (GENCTR): Indicates the version of the discovery information,
starting at a value of 0h. For each change in the Discovery Log Page, this counter is
incremented by one. If the value of this field is FFFFFFFF_FFFFFFFFh, then the field shall
be cleared to 0h when incremented (i.e., rolls over to 0h).

15:08 Number of Records (NUMREC): Indicates the number of records contained in the log.

17:16
Record Format (RECFMT): Specifies the format of the Discovery Log Page. If a new
format is defined, this value is incremented by one. The format of the record specified in
this definition shall be 0h.

1023:18 Reserved

2047:1024
Discovery Log Page Entry 0 (DLE0): Contains the first Discovery Log Page Entry as
defined in Figure 269.

3071:2048
Discovery Log Page Entry 1 (DLE1): Contains the second Discovery Log Page Entry as
defined in Figure 269 (if present).

… …

(((N + 2) × 1024) - 1):
((N + 1) × 1024)

Discovery Log Page Entry N (DLEN): Contains the Nth Discovery Log Page Entry as
defined in Figure 269 (if present).

5.16.1.24 Reservation Notification (Log Page Identifier 80h)

The Reservation Notification log page reports one log page from a time ordered queue of Reservation
Notification log pages, if available. A new Reservation Notification log page is created and added to the end
of the queue of reservation notifications whenever an unmasked reservation notification occurs on any
namespace that is attached to the controller. The Get Log Page command:

• returns a data buffer containing a log page corresponding to the oldest log page in the reservation
notification queue (i.e., the log page containing the lowest Log Page Count field; accounting for
wrapping); and

• removes that Reservation Notification log page from the queue.

NVM Express® Base Specification, Revision 2.0e

256

If there are no available Reservation Notification log page entries when a Get Log Page command is issued,
then an empty log page (i.e., all fields in the log page cleared to 0h) shall be returned.

If the controller is unable to store a reservation notification in the Reservation Notification log page due to
the size of the queue, that reservation notification is lost. If a reservation notification is lost, then the
controller shall increment the Log Page Count field of the last reservation notification in the queue (i.e., the
Log Page Count field in the last reservation notification in the queue shall contain the value associated with
the most recent reservation notification that has been lost).

The format of the log page is defined in Figure 271.

Figure 271: Reservation Notification Log Page

Bytes Description

07:00

Log Page Count: This is a 64-bit incrementing Reservation Notification log page count, indicating
a unique identifier (modulo 64 bit) for this notification. The count starts at 0h following a Controller
Level Reset and is incremented for every event that causes a reservation notification regardless of
whether that notification is added to the queue. If the value of this field is FFFFFFFF_FFFFFFFFh,
then the field is set to 1h when incremented (i.e., rolls over to 1h) and a new log page is created.

If there are no Reservation Notification log pages to return (i.e., the queue of Reservation
Notification log pages is empty), then this field shall return the value 0h. Subsequent reservation
notifications continue incrementing this unique identifier from the last non-zero value (i.e., the value
that identified the previous Reservation Notification log page). A value of 0h indicates the log page
is empty.

08

Reservation Notification Log Page Type: This field indicates the Reservation Notification type
described by this log page.

Value Definition

0h
Empty Log Page: Get Log Page command was processed when no unread
Reservation Notification log pages were available. All the fields of an empty log
page shall have a value of 0h.

1h Registration Preempted

2h Reservation Released

3h Reservation Preempted

4h to FFh Reserved

09

Number of Available Log Pages: This field indicates the number of additional available
Reservation Notification log pages (i.e., the number of unread log pages not counting this one). If
there are more than 255 additional available log pages, then a value of 255 is returned. A value of
0h indicates that there are no additional available log pages.

11:10 Reserved

15:12
Namespace ID: This field indicates the namespace ID of the namespace associated with the
Reservation Notification described by this log page.

63:16 Reserved

5.16.1.25 Sanitize Status (Log Page Identifier 81h)

The Sanitize Status log page is used to report sanitize operation time estimates and information about the
most recent sanitize operation (refer to section 8.20). The Get Log Page command returns a data buffer
containing a log page formatted as defined in Figure 272. This log page shall be retained across power
cycles and resets. This log page shall contain valid data whenever CSTS.RDY is set to ‘1’.

If the Sanitize Capabilities (SANICAP) field in the Identify Controller data structure is not cleared to 0h (i.e.,
the Sanitize command is supported), then this log page shall be supported. If the Sanitize Capabilities field
in the Identify Controller data structure is cleared to 0h, then this log page is reserved.

NVM Express® Base Specification, Revision 2.0e

257

Figure 272: Sanitize Status Log Page

Bytes Description

01:00

Sanitize Progress (SPROG): This field indicates the fraction complete of the sanitize
operation. The value is a numerator of the fraction complete that has 65,536 (10000h) as its
denominator. This value shall be set to FFFFh if bits 2:0 of the SSTAT field are not set to
010b.

If a sanitize operation has been started by a Sanitize command with the No-Deallocate After
Sanitize bit set to ‘1’ (refer to section 5.24) and if NODMMAS field in the Identify Controller
data structure is set to 10b (refer to Figure 280), then the fraction reported shall include the
time related to the additional media modification.

03:02

Sanitize Status (SSTAT): This field indicates the status associated with the most recent
sanitize operation.

Bits 15:9 are reserved.

Bit 8 (Global Data Erased): If set to ‘1’, then no user data has been written to any namespace
in the NVM subsystem and no Persistent Memory Region in the NVM subsystem has been
enabled:

a) since being manufactured and the NVM subsystem has never been sanitized; or
b) since the most recent successful sanitize operation.

If cleared to ‘0’, then user data has been written to at least one namespace in the NVM
subsystem or a Persistent Memory Region in the NVM subsystem has been enabled:

a) since being manufactured and the NVM subsystem has never been sanitized; or
b) since the most recent successful sanitize operation of the NVM subsystem.

Bits 7:3 contains the number of completed passes if the most recent sanitize operation was
an Overwrite. This field shall be cleared to 0h if the most recent sanitize operation was not
an Overwrite.

Bits 2:0 contains the status of the most recent sanitize operation as shown below.

Value Definition

000b The NVM subsystem has never been sanitized.

001b
The most recent sanitize operation completed successfully including any
additional media modification (refer to the No-Deallocate Modifies Media
After Sanitize field in Figure 280).

010b A sanitize operation is currently in progress.

011b The most recent sanitize operation failed.

100b

The most recent sanitize operation for which No-Deallocate After
Sanitize (refer to section 5.24) was requested has completed
successfully with deallocation of all user data as specified by section
5.27.1.19.

101b to 111b Reserved

07:04
Sanitize Command Dword 10 Information (SCDW10): This field contains the value of the
Command Dword 10 field of the Sanitize command that started the sanitize operation whose
status is reported in the SSTAT field. Refer to Figure 308.

11:08

Estimated Time For Overwrite: This field indicates the number of seconds required to
complete an Overwrite sanitize operation with 16 passes in the background (refer to section
5.24) when the No-Deallocate Modifies Media After Sanitize field (refer to Figure 280) is not
set to 10b. A value of 0h indicates that the sanitize operation is expected to be completed in
the background when the Sanitize command that started that operation is completed. A value
of FFFFFFFFh indicates that no time period is reported.

15:12

Estimated Time For Block Erase: This field indicates the number of seconds required to
complete a Block Erase sanitize operation in the background (refer to section 5.24) when the
No-Deallocate Modifies Media After Sanitize field (refer to Figure 280) is not set to 10b. A
value of 0h indicates that the sanitize operation is expected to be completed in the
background when the Sanitize command that started that operation is completed. A value of
FFFFFFFFh indicates that no time period is reported.

NVM Express® Base Specification, Revision 2.0e

258

Figure 272: Sanitize Status Log Page

Bytes Description

19:16

Estimated Time For Crypto Erase: This field indicates the number of seconds required to
complete a Crypto Erase sanitize operation in the background (refer to section 5.24) when
the No-Deallocate Modifies Media After Sanitize field (refer to Figure 280) is not set to 10b.
A value of 0h indicates that the sanitize operation is expected to be completed in the
background when the Sanitize command that started that operation is completed. A value of
FFFFFFFFh indicates that no time period is reported.

23:20

Estimated Time For Overwrite With No-Deallocate Media Modification: This field
indicates the number of seconds required to complete an Overwrite sanitize operation and
the associated additional media modification after the Overwrite sanitize operation in the
background (refer to section 5.24) when:

a) the No-Deallocate After Sanitize bit was set to ‘1’ in the Sanitize command that
requested the Overwrite sanitize operation; and

b) the No-Deallocate Modifies Media After Sanitize field (refer to Figure 280) is set to
10b.

A value of 0h indicates that the sanitize operation is expected to be completed in the
background when the Sanitize command that started that operation is completed. A value of
FFFFFFFFh indicates that no time period is reported.

27:24

Estimated Time For Block Erase With No-Deallocate Media Modification: This field
indicates the number of seconds required to complete a Block Erase sanitize operation and
the associated additional media modification after the Block Erase sanitize operation in the
background (refer to section 5.24) when:

a) the No-Deallocate After Sanitize bit was set to ‘1’ in the Sanitize command that
requested the Block Erase sanitize operation; and

b) the No-Deallocate Modifies Media After Sanitize field (refer to Figure 280) is set to
10b.

A value of 0h indicates that the sanitize operation is expected to be completed in the
background when the Sanitize command that started that operation is completed. A value of
FFFFFFFFh indicates that no time period is reported.

31:28

Estimated Time For Crypto Erase With No-Deallocate Media Modification: This field
indicates the number of seconds required to complete a Crypto Erase sanitize operation and
the associated additional media modification after the Crypto Erase sanitize operation in the
background (refer to section 5.24) when:

a) the No-Deallocate After Sanitize bit was set to ‘1’ in the Sanitize command that
requested the Crypto Erase sanitize operation; and

b) the No-Deallocate Modifies Media After Sanitize field (refer to Figure 280) is set to
10b.

A value of 0h indicates that the sanitize operation is expected to be completed in the
background when the Sanitize command that started that operation is completed. A value of
FFFFFFFFh indicates that no time period is reported.

511:32 Reserved

 Command Completion

Upon completion of the Get Log Page command, the controller posts a completion queue entry to the Admin
Completion Queue. Get Log Page command specific status values are defined in Figure 273.

Figure 273: Get Log Page – Command Specific Status Values

Value Description

9h
Invalid Log Page: The log page indicated is invalid or not supported. This error condition is also
returned if a reserved log page is requested. Controllers compliant with NVM Express Base
Specification revision 2.0 and earlier may return Invalid Field in Command for this condition.

29h
I/O Command Set Not Supported: The specified I/O Command Set is not supported by the
controller.

NVM Express® Base Specification, Revision 2.0e

259

5.17 Identify command

 Identify command overview

The Identify command returns a data buffer that describes information about the NVM subsystem, the
domain, the controller or the namespace(s). The data structure is 4,096 bytes in size.

The Identify command uses the Data Pointer, Command Dword 10, Command Dword 11, and Command
Dword 14 fields. All other command specific fields are reserved.

Figure 274: Identify – Data Pointer

Bits Description

127:00
Data Pointer (DPTR): This field specifies the start of the data buffer. Refer to Figure 90 for the
definition of this field. If using PRPs, this field shall not be a pointer to a PRP List as the data buffer
may not cross more than one page boundary.

Figure 275: Identify – Command Dword 10

Bits Description

31:16

Controller Identifier (CNTID): This field specifies the controller identifier used as part of some
Identify operations. Whether the CNTID field is used for a particular Identify operation is indicated
in Figure 278. If this field is not used as part of the Identify operation, then:

• host software shall clear this field to 0h for backwards compatibility (0h is a valid controller
identifier); and

• the controller shall ignore this field.

Controllers that support the Namespace Management capability (refer to section 8.11) shall
support this field.

15:08 Reserved

07:00
Controller or Namespace Structure (CNS): This field specifies the information to be returned to
the host. Refer to Figure 278.

Figure 276: Identify – Command Dword 11

Bits Description

31:24

Command Set Identifier (CSI): This field is CNS value specific. This field specifies the I/O Command
Set to be used by the command for CNS values that require a Command Set Identifier. Refer to Figure
278 for Identify command CNS values that use this field. This field shall be cleared to 0h for Identify
operations with CNS values that do not use this field.

Values for this field are defined by Figure 279.

23:16 Reserved

15:00

CNS Specific Identifier: This field specifies an identifier that is required for a particular CNS value. The
CNS values that require a CNS specific identifier are indicated in the table below.

CNS Value Definition

NVM Set List (04h) NVM Set Identifier (NVMSETID) (refer to section 3.2.2)

Domain List (18h) Domain Identifier (DOMID) (refer to section 3.2.4.3)

Endurance Group List (19h) Endurance Group Identifier (ENDGID) (refer to section 3.2.3)

If the controller supports selection of a UUID by the Identify command (refer to section 8.25), then Command
Dword 14 is used to specify a UUID Index value (refer to Figure 277).

Figure 277: Identify – Command Dword 14

Bits Description

31:07 Reserved

06:00 UUID Index: Refer to Figure 483.

NVM Express® Base Specification, Revision 2.0e

260

The data structure returned is based on the Controller or Namespace Structure (CNS) field as shown in
Figure 278. If there are fewer entries to return for the data structure indicated based on CNS value, then
the unused portion of the returned data is zero filled. If a controller does not support the specified CNS
value, then the controller shall abort the command with a status code of Invalid Field in Command.

When issuing the Identify command, if the specified namespace is not associated with an I/O Command
Set that supports the specified Identify CNS value (refer to Figure 278), then the controller shall abort the
command with a status code of Invalid I/O Command Set.

Note: The CNS field was specified as a one bit field in revision 1.0 and is a two bit field in revision 1.1. Host
software should only issue CNS values defined in revision 1.0 to controllers compliant with revision 1.0.
Host software should only issue CNS values defined in revision 1.1 to controllers compliant with revision
1.1. The results of issuing other CNS values to controllers compliant with revision 1.0 or revision 1.1,
respectively, are indeterminate.

The Identify Controller data structure, Identify Namespace data structure, and the I/O Command Set
specific Identify Namespace data structure include several unique identifiers. The format and layout of these
unique identifiers is described in section 4.5.1.

Figure 278: Identify – CNS Values

CNS
Value O/M

1
 Definition NSID

2
 CNTID

3
 CSI

4

Reference
Section

Active Namespace Management

00h M
11

Identify Namespace data structure for the
specified NSID or the common namespace

capabilities for the NVM Command Set.
7

Y N N
8

NVM
Command Set
Specification

01h M
Identify Controller data structure for the

controller processing the command.
7

N N N 5.17.2.1

02h M Active Namespace ID list. Y N N 5.17.2.2

03h M
Namespace Identification Descriptor list for the
specified NSID.

Y N N 5.17.2.3

04h O

An NVM Set List (refer to Figure 283) is
returned to the host for up to 31 NVM Sets. The
list contains entries for NVM Set identifiers
greater than or equal to the value specified in
the NVM Set Identifier (CDW11.NVMSETID)
field.

N N N 5.17.2.4

05h M

I/O Command Set specific Identify Namespace
data structure for the specified NSID for the I/O

Command Set specified in the CSI field.
7

Y N Y 5.17.2.5

06h M

I/O Command Set specific Identify Controller
data structure for the controller processing the

command.
7

N N Y 5.17.2.6

07h M
Active Namespace ID list associated with the
specified I/O Command Set.

Y N Y 5.17.2.7

08h M
I/O Command Set Independent Identify
Namespace data structure.

Y N N 5.17.2.8

09h to
0Fh

Reserved

Controller and Namespace Management

10h O
5

 Allocated Namespace ID list. Y N N 5.17.2.9

11h O
5, 11

Identify Namespace data structure for the
specified allocated NSID.

Y N N
8

 5.17.2.10

12h O
5

Controller List of controllers attached to the
specified NSID.

Y Y N 5.17.2.11

13h O
5

Controller List of controllers that exist in the
NVM subsystem.

N Y N 5.17.2.12

NVM Express® Base Specification, Revision 2.0e

261

Figure 278: Identify – CNS Values

CNS
Value O/M

1
 Definition NSID

2
 CNTID

3
 CSI

4

Reference
Section

14h O
6

Primary Controller Capabilities data structure
for the specified primary controller.

N Y N 5.17.2.13

15h O
6

Secondary Controller list of controllers
associated with the primary controller
processing the command.

N Y N 5.17.2.14

16h O
11

A Namespace Granularity List (refer to the NVM
Command Set Specification) is returned to the
host for up to sixteen Namespace Granularity
Entries.

N N N
8

 5.17.2.15

17h O
A UUID List (refer to Figure 289) is returned to
the host.

N N N 5.17.2.16

18h O
10 Domain List N N N 5.17.2.17

19h O
9

 Endurance Group List N N N 5.17.2.18

1Ah O
5

I/O Command Set specific Allocated
Namespace ID list

Y N Y 5.17.2.19

1Bh O
5

I/O Command Set specific Identify Namespace
data structure.

Y N Y 5.17.2.20

1Ch O I/O Command Set data structure N Y N 5.17.2.21

18h to
1Fh

Reserved

Future Definition

20h to
FFh

Reserved

Notes:
1. O/M definition: O = Optional, M = Mandatory.
2. The NSID field is used: Y = Yes, N = No.
3. The CDW10.CNTID field is used: Y = Yes, N = No.
4. The CDW11.CSI field is used: Y = Yes, N = No.
5. Mandatory for controllers that support the Namespace Management capability (refer to section 8.11).
6. Mandatory for controllers that support Virtualization Enhancements (refer to section 8.26).
7. Selection of a UUID may be supported (refer to section 8.25).
8. This Identify data structure applies to namespaces that are associated with command sets that specify logical

blocks (e.g., Command Set Identifier 0h or Command Set Identifier 2h).
9. Mandatory for controllers that support Variable Capacity Management (refer to section 8.3.3).
10. Mandatory for controllers that support Capacity Management (refer to section 8.3) in an NVM subsystem that

supports multiple domains (refer to section 3.2.4).
11. Only applicable for the NVM Command Set and I/O Command Sets based on the NVM Command Set.

Prohibited for all other I/O Command Sets.

The Command Set Identifier values are defined in Figure 279.

Figure 279: Command Set Identifiers

Command Set
Identifier Value

Description Reference Section

00h NVM Command Set Refer to the NVM Command Set Specification

01h Key Value Command Set Refer to the Key Value Command Set Specification

02h
Zoned Namespace Command
Set

Refer to the Zoned Namespace Command Set Specification

03h to 2Fh Reserved

30h to 3Fh Vendor specific

40h to FFh Reserved

NVM Express® Base Specification, Revision 2.0e

262

 Identify Data Structures

5.17.2.1 Identify Controller Data Structure (CNS 01h)

The Identify Controller data structure (refer to Figure 280) is returned to the host for the controller processing
the command.

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

Controller Capabilities and Features

01:00 M M R

PCI Vendor ID (VID): Contains the company vendor identifier that is
assigned by the PCI SIG. This is the same value as reported in the ID
register in the PCI Header section of the NVMe over PCIe Transport
Specification.

03:02 M M R

PCI Subsystem Vendor ID (SSVID): Contains the company vendor
identifier that is assigned by the PCI SIG for the subsystem. This is the
same value as reported in the SS register in the PCI Header section of the
NVMe over PCIe Transport Specification.

23:04 M M R

Serial Number (SN): Contains the serial number for the NVM subsystem
that is assigned by the vendor as an ASCII string. Refer to section 4.5.1
for unique identifier requirements. Refer to section 1.4.2 for ASCII string
requirements.

63:24 M M R

Model Number (MN): Contains the model number for the NVM
subsystem that is assigned by the vendor as an ASCII string. Refer to
section 4.5.1 for unique identifier requirements. Refer to section 1.4.2 for
ASCII string requirements.

71:64 M M M

Firmware Revision (FR): Contains the currently active firmware revision,
as an ASCII string, for the domain of which this controller is a part. This is
the same revision information that may be retrieved with the Get Log Page
command, refer to section 5.16.1.4.

72 M M R

Recommended Arbitration Burst (RAB): This is the recommended
Arbitration Burst size. The value is in commands and is reported as a
power of two (2^n). This is the same units as the Arbitration Burst size.
Refer to section 3.4.4.

75:73 M M R

IEEE OUI Identifier (IEEE): Contains the Organization Unique Identifier
(OUI) for the controller vendor. The OUI shall be a valid IEEE/RAC
assigned identifier that may be registered at
http://standards.ieee.org/develop/regauth/oui/public.html.

76 O O R

Controller Multi-Path I/O and Namespace Sharing Capabilities
(CMIC): This field specifies multi-path I/O and namespace sharing
capabilities of the controller and NVM subsystem.

Bits 7:4 are reserved.

Bit 3 if set to ‘1’, then the NVM subsystem supports Asymmetric
Namespace Access Reporting (refer to section 8.1). If cleared to ‘0’, then
the NVM subsystem does not support Asymmetric Namespace Access
Reporting.

Bit 2 if set to ‘1’, then the controller is associated with an SR-IOV Virtual
Function. If cleared to ‘0’, then the controller is associated with a PCI
Function or a Fabrics connection.

Bit 1 if set to ‘1’, then the NVM subsystem may contain two or more
controllers. If cleared to ‘0’, then the NVM subsystem contains only a
single controller. As described in section 2.4.1, an NVM subsystem that
contains multiple controllers may be used by multiple hosts, or may
provide multiple paths for a single host.

Bit 0 if set to ‘1’, then the NVM subsystem may contain more than one
NVM subsystem port. If cleared to ‘0’, then the NVM subsystem contains
only a single NVM subsystem port.

http://standards.ieee.org/develop/regauth/oui/public.html

NVM Express® Base Specification, Revision 2.0e

263

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

77 M M M

Maximum Data Transfer Size (MDTS): This field indicates the maximum
data transfer size for a command that transfers data between host-
accessible memory (refer to section 1.5.27) and the controller. The host
should not submit a command that exceeds this maximum data transfer
size. If a command is submitted that exceeds this transfer size, then the
command is aborted with a status code of Invalid Field in Command. The
value is in units of the minimum memory page size (CAP.MPSMIN) and is
reported as a power of two (2^n). A value of 0h indicates that there is no
maximum data transfer size. This field includes the length of metadata, if
metadata is interleaved with the user data. This field does not apply to
commands that do not transfer data between host-accessible memory and
the controller (e.g., the Verify command, the Write Uncorrectable
command, and the Write Zeroes command); refer to the ONCS field for
restrictions on these commands and other commands that transfer data.

If SGL Bit Bucket descriptors are supported, their lengths shall be included
in determining if a command exceeds the Maximum Data Transfer Size
for destination data buffers. Their length in a source data buffer is not
included for a Maximum Data Transfer Size calculation.

79:78 M M M
Controller ID (CNTLID): Contains the NVM subsystem unique controller
identifier associated with the controller.

83:80 M M M

Version (VER): This field contains the value reported in the Version
property (i.e., VS property) defined in section 3.1.4.2. Implementations
compliant with NVM Express Base Specification, Revision 1.2 or later
shall report a non-zero value in this field.

87:84 M M R

RTD3 Resume Latency (RTD3R): This field indicates the expected
latency in microseconds to resume from Runtime D3 (RTD3). Refer to
section 8.15.4. A value of 0h indicates RTD3 Resume Latency is not
reported.

91:88 M M R
RTD3 Entry Latency (RTD3E): This field indicates the typical latency in
microseconds to enter Runtime D3 (RTD3). Refer to section 8.15.4. A
value of 0h indicates RTD3 Entry Latency is not reported.

NVM Express® Base Specification, Revision 2.0e

264

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

95:92 M M M

Optional Asynchronous Events Supported (OAES): This field indicates
the optional asynchronous events supported by the controller. A controller
shall not send optional asynchronous events before they are enabled by
host software.

Bit 31 is set to ‘1’ if the controller supports sending Discovery Log Page
Change Notifications. If cleared to ‘0’, then the controller does not support
the Discovery Log Page Change Notification events.

Bits 30:28 are reserved.

Bit 27 is set to ‘1’ if the controller supports the Zone Descriptor Changed
Notices event and the associated Changed Zone List log page (refer to
the Zoned Namespace Command Set Specification). If cleared to ‘0’, then
the controller does not support the Zone Descriptor Changed Notices
event nor the associated Changed Zone List log page.

Bits 26:16 are reserved.

Bit 15 is set to ‘1’ if the controller supports the Normal NVM Subsystem
Shutdown event. If cleared to ‘0’, then the controller does not support the
Normal NVM Subsystem Shutdown event.

Bit 14 is set to ‘1’ if the controller supports the Endurance Group Event
Aggregate Log Page Change Notices event. If cleared to ‘0’, then the
controller does not support the Endurance Group Event Aggregate Log
Page Change Notices event.

Bit 13 is set to ‘1’ if the controller supports the LBA Status Information Alert
Notices event (refer to the NVM Command Set Specification). If cleared
to ‘0’, then the controller does not support the LBA Status Information Alert
Notices event.

Bit 12 is set to ‘1’ if the controller supports the Predictable Latency Event
Aggregate Log Change Notices event. If cleared to ‘0’, then the controller
does not support the Predictable Latency Event Aggregate Log Change
Notices event.

Bit 11 is set to ‘1’ if the controller supports sending Asymmetric
Namespace Access Change Notices. If cleared to ‘0’, then the controller
does not support the Asymmetric Namespace Access Change Notices
event.

Bit 10 is reserved.

Bit 9 is set to ‘1’ if the controller supports the Firmware Activation Notices
event. If cleared to ‘0’, then the controller does not support the Firmware
Activation Notices event.

Bit 8 is set to ‘1’ if the controller supports the Namespace Attribute Notices
event and the associated Changed Namespace List log page. If cleared
to ‘0’, then the controller does not support the Namespace Attribute
Notices event nor the associated Changed Namespace List log page.

Bits 7:0 are reserved.

NVM Express® Base Specification, Revision 2.0e

265

99:96 M M O
4

Controller Attributes (CTRATT): This field indicates attributes of the
controller.

Bits Description

31:16 Reserved

15

Extended LBA Formats Supported (ELBAS): If set to ‘1’
indicates that the controller supports the I/O command set
specific extended protection information formats (refer to the
Protection Information Formats section of the applicable I/O
command set specification).

If cleared to ‘0’ indicates that the controller does not support
the I/O command set specific extended protection information
formats (refer to the Protection Information Formats section of
the NVM Command Set Specification).

Refer to the LBA Format Extension Enable (LBAFEE) field in
the Host Behavior Support feature (refer to section 5.27.1.18)
for details for host software to enable the controller to operate
on namespaces using the protection information formats.

NOTE: This bit field applies to all I/O Command Sets. The
original name has been retained for historical continuity.

14

Delete NVM Set: If set to ‘1’, then the controller supports the
Delete NVM Set operation (refer to section 8.3.3). If cleared to
‘0’, then the controller does not support the Delete NVM Set
operation.

13

Delete Endurance Group: If set to ‘1’, then the controller
supports the Delete Endurance Group operation (refer to
section 8.3.3). If cleared to ‘0’, then the controller does not
support the Delete Endurance Group operation.

12

Variable Capacity Management: If set to ‘1’, then the
controller supports Variable Capacity Management (refer to
section 8.3.3). If cleared to ‘0’, then the controller does not
support Variable Capacity Management.

11

Fixed Capacity Management: If set to ‘1’, then the controller
supports Fixed Capacity Management (refer to section 8.3.2).
If cleared to ‘0’, then the controller does not support Fixed
Capacity Management.

10

Multi-Domain Subsystem (MDS): If set to ‘1’, then the NVM
subsystem supports the multiple domains (refer to section
3.2.4). If cleared to ‘0’, then the NVM subsystem does not
support the reporting of multiple domains and the NVM
subsystem consists of a single domain.

9

UUID List: If set to ‘1’, then the controller supports reporting of
a UUID List (refer to Figure 289). If cleared to ‘0’, then the
controller does not support reporting of a UUID List (refer to
section 8.25).

8
SQ Associations: If set to ‘1’, then the controller supports SQ
Associations (refer to section 8.22). If cleared to ‘0’, then the
controller does not support SQ Associations.

7

Namespace Granularity: If set to ‘1’, then the controller
supports reporting of Namespace Granularity (refer to section
5.17.2.15). If cleared to ‘0’, the controller does not support
reporting of Namespace Granularity. If the Namespace
Management capability (refer to section 8.11) is not supported,
then this bit shall be cleared to ‘0’.

6

Traffic Based Keep Alive Support (TBKAS): If set to '1‘, then
the controller uses Traffic Based Keep Alive (refer to section
3.9.4.1). If cleared to '0‘, then the controller does not use Traffic
Based Keep Alive.

NVM Express® Base Specification, Revision 2.0e

266

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

5

Predictable Latency Mode: If set to ‘1’, then the controller
supports Predictable Latency Mode (refer to section 8.16). If
cleared to ‘0’, then the controller does not support Predictable
Latency Mode.

4
Endurance Groups: If set to ‘1’, then the controller supports
Endurance Groups (refer to section 3.2.3). If cleared to ‘0’, then
the controller does not support Endurance Groups.

3

Read Recovery Levels: If set to ‘1’, then the controller
supports Read Recovery Levels (refer to section 8.17). If
cleared to ‘0’, then the controller does not support Read
Recovery Levels.

2
NVM Sets: If set to ‘1’, then the controller supports NVM Sets
(refer to section 3.2.2). If cleared to ‘0’, then the controller does
not support NVM Sets.

1

Non-Operational Power State Permissive Mode: If set to ‘1’,
then the controller supports host control of whether the
controller may temporarily exceed the power of a non-
operational power state for the purpose of executing controller
initiated background operations in a non-operational power
state (i.e., Non-Operational Power State Permissive Mode
supported). If cleared to ‘0’, then the controller does not support
host control of whether the controller may exceed the power of
a non-operational state for the purpose of executing controller
initiated background operations in a non-operational state (i.e.,
Non-Operational Power State Permissive Mode not
supported). Refer to section 5.27.1.14.

0
Host Identifier Support: If set to ‘1’, then the controller
supports a 128-bit Host Identifier. Bit 0 if cleared to ‘0’, then the
controller does not support a 128-bit Host Identifier.

NVM Express® Base Specification, Revision 2.0e

267

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

101:100 O O R

Read Recovery Levels Supported (RRLS): If Read Recovery Levels
(RRL) are supported, then this field shall be supported. If a bit is set to ‘1’,
then the corresponding Read Recovery Level is supported. If a bit is
cleared to ‘0’, then the corresponding Read Recovery Level is not
supported.

Bits Definition

15 Read Recovery Level 15 – Fast Fail
1

14 Read Recovery Level 14

13 Read Recovery Level 13

12 Read Recovery Level 12

11 Read Recovery Level 11

10 Read Recovery Level 10

9 Read Recovery Level 9

8 Read Recovery Level 8

7 Read Recovery Level 7

6 Read Recovery Level 6

5 Read Recovery Level 5

4 Read Recovery Level 4 – Default
1

3 Read Recovery Level 3

2 Read Recovery Level 2

1 Read Recovery Level 1

0 Read Recovery Level 0

NOTE:
1. If Read Recovery Levels are supported, then this bit shall be set

to ‘1’.

110:102 Reserved

111 M M M

Controller Type (CNTRLTYPE): This field specifies the controller type. A
value of 0h indicates that the controller type is not reported.

Implementations compliant with NVM Express Base Specification,
Revision 1.4 or later shall report a controller type (i.e., the value 0h is
reserved and shall not be used). Implementations compliant with an earlier
specification version may report a value of 0h to indicate that a controller
type is not reported.

Value Controller Type

0h Reserved (controller type not reported)

1h I/O controller

2h Discovery controller

3h Administrative controller

4h to FFh Reserved

NVM Express® Base Specification, Revision 2.0e

268

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

127:112 O O R

FRU Globally Unique Identifier (FGUID): This field contains a 128-bit
value that is globally unique for a given Field Replaceable Unit (FRU).
Refer to the NVM Express® Management Interface Specification for the
definition of a FRU. This field remains fixed throughout the life of the FRU.
This field shall contain the same value for each controller associated with
a given FRU.

This field uses the EUI-64 based 16-byte designator format. Bytes
122:120 contain the 24-bit Organizationally Unique Identifier (OUI) value
assigned by the IEEE Registration Authority. Bytes 127:123 contain an
extension identifier assigned by the corresponding organization. Bytes
119:112 contain the vendor specific extension identifier assigned by the
corresponding organization. Refer to the IEEE EUI-64 guidelines for more
information. This field is big endian (refer to section 4.3.4).

When not implemented, this field contains a value of 0h.

129:128 O O R

Command Retry Delay Time 1 (CRDT1): If the Do Not Retry (DNR) bit
is cleared to ‘0’ in the CQE and the Command Retry Delay (CRD) field is
set to 01b in the CQE, then this value indicates the command retry delay
time in units of 100 milliseconds.

131:130 O O R
Command Retry Delay Time 2 (CRDT2): If the DNR bit is cleared to ‘0’
in the CQE and the CRD field is set to 10b in the CQE, then this value
indicates the command retry delay time in units of 100 milliseconds.

133:132 O O R
Command Retry Delay Time 3 (CRDT3): If the DNR bit is cleared to ‘0’
in the CQE and CRD field is set to 11b in the CQE, then this value
indicates the command retry delay time in units of 100 milliseconds.

239:134 Reserved

252:240 Reserved for the NVMe Management Interface.

253 M M M

NVM Subsystem Report (NVMSR): This field reports information
associated with the NVM subsystem. If the controller is compliant with the
NVM Express Management Interface Specification, then at least one bit
in this field is set to ‘1’. If the NVM subsystem does not support the NVM
Express Management Interface Specification, then this field shall be
cleared to 0h. Refer to the NVM Express Management Interface
Specification.

Bits Description

7:2 Reserved

1
NVMe Enclosure (NVMEE): If set to ‘1’, then the NVM
subsystem is part of an NVMe Enclosure. If cleared to ‘0’, then
the NVM subsystem is not part of an NVMe Enclosure.

0

NVMe Storage Device (NVMESD): If set to ‘1’, then the NVM
subsystem is part of an NVMe Storage Device. If cleared to ‘0’,
then the NVM subsystem is not part of an NVMe Storage
Device.

NVM Express® Base Specification, Revision 2.0e

269

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

254 M M M

VPD Write Cycle Information (VWCI): This field indicates information
about the remaining number of times that VPD contents are able to be
updated using the VPD Write command. Refer to the NVM Express
Management Interface Specification for details on VPD contents and the
VPD Write command.

Bits Description

7

VPD Write Cycles Remaining Valid (VWCRV): If this bit is set
to ‘1’, then the VPD Write Cycles Remaining field is valid. If this
bit is cleared to ‘0’, then the VPD Write Cycles Remaining field
is invalid and cleared to ‘0’.

6:0

VPD Write Cycles Remaining (VWCR): If the VPD Write Cycle
Remaining Valid bit is set to ‘1’, then this field contains a value
indicating the remaining number of times that VPD contents are
able to be updated in units of 256 bytes using the VPD Write
command. For example, a 1 KiB FRU Information Device that
can be updated 8 times would indicate a value of 32 in this field.
If this field is set to 7Fh, then the remaining number of times that
VPD contents are able to be updated using the VPD Write
command is greater than or equal to 7Fh.

If the VPD Write Cycle Remaining Valid bit is cleared to ‘0’, then
this field is not valid and shall be cleared to a value of 0h.

255 M M M

Management Endpoint Capabilities (MEC): This field indicates the
capabilities of the Management Endpoint in the NVM subsystem. Refer to
the NVM Express Management Interface Specification for details.

Bits Description

7:2 Reserved

1
PCIe Port Management Endpoint (PCIEME): If set to ‘1’, then
the NVM subsystem contains a Management Endpoint on a
PCIe port.

0
SMBus/I2C Port Management Endpoint (SMBUSME): If set
to ‘1’, then the NVM subsystem contains a Management
Endpoint on an SMBus/I2C port.

NVM Express® Base Specification, Revision 2.0e

270

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

Admin Command Set Attributes & Optional Controller Capabilities

257:256 M M R

Optional Admin Command Support (OACS): This field indicates the
optional Admin commands and features supported by the controller. Refer
to section 3.1.3.

Bits 15:11 are reserved.

Bit 10 if set to ‘1’, then the controller supports the Command and Feature
Lockdown capability (refer to section 8.4). If cleared to ‘0’, then the
controller does not support the Command and Feature Lockdown
capability. This value shall be the same for all controllers in the NVM
subsystem.

Bit 9 if set to ‘1’, then the controller supports the Get LBA Status capability
(refer to the NVM Command Set Specification). If cleared to ‘0’, then the
controller does not support the Get LBA Status capability.

Bit 8 if set to '1', then the controller supports the Doorbell Buffer Config
command. If cleared to '0', then the controller does not support the
Doorbell Buffer Config command.

Bit 7 if set to ‘1’, then the controller supports the Virtualization
Management command. If cleared to ‘0’, then the controller does not
support the Virtualization Management command.

Bit 6 if set to ‘1’, then the controller supports the NVMe-MI Send command
and NVMe-MI Receive command. If cleared to ‘0’, then the controller does
not support the NVMe-MI Send command and NVMe-MI Receive
command.

Bit 5 if set to ‘1’, then the controller supports Directives. If cleared to ‘0’,
then the controller does not support Directives. A controller that supports
Directives shall support the Directive Send and Directive Receive
commands. Refer to section 8.7.

Bit 4 if set to ‘1’, then the controller supports the Device Self-test
command. If cleared to ‘0’, then the controller does not support the Device
Self-test command.

Bit 3 if set to ‘1’, then the controller supports the Namespace Management
capability (refer to section 8.11). If cleared to ‘0’, then the controller does
not support the Namespace Management capability.

Bit 2 if set to ‘1’, then the controller supports the Firmware Commit
command and Firmware Image Download command. If cleared to ‘0’, then
the controller does not support the Firmware Commit command and
Firmware Image Download command.

Bit 1 if set to ‘1’, then the controller supports the Format NVM command.
If cleared to ‘0’, then the controller does not support the Format NVM
command.

Bit 0 if set to ‘1’, then the controller supports the Security Send command
and Security Receive command. If cleared to ‘0’, then the controller does
not support the Security Send command and Security Receive command.

258 M M R

Abort Command Limit (ACL): This field is used to convey the maximum
number of concurrently executing Abort commands supported by the
controller (refer to section 5.1). This is a 0’s based value. It is
recommended that implementations support concurrent execution of a
minimum of four Abort commands.

NVM Express® Base Specification, Revision 2.0e

271

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

259 M M M
3

Asynchronous Event Request Limit (AERL): This field is used to
convey the maximum number of concurrently outstanding Asynchronous
Event Request commands supported by the controller (refer to section
5.2). This is a 0’s based value. It is recommended that implementations
support a minimum of four Asynchronous Event Request commands
outstanding simultaneously.

260 M M R

Firmware Updates (FRMW): This field indicates capabilities regarding
firmware updates. Refer to section 3.11 for more information on the
firmware update process.

Bits Description

7:6 Reserved

5

Support Multiple Update Detection (SMUD): If set to ‘1’
indicates that the controller is able to detect overlapping
firmware/boot partition image update command sequences
(refer to section 3.11 and section 8.2.2). If cleared to ‘0’, then
the controller is not able to detect overlapping firmware/boot
partition image update command sequences.

4

Firmware Activation Without Reset (FAWR): If set to ‘1’
indicates that the controller supports firmware activation
without a reset. If cleared to ‘0’, then the controller requires a
reset for firmware to be activated.

3:1

Number Of Firmware Slots (NOFS): This field indicates the
number of firmware slots supported by the domain that
contains this controller. This field shall specify a value from one
to seven, indicating that at least one firmware slot is supported
and up to seven maximum. This corresponds to firmware slots
1 through 7

0

First Firmware Slot Read Only (FFSRO): If set to ‘1’ indicates
that the first firmware slot (i.e., slot 1) is read only. If cleared to
‘0’, then the first firmware slot (i.e., slot 1) is read/write.
Implementations may choose to have a baseline read only
firmware image.

NVM Express® Base Specification, Revision 2.0e

272

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

261 M M M

Log Page Attributes (LPA): This field indicates optional attributes for log
pages that are accessed via the Get Log Page command.

Bits Description

7 Reserved

6

If set to ‘1’, then the controller supports Data Area 4 for the
Telemetry Host-Initiated and Telemetry Controller-Initiated log.
If cleared to ’0’, then the controller does not support Data Area
4 for the Telemetry Host-Initiated and Telemetry Controller-
Initiated log pages.

5

If set to ‘1’, then the controller supports:

• the Supported Log Pages log page (Log Page
Identifier 0h);

• returning the scope of each command in the
Commands Supported and Effects log page (Log
Page Identifier 05h);

• the Feature Identifiers Supported and Effects log
page (Log Page Identifier 12h); and

• the NVMe-MI Commands Supported and Effects log
page (Log Page Identifier 13h).

If cleared to ‘0’, then the controller:

• does not support returning the scope of each
command in the Commands Supported and Effects
log page;

• may support the Supported Log Pages log page;

• may support the Feature Identifiers Supported and
Effects log page; and

• may support the NVMe-MI Commands Supported
and Effects log page.

4
If set to ‘1’, then the controller supports the Persistent Event
log. If cleared to ‘0’, then the controller does not support the
Persistent Event log.

3

If set to ‘1’, then the controller supports the Telemetry Host-
Initiated and Telemetry Controller-Initiated log pages and
sending Telemetry Log Notices. If cleared to ’0’, then the
controller does not support the Telemetry Host-Initiated and
Telemetry Controller-Initiated log pages and Telemetry Log
Notice events.

2

If set to ‘1’, then the controller supports extended data for the
Get Log Page command (including extended Number of
Dwords and Log Page Offset fields). If cleared to ‘0’, then the
controller does not support extended data for the Get Log
Page command.

1

If set to ‘1’, then the controller supports the Commands
Supported and Effects log page. Bit 1 if cleared to ‘0’, then the
controller does not support the Commands Supported and
Effects log page.

0

If set to ‘1’, then the controller supports the SMART / Health
Information log page on a per namespace basis. If cleared to
‘0’, then the controller does not support the SMART / Health
Information log page on a per namespace basis.

262 M M M
Error Log Page Entries (ELPE): This field indicates the maximum
number of Error Information Log Entries that are stored by the controller.
This field is a 0’s based value.

NVM Express® Base Specification, Revision 2.0e

273

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

263 M M R

Number of Power States Support (NPSS): This field indicates the
number of NVM Express power states supported by the controller. This is
a 0’s based value. Refer to section 8.15.

Power states are numbered sequentially starting at power state 0. A
controller shall support at least one power state (i.e., power state 0) and
may support up to 31 additional power states (i.e., up to 32 total).

264 M M R

Admin Vendor Specific Command Configuration (AVSCC): This field
indicates the configuration settings for vendor specific Admin command
handling. Refer to section 8.23.

Bits 7:1 are reserved.

Bit 0 if set to ‘1’ indicates that all vendor specific Admin commands use
the format defined in Figure 91. If cleared to ‘0’ indicates that the format
of all vendor specific Admin commands is vendor specific.

265 O O R

Autonomous Power State Transition Attributes (APSTA): This field
indicates the attributes of the autonomous power state transition feature.
Refer to section 8.15.2.

Bits 7:1 are reserved.

Bit 0 if set to ‘1’, then the controller supports autonomous power state
transitions. If cleared to ‘0’, then the controller does not support
autonomous power state transitions.

267:266 M M R

Warning Composite Temperature Threshold (WCTEMP): This field
indicates the minimum Composite Temperature field value (reported in the
SMART / Health Information log in Figure 212) that indicates an
overheating condition during which controller operation continues.
Immediate remediation is recommended (e.g., additional cooling or
workload reduction). The platform should strive to maintain a composite
temperature less than this value.

A value of 0h in this field indicates that no warning temperature threshold
value is reported by the controller. Implementations compliant with NVM
Express Base Specification, Revision 1.2 or later shall report a non-zero
value in this field.

It is recommended that implementations report a value of 0157h in this
field.

269:268 M M R

Critical Composite Temperature Threshold (CCTEMP): This field
indicates the minimum Composite Temperature field value (reported in the
SMART / Health Information log in Figure 212) that indicates a critical
overheating condition (e.g., may prevent continued normal operation,
possibility of data loss, automatic device shutdown, extreme performance
throttling, or permanent damage).

A value of 0h in this field indicates that no critical temperature threshold
value is reported by the controller. Implementations compliant with NVM
Express Base Specification, Revision 1.2 or later shall report a non-zero
value in this field.

271:270 O O R

Maximum Time for Firmware Activation (MTFA): Indicates the
maximum time the controller temporarily stops processing commands to
activate the firmware image. This field shall be valid if the controller
supports firmware activation without a reset. This field is specified in 100
millisecond units. A value of 0h indicates that the maximum time is
undefined.

NVM Express® Base Specification, Revision 2.0e

274

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

275:272 O O R

Host Memory Buffer Preferred Size (HMPRE): This field indicates the
preferred size that the host is requested to allocate for the Host Memory
Buffer feature in 4 KiB units. This value shall be greater than or equal to
the Host Memory Buffer Minimum Size. If this field is non-zero, then the
Host Memory Buffer feature is supported. If this field is cleared to 0h, then
the Host Memory Buffer feature is not supported.

279:276 O O R

Host Memory Buffer Minimum Size (HMMIN): This field indicates the
minimum size that the host is requested to allocate for the Host Memory
Buffer feature in 4 KiB units. If this field is cleared to 0h, then the host is
requested to allocate any amount of host memory possible up to the
HMPRE value.

295:280 O O R

Total NVM Capacity (TNVMCAP): This field indicates the total NVM
capacity that is accessible by the controller. The value is in bytes. This
field shall be supported if the Namespace Management capability (refer to
section 8.11) is supported or if the Capacity Management capability (refer
to section 8.3) is supported.

Refer to section 3.8.

311:296 O O R

Unallocated NVM Capacity (UNVMCAP): This field indicates the
unallocated NVM capacity that is accessible by the controller. The value
is in bytes. This field shall be supported if the Namespace Management
capability (refer to section 8.11) is supported or if the Capacity
Management capability (refer to section 8.3) is supported.

Refer to section 3.8.

NVM Express® Base Specification, Revision 2.0e

275

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

315:312 O O R

Replay Protected Memory Block Support (RPMBS): This field indicates
if the controller supports one or more Replay Protected Memory Blocks
(RPMBs) and the capabilities. Refer to section 8.18.

Bits Description

31:24

Access Size: If the Number of RPMB Units field is non-zero,
then this field indicates the maximum number of 512B units
of data that may be read or written per RPMB access by
Security Send or Security Receive commands for the
controller. This is a 0’s based value. A value of 0h indicates
support for one unit of 512B of data.

If the Number of RPMB Units field is 0h, then this field should
be ignored by the host.

23:16

Total Size: If the Number of RPMB Units field is non-zero,
then this field indicates the number of 128 KiB units of data in
each RPMB supported in the controller. This is a 0’s based
value. A value of 0h indicates support for one unit of 128 KiB
of data.

If the Number of RPMB Units field is 0h, this field should be
ignored by the host.

15:06 Reserved

05:03

Authentication Method: This field indicates the
authentication method used to access all RPMBs in the
controller. The values for this field are:

Value Definition

000b HMAC SHA-256 (refer to RFC 6234)

001b to 111b Reserved

02:00

Number of RPMB Units: This field indicates the number of
RPMB targets the controller supports. All RPMB targets
supported shall have the same capabilities as defined in the
RPMBS field. A value of 0h indicates the controller does not
support Replay Protected Memory Blocks. If this value is non-
zero, then the controller shall support the Security Send and
Security Receive commands.

317:316 O O R

Extended Device Self-test Time (EDSTT): If the Device Self-test
command is supported, then this field indicates the nominal amount of
time in one minute units that the controller takes to complete an extended
device self-test operation when in power state 0. If the Device Self-test
command is not supported, then this field is reserved.

318 O O R

Device Self-test Options (DSTO): This field indicates the optional Device
Self-test command or operation behaviors supported by the controller or
NVM subsystem.
Bits 7:1 are reserved.

Bit 0 if set to ‘1’, then the NVM subsystem supports only one device self-
test operation in progress at a time. If cleared to ‘0’, then the NVM
subsystem supports one device self-test operation per controller at a time.

NVM Express® Base Specification, Revision 2.0e

276

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

319 M M R

Firmware Update Granularity (FWUG): This field indicates the
granularity and alignment requirement of the firmware image being
updated by the Firmware Image Download command (refer to section
5.13). If the values specified in the NUMD field or the OFST field in the
Firmware Image Download command do not conform to this granularity
and alignment requirement, then the firmware update may abort with a
status code of Invalid Field in Command. For the broadest interoperability
with host software, it is recommended that the controller set this value to
the lowest value possible.

The value is reported in 4 KiB units (e.g., 1h corresponds to 4 KiB, 2h
corresponds to 8 KiB). A value of 0h indicates that no information on
granularity is provided. A value of FFh indicates there is no restriction (i.e.,
any granularity and alignment in dwords is allowed).

321:320 M M O

Keep Alive Support (KAS): This field indicates the granularity of the
KATO field in 100 millisecond units (refer to section 5.27.1.12). If this field
is cleared to 0h, then the Keep Alive Timer feature is not supported. The
Keep Alive Timer feature is used by the Keep Alive capability as described
in section 3.9.

323:322 O O R

Host Controlled Thermal Management Attributes (HCTMA): This field
indicates the attributes of the host controlled thermal management
feature. Refer to section 8.15.5.
Bits 15:1 are reserved.

Bit 0 if set to ‘1’, then the controller supports host controlled thermal
management. If cleared to ‘0’, then the controller does not support host
controlled thermal management. If this bit is set to ‘1’, then the controller
shall support the Set Features command and Get Features command with
the Feature Identifier field set to 10h.

325:324 O O R

Minimum Thermal Management Temperature (MNTMT): This field
indicates the minimum temperature, in Kelvins, that the host may request
in the Thermal Management Temperature 1 field and Thermal
Management Temperature 2 field of a Set Features command with the
Feature Identifier field set to 10h. A value of 0h indicates that the controller
does not report this field or the host controlled thermal management
feature (refer to section 8.15.5) is not supported.

327:326 O O R

Maximum Thermal Management Temperature (MXTMT): This field
indicates the maximum temperature, in Kelvins, that the host may request
in the Thermal Management Temperature 1 field and Thermal
Management Temperature 2 field of the Set Features command with the
Feature Identifier set to 10h. A value of 0h indicates that the controller
does not report this field or the host controlled thermal management
feature is not supported.

NVM Express® Base Specification, Revision 2.0e

277

331:328 O O R

Sanitize Capabilities (SANICAP): This field indicates attributes for
sanitize operations. If the Sanitize command is supported, then this field
shall be non-zero. If the Sanitize command is not supported, then this field
shall be cleared to 0h. Refer to section 8.21.

Bits Description

31:30

No-Deallocate Modifies Media After Sanitize (NODMMAS):
This field indicates if media is additionally modified by the
controller after a sanitize operation successfully completes
that had been started by a Sanitize command with the No-
Deallocate After Sanitize bit set to ‘1’.

The work required for the associated additional media
modification is included both in the estimated time for each
sanitize operation and in the Sanitize Progress field (refer to
Figure 272).

Value Definition

00b

Additional media modification after sanitize
operation completes successfully is not defined.
Only controllers compliant with NVM Express
Base Specification, Revision 1.3 and earlier or
that have bits 2:0 of the SANICAP field cleared
to 000b are allowed to return this value.

01b
Media is not additionally modified by the
controller after sanitize operation completes
successfully.

10b

Media is additionally modified by the controller
after sanitize operation completes successfully.
The Sanitize Operation Completed event does
not occur until the additional media modification
associated with this field has completed.

11b Reserved

If bits 2:0 of the SANICAP field are cleared to 000b, then the
controller shall clear this field to 00b.

29

No-Deallocate Inhibited (NDI): If set to ‘1’ and the No-
Deallocate Response Mode bit is set to ‘1’, then the controller
deallocates after the sanitize operation even if the No-
Deallocate After Sanitize bit is set to ‘1’ in a Sanitize
command.

If:

a) this bit is set to ‘1’;
b) the No-Deallocate After Sanitize bit is set to ‘1’ in a

Sanitize command, and:

1) the No-Deallocate Response Mode bit (refer to
Figure 357) is cleared to ‘0’; or

2) the Sanitize Config Feature (refer to section
5.27.1.19) is not supported,

then the controller aborts the Sanitize command with a status
code of Invalid Field in Command.

If the No-Deallocate After Sanitize bit is cleared to ‘0’ in a
Sanitize command, then the value of this bit has no effect on
the processing that Sanitize command.

If this bit is cleared to ‘0’, then the controller supports the No-
Deallocate After Sanitize bit in a Sanitize command.

If bits 2:0 of the SANICAP field are cleared to 0h, then the
controller shall clear this bit to ‘0’.

28:03 Reserved

NVM Express® Base Specification, Revision 2.0e

278

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

02

Overwrite Support (OWS): If set to ‘1’, then the controller
supports the Overwrite sanitize operation. If cleared to ‘0’,
then the controller does not support the Overwrite sanitize
operation.

01

Block Erase Support (BES): If set to ‘1’, then the controller
supports the Block Erase sanitize operation. If cleared to ‘0’,
then the controller does not support the Block Erase sanitize
operation.

00

Crypto Erase Support (CES): If set to ‘1’, then the controller
supports the Crypto Erase sanitize operation. If cleared to ‘0’,
then the controller does not support the Crypto Erase sanitize
operation.

335:332 O O R

Host Memory Buffer Minimum Descriptor Entry Size (HMMINDS): This
field indicates the minimum usable size of a Host Memory Buffer
Descriptor Entry in 4 KiB units. If this field is cleared to 0h, then the
controller does not indicate any limitations on the Host Memory Buffer
Descriptor Entry size.

337:336 O O R

Host Memory Maximum Descriptors Entries (HMMAXD): This field
indicates the number of usable Host Memory Buffer Descriptor Entries. If
this field is cleared to 0h, then the controller does not indicate a maximum
number of Host Memory Buffer Descriptor Entries.

339:338 O O R

NVM Set Identifier Maximum (NSETIDMAX): This field defines the
maximum value of a valid NVM Set Identifier for any controller in the NVM
subsystem. The number of NVM Sets supported by the NVM subsystem
is less than or equal to NSETIDMAX.

341:340 O O R

Endurance Group Identifier Maximum (ENDGIDMAX): This field
defines the maximum value of a valid Endurance Group Identifier for any
controller in the NVM subsystem. The number of Endurance Groups
supported by the NVM subsystem is less than or equal to ENDGIDMAX.

342 O O R

ANA Transition Time (ANATT): This field indicates the maximum
amount of time, in seconds, for a transition between ANA states or the
maximum amount of time, in seconds, that the controller reports the ANA
change state. If the controller supports Asymmetric Namespace Access
Reporting (refer to the CMIC field in Figure 280), then this field shall be
set to a non-zero value. If the controller does not support Asymmetric
Namespace Access Reporting, then this field shall be cleared to 0h. Refer
to section 8.10.4.

NVM Express® Base Specification, Revision 2.0e

279

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

343 O O R

Asymmetric Namespace Access Capabilities (ANACAP): This field
indicates the capabilities associated with Asymmetric Namespace Access
Reporting (refer to section 8.1).

Bit 7 if set to ‘1’, then the controller supports a non-zero value in the
ANAGRPID field of the Namespace Management command. If cleared to
‘0’, then the controller does not support a non-zero value in the
ANAGRPID field of the Namespace Management command. If the
Namespace Management command is not supported, then this bit shall
be cleared to ‘0’.

Bit 6 if set to ‘1’, then the ANAGRPID field in the Identify Namespace data
structure (refer to the NVM Command Set Specification) does not change
while the namespace is attached to any controller. If cleared to ‘0’, then
the ANAGRPID field may change while the namespace is attached to any
controller. Refer to section 8.1.2.

Bit 5 is reserved.

Bit 4 if set to ‘1’, then the controller is able to report ANA Change state
(refer to section 8.1.3.5). If cleared to ‘0’, then the controller does not
report ANA Change state.

Bit 3 if set to ‘1’, then the controller is able to report ANA Persistent Loss
state (refer to section 8.1.3.4). If cleared to ‘0’, then the controller does not
report ANA Persistent Loss state.

Bit 2 if set to ‘1’, then the controller is able to report ANA Inaccessible state
(refer to section 8.1.3.3). If cleared to ‘0’, then the controller does not
report ANA Inaccessible state.

Bit 1 if set to ‘1’, then the controller is able to report ANA Non-Optimized
state (refer to section 8.1.3.2). If cleared to ‘0’, then the controller does not
report ANA Non-Optimized state.

Bit 0 if set to ‘1’, then the controller is able to report ANA Optimized state
(refer to section 8.1.3.1). If the controller supports Asymmetric
Namespace Access Reporting, then this bit is set to ‘1’.

347:344 O O R

ANA Group Identifier Maximum (ANAGRPMAX): This field indicates the
maximum value of a valid ANA Group Identifier for any controller in the
NVM subsystem. If the controller supports Asymmetric Namespace
Access Reporting (refer to the CMIC field in Figure 280), then this field
shall be set to a non-zero value. If the controller does not support
Asymmetric Namespace Access Reporting, then this field shall be cleared
to 0h.

351:348 O O R

Number of ANA Group Identifiers (NANAGRPID): This field indicates
the number of ANA groups supported by the controller. If the controller
supports Asymmetric Namespace Access Reporting (refer to the CMIC
field in Figure 280), then this field shall be set to a non-zero value that is
less than or equal to the ANAGRPMAX value. If the controller does not
support Asymmetric Namespace Access Reporting, then this field shall be
cleared to 0h.

355:352 O O R

Persistent Event Log Size (PELS): This field indicates the maximum
reportable size for the Persistent Event Log (Refer to section 5.16.1.14) in
64 KiB units. If the Persistent Event Log is not supported, then this field is
reserved.

NVM Express® Base Specification, Revision 2.0e

280

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

357:356 O O O

Domain Identifier: This field indicates the identifier of the domain (refer
to section 3.2.4) that contains this controller. If the MDS bit is set to ‘1’,
then this field shall be set to a non-zero value. If the NVM subsystem does
not support multiple domains (i.e., the NVM subsystem consists of a single
domain), then this field shall be cleared to 0h.

367:358 Reserved

383:368 O R R

Max Endurance Group Capacity (MEGCAP): This field indicates the
maximum capacity of a single Endurance Group. If this field is cleared to
0h, the NVM subsystem does not report a maximum Endurance Group
Capacity value.

511:384 Reserved

NVM Command Set Attributes

512 M M R

Submission Queue Entry Size (SQES): This field defines the required
and maximum I/O Submission Queue entry size.

Bits 7:4 define the maximum I/O Submission Queue entry size when using
the NVM Command Set. This value is greater than or equal to the required
SQ entry size (i.e., bits 3:0 in this field). The value is in bytes and is
reported as a power of two (2^n). The recommended value is 6,
corresponding to a standard SQ entry size of 64 bytes. Controllers that
implement proprietary extensions may support a larger value.

Bits 3:0 define the required (i.e., minimum) I/O Submission Queue entry
size. This is the minimum entry size that may be used. The value is in
bytes and is reported as a power of two (2^n). The required value shall be
6, corresponding to 64.

513 M M R

Completion Queue Entry Size (CQES): This field defines the required
and maximum I/O Completion Queue entry size.

Bits 7:4 define the maximum I/O Completion Queue entry size. This value
is greater than or equal to the required CQ entry size (i.e., bits 3:0 in this
field). The value is in bytes and is reported as a power of two (2^n). The
recommended value is 4, corresponding to a standard CQ entry size of 16
bytes. Controllers that implement proprietary extensions may support a
larger value.

Bits 3:0 define the required (i.e., minimum) I/O Completion Queue entry
size. This is the minimum entry size that may be used. The value is in
bytes and is reported as a power of two (2^n). The required value shall be
4, corresponding to 16.

515:514 M M M

Maximum Outstanding Commands (MAXCMD): Indicates the
maximum number of commands that the controller processes at one time
for a particular queue (which may be larger than the size of the
corresponding Submission Queue). The host may use this value to size
Completion Queues and optimize the number of commands submitted at
one time to a particular I/O Queue. This field is mandatory for NVMe over
Fabrics implementations and optional for NVMe over PCIe
implementations. If the field is not used, it shall be cleared to 0h.

519:516 M M R
Number of Namespaces (NN): This field indicates the maximum value of
a valid NSID for the NVM subsystem. Refer to the MNAN field for the
number of supported namespaces in the NVM subsystem.

NVM Express® Base Specification, Revision 2.0e

281

521:520 M M R

Optional NVM Command Support (ONCS): This field indicates the
optional I/O commands and features supported by the controller. Refer to
section 3.1.3.

If a controller supports more than one I/O Command Set, then the bits in
the field associated with command support reflect the aggregate support
across all of the I/O Command Sets supported or I/O Command Sets
inherited from I/O Command Sets (e.g., Zoned Namespace Command
Set). The Commands Supported and Effects log page (refer to section
5.16.1.6) may be used to determine the support of commands for a
specific I/O Command Set.

Bits 15:9 are reserved.

Bit 8 if set to ‘1’, then the controller supports the NVM Command Set Copy
command. If cleared to ‘0’, then the controller does not support the NVM
Command Set Copy command.

Bit 7 if set to ‘1’, then the controller supports the NVM Command Set Verify
command and the Verify Size Limit (VSL) field indicates the recommended
maximum data size for Verify commands. If cleared to ‘0’, then controller
support of the NVM Command Set Verify command is indicated by a non-
zero data size limit in the VSL field.

Bit 6 if set to ‘1’, then the controller supports the Timestamp feature. If
cleared to ‘0’, then the controller does not support the Timestamp feature.
Refer to section 5.27.1.11.

Bit 5 if set to ‘1’, then the controller supports reservations. If cleared to ‘0’,
then the controller does not support reservations. If the controller supports
reservations, then the following commands associated with reservations
shall be supported: Reservation Report, Reservation Register,
Reservation Acquire, and Reservation Release. Refer to section 8.19 for
additional requirements.

Bit 4 if set to ‘1’, then the controller supports the Save field set to a non-
zero value in the Set Features command and the Select field set to a non-
zero value in the Get Features command. If cleared to ‘0’, then the
controller does not support the Save field set to a non-zero value in the
Set Features command and the Select field set to a non-zero value in the
Get Features command.

Bit 3 if set to ‘1’, then the controller supports the NVM Command Set Write
Zeroes command and the Write Zeroes Size Limit (WZSL) field indicates
the recommended maximum data size for Write Zeroes commands. If
cleared to ‘0’, then controller support of the NVM Command Set Write
Zeroes command is indicated by a non-zero data size limit in the WZSL
field.

Bit 2 if set to ‘1’, then the controller supports the NVM Command Set
Dataset Management command and limits, if any, on controller support of
the Dataset Management command are indicated by non-zero values in
the Dataset Management Ranges Limit (DMRL) field, the Dataset
Management Size Limit (DMSL) field and the Dataset Management
Range Size Limit (DMRSL) field. If cleared to ‘0’, then controller support
of the NVM Command Set Dataset Management command is indicated
by a non-zero data size limit in the DMRL, DMSL, and DMRSL fields.

Bit 1 if set to ‘1’, then the controller supports the NVM Command Set Write
Uncorrectable command and the Write Uncorrectable Size Limit (WUSL)
field indicates the recommended maximum data size for Write
Uncorrectable commands. If cleared to ‘0’, then controller support of the
NVM Command Set Write Uncorrectable command is indicated by a non-
zero data size limit in the WUSL field.

NVM Express® Base Specification, Revision 2.0e

282

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

Bit 0 if set to ‘1’, then the controller supports the NVM Command Set
Compare command. If cleared to ‘0’, then the controller does not support
the NVM Command Set Compare command.

NOTE: This field applies to all I/O Command Sets. The original name has
been retained for historical continuity.

523:522 M M R

Fused Operation Support (FUSES): This field indicates the fused
operations that the controller supports. Refer to section 3.4.2.

Bits 15:1 are reserved.

Bit 0 if set to ‘1’, then the controller supports the NVM Command Set
Compare and Write fused operation. If cleared to ‘0’, then the controller
does not support the NVM Command Set Compare and Write fused
operation. Compare shall be the first command in the sequence.

524 M M R

Format NVM Attributes (FNA): This field indicates attributes for the
Format NVM command.

Bits 7:4 are reserved.

Bit 3 indicates whether the Format NVM command supports an NSID
value set to FFFFFFFFh. If set to ‘1’, then the Format NVM command
does not support an NSID value set to FFFFFFFFh. If cleared to ‘0’, then
the Format NVM command supports an NSID value set to FFFFFFFFh.

Bit 2 indicates whether cryptographic erase is supported as part of the
secure erase functionality. If set to ‘1’, then cryptographic erase is
supported. If cleared to ‘0’, then cryptographic erase is not supported.

Bit 1 indicates whether secure erase functionality applies to all
namespaces in the NVM subsystem or is specific to a particular
namespace. If set to ’1’, then any secure erase performed as part of a
format operation results in a secure erase of all namespaces in the NVM
subsystem. If cleared to ‘0’, then any secure erase performed as part of a
format results in a secure erase of the particular specified namespace. If
bit 3 is set to ‘1’, then this bit shall be cleared to ‘0’.

Bit 0 indicates whether the format operation (excluding secure erase)
applies to all namespaces in the NVM subsystem or is specific to a
particular namespace. If set to ‘1’, then all namespaces in the NVM
subsystem shall be configured with the same attributes and a format
(excluding secure erase) of any namespace results in a format of all
namespaces in the NVM subsystem. If cleared to ‘0’, then the controller
supports format on a per namespace basis. If bit 3 is set to ‘1’, then this
bit shall be cleared to ‘0’.

NVM Express® Base Specification, Revision 2.0e

283

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

525 M M R

Volatile Write Cache (VWC): This field indicates attributes related to the
presence of a volatile write cache in the controller.

Bits 7:3 are reserved.

Bits 2:1 indicate Flush command behavior (refer to section 7.1) if the NSID
value is set to FFFFFFFFh as follows:

Value Definition

00b

Support for the NSID field set to FFFFFFFFh is not indicated.
Only controllers compliant with NVM Express Base
Specification revision 1.3 and earlier shall be allowed to
return this value.

01b Reserved.

10b

The Flush command does not support the NSID field set to
FFFFFFFFh. The controller shall fail a Flush command with
the NSID set to FFFFFFFFh with a status code of Invalid
Namespace or Format.

11b
The Flush command supports the NSID field set to
FFFFFFFFh.

Bit 0 if set to ‘1’ indicates that a volatile write cache is present. If cleared
to ‘0’, a volatile write cache is not present.

If a volatile write cache is present, then the host controls whether the
volatile write cache is enabled with a Set Features command specifying
the Volatile Write Cache feature identifier (refer to section 5.27.1.4). The
Flush command (refer to section 7.1) is used to request that the contents
of a volatile write cache be made non-volatile.

527:526 M R R

Atomic Write Unit Normal (AWUN): This field is specific to namespaces
that are associated with command sets that specify logical blocks (i.e.,
Command Set Identifier 0h or 2h), and shall be cleared to 0h for
namespaces that are not associated with command sets that specify
logical blocks. Refer to the applicable I/O Command Set specification
(e.g., the Atomic Operation section of the NVM Command Set
specification).

529:528 M M R

Atomic Write Unit Power Fail (AWUPF): This field is specific to
namespaces that are associated with command sets that specify logical
blocks (i.e., Command Set Identifier 0h or 2h), and shall be cleared to 0h
for namespaces that are not associated with command sets that specify
logical blocks. Refer to the applicable I/O Command Set specification
(e.g., the Atomic Operation section of the NVM Command Set
specification).

530 M M R

I/O Command Set Vendor Specific Command Configuration
(ICSVSCC): This field indicates the configuration settings for vendor
specific I/O command handling. Refer to section 8.23.

Bits 7:1 are reserved.

Bit 0 if set to ‘1’ indicates that all vendor specific I/O commands use the
format defined in Figure 91. If cleared to ‘0’ indicates that the format of all
vendor specific I/O commands is vendor specific.

NVM Express® Base Specification, Revision 2.0e

284

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

531 M M R

Namespace Write Protection Capabilities (NWPC): This field indicates
the optional namespace write protection capabilities supported by the
controller. Refer to section 8.12.

Bits 7:3 are reserved.

Bit 2 if set to ‘1’, then the controller supports the Permanent Write Protect
state. If cleared to ‘0’, then the controller does not support the Permanent
Write Protect state. If this bit is set to ‘1’, then the controller supports the
Write Protection Control field (refer to section 8.12.1).

Bit 1 if set to ‘1’, then the controller supports the Write Protect Until Power
Cycle state. If cleared to ‘0’, then the controller does not support Write
Protect Until Power Cycle state. If this bit is set to ‘1’, then the controller
supports the Write Protection Control field (refer to section 8.12.1).

Bit 0 if set to ‘1’, then the controller supports the No Write Protect and
Write Protect namespace write protection states and may support the
Write Protect Until Power Cycle state and Permanent Write Protect
namespace write protection states (refer to section 8.12). If cleared to ‘0’,
then the controller does not support Namespace Write Protection and bits
2:1 shall be cleared to 00b.

533:532 O R R

Atomic Compare & Write Unit (ACWU): This field is specific to
namespaces that are associated with command sets that specify logical
blocks (i.e., Command Set Identifier 0h or 2h), and shall be cleared to 0h
for namespaces that are not associated with command sets that specify
logical blocks. Refer to the applicable I/O Command Set specification
(e.g., the Atomic Operation section of the NVM Command Set
specification).

535:534 M R R

Copy Descriptor Formats Supported:

Bits Description

15:2 Reserved

1 If set to ‘1’, then the controller supports Copy Descriptor
Format 1h. If cleared to ‘0’, then the controller does not
support Copy Descriptor Format 1h.

0 If set to ‘1’, then the controller supports Copy Descriptor
Format 0h. If cleared to ‘0’, then the controller does not
support Copy Descriptor Format 0h.

NVM Express® Base Specification, Revision 2.0e

285

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

539:536 O O M

SGL Support (SGLS): This field indicates if SGLs are supported and the
particular SGL types supported. Refer to section 4.1.2.

Bits Description

31:22 Reserved

21
If set to ‘1’, then the controller supports the Transport SGL
Data Block descriptor. If cleared to ‘0’, then the controller does
not support the Transport SGL Data Block descriptor.

20

If set to ‘1’, then the controller supports the Address field in
SGL Data Block, SGL Segment, and SGL Last Segment
descriptor types specifying an offset. If cleared to ‘0’, then the
Address field specifying an offset is not supported.

19

If set to ‘1’, then use of a Metadata Pointer (MPTR) that
contains an address of an SGL segment containing exactly
one SGL Descriptor that is qword aligned is supported. If
cleared to ‘0’, then use of a MPTR containing an SGL
Descriptor is not supported.

18

If set to ‘1’, then the controller supports commands that
contain a data or metadata SGL of a length larger than the
amount of data to be transferred. If cleared to ‘0’, then the SGL
length shall be equal to the amount of data to be transferred.

17

This field specifies metadata buffer alignment requirements
when CDW0.PSDT is set to 01b (refer to Figure 89). If set to
‘1’, then use of a byte aligned contiguous physical buffer of
metadata (the Metadata Pointer field in Figure 90) is
supported. If cleared to ‘0’, then use of a byte aligned
contiguous physical buffer of metadata is not supported.

16
If set to ‘1’, then the SGL Bit Bucket descriptor is supported. If
cleared to ‘0’, then the SGL Bit Bucket descriptor is not
supported.

15:08

SGL Descriptor Threshold (SDT): This field indicates the
recommended maximum number of SGL descriptors in a
command (refer to section 4.1.2). If this field is cleared to 0h,
then no recommended maximum number of SGL descriptors
is reported.

07:03 Reserved

02
If set to ‘1’, then the controller supports the Keyed SGL Data
Block descriptor. If cleared to ‘0’, then the controller does not
support the Keyed SGL Data Block descriptor.

01:00

This field is used to determine the SGL support. Valid values
are shown in the table below.

Value Definition

00b SGLs are not supported.

01b
SGLs are supported. There is no alignment nor
granularity requirement for Data Blocks.

10b
SGLs are supported. There is a dword alignment
and granularity requirement for Data Blocks (refer
to section 4.1.2).

11b Reserved

543:540 O O R

Maximum Number of Allowed Namespaces (MNAN): This field
indicates the maximum number of namespaces supported by the NVM
subsystem. If this field is cleared to 0h, then the maximum number of
namespaces supported by the NVM subsystem is less than or equal to
the value in the NN field. If the controller supports Asymmetric Namespace
Access Reporting, then this field shall be set to a non-zero value that is
less than or equal to the NN value.

NVM Express® Base Specification, Revision 2.0e

286

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

559:544 O R R

Maximum Domain Namespace Attachments (MAXDNA): Indicates the
maximum of the sum of the number of namespaces attached to each I/O
controller in the Domain. If this field is cleared to 0h, then no maximum is
specified.

The value of this field shall be the same value for all I/O controllers in the
Domain.

563:560 O R R

Maximum I/O Controller Namespace Attachments (MAXCNA):
Indicates the maximum number of namespaces that are allowed to be
attached to this I/O controller. If this field is cleared to 0h, then no
maximum is specified.

The value of this field shall be less than or equal to the number of
namespaces supported by the NVM subsystem (refer to the MNAN field).

767:564 Reserved

1023:768 M M R

NVM Subsystem NVMe Qualified Name (SUBNQN): This field specifies
the NVM Subsystem NVMe Qualified Name as a UTF-8 null-terminated
string. Refer to section 4.5 for the definition of NVMe Qualified Name.

Support for this field is mandatory if the controller supports revision 1.2.1
or later as indicated in the Version property (refer to section 3.1.4.2).

1791:1024 Reserved

Fabric Specific

1795:1792 M
2

 R R
I/O Queue Command Capsule Supported Size (IOCCSZ): This field
defines the maximum I/O command capsule size in 16 byte units. The
minimum value that shall be indicated is 4 corresponding to 64 bytes.

1799:1796 M
2

 R R
I/O Queue Response Capsule Supported Size (IORCSZ): This field
defines the maximum I/O response capsule size in 16 byte units. The
minimum value that shall be indicated is 1 corresponding to 16 bytes.

1801:1800 M
2

 R R

In Capsule Data Offset (ICDOFF): This field defines the offset where
data starts within a capsule. This value is applicable to I/O Queues only
(the Admin Queue shall use a value of 0h).

The value is specified in 16 byte units. The offset is from the end of the
submission queue entry within the command capsule (starting at 64 bytes
in the command capsule). The minimum value is 0 and the maximum
value is FFFFh.

1802 M
2

 M
2

 R

Fabrics Controller Attributes (FCATT): This field indicates attributes of
the controller that are specific to NVMe over Fabrics.

Bits 7:1 are reserved.

Bit 0 if cleared to ‘0’, then the NVM subsystem uses a dynamic controller
model. Bit 0 if set to ‘1’, then the NVM subsystem uses a static controller
model.

1803 M
2

 M
2

 R

Maximum SGL Data Block Descriptors (MSDBD): This field indicates
the maximum number of SGL Data Block or Keyed SGL Data Block
descriptors that a host is allowed to place in a capsule. A value of 0h
indicates no limit.

1805:1804 M
2

 M
2

 R

Optional Fabrics Commands Support (OFCS): Indicate whether the
controller supports optional Fabrics commands.

Bits 15:1 are reserved.

Bit 0 if cleared to ‘0’ then the controller does not support the Disconnect
command. Bit 0 if set to ‘1’ then the controller supports the Disconnect
command and deletion of individual I/O Queues.

2047:1806 Reserved

NVM Express® Base Specification, Revision 2.0e

287

Figure 280: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1

 Disc
1
 Description

Power State Descriptors

2079:2048 M M R
Power State 0 Descriptor (PSD0): This field indicates the characteristics
of power state 0. The format of this field is defined in Figure 281.

2111:2080 O O R
Power State 1 Descriptor (PSD1): This field indicates the characteristics
of power state 1. The format of this field is defined in Figure 281.

2143:2112 O O R
Power State 2 Descriptor (PSD2): This field indicates the characteristics
of power state 2. The format of this field is defined in Figure 281.

…

3071:3040 O O R
Power State 31 Descriptor (PSD31): This field indicates the
characteristics of power state 31. The format of this field is defined in
Figure 281.

Vendor Specific

4095:3072 O O O Vendor Specific.

Notes:
1. O/M/R definition: O = Optional, M = Mandatory, R = Reserved.
2. Mandatory for message-based controllers. For memory-based controllers this field is reserved.
3. Mandatory for Discovery controllers that support explicit persistent connections. For Discovery controllers that

do not support explicit persistent connections this field is reserved.
4. For Discovery controllers, the TBKAS bit is optional, and all other bits are reserved.

Figure 281 defines the power state descriptor that describes the attributes of each power state. For more
information on how the power state descriptor fields are used, refer to section 8.15 on power management.

Figure 281: Identify – Power State Descriptor Data Structure

Bits Description

255:184 Reserved

183:182

Active Power Scale (APS): This field indicates the scale for the Active Power field. If an Active
Power Workload is reported for a power state, then the Active Power Scale shall also be reported
for that power state.

Value Definition

00b Not reported for this power state

01b 0.0001 W

10b 0.01 W

11b Reserved

181:179 Reserved

178:176
Active Power Workload (APW): This field indicates the workload used to calculate maximum
power for this power state. Refer to section 8.15.3 for more details on each of the defined
workloads. This field shall not be “No Workload” unless ACTP is 0h.

175:160

Active Power (ACTP): This field indicates the largest average power consumed by the NVM
subsystem over a 10 second period in this power state with the workload indicated in the Active
Power Workload field. The power in Watts is equal to the value in this field multiplied by the scale
indicated in the Active Power Scale field. A value of 0h indicates Active Power is not reported.

159:152 Reserved

151:150

Idle Power Scale (IPS): This field indicates the scale for the Idle Power field.

Value Definition

00b Not reported for this power state

01b 0.0001 W

10b 0.01 W

11b Reserved

149:144 Reserved

NVM Express® Base Specification, Revision 2.0e

288

Figure 281: Identify – Power State Descriptor Data Structure

Bits Description

143:128

Idle Power (IDLP): This field indicates the typical power consumed by the NVM subsystem over
30 seconds in this power state when idle (e.g., there are no pending commands, property
accesses, background processes, sanitize operation, nor device self-test operations). The
measurement starts after the NVM subsystem has been idle for 10 seconds. The power in Watts
is equal to the value in this field multiplied by the scale indicated in the Idle Power Scale field. A
value of 0h indicates Idle Power is not reported. Refer to section 8.15.
Note: This value may be used by hosts to manage power versus resume latency. Platform and
form factor specifications may have additional power measurement and reporting requirements
that are outside the scope of this specification.

127:125 Reserved

124:120

Relative Write Latency (RWL): This field indicates the relative write latency associated with this
power state. The value in this field shall be less than the number of supported power states (e.g.,
if the controller supports 16 power states, then valid values are 0 through 15). A lower value
means lower write latency.

119:117 Reserved

116:112

Relative Write Throughput (RWT): This field indicates the relative write throughput associated
with this power state. The value in this field shall be less than the number of supported power
states (e.g., if the controller supports 16 power states, then valid values are 0 through 15). A
lower value means higher write throughput.

111:109 Reserved

108:104

Relative Read Latency (RRL): This field indicates the relative read latency associated with this
power state. The value in this field shall be less than the number of supported power states (e.g.,
if the controller supports 16 power states, then valid values are 0 through 15). A lower value
means lower read latency.

103:101 Reserved

100:96

Relative Read Throughput (RRT): This field indicates the relative read throughput associated
with this power state. The value in this field shall be less than the number of supported power
states (e.g., if the controller supports 16 power states, then valid values are 0 through 15). A
lower value means higher read throughput.

95:64
Exit Latency (EXLAT): This field indicates the maximum exit latency in microseconds associated
with exiting this power state. A value of 0h indicates Exit Latency is not reported.

63:32
Entry Latency (ENLAT): This field indicates the maximum entry latency in microseconds
associated with entering this power state. A value of 0h indicates Entry Latency is not reported.

31:26 Reserved

25

Non-Operational State (NOPS): This bit indicates whether the controller processes I/O
commands in this power state. If this bit is cleared to ‘0’, then the controller processes I/O
commands in this power state. If this bit is set to ‘1’, then the controller does not process I/O
commands in this power state. Refer to section 8.15.1.

24
Max Power Scale (MXPS): This bit indicates the scale for the Maximum Power field. If this bit is
cleared to ‘0’, then the scale of the Maximum Power field is in 0.01 Watts. If this bit is set to ‘1’,
then the scale of the Maximum Power field is in 0.0001 Watts.

23:16 Reserved

15:00

Maximum Power (MP): This field indicates the sustained maximum power consumed by the
NVM subsystem in this power state. The power in Watts is equal to the value in this field multiplied
by the scale specified in the Max Power Scale bit. A value of 0h indicates Maximum Power is not
reported. Refer to section 8.15.

Note: This value is intended to provide an approximate guideline for hosts to manage power
versus performance. Platform and form factor specifications may have additional power
measurement and reporting requirements that are outside the scope of this specification.

5.17.2.2 Active Namespace ID list (CNS 02h)

A list of 1,024 namespace IDs is returned to the host containing active NSIDs in increasing order that are
greater than the value specified in the Namespace Identifier (NSID) field of the command. The controller
should abort the command with a status code of Invalid Namespace or Format if the NSID field is set to
FFFFFFFEh or FFFFFFFFh. The NSID field may be cleared to 0h to retrieve a Namespace List including

NVM Express® Base Specification, Revision 2.0e

289

the namespace starting with NSID of 1h. The data structure returned is a Namespace List (refer to section
4.4.2).

5.17.2.3 Namespace Identification Descriptor list (CNS 03h)

A list of Namespace Identification Descriptor structures (refer to Figure 282) is returned to the host for the
specified namespace if the value in the Namespace Identifier (NSID) field is an active NSID. The controller
should abort the command with a status code of Invalid Namespace or Format if the NSID field is set to
FFFFFFFEh or is set to FFFFFFFFh. Namespace Identification Descriptor structures consist of one or more
Namespace Identifiers (NID) of various types as indicated by the Namespace Identifier Type (NIDT) field
in each descriptor. Each NID is assigned to a namespace at namespace creation and remains fixed
throughout the life of that namespace. If the NSID field does not specify an active NSID, then refer to section
3.2.1.5 for the status code to return.

The contents of the Namespace Identification Descriptor list is preserved across namespace and controller
operations (e.g., Controller Level Reset, namespace format, etc.).

The controller may return any number of variable length Namespace Identification Descriptor structures
that fit into the 4,096 byte Identify payload. All remaining bytes after the Namespace Identification Descriptor
structures should be cleared to 0h, and the host shall interpret a Namespace Identifier Descriptor Length
(NIDL) value of 0h as the end of the list. The host should ignore any Namespace Identification Descriptor
with a Namespace Identifier Type not supported by the host.

A controller shall not return multiple Namespace Identification Descriptors with the same Namespace
Identifier Type (NIDT). A controller shall return:

• at least one Namespace Identification Descriptor identifying the namespace (i.e., NIDT field set to
1h, 2h, or 3h); and

• a Namespace Identifcation Descriptor identifying the I/O Command Set (i.e., NIDT field set to 4h)
if CAP.CSS bit 6 is set to ‘1’.

Figure 282: Identify – Namespace Identification Descriptor

Bytes Description

00

Namespace Identifier Type (NIDT): This field indicates the data type contained in the Namespace
Identifier field and the length of that type as defined in the following table.

Value Length
(NIDL)

Definition

0h Reserved

1h 8h

IEEE Extended Unique Identifier: The NID field contains a copy of
the EUI64 field in the Identify Namespace data structure (refer to the
applicable I/O Command Set specification). If the EUI64 field of the
Identify Namespace data structure is not supported, (i.e., EUI64 field is
cleared to 0h), the controller shall not report a Namespace Identification
Descriptor with a value of type 1h.

2h 10h

Namespace Globally Unique Identifier: The NID field contains a copy
of the NGUID field in the Identify Namespace data structure (refer to
the applicable I/O Command Set specification). If the NGUID field of
the Identify Namespace data structure is not supported (i.e., the NGUID
field is cleared to 0h), the controller shall not report a Namespace
Identification Descriptor with a value of type 2h.

3h 10h

Namespace UUID: The NID field contains a 128-bit Universally Unique
Identifier (UUID) as specified in RFC 4122. Refer to section 4.3.6.
If the namespace does not support an IEEE Extended Unique Identifier
(i.e., EUI64 field is cleared to 0h) and does not support a Namespace
Globally Unique Identifier (i.e., the NGUID field is cleared to 0h), then
the namespace shall report a Namespace Identification Descriptor with
a value of type 3h.

NVM Express® Base Specification, Revision 2.0e

290

Figure 282: Identify – Namespace Identification Descriptor

Bytes Description

4h 1h
Command Set Identifier (CSI): The NID field contains the Command
Set Identifier that indicates the I/O Command Set that is associated
with this namespace. Refer to Figure 279.

5h to FFh Reserved

01

Namespace Identifier Length (NIDL): This field contains the length in bytes of the Namespace
Identifier (NID) field. The total length of the Namespace Identification Descriptor in bytes is the
value in this field plus four. If this field is cleared to 0h it indicates the end of the Namespace
Identifier Descriptor list.

02:03 Reserved

(NIDL + 3):04
Namespace Identifier (NID): For an NIDT field value of 1h, 2h, and 3h, this field contains a value
that is globally unique. The type of the value is specified by the Namespace Identifier Type (NIDT)
field, and the size is specified by the Namespace Identifier Length (NIDL) field.

5.17.2.4 NVM Set List (CNS 04h)

Figure 283 defines an NVM Set List. The data structure is an ordered list of NVM Set Attribute Entry data
structures, sorted by NVM Set Identifier, starting with the first NVM Set Identifier supported by the NVM
subsystem that is equal to or greater than the NVM Set Identifier indicated in CDW11.NVMSETID and are
accessible by the controller processing the command. The NVM Set List describes the attributes for each
NVM Set in the list based on the NVM Set Attributes Entry in Figure 283.

The NVM Set List shall not contain an entry cleared to 0h.

Figure 283: NVM Set List

Bytes Description

00
Number of Identifiers: This field indicates the number of NVM Set Attributes Entries in
the list. There are up to 31 entries in the list. A value of 0h indicates that there are no entries
in the list.

127:01 Reserved

255:128 Entry 0: This field contains the first NVM Set Attributes Entry in the list, if present.

383:256 Entry 1: This field contains the second NVM Set Attributes Entry in the list, if present.

… …

(N*128+255):
(N*128+128)

Entry N: This field contains the N+1 NVM Set Attributes Entry in the list, if present.

Figure 284: NVM Set Attributes Entry

Bytes Description

01:00
NVM Set Identifier: This field indicates the identifier of the NVM Set in the NVM subsystem
that is described by this entry.

03:02
Endurance Group Identifier: This field indicates the Endurance Group for this NVM Set.
Refer to section 3.2.3.

07:04 Reserved

11:08
Random 4 KiB Read Typical: This field indicates the typical time to complete a 4 KiB
random read in 100 nanosecond units when the NVM Set is in a Predictable Latency Mode
Deterministic Window and there is 1 outstanding command per NVM Set.

15:12

Optimal Write Size: This field indicates the size in bytes for optimal write performance. A
value of 0h indicates that no Optimal Write Size is specified. This field should be cleared
to 0h when namespaces within an NVM Set have different User Data Formats that do not
allow an Optimal Write Size to be specified.

31:16
Total NVM Set Capacity: This field indicates the total NVM capacity in this NVM Set. The
value is in bytes.

47:32
Unallocated NVM Set Capacity: This field indicates the unallocated NVM capacity in this
NVM Set. The value is in bytes.

127:48 Reserved

NVM Express® Base Specification, Revision 2.0e

291

5.17.2.5 I/O Command Set specific Identify Namespace data structure (CNS 05h)

An I/O Command Set specific Identify Namespace data structure (refer to the applicable I/O Command Set
specification) is returned to the host for the specified namespace if the value in the Namespace Identifier
(NSID) field is an active NSID. If the value in the NSID field specifies an inactive NSID, then the controller
returns a zero filled data structure.

The specific Identify Namespace data structure that is returned by this command is specified by the
Command Set Identifier (CSI) field (refer to Figure 279). If the I/O Command Set associated with the
specified namespace does not support the Identify Namespace data structure specified by the CSI field,
the controller shall abort the command with a status code of Invalid Field in Command.

If the controller supports the Namespace Management capability (refer to section 8.11), the I/O Command
Set requested in the CSI field is enabled (refer to CC.CSS in Figure 48), and the NSID field is set to
FFFFFFFFh, then the controller returns an I/O Command Set specific Identify Namespaces data structure
that specifies capabilities that are common across namespaces for the I/O Command Set specified in the
CSI field (refer to Figure 279).

If the controller does not support the Namespace Management capability and the NSID field is set to
FFFFFFFFh, then the controller shall abort the command with a status code of Invalid Namespace or
Format.

5.17.2.6 I/O Command Set specific Identify Controller data structure (CNS 06h)

An I/O Command Set specific Identify Controller data structure is returned to the host for the controller
processing the command. The specific Identify Controller data structure that is returned by this command
is specified by the Command Set Identifier (CSI) field (refer to Figure 279). Data structures for specific I/O
Command Sets are optionally defined by the I/O Command Set specifications. If the I/O Command Set
specified by the CSI field does not have an Identify Controller data structure, then the controller shall return
a zero filled data structure. If the host requests a data structure for an I/O Command Set that the controller
does not support, the controller shall abort the command with a status code of Invalid Field in Command.

5.17.2.7 I/O Command Set specific Active Namespace ID list (CNS 07h)

A list of 1,024 namespace IDs is returned to the host containing active NSIDs in increasing order that are
greater than the value specified in the Namespace Identifier (NSID) field of the command as specified by
the Command Set Identifier (CSI) field of the command. Only namespaces associated with the I/O
Command Set specified by the CSI value are returned. For CSI values that are not supported or not enabled
the command is aborted with a status code of Invalid Field in Command.

The controller should abort the command with a status code of Invalid Namespace or Format if the NSID
field is set to FFFFFFFEh or FFFFFFFFh. The NSID field may be cleared to 0h to retrieve a Namespace
List including the namespace starting with NSID of 1h. The data structure returned is a Namespace List
(refer to section 4.4.2).

5.17.2.8 I/O Command Set Independent Identify Namespace data structure (CNS 08h)

If the Namespace Identifier (NSID) field specifies an active NSID, then the I/O Command Set Independent
Identify Namespace data structure (refer to Figure 285) is returned to the host for that specified namespace.
If the value in the NSID field specifies an inactive NSID, then the controller returns a zero filled data
structure.

If the controller supports the Namespace Management capability (refer to section 8.11) and the NSID field
is set to FFFFFFFFh, then the controller returns an I/O Command Set Independent Identify Namespace
data structure that specifies capabilities that are common for the controller. If the controller does not support
the Namespace Management capability and the NSID field is set to FFFFFFFFh, then the controller shall
abort the command with a status code of Invalid Namespace or Format.

NVM Express® Base Specification, Revision 2.0e

292

Figure 285: Identify – I/O Command Set Independent Identify Namespace Data Structure

Bytes O/M
1
 Description

00 M

Common Namespace Features (NSFEAT): This field defines features of the
namespace.

Bits 7:5 are reserved.

Bit 4 Rotational Media (RMEDIA) if set to ‘1’ indicates that the namespace stores
data on rotational media (refer to section 8.20). If cleared to ‘0’, indicates that the
namespace does not store data on rotational media.

Bit 3 (UIDREUSE) if set to ‘1’ indicates that the value in the NGUID field for this
namespace, if non-zero, is never reused by the controller and that the value in the
EUI64 field for this namespace, if non-zero, is never reused by the controller. If
cleared to ‘0’, then the NGUID value may be reused and the EUI64 value may be
reused by the controller for a new namespace created after this namespace is
deleted. This bit shall be cleared to ‘0’ if both NGUID and EUI64 fields are cleared
to 0h. Refer to section 4.5.1.

Bit 2:0 are reserved.

01 O

Namespace Multi-path I/O and Namespace Sharing Capabilities (NMIC): This
field specifies multi-path I/O and namespace sharing capabilities of the
namespace.

Bits 7:1 are reserved.

Bit 0: If set to ‘1’, then the namespace may be attached to two or more controllers
in the NVM subsystem concurrently (i.e., may be a shared namespace). If cleared
to ‘0’, then the namespace is a private namespace and is able to be attached to
only one controller at a time.

NVM Express® Base Specification, Revision 2.0e

293

Figure 285: Identify – I/O Command Set Independent Identify Namespace Data Structure

Bytes O/M
1
 Description

02 O

Reservation Capabilities (RESCAP): This field indicates the reservation
capabilities of the namespace. A value of 0h in this field indicates that reservations
are not supported by this namespace. Refer to section 8.19 for more details.

Bit 7 if set to ‘1’ indicates that Ignore Existing Key is used as defined in NVM
Express Base Specification revision 1.3 or later. Bit 7 if cleared to ‘0’ indicates that
Ignore Existing Key is used as defined in NVM Express Base Specification revision
1.2.1 or earlier. This bit shall be set to ‘1’ if the controller supports revision 1.3 or
later as indicated in the Version register.

Bit 6 if set to ‘1’ indicates that the namespace supports the Exclusive Access – All
Registrants reservation type. If this bit is cleared to ‘0’, then the namespace does
not support the Exclusive Access – All Registrants reservation type.

Bit 5 if set to ‘1’ indicates that the namespace supports the Write Exclusive – All
Registrants reservation type. If this bit is cleared to ‘0’, then the namespace does
not support the Write Exclusive – All Registrants reservation type.

Bit 4 if set to ‘1’ indicates that the namespace supports the Exclusive Access –
Registrants Only reservation type. If this bit is cleared to ‘0’, then the namespace
does not support the Exclusive Access – Registrants Only reservation type.

Bit 3 if set to ‘1’ indicates that the namespace supports the Write Exclusive –
Registrants Only reservation type. If this bit is cleared to ‘0’, then the namespace
does not support the Write Exclusive – Registrants Only reservation type.

Bit 2 if set to ‘1’ indicates that the namespace supports the Exclusive Access
reservation type. If this bit is cleared to ‘0’, then the namespace does not support
the Exclusive Access reservation type.

Bit 1 if set to ‘1’ indicates that the namespace supports the Write Exclusive
reservation type. If this bit is cleared to ‘0’, then the namespace does not support
the Write Exclusive reservation type.

Bit 0 if set to ‘1’ indicates that the namespace supports the Persist Through Power
Loss capability. If this bit is cleared to ‘0’, then the namespace does not support
the Persist Through Power Loss Capability.

03 O

Format Progress Indicator (FPI): If a format operation is in progress, this field
indicates the percentage of the namespace that remains to be formatted.

Bit 7 if set to ‘1’ indicates that the namespace supports the Format Progress
Indicator defined by bits 6:0 in this field. If this bit is cleared to ‘0’, then the
namespace does not support the Format Progress Indicator and bits 6:0 in this field
shall be cleared to 0h.

Bits 6:0 indicate the percentage of the Format NVM command that remains to be
completed (e.g., a value of 25 indicates that 75% of the Format NVM command
has been completed and 25% remains to be completed). If bit 7 is set to ‘1’, then a
value of 0h indicates that the namespace is formatted with the format specified by
Identify Namespace data structures (refer to section 1.5.30) and there is no Format
NVM command in progress.

07:04 O

ANA Group Identifier (ANAGRPID): For NSID other than FFFFFFFFh, this field
indicates the ANA Group Identifier of the ANA group (refer to section 8.1.2) of which
the namespace is a member. Each namespace that is attached to a controller that
supports Asymmetric Namespace Access Reporting (refer to the CMIC field) shall
report a valid ANAGRPID. If the controller does not support Asymmetric
Namespace Access Reporting, then this field shall be cleared to 0h.

If the value in this field changes and Asymmetric Namespace Access Change
Notices are supported and enabled, then the controller shall issue an Asymmetric
Namespace Access Change Notice.

NVM Express® Base Specification, Revision 2.0e

294

Figure 285: Identify – I/O Command Set Independent Identify Namespace Data Structure

Bytes O/M
1
 Description

08 O

Namespace Attributes (NSATTR): This field specifies attributes of the
namespace.

Bits 7:1 are reserved.

Bit 0: If set to ‘1’, then the namespace is currently write protected due to any
condition (e.g., namespace write protection set for the namespace, media errors)
and all write access to the namespace shall fail. If cleared to ‘0’, then the
namespace is not currently write protected.

09 Reserved

11:10 O
NVM Set Identifier (NVMSETID): For NSID other than FFFFFFFFh, this field
indicates the NVM Set with which this namespace is associated. If NVM Sets are
not supported by the controller, then this field shall be cleared to 0h.

13:12 O

Endurance Group Identifier (ENDGID): For NSID other than FFFFFFFFh, this
field indicates the Endurance Group with which this namespace is associated. If
Endurance Groups are not supported by the controller, then this field shall be
cleared to 0h.

14 M

Namespace Status (NSTAT): This field indicates the status of the namespace with
the specified NSID.

Bits Description

7:1 Reserved

0
Namespace Ready (NRDY): A value of ‘1’ indicates that the
namespace is ready (refer to section 3.5.3). A value of ‘0’ indicates that
the namespace is not ready.

4095:15 Reserved

Notes:
1. O/M definition: O = Optional, M = Mandatory.

5.17.2.9 Allocated Namespace ID list (CNS 10h)

A list of up to 1,024 namespace IDs is returned to the host containing allocated NSIDs in increasing order
that are greater than the value specified in the Namespace Identifier (NSID) field of the Identify command.

The controller should abort the command with a status code of Invalid Namespace or Format if the NSID
field is set to FFFFFFFEh or FFFFFFFFh. The NSID field may be cleared to 0h to retrieve a Namespace
List including the namespace starting with NSID of 1h. The data structure returned is a Namespace List
(refer to section 4.4.2).

5.17.2.10 Identify Namespace data structure for an Allocated Namespace ID (CNS 11h)

The Identify Namespace data structure (refer to the NVM Command Set Specification) is returned to the
host for the specified namespace if the value in the Namespace Identifier (NSID) field is an allocated NSID.
If the value in the NSID field specifies an unallocated NSID, then the controller returns a zero filled data
structure. If the specified namespace is not associated with an I/O Command Set that specifies logical
blocks (e.g., the NVM Command Set), then the controller shall abort the command with a status code of
Invalid I/O Command Set.

If the value in the NSID field specifies an invalid NSID, then the controller shall abort the command with a
status code of Invalid Namespace or Format. If the NSID field is set to FFFFFFFFh, then the controller
should abort the command with a status code of Invalid Namespace or Format.

5.17.2.11 Namespace Attached Controller list (CNS 12h)

A Controller List (refer to section 4.4.1) of up to 2,047 controller identifiers is returned containing a controller
identifier greater than or equal to the value specified in the Controller Identifier (CDW10.CNTID) field. The
list contains controller identifiers of controllers that have the specified namespace attached. If the

NVM Express® Base Specification, Revision 2.0e

295

Namespace Identifier (NSID) field is set to FFFFFFFFh, then the controller should abort the command with
a status code of Invalid Field in Command.

5.17.2.12 Controller list (CNS 13h)

A Controller List (refer to section 4.4.1) of up to 2,047 controller identifiers of I/O controllers is returned
containing controller identifiers greater than or equal to the value specified in the Controller Identifier
(CDW10.CNTID) field.

5.17.2.13 Primary Controller Capabilities data structure (CNS 14h)

The Primary Controller Capabilities Structure (refer to Figure 286) is returned to the host for the primary
controller specified.

Figure 286: Identify – Primary Controller Capabilities Structure

Bytes Description

01:00
Controller Identifier (CNTLID): This field indicates the Controller Identifier of the primary
controller.

03:02

Port Identifier (PORTID): This field indicates the Port Identifier of the NVM subsystem port
associated with the primary controller. The Port Identifier for a PCI Express Port shall be unique
within the NVM subsystem.

If the NVM subsystem supports an NVMe-MI Management Endpoint on this PCIe port, then this
field shall contain the same value as the Port Identifier field in the Controller Information Data
Structure (refer to the NVM Express Management Interface Specification) for this primary
controller.

04

Controller Resource Types (CRT): This field indicates the controller resources types
supported. If a primary controller supports a controller resource type, then all associated
secondary controllers shall support that controller resource type.

Bits 7:2 are reserved.

Bit 1 if set to ‘1’, then VI Resources are supported. Bit 1 if cleared to ‘0’, then VI Resources are
not supported. Refer to section 8.26.2.

Bit 0 if set to ‘1’, then VQ Resources are supported. Bit 0 if cleared to ‘0’, then VQ Resources
are not supported. Refer to section 8.26.1.

31:05 Reserved

35:32
VQ Resources Flexible Total (VQFRT): This field indicates the total number of VQ Flexible
Resources for the primary and its secondary controllers.

39:36
VQ Resources Flexible Assigned (VQRFA): This field indicates the total number of VQ
Flexible Resources Assigned to the associated secondary controllers.

41:40

VQ Resources Flexible Allocated to Primary (VQRFAP): This field indicates the total number
of VQ Flexible Resources currently allocated to the primary controller. This value may change
after a Controller Level Reset other than a Controller Reset if a new value was set using the
Virtualization Management command. The default value of this field is implementation specific.

43:42
VQ Resources Private Total (VQPRT): This field indicates the total number of VQ Private
Resources for the primary controller.

45:44
VQ Resources Flexible Secondary Maximum (VQFRSM): This field indicates the maximum
number of VQ Flexible Resources that may be assigned to a secondary controller.

47:46
VQ Flexible Resource Preferred Granularity (VQGRAN): This field indicates the preferred
granularity of assigning and removing VQ Flexible Resources. Assigning and removing VQ
Resources in this granularity minimizes any wasted internal implementation resources.

63:48 Reserved

67:64
VI Resources Flexible Total (VIFRT): This field indicates the total number of VI Flexible
Resources for the primary and its secondary controllers.

71:68
VI Resources Flexible Assigned (VIRFA): This field indicates the total number of VI Flexible
Resources Assigned to the associated secondary controllers.

73:72

VI Resources Flexible Allocated to Primary (VIRFAP): This field indicates the total number
of VI Flexible Resources currently allocated to the primary controller. This value may change
after a Controller Level Reset other than a Controller Reset if a new value was set using the
Virtualization Management command. The default value of this field is implementation specific.

NVM Express® Base Specification, Revision 2.0e

296

Figure 286: Identify – Primary Controller Capabilities Structure

Bytes Description

75:74
VI Resources Private Total (VIPRT): This field indicates the total number of VI Private
Resources for the primary controller.

77:76
VI Resources Flexible Secondary Maximum (VIFRSM): This field indicates the maximum
number of VI Flexible Resources that may be assigned to a secondary controller.

79:78
VI Flexible Resource Preferred Granularity (VIGRAN): This field indicates the preferred
granularity of assigning and removing VI Flexible Resources. Assigning and removing VI
Resources in this granularity minimizes any wasted internal implementation resources.

4095:80 Reserved

5.17.2.14 Secondary Controller list (CNS 15h)

A Secondary Controller List (refer to Figure 287) is returned to the host for up to 127 secondary controllers
associated with the primary controller processing this command. The list contains entries for controller
identifiers greater than or equal to the value specified in the Controller Identifier (CDW10.CNTID) field.

All secondary controllers are represented, including those that are in an Offline state due to SR-IOV
configuration settings (e.g., VF Enable is cleared to ‘0’ or NumVFs specifies a value that does not enable
the associated secondary controller).

Figure 287: Secondary Controller List

Bytes Description

00
Number of Identifiers: This field indicates the number of Secondary Controller Entries in
the list. There are up to 127 entries in the list. A value of 0h indicates there are no entries in
the list.

31:01 Reserved

63:32 SC Entry 0: This field contains the first Secondary Controller Entry in the list, if present.

95:64 SC Entry 1: This field contains the second Secondary Controller Entry in the list, if present.

… …

(N*32+63):
(N*32+32)

SC Entry N: This field contains the N+1 Secondary Controller Entry in the list, if present.

Figure 288: Secondary Controller Entry

Bytes Description

01:00
Secondary Controller Identifier (SCID): This field indicates the Controller Identifier of the
secondary controller described by this entry.

03:02
Primary Controller Identifier (PCID): This field indicates the Controller Identifier of the
associated primary controller.

04

Secondary Controller State (SCS): This field indicates the state of the secondary controller.
Bits 7:1 are reserved.

Bit 0 if set to ‘1’, then the controller is in the Online state. Bit 0 if cleared to ‘0’, then the controller
is in the Offline state.

07:05 Reserved

09:08

Virtual Function Number (VFN): If the secondary controller is an SR-IOV VF, this field indicates
its VF Number, where VF Number > 0, and VF Number is no larger than the total number of VFs
indicated by the TotalVFs register (refer to Single Root I/O Virtualization and Sharing
Specification) in the PF’s SR-IOV Extended Capability structure. If the secondary controller is not
an SR-IOV VF, then this field is cleared to 0h.

11:10
Number of VQ Flexible Resources Assigned (NVQ): This field indicates the number of VQ
Flexible Resources currently assigned to the indicated secondary controller.

13:12
Number of VI Flexible Resources Assigned (NVI): This field indicates the number of VI Flexible
Resources currently assigned to the indicated secondary controller.

31:14 Reserved

NVM Express® Base Specification, Revision 2.0e

297

5.17.2.15 Namespace Granularity List (CNS 16h)

If the controller supports reporting of Namespace Granularity refer to the applicable I/O Command Set
specification for details.

The controller shall abort the command with a status code of Invalid I/O Command Set if the Command Set
Identifier is not associated with an I/O Command Set that supports the Namespace Granularity List.

5.17.2.16 UUID List (CNS 17h)

The format of the UUID List is defined in Figure 289. Each UUID List entry is either 0h, the NVMe Invalid
UUID, or a valid UUID. Valid UUIDs are those which are non-zero and are not the NVMe Invalid UUID (refer
to section 8.25).

If bit 9 (UUID List) is set to ‘1’ in the Controller Attributes (CTRATT) field in the Identify Controller data
structure (refer to Figure 280), then:

• The UUID List shall contain at least one valid UUID (refer to section 8.25);

• The UUID 1 field shall contain a non-zero value; and

• A UUID field cleared to 0h indicates the end of the UUID List.

The list may be in any order.

Figure 289: UUID List

Bytes Description

31:00 Reserved

63:32 UUID 1: This field contains the first UUID List Entry in the list.

95:64
UUID 2: This field contains the second UUID List Entry in the list, if present, otherwise cleared
to 0h.

… …

4063:4032
UUID 126: This field contains the last non-zero UUID List Entry in the list, if present, otherwise
cleared to 0h.

4095:4064 UUID 127: This field shall be cleared to 0h.

The format of a UUID List Entry is defined in Figure 290.

Figure 290: UUID List Entry

Bytes Description

00

UUID Lists Entry Header:

Bits Description

7:2 Reserved

1:0

Identifier Association: This field indicates whether the UUID is associated with a vendor.

Value Description

00b No association reported.

01b
The UUID is associated with the vendor reported in the PCI Vendor ID
field of the Identify Controller data structure (refer to Figure 280).

10b
The UUID is associated with the vendor reported in the PCI Subsystem
Vendor ID field of the Identify Controller data structure.

11b Reserved

15:01 Reserved

31:16
UUID: This field contains a 128-bit Universally Unique Identifier (UUID) as specified in RFC 4122.
Refer to section 4.3.6.

NVM Express® Base Specification, Revision 2.0e

298

5.17.2.17 Domain List (CNS 18h)

Figure 291 defines a Domain List. The data structure is an ordered list by Domain Identifier, starting with
the first Domain Identifier that is equal to or greater than the Domain Identifier specified in CDW11.DOMID
and is accessible by the controller processing the command. The Domain List describes the attributes for
each Domain in the list based on the Domain Attributes Entry in Figure 292.

Figure 291: Domain List

Bytes Description

00
Number of Identifiers: This field indicates the number of Domain Attributes Entries in the
list. There are up to 31 entries in the list. A value of 0h indicates that there are no entries
in the list.

127:01 Reserved

255:128 Entry 0: This field contains the first Domain Attributes Entry in the list, if present.

383:256 Entry 1: This field contains the second Domain Attributes Entry in the list, if present.

… …

(N*128+255):
(N*128+128)

Entry N: This field contains the N+1 Domain Attributes Entry in the list, if present.

Figure 292: Domain Attributes Entry

Bytes Description

01:00
Domain Identifier: This field indicates the identifier of the Domain accessible by the
controller that is described by this entry.

15:02 Reserved

31:16
Total Domain Capacity: This field indicates the total NVM capacity in this Domain. The
value is in bytes.

47:32
Unallocated Domain Capacity: This field indicates the unallocated NVM capacity in this
Domain. The value is in bytes.

63:48
Max Endurance Group Domain Capacity: This field indicates the maximum capacity of
a single Endurance Group in this Domain. If this field is cleared to 0h, the NVM subsystem
does not report a maximum Endurance Group Domain Capacity value.

127:64 Reserved

5.17.2.18 Endurance Group List (19h)

An Endurance Group List (refer to Figure 293) of up to 2,047 Endurance Group Identifiers in increasing
order is returned containing an Endurance Group Identifier greater than or equal to the value specified in
the Endurance Group Identifier (CDW11.ENDGID) field. The list contains Endurance Group Identifiers of
Endurance Groups that are accessible by the controller processing the command. If the value specified in
the Endurance Group Identifier is greater than ENDGIDMAX, then the controller shall complete the
command with a status code of Successful Completion and return an Endurance Group List containing no
Endurance Group Identifiers.

Figure 293: Endurance Group List

Bytes Description

01:00
Number of Identifiers (N): This field contains the number of Endurance Group Identifiers in the list.
There may be up to 2,047 identifiers in the list. If this field is cleared to 0h, then no Endurance Group
Identifiers are in the list.

03:02 Identifier 0: This field contains the first Endurance Group Identifier in the list, if any.

05:04 Identifier 1: This field contains the second Endurance Group Identifier in the list, if any.

… …

(N*2+1):(N*2) Identifier N-1: This field contains the last Endurance Group Identifier in the list.

NVM Express® Base Specification, Revision 2.0e

299

5.17.2.19 I/O Command Set specific Allocated Namespace ID list (CNS 1Ah)

A list of up to 1,024 namespace IDs is returned to the host containing allocated NSIDs in increasing order
that are greater than the value specified in the Namespace Identifier (NSID) field of the Identify command
and as specified by the Command Set Identifier (CSI) field of the command. Only NSIDs for namespaces
associated with the I/O Command Set specified in CSI are returned. For CSI values not supported by the
controller the command is aborted with a status code of Invalid Field in Command.

The controller should abort the command with a status code of Invalid Namespace or Format if the NSID
field is set to FFFFFFFEh or FFFFFFFFh. The NSID field may be cleared to 0h to retrieve a Namespace
List including the namespace starting with NSID of 1h. The data structure returned is a Namespace List
(refer to section 4.4.2).

5.17.2.20 I/O Command Set specific Identify Namespace data structure for an Allocated Namespace
ID (CNS 1Bh)

An I/O Command Set specific Identify Namespace data structure (refer to section 5.17.2.5) is returned to
the host for the specified namespace if the value in the Namespace Identifier (NSID) field is an allocated
NSID. If the value in the NSID field is an unallocated NSID, then the controller returns a zero filled data
structure.

The specific Identify Namespace data structure that is returned by this command is specified by the
Command Set Identifier (CSI) field in the command (refer to Figure 279). If the I/O Command Set associated
with the specified namespace does not support the specific Identify Namespace data structure specified by
the CSI field, the controller shall abort the command with a status code of Invalid Field in Command.

If the value in the NSID field is an invalid NSID, then the controller shall abort the command with a status
code of Invalid Namespace or Format. If the NSID field is set to FFFFFFFFh, then the controller should
abort the command with a status code of Invalid Namespace or Format.

5.17.2.21 Identify I/O Command Set data structure (CNS 1Ch)

The Identify I/O Command Set data structure (refer to Figure 294) is returned to the host for the controller
specified in the Controller ID (CNTID) field of the command if the CNTID field does not have a value of
FFFFh. If the CNTID field has a value of FFFFh, then the Identify I/O Command Set data structure is
returned to the host for the controller processing the command.

This CNS value shall be implemented if CAP.CSS bit 6 is set to ‘1’.

The Identify I/O Command Set data structure consists of an array of I/O Command Set Vectors (refer to
Figure 295) that describe the I/O Command Sets that the controller supports and the combination of
supported I/O Command Sets that may be simultaneously used. The I/O Command Set Profile Feature
value indicates the index of the I/O Command Set Combination that is currently selected (refer to section
5.27.1.21). I/O Command Set Combination 0 has an index value of 0h, I/O Command Set Combination 1
has an index value of 1h, and so on. Only I/O Command Sets that have a bit set to ‘1’ in the I/O Command
Set Vector of the I/O Command Set Combination selected by the I/O Command Set Profile Feature value
may be used. All other I/O Command Sets are treated as unsupported I/O Command Sets.

Figure 294: Identify I/O Command Set Data Structure

Bytes Description

7:0
I/O Command Set Combination 0: This field contains an I/O Command Set Vector indicating
the first I/O Command Set or combination of I/O Command Sets that are simultaneously
supported. If only one I/O Command Set is supported, then this field has only one bit set.

15:8

I/O Command Set Combination 1: This field contains an I/O Command Set Vector indicating
the second I/O Command Set or combination of I/O Command Sets that are simultaneously
supported if a second I/O Command Set combination is supported; otherwise, this field is
cleared to 0h.

If this field is cleared to 0h, then no further I/O Command Set combinations are supported
and subsequent I/O Command Set Combinations shall have a value of 0h.

NVM Express® Base Specification, Revision 2.0e

300

Figure 294: Identify I/O Command Set Data Structure

Bytes Description

23:16

I/O Command Set Combination 2: This field contains an I/O Command Set Vector indicating
the third I/O Command Set or combination of I/O Command Sets that are simultaneously
supported if a third I/O Command Set combination is supported; otherwise, this field is cleared
to 0h.

If this field is cleared to 0h, then no further I/O Command Set combinations are supported
and subsequent I/O Command Set Combinations shall have a value of 0h.

… …

4095:4088

I/O Command Set Combination 511: This field contains an I/O Command Set Vector
indicating the 511th I/O Command Set or combination of I/O Command Sets that are
simultaneously supported if a 511th I/O Command Set combination is supported; otherwise,
this field is cleared to 0h.

Figure 295: I/O Command Set Vector

Bits Description

63:3 Reserved

2
Zoned Namespace Command Set: This bit is set to ‘1’ if the Zoned Namespace Command Set is
selected. This bit is cleared to ‘0’ if the Zoned Namespace Command Set is not selected.

1
Key Value Command Set: This bit is set to ‘1’ if the Key Value Command Set is selected. This bit
is cleared to ‘0’ if the Key Value Command Set is not selected.

0
NVM Command Set: This bit is set to ‘1’ if the NVM Command Set is selected. This bit is cleared
to ‘0’ if the NVM Command Set is not selected.

 Command Completion

Upon completion of the Identify command, the controller posts a completion queue entry to the Admin
Completion Queue.

5.18 Keep Alive command

The Keep Alive command and the Keep Alive Timer feature (refer to section 5.27.1.12) are used by the
Keep Alive capability (refer to section 3.9). The controller should process the Keep Alive command as soon
as the command is fetched. If the Keep Alive Timer is active (refer to section 3.9.2), then upon processing
a Keep Alive command, the controller restarts the Keep Alive Timer.

All command specific fields are reserved.

 Command Completion

Upon completion of the Keep Alive command, the controller shall post a completion queue entry to the
Admin Completion Queue indicating the status for the command.

5.19 Lockdown command

The Lockdown command is used to control the Command and Feature Lockdown capability (refer to section
8.4) which configures the prohibition or allowance of execution of the specified command or Set Features
command targeting a specific Feature Identifier.

After a successful completion of a Lockdown command prohibiting a command or Feature Identifier, all
controllers, if applicable, and all management endpoints, if applicable, in the NVM subsystem behave as
described in 8.4.

The Lockdown command uses Command Dword 10 (refer to Figure 296) and Command Dword 14 (refer
to Figure 297). All other command specific fields are reserved.

NVM Express® Base Specification, Revision 2.0e

301

Figure 296: Lockdown – Command Dword 10

Bits Description

31:16 Reserved

15:08
Opcode or Feature Identifier (OFI): This field specifies the command opcode or Set Features
Feature Identifier identified by the Scope field.

07 Reserved

06:05

Interface (IFC): This field identifies the interfaces affected by this command. The actions of this
command apply if a command is received on the specified interfaces.

Value Affected Interfaces

00b Admin Submission Queue

01b
Admin Submission Queue and out-of-band on a
Management Endpoint

10b Out-of-band on a Management Endpoint

11b Reserved

04

Prohibit (PRHBT): This bit specifies whether to prohibit or allow the command opcode or Set
Features Feature Identifier specified by this command. If set to ‘1’, then this command prohibits
the execution of the command based on other fields specified in Dword 10. If cleared to ‘0’, then
this command allows the execution of the command based on other fields specified in Dword 10.

03:00

Scope (SCP): This field specifies the contents of the Opcode or Feature Identifier field.

Value Opcode or Feature Identifier Definition

0h Admin command opcode

1h Reserved

2h A Set Features Feature Identifier

3h
Management Interface Command Set opcode (refer to the
NVM Express Management Interface Specification)

4h
PCIe Command Set opcode (refer to the NVM Express
Management Interface Specification)

5h-Fh Reserved

If the controller supports selection of a UUID:

a) by the Lockdown command; and
b) by the Set Features command (refer to Figure 321 and section 8.24) and for the vendor specific

Feature Identifier specified by the Opcode or Feature Identifier field, if the Scope field is set to 2h,

then Command Dword 14 (refer to Figure 297) is used to specify a UUID Index value.

If the controller does not support selection of a UUID:

a) by the Lockdown command;
b) by the Set Features command; or
c) for the vendor specific feature identifier specified by the Opcode or Feature Identifier field, if the

Scope field is set to 2h,

then Command Dword 14 does not specify a UUID Index value. If the Scope field is not set to 2h, then
UUID Index field is ignored.

Figure 297: Lockdown – Command Dword 14

Bits Description

31:07 Reserved

06:00 UUID Index: Refer to Figure 483.

If a controller processes this command specifying a command opcode or Feature Identifier that is not
supported as being prohibitable, then the command shall be aborted with a status code of Prohibition of
Command Execution Not Supported.

NVM Express® Base Specification, Revision 2.0e

302

If a controller processes this command with the Interface field set to 01b or 10b and the NVM subsystem
does not contain a Management Endpoint, then the command shall be aborted with a status code of Invalid
Field in Command.

If a controller processes this command with the Interface field set to 00b or 01b and the Scope field is set
to 4h, then the command shall be aborted with a status code of Invalid Field in Command.

It is not an error to attempt to prohibit a command or Feature Identifier that is already prohibited from
execution or allow a command or Feature Identifier that is already allowed to be executed.

 Command Completion

Upon completion of the Lockdown command, the controller posts a completion queue entry to the Admin
Completion Queue.

Lockdown command specific status values are defined in Figure 298.

Figure 298: Lockdown – Command Specific Status Values

Value Description

28h
Prohibition of Command Execution Not Supported: The command was aborted due to the specified
opcode or Feature Identifier not supporting being prohibited from execution by the command.

5.20 NVMe-MI Receive command

Refer to the NVM Express Management Interface Specification for details on the NVMe-MI Receive
command.

5.21 NVMe-MI Send command

Refer to the NVM Express Management Interface Specification for details on the NVMe-MI Send command.

5.22 Namespace Attachment command

The Namespace Attachment command is used to attach and detach controllers from a namespace. The
attach and detach operations are persistent across all reset events. Namespace attach and detach
operations are persistent across Virtualization Management commands that set a secondary controller
offline.

If the Namespace Attachment command is supported, then the Namespace Management command (refer
to section 5.23) shall also be supported.

The Namespace Attachment command uses the Data Pointer and Command Dword 10 fields. All other
command specific fields are reserved.

The Select field determines the data structure used as part of the command. The data structure is 4,096
bytes in size. The data structure used for Controller Attach and Controller Detach is a Controller List (refer
to section 4.4). The controllers that are to be attached or detached, respectively, are described in the data
structure.

If the SEL field specifies the Controller Attach value, then

• If the Maximum Domain Namespace Attachments (MAXDNA) field in the Identify Controller data
structure (refer to Figure 280) is non-zero, then:

o For each controller specified in the controller list, if attaching the namespace to that I/O
controller causes the sum of the number of namespaces attached to each I/O controller in
the Domain to be greater than the value specified in the MAXDNA field, then the controller
shall abort the command with a status code of Namespace Attachment Limit Exceeded;

and

NVM Express® Base Specification, Revision 2.0e

303

• For each I/O controller specified in the controller list, if the Maximum I/O Controller Namespace
Attachments (MAXCNA) field in the Identify Controller data structure for that controller is non-zero,
then:

o If attaching the namespace to that I/O controller causes that I/O controller to have the
number of attached namespaces to be greater than the value specified in the MAXCNA
field, then the controller shall abort the command with a status code of Namespace
Attachment Limit Exceeded.

If an attempt is made to attach a namespace to a controller that does not support the corresponding I/O
Command Set, then the command shall be aborted with a status code of I/O Command Set Not Supported.

If an attempt is made to attach a namespace to a controller that supports the corresponding I/O Command
Set and the corresponding I/O Command Set is not enabled by the I/O Command Set profile feature, then
the command shall be aborted with a status code of I/O Command Set Not Enabled.

Figure 299: Namespace Attachment – Data Pointer

Bits Description

127:00
Data Pointer (DPTR): This field specifies the start of the data buffer. Refer to Figure 90 for the
definition of this field. If using PRPs, this field shall not be a pointer to a PRP List as the data buffer
may not cross more than one page boundary.

Figure 300: Namespace Attachment – Command Dword 10

Bits Description

31:04 Reserved

03:00

Select (SEL): This field selects the type of attachment to perform.

Value Description

0h Controller Attach

1h Controller Detach

2h to Fh Reserved

 Command Completion

When the command is completed, the controller posts a completion queue entry to the Admin Completion
Queue indicating the status for the command.

Command specific status values associated with the Namespace Attachment command are defined in
Figure 301. For failures, the byte offset of the first failing entry is reported in the Command Specific
Information field of the Error Information Log Entry. The controller does not process further entries in the
Controller List after an error is encountered.

Figure 301: Namespace Attachment – Command Specific Status Values

Value Description

18h Namespace Already Attached: The controller is already attached to the specified namespace.

19h
Namespace Is Private: The controller is not attached to the namespace. The request to attach the
controller could not be completed because the namespace is private and is already attached to one
controller.

1Ah
Namespace Not Attached: The controller is not attached to the namespace. The request to detach the
controller could not be completed.

1Ch
Controller List Invalid: The controller list provided is invalid or the controller list contains an
Administrative controller.

25h
ANA Attach Failed: The controller is not attached to the namespace as a result of an ANA condition
(e.g., attaching the controller would result in an ANA Persistent Loss state (refer to section 8.1.3.4)).

27h
Namespace Attachment Limit Exceeded: Attaching the namespace to a controller causes maximum
number of namespace attachments allowed to be exceeded.

NVM Express® Base Specification, Revision 2.0e

304

Figure 301: Namespace Attachment – Command Specific Status Values

Value Description

29h
I/O Command Set Not Supported: The request to attach the controller could not be completed due to
the I/O Command Set corresponding to the namespace is not supported by the controller.

2Ah
I/O Command Set Not Enabled: The request to attach the controller could not be completed due to the
I/O Command Set corresponding to the namespace is restricted by the I/O Command Set profile feature.

5.23 Namespace Management command

The Namespace Management command is used to manage namespaces (refer to section 8.11), including
create and delete operations.

Note: The controller continues to execute commands submitted to I/O Submission Queues while this
operation is in progress.

If the Namespace Management command is supported, then the Namespace Attachment command (refer
to section 5.22) shall also be supported.

Host software uses the Namespace Attachment command to attach or detach a namespace to or from a
controller. The create operation does not attach the namespace to a controller. As a side effect of the delete
operation, the namespace is detached from all controllers as the namespace is no longer present in the
system. It is recommended that host software detach all controllers from a namespace prior to deleting the
namespace. If the namespace is attached to another controller (i.e., a controller other than the controller
processing the operation) and that controller has Namespace Attribute Notices enabled (refer to Figure
331), when a delete operation is requested, then as part of the delete operation a Namespace Attribute
Notice is issued by that controller to indicate a namespace change.

The data structure used for the create operation is defined in Figure 305 and the CSI field specifies the I/O
Command Set specification. There is no data structure transferred for the delete operation.

The Namespace Management command uses the Data Pointer, Command Dword 10, and Command
Dword 11 fields. All other command specific fields are reserved.

The Namespace Identifier (NSID) field is used as follows for create and delete operations:

• Create: The NSID field is reserved for this operation; host software clears this field to a value of
0h. The controller shall select an available Namespace Identifier to use for the operation; or

• Delete: This field specifies the previously created namespace to delete in this operation.
Specifying a value of FFFFFFFFh is used to delete all namespaces in the NVM subsystem. If the
value of FFFFFFFFh is specified and there are zero valid namespaces, the command completes
successfully.

Figure 302: Namespace Management – Data Pointer

Bits Description

127:00
Data Pointer (DPTR): This field specifies the start of the data buffer. Refer to Figure 90 for the
definition of this field. If using PRPs, this field shall not be a pointer to a PRP List as the data buffer
may not cross more than one page boundary.

Figure 303: Namespace Management – Command Dword 10

Bits Description

31:04 Reserved

03:00

Select (SEL): This field selects the type of management operation to perform.

Value Description

0h Create

1h Delete

2h to Fh Reserved

NVM Express® Base Specification, Revision 2.0e

305

Figure 304: Namespace Management – Command Dword 11

Bits Description

31:24

Command Set Identifier (CSI): For a create operation (i.e., SEL 0h), this field specifies the I/O
Command Set for the created namespace. A CSI value of 0h creates a namespace using the NVM
Command Set. For all other operations this field is reserved.

Values for this field are defined by Figure 279.

23:0 Reserved

Figure 305: Namespace Management – Data Structure for Create

Bytes Description

511:00
Specific to the I/O Command Set (refer to the Namespace Management command section of the
applicable I/O Command Set specification)

1023:512 Reserved

4095:1024 Vendor specific

 Command Completion

When the command is completed, the controller posts a completion queue entry to the Admin Completion
Queue indicating the status for the command.

Namespace Management command specific status values (i.e., SCT field set to 1h) are shown in Figure
306.

Figure 306: Namespace Management – Command Specific Status Values

Value Description

0Ah

Invalid Format: The User Data Format specified is not supported. This may be due to various conditions,
including:

1) specifying an invalid User Data Format number;
2) enabling protection information when there are not sufficient resources (e.g. metadata per LBA);

or
3) the specified format is not available in the current configuration.

15h

Namespace Insufficient Capacity: Creating the namespace requires more unallocated capacity than is
currently available. The Command Specific Information field in the Error Information Log Entry data
structure (refer to Figure 211) specifies the total amount of unallocated NVM capacity required to create
the namespace in bytes.

16h Namespace Identifier Unavailable: The number of namespaces supported has been exceeded.

1Bh Thin Provisioning Not Supported: Thin provisioning is not supported by the controller.

24h

ANA Group Identifier Invalid: The specified ANA Group Identifier (ANAGRPID) is not supported in the
submitted command. This may be due to various conditions, including:

a) specifying an ANAGRPID that does not exist;
b) the controller does not allow an ANAGRPID to be specified (i.e., bit 7 in the ANACAP field is

cleared to ‘0’); or
c) the specified ANAGRPID is not supported by the controller processing the command (e.g., the

specified value exceeds ANAGRPMAX (refer to Figure 280)).

If the host specified a non-zero ANAGRPID, retrying the command with the ANAGRPID field cleared to
0h may succeed.

29h
I/O Command Set Not Supported: The I/O Command Set specified for a create operation is not
supported by the controller.

Dword 0 of the completion queue entry contains the Namespace Identifier created. The definition of Dword
0 of the completion queue entry is in Figure 307.

NVM Express® Base Specification, Revision 2.0e

306

Figure 307: Namespace Management – Completion Queue Entry Dword 0

Bits Description

31:00
Namespace Identifier (NSID): This field specifies the namespace identifier created in a Create
operation. This field is reserved for all other operations.

5.24 Sanitize command

The Sanitize command is used to start a sanitize operation or to recover from a previously failed sanitize
operation. The sanitize operation types that may be supported are Block Erase, Crypto Erase, and
Overwrite. All sanitize operations are processed in the background (i.e., completion of the Sanitize
command does not indicate completion of the sanitize operation). Refer to section 8.21 for details on the
sanitize operation.

If the NVM subsystem supports multiple domains and the Sanitize command is not able to start a sanitize
operation as a result of the NVM subsystem being divided (refer to section 3.2.4), then the Sanitize
command shall be aborted with a status code of Asymmetric Access Inaccessible or Asymmetric Access
Persistent Loss.

When a sanitize operation starts on any controller, all controllers in the NVM subsystem:

• Shall clear any outstanding Sanitize Operation Completed asynchronous event or Sanitize
Operation Completed With Unexpected Deallocation asynchronous event;

• Shall update the Sanitize Status log (refer to section 5.16.1.25);

• Shall abort any command (submitted or in progress) not allowed during a sanitize operation with a
status code of Sanitize In Progress (refer to section 8.21.1);

• Shall abort device self-test operations in progress;

• Suspends autonomous power state management activities as described in section 8.15.2; and

• Shall release stream identifiers for any open streams.

If a sanitize operation is not in progress and the most recent sanitize operation did not fail, then a Sanitize
command with a Sanitize Action set to 001b (i.e., Exit Failure Mode) shall complete with a status code of
Successful Completion and perform no other action.

While a sanitize operation is in progress, all controllers in the NVM subsystem shall abort any command
not allowed during a sanitize operation with a status code of Sanitize In Progress (refer to section 8.21.1)
and the Persistent Memory Region shall behave as described in section 8.21.1.

After a sanitize operation fails, all controllers in the NVM subsystem shall abort any command not allowed
during a sanitize operation with a status code of Sanitize Failed (refer to section 8.21.1) and the Persistent
Memory Region shall behave as described in section 8.21.1 until a subsequent sanitize operation is started
or successful recovery from the failed sanitize operation occurs.

If the most recent failed sanitize operation was started in unrestricted completion mode (i.e., the AUSE bit
was set to ‘1’ in the Sanitize command), failure recovery requires the host to issue a subsequent Sanitize
command in restricted or unrestricted completion mode or to issue a subsequent Sanitize command with
the Exit Failure Mode action.

If the most recent failed sanitize operation was started in restricted completion mode (i.e., the AUSE bit
was cleared to ‘0’ in the Sanitize command), failure recovery requires the host to issue a subsequent
Sanitize command in restricted completion mode. In the case of a sanitize operation failure in restricted
completion mode, before starting another sanitize operation:

• any subsequent Sanitize command issued with the Exit Failure Mode action shall be aborted with
a status code of Sanitize Failed; and

• any Sanitize command issued in unrestricted completion mode shall be aborted with a status code
of Sanitize Failed.

The Sanitize Capabilities field in the Identify Controller data structure indicates:

NVM Express® Base Specification, Revision 2.0e

307

a) the sanitize operation types supported;
b) whether setting No-Deallocate After Sanitize bit (i.e., Sanitize command Dword 10 bit 9) causes

media to be modified after a successful sanitize operation completes; and
c) whether the controller inhibits the functionality of the No-Deallocation After Sanitize bit in the

Sanitize command.

If an unsupported sanitize operation type is selected by a Sanitize command, then the controller shall abort
the command with a status code of Invalid Field in Command.

If any Persistent Memory Region is enabled in an NVM subsystem, then the controller shall abort any
Sanitize command with a status code of Sanitize Prohibited While Persistent Memory Region is Enabled.
A sanitize operation is prohibited while any Persistent Memory Region is enabled.

If any namespace is write protected in an NVM subsystem (refer to section 8.12), then the controller aborts
any Sanitize command with a status code of Namespace is Write Protected. A sanitize operation is
prohibited while any namespace is write protected.

If a firmware activation with reset is pending, then the controller shall abort any Sanitize command.

If the Firmware Commit command that established the pending firmware activation with reset condition
returned a status code of:

a) Firmware Activation Requires Controller Level Reset;
b) Firmware Activation Requires Conventional Reset; or
c) Firmware Activation Requires NVM Subsystem Reset,

then the controller should abort the Sanitize command with that same status code.

If the Firmware Commit command that established the pending firmware activation with reset condition
completed successfully or returned a status code other than:

a) Firmware Activation Requires Controller Level Reset;
b) Firmware Activation Requires Conventional Reset; or
c) Firmware Activation Requires NVM Subsystem Reset,

then the controller should abort the Sanitize command with a status code of Firmware Activation Requires
Controller Level Reset.

Activation of new firmware is prohibited during a sanitize operation (refer to section 8.21.1).

Support for Sanitize commands in a Controller Memory Buffer (i.e., submitted to an Admin Submission
Queue in a Controller Memory Buffer or specifying an Admin Completion Queue in a Controller Memory
Buffer) is implementation specific. If an implementation does not support Sanitize commands in a Controller
Memory Buffer and a controller’s Admin Submission Queue or Admin Completion Queue is in the Controller
Memory Buffer, then the controller shall abort all Sanitize commands with a status code of Command Not
Supported for Queue in CMB.

All sanitize operations (i.e., Block Erase, Crypto Erase, and Overwrite) are performed in the background
(i.e., Sanitize command completion does not indicate sanitize operation completion). If a sanitize operation
is started, then the controller shall complete the Sanitize command with a status code of Successful
Completion. If the controller completes a Sanitize command with any status code other than Successful
Completion, then the controller:

• shall not start the sanitize operation for that command;

• shall not modify the Sanitize Status log page; and

• shall not alter any user data.

The Sanitize command uses Command Dword 10 and Command Dword 11. All other command specific
fields are reserved.

NVM Express® Base Specification, Revision 2.0e

308

Figure 308: Sanitize – Command Dword 10

Bits Description

31:10 Reserved

09

No-Deallocate After Sanitize: If set to ‘1’ and the No-Deallocate Inhibited bit (refer to Figure 280)
is cleared to ‘0’, then the controller shall not deallocate any user data as a result of successfully
completing the sanitize operation. If:

a) cleared to ‘0’; or
b) set to ‘1’ and the No-Deallocate Inhibited bit is set to ‘1’,

then the controller should deallocate user data as a result of successfully completing the sanitize
operation. This bit shall be ignored if the Sanitize Action field is set to 001b (i.e., Exit Failure Mode).

08

Overwrite Invert Pattern Between Passes (OIPBP): If set to ‘1’, then the Overwrite Pattern shall
be inverted between passes. If cleared to ‘0’, then the overwrite pattern shall not be inverted
between passes. This bit shall be ignored unless the Sanitize Action field is set to 011b (i.e.,
Overwrite).

07:04

Overwrite Pass Count (OWPASS): This field specifies the number of overwrite passes (i.e., how
many times the media is to be overwritten) using the data from the Overwrite Pattern field of this
command. A value of 0h specifies 16 overwrite passes. This field shall be ignored unless the
Sanitize Action field is set to 011b (i.e., Overwrite).

03

Allow Unrestricted Sanitize Exit (AUSE): If set to ‘1’, then the sanitize operation is performed in
unrestricted completion mode. If cleared to ‘0’, then the sanitize operation is performed in
restricted completion mode. This bit shall be ignored if the Sanitize Action field is set to 001b (i.e.,
Exit Failure Mode).

02:00

Sanitize Action (SANACT): This field specifies the sanitize action to perform.

Value Description

000b Reserved

001b Exit Failure Mode

010b Start a Block Erase sanitize operation

011b Start an Overwrite sanitize operation

100b Start a Crypto Erase sanitize operation

101b to 111b Reserved

Figure 309: Sanitize – Command Dword 11

Bits Description

31:00
Overwrite Pattern (OVRPAT): This field is ignored unless the Sanitize Action field in Command
Dword 10 is set to 011b (i.e., Overwrite). This field specifies a 32-bit pattern that is used for the
Overwrite sanitize operation. Refer to section 8.21.

 Command Completion

When the command is complete, the controller shall post a completion queue entry to the Admin Completion
Queue indicating the status for the command. All sanitize operations are performed in the background (i.e.,
completion of the Sanitize command does not indicate completion of the sanitize operation). If a sanitize
operation is started, then the Sanitize Status log page shall be updated before posting the completion queue
entry for the command that started that sanitize operation.

Sanitize command specific status values (i.e., SCT field set to 1h) are shown in Figure 310.

Figure 310: Sanitize – Command Specific Status Values

Value Description

0Bh
Firmware Activation Requires Conventional Reset: The sanitize operation could not be started
because a firmware activation is pending and a Conventional Reset (refer to the NVM Express
NVMe over PCIe Transport Specification) is required.

10h
Firmware Activation Requires NVM Subsystem Reset: The sanitize operation could not be
started because a firmware activation is pending and an NVM Subsystem Reset is required.

NVM Express® Base Specification, Revision 2.0e

309

Figure 310: Sanitize – Command Specific Status Values

Value Description

0Bh
Firmware Activation Requires Conventional Reset: The sanitize operation could not be started
because a firmware activation is pending and a Conventional Reset (refer to the NVM Express
NVMe over PCIe Transport Specification) is required.

11h
Firmware Activation Requires Controller Level Reset: The sanitize operation could not be
started because a firmware activation is pending and a Controller Level Reset is required.

23h
Sanitize Prohibited While Persistent Memory Region is Enabled: A sanitize operation is
prohibited while the Persistent Memory Region is enabled.

5.25 Security Receive command

The Security Receive command transfers the status and data result of one or more Security Send
commands that were previously submitted to the controller.

The association between a Security Receive command and previous Security Send commands is
dependent on the Security Protocol. The format of the data to be transferred is dependent on the Security
Protocol. Refer to SPC-5 for Security Protocol details.

Each Security Receive command returns the appropriate data corresponding to a Security Send
command as defined by the rules of the Security Protocol. The Security Receive command data may not
be retained if there is a loss of communication between the controller and host, or if a Controller Level
Reset occurs.

The fields used are Data Pointer, Command Dword 10, and Command Dword 11 fields. All other
command specific fields are reserved.

Figure 311: Security Receive – Data Pointer

Bits Description

127:00
Data Pointer (DPTR): This field specifies the start of the data buffer. Refer to Figure 90 for the
definition of this field.

Figure 312: Security Receive – Command Dword 10

Bits Description

31:24
Security Protocol (SECP): This field specifies the security protocol as defined in SPC-5. The
controller shall abort the command with a status code of Invalid Field in Command if an
unsupported value of the Security Protocol is specified.

23:16
SP Specific 1 (SPSP1): The value of this field contains bits 15:08 of the Security Protocol Specific
field as defined in SPC-5.

15:08
SP Specific 0 (SPSP0): The value of this field contains bits 07:00 of the Security Protocol Specific
field as defined in SPC-5.

07:00
NVMe Security Specific Field (NSSF): Refer to Figure 314 for definition of this field for Security
Protocol EAh. For all other Security Protocols this field is reserved.

Figure 313: Security Receive – Command Dword 11

Bits Description

31:00
Allocation Length (AL): The value of this field is specific to the Security Protocol In command
with the INC_512 field cleared to 0h as defined in SPC-5.

 Command Completion

If the command is completed, then the controller shall post a completion queue entry to the Admin
Completion Queue indicating the status for the command.

NVM Express® Base Specification, Revision 2.0e

310

 Security Protocol 00h

A Security Receive command with the Security Protocol field cleared to 00h shall return information about
the security protocols supported by the controller. This command is used in the security discovery process
and is not associated with a Security Send command. Refer to SPC-5 for the details of Security Protocol
00h and the SP Specific field.

 Security Protocol EAh

Security Protocol EAh is assigned for NVMe interface use (refer to ACS-4). This protocol may be used in
Security Receive and Security Send commands. The specific usage type is defined by the Security Protocol
Specific Field defined in Figure 314.

Figure 314: Security Protocol EAh – Security Protocol Specific Field Values

SP Specific (SPSP) Value Description
NVMe Security Specific Field

(NSSF) Definition

0001h Replay Protected Memory Block RPMB Target

0002h to FFFFh Reserved Reserved

5.26 Security Send command

The Security Send command is used to transfer security protocol data to the controller. The data structure
transferred to the controller as part of this command contains security protocol specific commands to be
performed by the controller. The data structure transferred may also contain data or parameters
associated with the security protocol commands. Status and data that is to be returned to the host for the
security protocol commands submitted by a Security Send command are retrieved with the Security
Receive command defined in section 5.25.

The association between a Security Send command and subsequent Security Receive command is
Security Protocol field dependent as defined in SPC-5.

The fields used are Data Pointer, Command Dword 10, and Command Dword 11 fields. All other
command specific fields are reserved.

Figure 315: Security Send – Data Pointer

Bits Description

127:00
Data Pointer (DPTR): This field specifies the start of the data buffer. Refer to Figure 90 for the
definition of this field.

Figure 316: Security Send – Command Dword 10

Bits Description

31:24
Security Protocol (SECP): This field specifies the security protocol as defined in SPC-5. The
controller shall abort the command with a status code of Invalid Field in Command if a reserved
value of the Security Protocol is specified.

23:16
SP Specific 1 (SPSP1): The value of this field contains bits 15:08 of the Security Protocol Specific
field as defined in SPC-5.

15:08
SP Specific 0 (SPSP0): The value of this field contains bits 07:00 of the Security Protocol Specific
field as defined in SPC-5.

07:00
NVMe Security Specific Field (NSSF): Refer to Figure 314 for definition of this field for Security
Protocol EAh. For all other Security Protocols this field is reserved.

Figure 317: Security Send – Command Dword 11

Bits Description

31:00
Transfer Length (TL): The value of this field is specific to the Security Protocol Out command
with the INC_512 field cleared to 0h as defined in SPC-5.

NVM Express® Base Specification, Revision 2.0e

311

 Command Completion

If the command is completed, then the controller shall post a completion queue entry to the Admin
Completion Queue indicating the status for the command.

5.27 Set Features command

The Set Features command specifies the attributes of the Feature indicated.

The Set Features command uses the Data Pointer, Command Dword 10, and Command Dword 14. The
use of Command Dword 11, Command Dword 12, Command Dword 13, and Command Dword 15 fields is
Feature specific. If Command Dword 11, Command Dword 12, Command Dword 13, or Command Dword
15 fields are not used, then the Command Dwords are reserved.

Figure 318: Set Features – Data Pointer

Bits Description

127:00

Data Pointer (DPTR): This field specifies the start of the data buffer. Refer to Figure 90 for the
definition of this field. If using PRPs, this field shall not be a pointer to a PRP List as the data buffer
may not cross more than one page boundary. If no data structure is used as part of the specified
feature, then this field is not used.

Figure 319: Set Features – Command Dword 10

Bits Description

31

Save (SV): This bit specifies that the controller shall save the attribute so that the attribute persists
through all power states and resets.

The controller indicates in bit 4 of the Optional NVM Command Support field of the Identify
Controller data structure in Figure 280 whether this bit is supported.

If the Feature Identifier specified in the Set Features command is not saveable by the controller
and the controller receives a Set Features command with the Save bit set to ‘1’, then the command
shall be aborted with a status code of Feature Identifier Not Saveable.

30:08 Reserved

07:00
Feature Identifier (FID): This field indicates the identifier of the Feature that attributes are being
specified for.

If the controller supports selection of a UUID by the Set Features command (refer to Figure 321 and section
8.25) and the controller supports selection of a UUID for the specified vendor specific feature identifier (refer
to Figure 321), then Command Dword 14 is used to specify a UUID Index value (refer to Figure 320). If the
controller does not support selection of a UUID by the Set Features command or the controller does not
support selection of a UUID for the specified vendor specific feature identifier, then Command Dword 14
does not specify a UUID Index value.

Figure 320: Set Features – Command Dword 14

Bits Description

31:07 Reserved

06:00 UUID Index: Refer to Figure 483.

 Feature Specific Information

Figure 321 defines the Features that may be configured with a Set Features command and retrieved with
a Get Features command. Refer to section 3.1.3 for mandatory, optional, and prohibited features for the
various controller types. Some Features utilize a memory buffer to configure or return attributes for a
Feature, whereas others only utilize a dword in the command or completion queue entry. For more
information on Features, including default value definitions, saved value definitions, and current value
definitions, refer to section 4.2.

NVM Express® Base Specification, Revision 2.0e

312

Upon completion of a Set Features command for a feature, the host should rediscover, re-enumerate and/or
re-initialize all capabilities associated with that feature. For example, if a namespace capability change may
occur for a feature, then host software should pause the use of any associated namespace, submit the Set
Features command for that feature and wait for that command to complete, and then re-issue commands
to all namespaces affected by that Set Features command.

There may be commands in execution when a Feature is changed. The new settings may or may not apply
to commands already submitted for execution when the Feature is changed. Any commands submitted to
a Submission Queue after a Set Features command is successfully completed shall utilize the new settings
for the associated Feature. To ensure that a Features values apply to all subsequent commands, the host
should allow commands being processed to complete prior to issuing the Set Features command.

If the controller does not support a changeable value for a Feature (i.e., the Feature is not changeable,
refer to section 5.15.2), and a Set Features command for that Feature is processed, then if that command
specifies a Feature value that:

• is not the same as the existing value for that Feature, then the controller shall abort that command
with a status code of Feature Not Changeable; and

• is the same as the existing value for that Feature, then the controller may:

o complete that command successfully; or
o abort that command with a status code of Feature Not Changeable.

Refer to each feature description in section 5.27.1 for any additional requirements associated with that
feature.

Figure 321: Set Features – Feature Identifiers

Feature
Identifier

Current Setting Persists
Across Power Cycle and

Reset
2

Uses
Memory

Buffer for
Attributes

Feature Name

00h Reserved

01h No No Arbitration

02h No No Power Management

03h Refer to the NVM Command Set

04h No No Temperature Threshold

05h Refer to the NVM Command Set

06h No No Volatile Write Cache

07h No No Number of Queues

08h No No Interrupt Coalescing

09h No No Interrupt Vector Configuration

0Ah Refer to the NVM Command Set

0Bh No No Asynchronous Event Configuration

0Ch No Yes Autonomous Power State Transition

0Dh No
3
 No

4
 Host Memory Buffer

0Eh No Yes Timestamp

0Fh No No Keep Alive Timer

10h Yes No Host Controlled Thermal Management

11h No No Non-Operational Power State Config

12h Yes No Read Recovery Level Config

13h No Yes Predictable Latency Mode Config

14h No No Predictable Latency Mode Window

15h Refer to the NVM Command Set

16h No Yes Host Behavior Support

17h Yes No Sanitize Config

18h No No Endurance Group Event Configuration

19h Yes No I/O Command Set Profile

1Ah Yes No Spinup Control

NVM Express® Base Specification, Revision 2.0e

313

Figure 321: Set Features – Feature Identifiers

Feature
Identifier

Current Setting Persists
Across Power Cycle and

Reset
2

Uses
Memory

Buffer for
Attributes

Feature Name

1Bh to 1Fh Reserved

20h Refer to the Key Value Command Set

21h to 77h Reserved

78h to 7Ch Reserved for Management Features.

7Dh No Yes Enhanced Controller Metadata

7Eh No Yes Controller Metadata

7Fh No Yes Namespace Metadata

80h Yes No Software Progress Marker

81h No Yes Host Identifier

82h No No Reservation Notification Mask

83h Yes No Reservation Persistence

84h No No Namespace Write Protection Config

85h to BFh Reserved

C0h to FFh
Vendor Specific

1, 5

Notes:
1. The behavior of a controller in response to an inactive namespace ID to a vendor specific Feature Identifier

is vendor specific.
2. This column is only valid if the feature is not saveable (refer to section 4.2). If the feature is saveable, then

this column is not used.
3. The controller does not save settings for the Host Memory Buffer feature across power states and reset

events, however, host software may restore the previous values. Refer to section 8.9.
4. The feature does not use a memory buffer for Set Features commands and does use a memory buffer for

Get Features commands. Refer to section 8.9.
5. Selection of a UUID may be supported. Refer to section 8.25.

5.27.1.1 Arbitration (Feature Identifier 01h)

This Feature controls command arbitration. Refer to section 3.4.4 for command arbitration details. The
attributes are specified in Command Dword 11.

If a Get Features command is submitted for this Feature, the attributes specified in Figure 322 are returned
in Dword 0 of the completion queue entry for that command.

Figure 322: Arbitration & Command Processing – Command Dword 11

Bits Description

31:24
High Priority Weight (HPW): This field defines the number of commands that may be executed
from the high priority service class in each arbitration round. This is a 0’s based value.

23:16
Medium Priority Weight (MPW): This field defines the number of commands that may be
executed from the medium priority service class in each arbitration round. This is a 0’s based
value.

15:08
Low Priority Weight (LPW): This field defines the number of commands that may be executed
from the low priority service class in each arbitration round. This is a 0’s based value.

07:03 Reserved

02:00
Arbitration Burst (AB): Indicates the maximum number of commands that the controller may
fetch at one time from a particular Submission Queue. The value is expressed as a power of two
(e.g., 000b indicates one, 011b indicates eight). A value of 111b indicates no limit.

5.27.1.2 Power Management (Feature Identifier 02h)

This Feature allows the host to configure the power state. The attributes are specified in Command Dword
11 (refer to Figure 323).

NVM Express® Base Specification, Revision 2.0e

314

Upon successful completion of a Set Features command for this feature, the controller shall be in the Power
State specified. For a transition to a non-operational power state, the device may exceed the power
indicated for that non-operational power state as defined in section 8.15.1 (e.g., while completing this
command). If enabled, autonomous power state transitions continue to occur from the new state.

If a Get Features command is submitted for this Feature, the attributes described in Figure 324 are returned
in Dword 0 of the completion queue entry for that command.

Figure 323: Power Management – Command Dword 11

Bits Description

31:08 Reserved

07:05
Workload Hint (WH): This field indicates the type of workload expected. This hint may be used
by the NVM subsystem to optimize performance. Refer to section 8.15.3 for more details.

04:00

Power State (PS): This field indicates the new power state into which the controller is requested
to transition. This power state shall be one supported by the controller as indicated in the Number
of Power States Supported (NPSS) field in the Identify Controller data structure. If the power state
specified is not supported, the controller shall abort the command and should return an error of
Invalid Field in Command.

Figure 324: Power Management – Completion Queue Entry Dword 0

Bits Description

31:08 Reserved

07:05
Workload Hint (WH): This field indicates the type of workload. Refer to section 8.15.3 for more
details.

04:00
Power State (PS): This field indicates the current power state of the controller, or the power state
into which the controller is transitioning.

5.27.1.3 Temperature Threshold (Feature Identifier 04h)

A controller may report up to nine temperature values in the SMART / Health Information log page (i.e., the
Composite Temperature and Temperature Sensor 1 through Temperature Sensor 8; refer to Figure 212).
Associated with each implemented temperature sensor is an over temperature threshold and an under
temperature threshold. When a temperature is greater than or equal to its corresponding over temperature
threshold or less than or equal to its corresponding under temperature threshold, then bit 1 of the Critical
Warning field in the SMART / Health Information log page (refer to section 5.16.1.3) is set to ‘1’. This may
trigger an asynchronous event.

The over temperature threshold feature shall be implemented for Composite Temperature. The under
temperature threshold Feature shall be implemented for Composite Temperature if a non-zero Warning
Composite Temperature Threshold (WCTEMP) field value is reported in the Identify Controller data
structure (refer to Figure 280). The over temperature threshold and under temperature threshold features
shall be implemented for all implemented temperature sensors (i.e., all Temperature Sensor fields that
report a non-zero value).

The default value of the over temperature threshold feature for Composite Temperature is the value in the
Warning Composite Temperature Threshold (WCTEMP) field in the Identify Controller data structure if
WCTEMP is non-zero; otherwise, the default value is implementation specific. The default value of the
under temperature threshold feature for Composite Temperature is implementation specific. The default
value of the over temperature threshold for all implemented temperature sensors is FFFFh. The default
value of the under temperature threshold for all implemented temperature sensors is 0h.

If a Get Features command is submitted for this Feature, the temperature threshold selected by Command
Dword 11 is returned in Dword 0 of the completion queue entry for that command.

NVM Express® Base Specification, Revision 2.0e

315

Figure 325: Temperature Threshold – Command Dword 11

Bits Description

31:22 Reserved

21:20

Threshold Type Select (THSEL): This field selects the threshold type that is modified by a Set
Features command and whose threshold value is returned by a Get Features command.

Value Description

00b Over Temperature Threshold

01b Under Temperature Threshold

10b to 11b Reserved

19:16

Threshold Temperature Select (TMPSEL): This field selects the temperature whose threshold
is modified by a Set Features command and whose threshold value is returned by a Get Features
command.

Value Description

0h Composite Temperature

1h Temperature Sensor 1

2h Temperature Sensor 2

3h Temperature Sensor 3

4h Temperature Sensor 4

5h Temperature Sensor 5

6h Temperature Sensor 6

7h Temperature Sensor 7

8h Temperature Sensor 8

9h to Eh Reserved

Fh
All implemented temperature sensors in a Set Features
command. Reserved in a Get Features command.

15:00
Temperature Threshold (TMPTH): Indicates the threshold value for the temperature sensor and
threshold type specified in Kelvins.

5.27.1.4 Volatile Write Cache (Feature Identifier 06h)

This Feature controls the volatile write cache, if present, on the controller. If a volatile write cache is present
(refer to the VWC field in Figure 280), then this feature shall be supported. The attributes are specified in
Command Dword 11.

Note: If the controller is able to guarantee that data present in a write cache is written to non-volatile storage
medium on loss of power, then that write cache is considered non-volatile and this feature does not apply
to that write cache.

If a Get Features command is submitted for this Feature, the attributes specified in Figure 326 are returned
in Dword 0 of the completion queue entry for that command.

If a volatile write cache is not present, then a Set Features command specifying the Volatile Write Cache
feature identifier shall abort with a status code of Invalid Field in Command, and a Get Features command
specifying the Volatile Write Cache feature identifier should abort with a status code of Invalid Field in
Command.

Figure 326: Volatile Write Cache – Command Dword 11

Bits Description

31:01 Reserved

00
Volatile Write Cache Enable (WCE): If set to ‘1’, then the volatile write cache is enabled. If
cleared to ‘0’, then the volatile write cache is disabled.

5.27.1.5 Number of Queues (Feature Identifier 07h)

This Feature indicates the number of queues that the host requests for the controller processing the
command. This feature shall only be issued during initialization prior to creation of any I/O Submission
and/or Completion Queues. If a Set Features command is issued for this feature after creation of any I/O

NVM Express® Base Specification, Revision 2.0e

316

Submission and/or I/O Completion Queues, then the Set Features command shall abort with status code
of Command Sequence Error. The controller shall not change the value allocated between resets. For a
Set Features command, the attributes are specified in Command Dword 11 (refer to Figure 327). For a Get
Features command, Dword 11 is ignored.

If a Set Features or Get Features command is submitted for this Feature, the attributes specified in Figure
328 are returned in Dword 0 of the completion queue entry for that command.

Figure 327: Number of Queues – Command Dword 11

Bits Description

31:16

Number of I/O Completion Queues Requested (NCQR): Indicates the number of I/O Completion
Queues requested by software. This number does not include the Admin Completion Queue. A
minimum of one queue shall be requested, reflecting that the minimum support is for one I/O
Completion Queue. This is a 0’s based value. The maximum value that may be specified is 65,534
(i.e., 65,535 I/O Completion Queues). If the value specified is 65,535, the controller should abort
the command with a status code of Invalid Field in Command.

15:00

Number of I/O Submission Queues Requested (NSQR): Indicates the number of I/O
Submission Queues requested by software. This number does not include the Admin Submission
Queue. A minimum of one queue shall be requested, reflecting that the minimum support is for
one I/O Submission Queue. This is a 0’s based value. The maximum value that may be specified
is 65,534 (i.e., 65,535 I/O Submission Queues). If the value specified is 65,535, the controller
should abort the command with a status code of Invalid Field in Command.

Note: The value allocated may be smaller or larger than the number of queues requested, often in virtualized
implementations. The controller may not have as many queues to allocate as are requested. Alternatively,
the controller may have an allocation unit of queues (e.g., power of two) and may supply more queues to
host software to satisfy its allocation unit.

Figure 328: Number of Queues – Completion Queue Entry Dword 0

Bits Description

31:16

Number of I/O Completion Queues Allocated (NCQA): Indicates the number of I/O Completion
Queues allocated by the controller. A minimum of one queue shall be allocated, reflecting that the
minimum support is for one I/O Completion Queue. The value may not match the number
requested by host software. This is a 0’s based value.

15:00

Number of I/O Submission Queues Allocated (NSQA): Indicates the number of I/O Submission
Queues allocated by the controller. A minimum of one queue shall be allocated, reflecting that the
minimum support is for one I/O Submission Queue. The value may not match the number
requested by host software. This is a 0’s based value.

5.27.1.6 Interrupt Coalescing (Feature Identifier 08h)

This Feature configures interrupt coalescing settings. The controller should signal an interrupt when either
the Aggregation Time or the Aggregation Threshold conditions are met. If either the Aggregation Time or
the Aggregation Threshold fields are cleared to 0h, then an interrupt may be generated (i.e., interrupt
coalescing is implicitly disabled). This Feature applies only to the I/O Queues. It is recommended that
interrupts for commands that complete in error are not coalesced. The settings are specified in Command
Dword 11.

If the controller detects that interrupts are already being processed for this vector, then the controller may
delay additional interrupts. Specifically, if the Completion Queue Head Doorbell property that is associated
with a particular interrupt vector is being updated, then the controller has a positive indication that
completion queue entries are already being processed. In this case, the aggregation time and/or the
aggregation threshold may be reset/restarted upon the associated property write. This may result in
interrupts being delayed indefinitely in certain workloads where the aggregation time or aggregation
threshold is non-zero.

If a Get Features command is submitted for this Feature, the attributes specified in Figure 329 are returned
in Dword 0 of the completion queue entry for that command.

NVM Express® Base Specification, Revision 2.0e

317

This Feature is valid when the controller is configured for Pin Based, MSI, Multiple MSI or MSI-X interrupts.
There is no requirement for the controller to persist these settings if interrupt modes are changed. It is
recommended that the host re-issue this Feature after changing interrupt modes.

Figure 329: Interrupt Coalescing – Command Dword 11

Bits Description

31:16 Reserved

15:08

Aggregation Time (TIME): Specifies the recommended maximum time in 100 microsecond
increments that a controller may delay an interrupt due to interrupt coalescing. A value of 0h
corresponds to no delay. The controller may apply this time per interrupt vector or across all
interrupt vectors. The reset value of this setting is 0h.

07:00
Aggregation Threshold (THR): Specifies the recommended minimum number of completion
queue entries to aggregate per interrupt vector before signaling an interrupt to the host. This is a
0’s based value. The reset value of this setting is 0h.

5.27.1.7 Interrupt Vector Configuration (Feature Identifier 09h)

This Feature configures settings specific to a particular interrupt vector. The settings are specified in
Command Dword 11.

By default, coalescing settings are enabled for each interrupt vector. Interrupt coalescing is not supported
for the Admin Completion Queue.

If a Get Features command is submitted for this Feature, the attributes specified in Figure 330 are returned
in Dword 0 of the completion queue entry for that command for the Interrupt Vector specified in Command
Dword 11.

Prior to issuing a Set Features command that specifies this Feature, the host shall configure the specified
Interrupt Vector with an I/O Completion Queue (refer to section 5.4). If the specified Interrupt Vector is
invalid, or not associated with an existing I/O Completion Queue (refer to Figure 162), then the controller
should abort the command with a status code of Invalid Field in Command.

Figure 330: Interrupt Vector Configuration – Command Dword 11

Bits Description

31:17 Reserved

16
Coalescing Disable (CD): If set to ‘1’, then any interrupt coalescing settings shall not be applied
for this interrupt vector. If cleared to ‘0’, then interrupt coalescing settings apply for this interrupt
vector.

15:00
Interrupt Vector (IV): This field specifies the interrupt vector for which the configuration settings
are applied.

5.27.1.8 Asynchronous Event Configuration (Feature Identifier 0Bh)

This Feature controls the events that trigger an asynchronous event notification to the host. This Feature
may be used to disable reporting events in the case of a persistent condition (refer to section 5.2). If the
condition for an event is true when the corresponding notice is enabled, then an event is sent to the host.
The attributes are specified in Command Dword 11.

If a Get Features command is submitted for this Feature, the attributes specified in Figure 331 are returned
in Dword 0 of the completion queue entry for that command.

Figure 331: Asynchronous Event Configuration – Command Dword 11

Bits Description

31
Discovery Log Page Change Notification: This bit indicates that the Discovery controller reports
Discovery Log Page Change Notifications. If set to ‘1’, the Discovery controller shall send a
notification if Discovery Log Page changes occur.

30:28 Reserved

27 Zone Descriptor Changed Notices
2

: I/O Command Set specific definition.

NVM Express® Base Specification, Revision 2.0e

318

Figure 331: Asynchronous Event Configuration – Command Dword 11

Bits Description

26:16 Reserved

15

Normal NVM Subsystem Shutdown: This bit determines whether an asynchronous event
notification is sent to the host when the NVM subsystem has started performing a normal shutdown
due to an NVM Subsystem Shutdown (refer to Figure 154). If this bit is set to ‘1’, then the Normal
NVM Subsystem Shutdown event is sent to the host if an outstanding Asynchronous Event
Request command exists at the time this condition occurs. If this bit is cleared to ‘0’, then the
controller shall not send the Normal NVM Subsystem Shutdown event to the host.

14

Endurance Group Event Aggregate Log Change Notices: This bit determines whether an
asynchronous event notification is sent to the host when an event entry for an Endurance Group
(refer to section 3.2.3) has been added to the Endurance Group Event Aggregate log (refer to
section 5.16.1.15). If this bit is set to ‘1’, then the Endurance Group Event Aggregate Log Change
event is sent to the host when this condition occurs. If this bit is cleared to ‘0’, then the controller
shall not send the Endurance Group Event Aggregate Log Change event to the host.

If Endurance Groups are not supported and this bit is set to ‘1’, then the Set Features command
shall be aborted with a status of Invalid Field in Command.

13 LBA Status Information Alert Notices
1

: I/O Command Set specific definition.

12

Predictable Latency Event Aggregate Log Change Notices: This bit determines whether an
asynchronous event notification is sent to the host when an event pending entry for an NVM Set
(refer to section 5.16.1.12) has been added to the Predictable Latency Event Aggregate Log. If
this bit is set to ‘1’, then the Predictable Latency Event Aggregate Log Change event is sent to the
host when this condition occurs. If this bit is cleared to ‘0’, then the controller shall not send the
Predictable Latency Event Aggregate Log Change event to the host.

11

Asymmetric Namespace Access Change Notices: This bit determines whether an
asynchronous event notification is sent to the host when an asymmetric namespace access
change occurs (i.e., the contents of the Asymmetric Namespace Access log page (refer to section
5.16.1.13) change). If this bit is set to ‘1’, then the Asymmetric Namespace Access Change
Notices event is sent to the host when this condition occurs. If this bit is cleared to ‘0’, then the
controller shall not send the Asymmetric Namespace Access Change Notices event to the host.

10

Telemetry Log Notices: This bit determines whether an asynchronous event notification is sent
to the host when the Telemetry Controller-Initiated Data Available field transitions from 0h to 1h in
the Telemetry Controller-Initiated log page. If this bit is set to ‘1’, then the Telemetry Log Changed
event is sent to the host when this condition occurs. If this bit is cleared to ‘0’, then the controller
shall not send the Telemetry Log Changed event to the host.

09

Firmware Activation Notices: This bit determines whether an asynchronous event notification is
sent to the host for a Firmware Activation Starting event (refer to Figure 152). If this bit is set to
‘1’, then the Firmware Activation Starting event is sent to the host when this condition occurs. If
this bit is cleared to ‘0’, then the controller shall not send the Firmware Activation Starting event to
the host.

08

Namespace Attribute Notices: This bit determines whether an asynchronous event notification
is sent to the host for a Namespace Attribute change (refer to Figure 152). If this bit is set to ‘1’,
then the Namespace Attribute Changed event is sent to the host when this condition occurs. If this
bit is cleared to ‘0’, then the controller shall not send the Namespace Attribute Changed event to
the host.

07:00

SMART / Health Critical Warnings: This field determines whether an asynchronous event
notification is sent to the host for the corresponding Critical Warning specified in the SMART /
Health Information log (refer to Figure 212). If a bit is set to ‘1’, then an asynchronous event
notification is sent when the corresponding critical warning bit is set to ‘1’ in the SMART / Health
Information log. If a bit is cleared to ‘0’, then an asynchronous event notification is not sent when
the corresponding critical warning bit is set to ‘1’ in the SMART / Health Information log.

NOTE:
1. Refer to the NVM Command Set Specification.
2. Refer to the Zoned Namespace Command Set Specification.

5.27.1.9 Autonomous Power State Transition (Feature Identifier 0Ch)

This feature configures the settings for autonomous power state transitions, refer to section 8.15.2.

NVM Express® Base Specification, Revision 2.0e

319

The Autonomous Power State Transition uses Command Dword 11 and specifies the attribute information
in the data structure indicated in Figure 332 and the Autonomous Power State Transition data structure
consisting of 32 of the entries defined in Figure 333.

If a Get Features command is issued for this Feature, the attributes specified in Figure 332 are returned in
Dword 0 of the completion queue entry and the Autonomous Power State Transition data structure, whose
entry structure is defined in Figure 333, is returned in the data buffer for that command.

Figure 332: Autonomous Power State Transition – Command Dword 11

Bits Description

31:01 Reserved

00

Autonomous Power State Transition Enable (APSTE): This bit specifies whether autonomous
power state transition is enabled. If this bit is set to ‘1’, then autonomous power state transitions
are enabled. If this bit is cleared to ‘0’, then autonomous power state transitions are disabled. This
bit is cleared to ‘0’ by default.

Each entry in the Autonomous Power State Transition data structure is defined in Figure 333. Each entry
is 64 bits in size. There is an entry for each of the allowable 32 power states. For power states that are not
supported, the unused Autonomous Power State Transition data structure entries shall be cleared to all
zeroes. The entries begin with power state 0 and then increase sequentially (i.e., power state 0 is described
in bytes 7:0, power state 1 is described in bytes 15:8, etc.). The data structure is 256 bytes in size and shall
be physically contiguous.

Figure 333: Autonomous Power State Transition – Data Structure Entry

Bits Description

63:32 Reserved

31:08

Idle Time Prior to Transition (ITPT): This field specifies the amount of idle time that occurs in
this power state prior to transitioning to the Idle Transition Power State. The time is specified in
milliseconds. A value of 0h disables the autonomous power state transition feature for this power
state.

07:03

Idle Transition Power State (ITPS): This field specifies the power state to which the controller
autonomously transitions, after there is a continuous period of idle time in the current power state
that exceeds the time specified in the Idle Time Prior to Transition (ITPT) field. If the ITPT field is
set to a non-zero value, then the state specified in this field shall be a non-operational state as
described in Figure 281. This field should not specify a power state with higher reported idle power
than the current power state. If the ITPT field is cleared to 0h, then this field should be cleared to
0h.

02:00 Reserved

The Autonomous Power State Transition feature may interact with the Non-Operational Power State Config
feature (refer to section 5.27.1.14). Figure 334 shows these interactions.

Figure 334: Interactions between APSTE and NOPPME

APSTE
1

 NOPPME
2

 Non-operational power state entry
Background operations during
non-operational power states

1 1 Entered by host request
3

 or by ITPT idle timer
4
 Allowed

0 1 Entered by host request
3
 Allowed

1 0 Entered by host request
3

 or by ITPT idle timer
4
 Not allowed

0 0 Entered by host request
3
 Not allowed

Notes:
1. Defined in Figure 332.
2. Defined in Figure 348.
3. Refer to section 5.27.1.2.
4. Refer to Figure 333.

NVM Express® Base Specification, Revision 2.0e

320

5.27.1.10 Host Memory Buffer (Feature Identifier 0Dh)

This Feature controls the Host Memory Buffer. The attributes are specified in Command Dword 11,
Command Dword 12, Command Dword 13, Command Dword 14, and Command Dword 15.

The Host Memory Buffer feature provides a mechanism for the host to allocate a portion of host memory
for the exclusive use of the controller. After a successful completion of a Set Features command enabling
the host memory buffer, the host shall not write to:

a) The Host Memory Descriptor List (refer to Figure 340); and
b) the associated host memory region (i.e., the memory regions described by the Host Memory

Descriptor List),

until the host memory buffer has been disabled.

If the host memory buffer is enabled, then a Set Features command to enable the host memory buffer (i.e.,
the EHM bit (refer to Figure 335) set to ‘1’) shall abort with a status code of Command Sequence Error.

If the host memory buffer is not enabled, then a Set Features command to disable the host memory buffer
(i.e., the EHM bit (refer to Figure 335) cleared to ‘0’) shall succeed without taking any action.

After a successful completion of a Set Features command that disables the host memory buffer, the
controller shall not access any data in the host memory buffer until the host memory buffer has been
enabled. The controller should retrieve any necessary data from the host memory buffer in use before
posting the completion queue entry for the Set Features command that disables the host memory buffer.
Posting of the completion queue entry for the Set Features command that disables the host memory buffer
acknowledges that it is safe for the host software to modify the host memory buffer contents. Refer to
section 8.9.

Figure 335: Host Memory Buffer – Command Dword 11

Bits Description

31:02 Reserved

01

Memory Return (MR): If set to ‘1’, then the host is returning memory previously allocated to the
controller for use as the host memory buffer (HMB). That memory may have been in use for the
HMB prior to a reset or entering the Runtime D3 state (e.g., prior to the HMB being disabled). A
returned host memory buffer shall have the exact same size, descriptor list address, descriptor list
contents, and host memory buffer contents as last seen by the controller before the host memory
buffer was disabled (i.e., a Set Features command with the EHM bit cleared to '0' was processed).
If cleared to ‘0’, then the host is allocating host memory resources with undefined content.

00

Enable Host Memory (EHM): If set to ‘1’, then the host memory buffer shall be enabled and the
controller may use the host memory buffer. If cleared to ‘0’, then the host memory buffer shall be
disabled, and the controller shall not use the host memory buffer.

If a Set Features command is processed with this bit cleared to ‘0’, then the controller shall ignore
Command Dword 12, Command Dword 13, Command Dword 14, and Command Dword 15.

Figure 336: Host Memory Buffer – Command Dword 12

Bits Description

31:00
Host Memory Buffer Size (HSIZE): This field specifies the size of the host memory buffer
allocated in memory page size (CC.MPS) units.

NVM Express® Base Specification, Revision 2.0e

321

Figure 337: Host Memory Buffer– Command Dword 13

Bits Description

31:00

Host Memory Descriptor List Lower Address (HMDLLA): This field specifies the least
significant 32 bits of the physical location of the Host Memory Descriptor List (refer to Figure 340)
for the Host Memory Buffer. This address shall be 16 byte aligned, indicated by bits 3:0 being
cleared to 0h.

NOTE: The controller shall operate as if bits 3:0 are cleared to 0h. However, the controller is not
required to check that bits 3:0 are cleared to 0h.

Figure 338: Host Memory Buffer – Command Dword 14

Bits Description

31:00
Host Memory Descriptor List Upper Address (HMDLUA): This field specifies the most
significant 32 bits of the physical location of the Host Memory Descriptor List for the Host Memory
Buffer.

The Host Memory Descriptor List Address (HMDLLA/HMDLUA) specifies the address of a physically
contiguous data structure in host memory that describes the address and length pairs of the Host Memory
Buffer. The number of address and length pairs is specified in the Host Memory Descriptor List Entry Count
in Figure 339. The Host Memory Descriptor List is described in Figure 340.

Figure 339: Host Memory Buffer – Command Dword 15

Bits Description

31:00
Host Memory Descriptor List Entry Count (HMDLEC): This field specifies the number of entries
provided in the Host Memory Descriptor List.

If the host specifies the Host Memory Descriptor List Entry Count field cleared to 0h, then the controller
should abort the command with a status code of Invalid Field in Command.

Figure 340: Host Memory Buffer – Host Memory Descriptor List

Bytes Description

15:0 Host Memory Buffer Descriptor (refer to Figure 341) Entry 0

31:16 Host Memory Buffer Descriptor Entry 1

47:32 Host Memory Buffer Descriptor Entry 2

63:48 Host Memory Buffer Descriptor Entry 3

…

16*n+15:16*n Host Memory Buffer Descriptor Entry n (where n = HMDLEC - 1 (refer to Figure 339))

Each Host Memory Buffer Descriptor Entry shall describe a host memory address in memory page size
units and the number of contiguous memory page size units associated with the host address.

Figure 341: Host Memory Buffer – Host Memory Buffer Descriptor Entry

Bits Description

127:96 Reserved

95:64
Buffer Size (BSIZE): Indicates the number of contiguous memory page size (CC.MPS) units for
this descriptor. If this field is cleared to 0h, then the controller shall ignore this descriptor.

63:00

Buffer Address (BADD): Indicates the host memory address for this descriptor aligned to the
memory page size (CC.MPS). The least significant bits (n:0) of this field indicate the offset within
the memory page is 0h (e.g., if the memory page size is 4 KiB, then bits 11:00 shall be 0h; if the
memory page size is 8 KiB, then bits 12:00 shall be 0h).

NVM Express® Base Specification, Revision 2.0e

322

If a Get Features command is issued for this Feature, the attributes specified in Figure 342 are returned in
Dword 0 of the completion queue entry and the Host Memory Buffer Attributes data structure, whose
structure is defined in Figure 343, is returned in the data buffer for that command.

Figure 342: Host Memory Buffer – Completion Queue Entry Dword 0

Bits Description

31:01 Reserved

00
Enable Host Memory (EHM): If set to ‘1’, then the host memory buffer is enabled and the
controller may use the host memory buffer. If cleared to ‘0’, then the host memory buffer is
disabled, and the controller is not using the host memory buffer.

Figure 343: Host Memory Buffer – Attributes Data Structure

Bytes Description

3:0
Host Memory Buffer Size (HSIZE): This field indicates the size of the host memory buffer
allocated in memory page size units.

7:4

Host Memory Descriptor List Address Lower (HMDLAL): This field indicates the least
significant 32 bits of the physical location of the Host Memory Descriptor List (refer to Figure
340) for the host memory buffer. This address shall be 16 byte aligned. The least significant 4
bits shall be cleared to ‘0’.

11:8
Host Memory Descriptor List Address Upper (HMDLAU): This field indicates the most
significant 32 bits of the physical location of the Host Memory Descriptor List (refer to Figure
340) for the host memory buffer.

15:12
Host Memory Descriptor List Entry Count (HMDLEC): This field indicates the number of valid
Host Memory Descriptor Entries (refer to Figure 341) in the Host Memory Descriptor List (refer
to Figure 340).

4095:16 Reserved

5.27.1.11 Timestamp (Feature Identifier 0Eh)

The Feature enables the host to set a timestamp value in the controller. A controller indicates support for
the Timestamp feature through the Optional NVM Command Support (ONCS) field in the Identify Controller
data structure. The Timestamp field value (refer to Figure 344) in a Set Features command sets a timestamp
value in the controller. After the current value for this Feature is set, the controller updates that value as
time passes. A Get Features command that requests the current value reports the timestamp value in the
controller at the time the Get Features command is processed (e.g., the value set with a Set Features
command for the current value plus the elapsed time since being set).

Note: If the Timestamp feature is saveable (refer to Figure 200) and the host saves a value, then the
timestamp value restored after a subsequent power on or reset event is the value that was saved (refer to
section 4.2). As a result, the timestamp may appear to move backwards in time.

The accuracy of a Timestamp value after initialization may be affected by vendor specific factors, such as
whether the controller continuously counts after the timestamp is initialized, or whether the controller stops
counting during certain intervals (e.g., non-operational power states). If the controller stops counting during
such intervals, then the Synch bit in the Timestamp – Data Structure for Get Features (refer to Figure 345)
shall be set to ‘1’.

If the controller maintains (i.e., continues to update) the timestamp value across any type of Controller Level
Reset (e.g., across a Controller Reset), then the controller shall also preserve the Timestamp Origin field
(refer to Figure 345) across that type of Controller Level Reset.

If the controller does not maintain the value of the timestamp across the most recent Controller Level Reset,
then the Timestamp field is cleared to 0h due to that Controller Level Reset.

Timestamp values should not be used for security applications. Other application use of the Timestamp
feature is outside the scope of this specification.

NVM Express® Base Specification, Revision 2.0e

323

If a Set Features command is issued for this Feature, the data structure specified in Figure 344 is transferred
in the data buffer for that command, specifying the Timestamp value.

Figure 344: Timestamp – Data Structure for Set Features

Bytes Description

05:00 Timestamp: Number of milliseconds that have elapsed since midnight, 01-Jan-1970, UTC.

07:06 Reserved

If a Get Features command is issued for this Feature, the data structure specified in Figure 345 is returned
in the data buffer for that command.

Figure 345: Timestamp – Data Structure for Get Features

Bytes Description

05:00

Timestamp:

If the Timestamp Origin field cleared to 000b, then this field is set to the time in milliseconds since the
last Controller Level Reset.

If the Timestamp Origin field is set to 001b, then this field is set to the last Timestamp value set by the
host, plus the time in milliseconds since the Timestamp was set. If the sum of the Timestamp value set
by the host and the elapsed time exceeds 2^48, the value returned should be reduced modulo 2^48.

If the Synch bit is set to ‘1’, then the Timestamp value may be reduced by vendor specific time intervals
not counted by the controller.

06

Bits Attribute Definition

07:04 Reserved Reserved

03:01
Timestamp
Origin

Value Definition

000b
The Timestamp field was initialized to 0h by a Controller Level
Reset.

001b
The Timestamp field was initialized with a Timestamp value
using a Set Features command.

010b to
111b

Reserved

00 Synch

Value Definition

0
The controller counted time in milliseconds continuously since the
Timestamp value was initialized.

1
The controller may have stopped counting during vendor specific
intervals after the Timestamp value was initialized (e.g., non-
operational power states).

07 Reserved

5.27.1.12 Keep Alive Timer (Feature Identifier 0Fh)

This Feature controls the Keep Alive Timer. Refer to section 3.9 for Keep Alive details. The attributes are
specified in Command Dword 11.

If a Get Features command is submitted for this Feature, the attributes specified in Figure 346 are returned
in Dword 0 of the completion queue entry for that command.

NVM Express® Base Specification, Revision 2.0e

324

Figure 346: Keep Alive Timer – Command Dword 11

Bits Description

31:00

Keep Alive Timeout (KATO): This field specifies the timeout value for the Keep Alive Timer feature
in milliseconds. The controller rounds up the value specified to the granularity indicated in the KAS
field in the Identify Controller data structure. If cleared to 0h, then the Keep Alive Timer is disabled.

The default value for this field is 0h for NVMe transports that do not require use of the Keep Alive
Timer feature (e.g., NVMe over PCIe). For NVMe transports that require use of the Keep Alive Timer
feature (e.g., RDMA and TCP), the default value for this field is 1D4C0h (i.e., 120,000 milliseconds
or 2 minutes) rounded up to the granularity indicated in the KAS field.

Refer to the applicable NVMe Transport Binding specification for details.

5.27.1.13 Host Controlled Thermal Management (Feature Identifier 10h)

This feature configures the settings for the host controlled thermal management feature, refer to section
8.15.5. The host controlled thermal management feature uses Command Dword 11 with the attributes
shown in Figure 347.

If a Get Features command is submitted for this feature, then the attributes shown in Figure 347 are returned
in Dword 0 of the completion queue entry for that command.

This feature is not namespace specific.

Figure 347: HCTM – Command Dword 11

Bits Description

31:16

Thermal Management Temperature 1 (TMT1): This field specifies the temperature, in Kelvins,
when the controller begins to transition to lower power active power states or performs vendor
specific thermal management actions while minimizing the impact on performance (e.g., light
throttling) in order to attempt to reduce the Composite Temperature.

A value cleared to 0h, specifies that this part of the Feature shall be disabled.

The range of values that are supported by the controller are indicated in the Minimum Thermal
Management Temperature field and Maximum Thermal Management Temperature field in the
Identify Controller data structure in Figure 280.

If the host attempts to set this field to a value less than the value contained in the Minimum Thermal
Management Temperature field or greater than the value contained in the Maximum Thermal
Management Temperature field in the Identify Controller data structure in Figure 280, then the
command shall abort with a status code of Invalid Field in Command.

If the host attempts to set this field to a value greater than or equal to the value contained in the
Thermal Management Temperature 2 field, if non-zero, then the command shall abort with a status
code of Invalid Field in Command.

NVM Express® Base Specification, Revision 2.0e

325

Figure 347: HCTM – Command Dword 11

Bits Description

15:00

Thermal Management Temperature 2 (TMT2): This field specifies the temperature, in Kelvins,
when the controller begins to transition to lower power active power states or perform vendor
specific thermal management actions regardless of the impact on performance (e.g., heavy
throttling) in order to attempt to reduce the Composite Temperature.

A value cleared to 0h, specifies that this part of the Feature shall be disabled.

The range of values that are supported by the controller are indicated in the Minimum Thermal
Management Temperature field and Maximum Thermal Management Temperature field in the
Identify Controller data structure in Figure 280.

If the host attempts to set this field to a value less than the value contained in the Minimum Thermal
Management Temperature field or greater than the value contained in the Maximum Thermal
Management Temperature field in the Identify Controller data structure in Figure 280, then the
command shall abort with a status code of Invalid Field in Command.

If the host attempts to set this field to a non-zero value less than or equal to the value contained
in the Thermal Management Temperature 1 field, then the command shall abort with a status code
of Invalid Field in Command.

5.27.1.14 Non-Operational Power State Config (Feature Identifier 11h)

This Feature configures non-operational power state settings for the controller. The settings are specified
in Command Dword 11.

If a Get Features command is submitted for this Feature, the values in Figure 348 are returned in Dword 0
of the completion queue entry for that command.

Figure 348: Non-Operational Power State Config – Command Dword 11

Bits Description

31:01 Reserved

00

Non-Operational Power State Permissive Mode Enable (NOPPME): If this bit is set to ‘1’, then
the controller may temporarily exceed the power limits of any non-operational power state, up to
the limits of the last operational power state, to run controller initiated background operations in
that state (i.e., Non-Operational Power State Permissive Mode is enabled). If this bit is cleared to
‘0’, then the controller shall not exceed the limits of any non-operational state while running
controller initiated background operations in that state (i.e., Non-Operational Power State
Permissive Mode is disabled).

If Non-Operational Power State Permissive Mode is disabled, then:

a) thermal management that requires power (e.g., cooling fans) may be disabled; and
b) performance after resuming from the non-operational power state may be degraded until

background activity that was not allowed while in that non-operational power state has
completed.

If the host attempts to set this bit to ‘1’ and the controller does not support Non-Operational Power
State Permissive Mode as indicated in the Controller Attributes (CTRATT) field of the Identify
Controller data structure, then the controller shall abort the command with a status code of Invalid
Field in Command.

The Non-Operational Power State Config feature may interact with the Autonomous Power State Transition
feature (refer to section 5.27.1.9). Figure 334 shows these interactions.

5.27.1.15 Read Recovery Level Config (Feature Identifier 12h)

This Feature is used to configure the Read Recovery Level (refer to section 8.17). The attributes are
specified in Command Dword 11 and Command Dword 12. Modifying the Read Recovery Level has no
effect on the data contained in any associated namespace.

NVM Express® Base Specification, Revision 2.0e

326

If a Get Features command is submitted for this Feature, the attributes specified in Figure 350 are returned
in Dword 0 of the completion queue entry for that command.

Figure 349: Read Recovery Level Config – Command Dword 11

Bits Description

31:16 Reserved

15:00
NVM Set Identifier (NVMSETID): This field specifies the NVM Set to be modified. If NVM Sets
are not supported, then this field is ignored and the command applies to all namespaces in the
NVM subsystem.

Figure 350: Read Recovery Level Config – Command Dword 12

Bits Description

31:04 Reserved

03:00 Read Recovery Level (RRL): This field sets the Read Recovery Level for the NVM Set specified.

5.27.1.16 Predictable Latency Mode Config (Feature Identifier 13h)

This Feature configures an NVM Set to use Predictable Latency Mode, including warning event thresholds.
Predictable Latency Mode and events are disabled by default. The attributes are specified in Command
Dword 11, Command Dword 12, and the Deterministic Threshold Configuration data structure.

The NVM Set has transitioned to Predictable Latency Mode when the controller completes a Set Features
command successfully with the Predictable Latency Enable bit in Command Dword 12 set to ‘1’. A transition
to the Predictable Latency Mode may be delayed (i.e., the Set Features command completion is delayed)
if the NVM subsystem needs to perform background operations on the NVM in order to operate in
Predictable Latency Mode. Upon successful completion of this command, the controller shall be in the Non-
Deterministic Window.

If a Get Features command is submitted for this Feature, the attributes specified in Figure 352 are returned
in Dword 0 of the completion queue entry for that command and the Deterministic Threshold Configuration
data structure is returned.

Figure 351: Predictable Latency Mode Config – Command Dword 11

Bits Description

31:16 Reserved

15:00 NVM Set Identifier: This field specifies the NVM Set to be modified.

Figure 352: Predictable Latency Mode Config – Command Dword 12

Bits Description

31:01 Reserved

00
Predictable Latency Enable: If this bit is set to ‘1’, then Predictable Latency Mode (refer to section
8.16) is enabled for the NVM Set specified. If this bit is cleared to ‘0’, then Predictable Latency
Mode is disabled for the NVM Set specified.

Predictable Latency Events (refer to section 5.16.1.12) are configured as described in Figure 353.

NVM Express® Base Specification, Revision 2.0e

327

Figure 353: Predictable Latency Mode – Deterministic Threshold Configuration Data

Structure

Bytes Description

01:00

Enable Event: This field specifies whether an entry shall be added to the Predictable Latency
Event Aggregate log page for the associated event. If a bit is set to ‘1’, then an entry shall be
added if the specified event occurs. If a bit is cleared to ‘0’, then an entry shall not be added if the
specified event occurs.

Bits Description

15 Autonomous transition from DTWIN to NDWIN due to Deterministic Excursion.

14
Autonomous transition from DTWIN to NDWIN due to typical or maximum value
exceeded.

13:03 Reserved

02 DTWIN Time Warning

01 DTWIN Writes Warning

00 DTWIN Reads Warning

31:02 Reserved

39:32
DTWIN Reads Threshold: If the value of DTWIN Reads Estimate falls below this value and the
DTWIN Reads Warning is enabled, then the ‘DTWIN Reads Warning’ event is set in the
Predictable Latency Per NVM Set log page for the affected NVM Set.

47:40
DTWIN Writes Threshold: If the value of DTWIN Writes Estimate falls below this value and the
DTWIN Writes Warning is enabled, then the ‘DTWIN Writes Warning’ event is set in the
Predictable Latency Per NVM Set log page for the affected NVM Set.

55:48
DTWIN Time Threshold: If the value of DTWIN Time Estimate falls below this value and the
DTWIN Time Warning is enabled, then the ‘DTWIN Time Warning’ event is set in the Predictable
Latency Per NVM Set log page for the affected NVM Set.

511:56 Reserved

5.27.1.17 Predictable Latency Mode Window (Feature Identifier 14h)

This Feature is used to set the window for the specified NVM Set and its associated namespaces if the
NVM Set is configured in Predictable Latency Mode (refer to section 8.16). The attributes are specified in
Command Dword 11 and Command Dword 12. If Predictable Latency Mode is not enabled, then the
controller shall abort the command with a status code of Invalid Field in Command.

The transition to the window selected is complete when the Set Features command completes successfully.
A transition to the Deterministic Window may be delayed (i.e., the Set Features command completion is
delayed) if the minimum time has not been spent in the Non-Deterministic Window.

If a Get Features command is submitted for this Feature, the attributes specified in Figure 355 are returned
in Dword 0 of the completion queue entry for that command. If Predictable Latency Mode is not enabled,
then the controller shall abort the command with a status code of Invalid Field in Command.

Figure 354: Predictable Latency Mode Window – Command Dword 11

Bits Description

31:16 Reserved

15:00 NVM Set Identifier: This field specifies the NVM Set to be modified.

Figure 355: Predictable Latency Mode Window – Command Dword 12

Bits Description

31:03 Reserved

NVM Express® Base Specification, Revision 2.0e

328

Figure 355: Predictable Latency Mode Window – Command Dword 12

Bits Description

02:00

Window Select: This field selects or indicates the window used by all namespaces in the NVM
Set.

Value Definition

000b Reserved

001b Deterministic Window (DTWIN)

010b Non-Deterministic Window (NDWIN)

011b to 111b Reserved

5.27.1.18 Host Behavior Support (Feature Identifier 16h)

This Feature enables use of controller functionality that is associated with and depends upon specific host
behavior that may or may not be supported by all hosts. A controller does not use such functionality unless
the host has indicated that the host supports the specific host behavior upon which the functionality
depends. The host indicates that support to the controller by setting a field in this Feature. That host action
enables controller use of the associated functionality with that host. A controller shall not use functionality
with a host that has not indicated support for the associated specific host behavior upon which that controller
functionality depends. The attributes in Figure 356 are transferred in the data buffer.

For example, the Command Interrupted status code is associated with and depends upon the specific host
behavior that the host is expected to retry commands that are aborted with that status code. That command
retry behavior may or may not be supported by all hosts (e.g., hosts compliant with versions 1.3 and earlier
of the NVM Express Base Specification are unlikely to retry commands aborted with the Command
Interrupted status code as that status code was introduced after NVM Express Base Specification, Revision
1.3). A host that supports that command retry behavior indicates its support to the controller by setting a
field to 1h in the Host Behavior Support Feature. Setting that field to 1h enables controller use of the
Command Interrupted status code, with the result that this status code is used only with hosts that have
indicated support for the associated command retry behavior.

This Feature is not saveable (refer to Figure 200). The default value of this Feature shall be all bytes cleared
to 0h.

After a successful completion of a Set Features command for this Feature, the controller may use controller-
to-host functionality that depends on specific host behavior as indicated by the attributes. If multiple Set
Features commands for this Feature are processed by the controller, only information from the most recent
successful command is retained (i.e., subsequent commands replace information provided by previous
commands).

If a Get Features command is submitted for this Feature, the attributes specified in Figure 356 are returned
in the data buffer for that command.

Figure 356: Host Behavior Support – Data Structure

Bytes Description

00

Advanced Command Retry Enable (ACRE): If set to 1h, then the Command Interrupted status
code is enabled (refer to Figure 97) and command retry delays are enabled. The controller may
use the Command Interrupted status code and may indicate a command retry delay by setting the
Command Retry Delay (CRD) field to a non-zero value in the Status field of a completion queue
entry, refer to Figure 95. A host that sets this field to 1h indicates host support for the command
retry behaviors that are specified for both the Command Interrupted status code and non-zero
values in the CRD field.

If cleared to 0h, then both the Command Interrupted status code and command retry delays are
disabled. The controller shall not use the Command Interrupted status code, and shall clear the
CRD field to 0h in all CQEs.

All values other than 0h and 1h are reserved.

NVM Express® Base Specification, Revision 2.0e

329

Figure 356: Host Behavior Support – Data Structure

Bytes Description

01

Extended Telemetry Data Area 4 Supported (ETDAS): If set to 1h, then Telemetry Host-Initiated
Data Area 4 and Telemetry Controller-Initiated Data Area 4 are supported by the host. If bit 6 of
the Log Page Attributes field is set to ‘1’, then the controller may populate Telemetry Host-Initiated
Data Area 4 (refer to section 5.16.1.8) and the Telemetry Controller-Initiated Data Area 4 (refer to
section 5.16.1.9).

If cleared to 0h, then Telemetry Host-Initiated Data Area 4 and Telemetry Controller-Initiated Data
Area 4 are not supported by the host.

All values other than 0h and 1h are reserved.

02

LBA Format Extension Enable (LBAFEE): I/O Command Set specific definition. Refer to the
applicable I/O Command Set specification for details.

All values other than 0h and 1h are reserved.

511:03 Reserved

5.27.1.19 Sanitize Config (Feature Identifier 17h)

This Feature controls behavior of the Sanitize command and sanitize operations. The scope of this Feature
is the NVM subsystem.

The attributes are specified in Command Dword 11.

If a Get Features command is submitted for this Feature, the attributes specified in Figure 357 are returned
in Dword 0 of the completion queue entry for that command.

If this Feature is not saveable (refer to Figure 200), then the default value of the NODRM attribute shall be
cleared to ‘0’ (i.e., No-Deallocate Error Response Mode).

If the capabilities of the Sanitize Config Feature Identifier are both changeable and saveable (refer to
section 4.2), then the host is able to configure this Feature when initially provisioning a device.

Figure 357: Sanitize Config – Command Dword 11

Bits Description

31:01 Reserved

00

No-Deallocate Response Mode (NODRM): If the No-Deallocate Inhibited bit) is set to ‘1’ in the
Sanitize Capabilities field of the Identify Controller data structure (refer to Figure 280), then this bit
defines the response of the controller to a Sanitize command processed with the No-Deallocate
After Sanitize bit (refer to Figure 308) set to ‘1’.

If this bit is set to ‘1’ (i.e., No-Deallocate Warning Response Mode), then the controller shall
process such Sanitize commands, and if the resulting sanitize operation is completed successfully,
then bits 2:0 of the Sanitize Status field in the Sanitize Status log page shall be set to 100b (refer
to Figure 272).

If this bit is cleared to ‘0’ (i.e., No-Deallocate Error Response Mode), then the controller shall abort
such Sanitize commands with a status code of Invalid Field in Command.

If the No-Deallocate Inhibited bit in the Sanitize Capabilities field of the Identify Controller data
structure (refer to Figure 280) is cleared to ‘0’, then this bit has no effect.

5.27.1.20 Endurance Group Event Configuration (Feature Identifier 18h)

This Feature controls the events that trigger adding an Endurance Group Event Aggregate Log Change
Notices event to the Endurance Group Event Aggregate log. This Feature may be used to disable reporting
events in the case of a persistent condition (refer to section 5.2). If the condition for an event is true when
the corresponding notice is enabled, then an event is sent to the host. The attributes are specified in
Command Dword 11.

NVM Express® Base Specification, Revision 2.0e

330

If a Get Features command is submitted for this Feature, the Endurance Group Critical Warnings field in
Command Dword 11 is not used and the attributes specified in Figure 358 are returned in Dword 0 of the
completion queue entry for that command.

Figure 358: Asynchronous Event Configuration – Command Dword 11

Bits Description

31:24 Reserved

23:16

Endurance Group Critical Warnings: This field determines whether an event entry for an
Endurance Group (refer to section 3.2.3) is added to the Endurance Group Event Aggregate log
page (refer to section 5.16.1.15) for the corresponding Critical Warning specified in the Endurance
Group Information log page (refer to Figure 222). If a bit is set to ‘1’, then an entry is added when
the corresponding critical warning bit is set to ‘1’ in the Endurance Group Information log page. If
a bit is cleared to ‘0’, then an entry is not added when the corresponding critical warning bit is set
to ‘1’ in the Endurance Group Information log page.

15:00
Endurance Group Identifier (ENDGID): This field indicates the Endurance Group for which
asynchronous events are being configured. If this field is cleared to 0h, then the Endurance Group
Critical Warnings field is not used.

If a bit is set to ‘1’ in the Endurance Group Critical Warnings field which corresponds to a reserved bit in the
Critical Warning field of the Endurance Group Information log page (refer to Figure 222), then the Set
Features command shall be aborted with a status code of Invalid Field in Command.

If the Endurance Group Identifier specifies an Endurance Group that does not exist, then the Set Features
or Get Features command shall be aborted with a status code of Invalid Field in Command.

5.27.1.21 I/O Command Set Profile (Feature Identifier 19h)

This Feature specifies the I/O Command Sets that may be used by the controller when all supported I/O
Command Sets (110b) are selected in CC.CSS. This Feature shall be implemented if CAP.CSS bit 6 is set
to ‘1’. When CC.CSS is set to any value other than 110b, then this Feature has no effect and the I/O
Command Sets that may be used by the controller are specified by CC.CSS. If CC.CSS is set to any value
other than 110b and the controller receives a Set Features command for this Feature, then this command
has no effect and returns a status code of Successful Completion.

When all supported I/O Command Sets (110b) is selected in CC.CSS, the value of this Feature specifies
the index of the I/O Command Set Combination in the Identify I/O Command Set data structure that is used.
Refer to section 5.17.2.21 for more information. The Index is specified in the I/O Command Set Combination
Index field of Command Dword 11 (refer to Figure 359). If any namespace attached to the controller uses
an I/O Command Set that is not supported by the specified I/O Command Set combination, then the
controller shall abort the command with a status code of I/O Command Set Combination Rejected. Upon
successful completion of a Set Features command for this Feature, the controller transitions to using the
specified I/O Command Set Combination.

Figure 359: I/O Command Set Profile – Command Dword 11

Bits Description

31:09 Reserved

08:00

I/O Command Set Combination Index (IOCSCI): This field specifies the index of the I/O
Command Set Combination that is to be used. This field is used for the Set Features command
only and is ignored for the Get Features command for this Feature.

The controller shall abort a command that specifies an index that corresponds to an I/O Command
Set Combination that has a value of 0h with a status code of I/O Command Set Combination
Rejected.

If a Get Features command is submitted for this Feature, then the attributes described in Figure 360 are
returned in Dword 0 of the completion queue entry for that command.

NVM Express® Base Specification, Revision 2.0e

331

Figure 360: I/O Command Set Profile – Completion Queue Entry Dword 0

Bits Description

31:09 Reserved

08:00
I/O Command Set Combination Index (IOCSCI): This field returns the index of the currently
selected I/O Command Set Combination.

5.27.1.22 Spinup Control (Feature Identifier 1Ah)

This Feature allows the host to configure the method for initial spinup for Endurance Groups that store
data on rotational media (refer to section 8.20). The NVM subsystem is the scope for this feature.

If the NVM subsystem does not contain any Endurance Groups that store data on rotational media, then
the controller shall abort the Set Features command and the Get Features command for this Feature with
status code of Invalid Field in Command.

The method is specified in Command Dword 11 (refer to Figure 361).

Figure 361: Spinup Control – Command Dword 11

Bits Description

31:01 Reserved

0
If set to ‘1’, then the Spinup Control feature is enabled. If cleared to ‘0’, then the Spinup Control
feature is disabled. The setting is persistent.

If a Get Features command is submitted for this Feature, the attributes described in (refer to Figure 362)
are returned in Dword 0 of the completion queue entry for that command.

Figure 362: Completion Queue Entry Dword 0

Bits Description

31:01 Reserved

0
If set to ‘1’, then the Spinup Control feature is enabled. If cleared to ‘0’, then the Spinup Control
feature is disabled.

5.27.1.23 Host Metadata (Feature Identifier 7Dh), (Feature Identifier 7Eh), (Feature Identifier 7Fh)

The Host Metadata features are the Enhanced Controller Metadata feature (Feature Identifier 7Dh), the
Controller Metadata feature (Feature Identifier 7Eh), and the Namespace Metadata feature (Feature
Identifier 7Fh).

If a Get Features command specifying one of the Host Metadata features with the SEL field set to 011b
(i.e., Supported Capabilities) is submitted, then the Saveable bit in Dword 0 of the corresponding completion
queue entry shall be cleared to ‘0’ (i.e., refer to section 4.2), and the Changeable bit in Dword 0 of the
corresponding completion queue entry shall be set to ‘1’.

If a Get Features command specifying one of the Host Metadata features, the controller shall perform
additional actions specified in Figure 363.

Figure 363: Get Features – Command Dword 11

Bits Description

31:01 Reserved

NVM Express® Base Specification, Revision 2.0e

332

Figure 363: Get Features – Command Dword 11

Bits Description

00

Generate Default Host Metadata (GDHM): If this bit is set to ‘1’, then the controller shall modify
the default value of the specified Host Metadata feature by creating and returning a number of
vendor specific strings for the Element Types of the specified Host Metadata feature. The number
of vendor specific strings created and returned is implementation specific. The controller is allowed
to return:

• no vendor specific strings;

• vendor specific strings created for a subset of the defined Element Types of the specified
Host Metadata feature; or

• vendor specific strings created for each of the defined Element Types of the specified
Host Metadata feature.

These vendor specific strings replace the Metadata Element Descriptors in the default Host
Metadata data structure returned by the specified Host Metadata feature, when a Get Features
command for a Host Metadata feature with the SEL field set to 001b (i.e., Default) is submitted,
until a Controller Level Reset occurs (i.e., the replacement default values are not persistent across
a Controller Level Reset).

If this bit is cleared to ‘0’, then the controller shall not modify the default value of the specified Host
Metadata feature.

If this bit is cleared to ‘0’ and a Get Features command for a Host Metadata feature with the SEL
field set to 001b (i.e., Default) is submitted, then the controller shall return the currently existing
modified default value, if any, for that Host Metadata feature (i.e., the updated default value that
was created by the last Get Features command, with the GDHM bit set to ‘1’, that completed
successfully since the last Controller Level Reset).

The host issues a Set Features command specifying one of the Host Metadata features containing a Host
Metadata data structure (refer to Figure 365). The host receives a Host Metadata data structure via the Get
Features command. The content of the strings in the Host Metadata data structure are vendor specific.

If any Get Features command specifying the GDHM bit set to ‘1’ returned a status code of Successful
Completion since the last Controller Level Reset, then for any subsequent Get Features command that
specifies a SEL field set to 001b (i.e., Default) and specifies a Host Metadata feature, the controller shall
return the replaced default value containing the most recent vendor specific strings for that Host Metadata
feature.

The Action is specified in Command Dword 11 as shown in Figure 364.

Figure 364: Set Features – Command Dword 11

Bits Description

31:15 Reserved

NVM Express® Base Specification, Revision 2.0e

333

Figure 364: Set Features – Command Dword 11

Bits Description

14:13

Element Action (EA): This field specifies the action to perform on the specified Host Metadata
Feature value for each Metadata Element Descriptor data structure contained in the Host
Metadata data structure.

Value Definition

00b Add/Replace Entry

01b Delete Entry Multiple

10b Add Entry Multiple

11b Reserved

If the Element Action field is cleared to 00b (Add/Replace Entry) and the Metadata Element
Descriptor with the specified Element Type (refer to Figure 366) does not exist in the specified
Host Metadata Feature value, then the Controller shall create the descriptor in the specified Host
Metadata Feature value with the value in the Host Metadata data structure.

If the Element Action field is cleared to 00b (Add/Replace Entry) and one Metadata Element
Descriptor with the specified Element Type exists in the specified Host Metadata Feature value,
then the Controller shall replace with the value in the specified Host Metadata data structure.

If the Element Action field is cleared to 00b (Add/Replace Entry) and the Feature Identifier field is
set to Enhanced Controller Metadata, then the controller shall abort the Set Features command
with a status code of Invalid Field in Command and shall not change any Host Metadata Feature
value.

If the Element Action field is set to 01b (Delete Entry Multiple), then the Controller shall delete all
the specified Metadata Element Descriptors from the specified Host Metadata Feature value, if
any. If none of the specified Metadata Element Descriptors are present in the specified Host
Metadata Feature value, then the controller shall complete the Set Features command with a
status code of Successful Completion and shall not change any Host Metadata Feature value.

If the Element Action field is set to 10b (Add Entry Multiple), the Feature Identifier field is set to
Enhanced Controller Metadata, and no Metadata Element Descriptor with the specified Element
Type exists in the Enhanced Controller Metadata Feature value, then the controller shall create
new Metadata Element Descriptors in the Enhanced Controller Metadata Feature value with the
Element Type and the value specified in the Host Metadata data structure.

If the Element Action field is set to 10b (Add Entry Multiple), the Feature Identifier field is set to
Enhanced Controller Metadata, and one or more Metadata Element Descriptors with the specified
Element Type exists in the Enhanced Controller Metadata Feature value, then the controller shall
add the specified Metadata Element to the Enhanced Controller Metadata Feature value and shall
not modify any existing Metadata Element Descriptors.

If the Element Action field is set to 10b (Add Entry Multiple) and the Feature Identifier field is not
set to Enhanced Controller Metadata, then the controller shall abort the Set Features command
with a status code of Invalid Field in Command and shall not change the Host Metadata Feature
value.

12:00 Reserved

Metadata Element Descriptors may be added, replaced, or deleted based on the action specified in the
Element Action field. Modification of the Host Metadata Feature value shall be performed by the controller
in an atomic manner.

If a Set Features command is submitted for a Host Metadata Feature, a Host Metadata data structure,
defined in Figure 365, is transferred in the data buffer for the command. The Host Metadata data structure
is 4 KiB in size and contains zero or more Metadata Element Descriptors. If host software attempts to add
or replace a Metadata Element that causes the Host Metadata Feature value of the specified feature to
grow larger than 4 KiB, then the controller shall abort the command with a status code of Invalid Field in
Command.

NVM Express® Base Specification, Revision 2.0e

334

If the host receives a Host Metadata data structure via the Get Features command, then all of the Metadata
Element Descriptors present for the specified feature are added to a Host Metadata data structure (refer to
Figure 365) and returned in the data buffer for that command. The data buffer size is equal to the size of
the Host Metadata data structure that is 4 KiB in size.

Figure 365: Host Metadata Data Structure

Bytes Description

00
Number of Metadata Element Descriptors: This field contains the number of Metadata Element
descriptors in the data structure.

01 Reserved

x:02
Metadata Element Descriptor 0: This field contains the first Metadata Element descriptor or 0h
if there are no entries.

y:x+1
Metadata Element Descriptor 1: This field contains the second Metadata Element descriptor or
0h if there is only 1 entry.

… …

4095:z
Metadata Element Descriptor N: This field contains the (N+1)th Metadata Element descriptor or
0h if there are fewer than N+1 entries.

If the Feature Identifier field specifies Controller Metadata or Namespace Metadata, then the Host Metadata
data structure may contain at most one Metadata Element Descriptor of each Element Type. If the Feature
Identifier field specifies Enhanced Controller Metadata, then a Host Metadata data structure may contain
more than one Metadata Element Descriptor of each Element Type. Each Metadata Element Descriptor
contains the data structure shown in Figure 366.

Figure 366: Metadata Element Descriptor

Bits Description

31 + (Element
Length*8) :32

Element Value (EVAL): This field specifies the value for the element.

31:16

Element Length (ELEN): This field specifies the length of the Element Value field in
bytes. This field shall be cleared to 0h when deleting an entry (i.e., the EA field is set to
01b in Command Dword 11). This field should be non-zero when adding/updating an
entry (i.e., the EA field is cleared to 00b). If this field is cleared to 0h when
adding/updating an entry, then the controller behavior is undefined.

15:12 Reserved

11:08
Element Revision (ER): This field specifies the revision of this element value. Unless
specified otherwise elsewhere in this specification, all Metadata Element Descriptors
shall clear this field to 0h.

07:05 Reserved

04:00

Element Type (ET): This field specifies the type of metadata stored in the descriptor.

Value Definition

00h Reserved

01h to 17h

Element Types defined by this specification. Enhanced
Controller Metadata Element and Controller Metadata Element
types are defined in Figure 367. Namespace Metadata Element
types are defined in Figure 368.

18h to 1Fh Vendor Specific

5.27.1.23.1 Enhanced Controller Metadata (Feature Identifier 7Dh)

This feature is used to store metadata about the host platform in an NVM subsystem for later retrieval.

The metadata element types defined in Figure 367 are used by this feature.

Figure 367: Controller Metadata Element Types

Value Definition

00h Reserved

NVM Express® Base Specification, Revision 2.0e

335

Figure 367: Controller Metadata Element Types

Value Definition

01h
Operating System Controller Name: The name of the controller in the operating system as a UTF-
8 string.

02h Operating System Driver Name: The name of the driver in the operating system as a UTF-8 string.

03h
Operating System Driver Version: The version of the driver in the operating system as a UTF-8
string.

04h Pre-boot Controller Name: The name of the controller in the pre-boot environment as a UTF-8 string.

05h Pre-boot Driver Name: The name of the driver in the pre-boot environment as a UTF-8 string.

06h Pre-boot Driver Version: The version of the driver in the pre-boot environment as a UTF-8 string.

07h System Processor Model: The model of the processor as a UTF-8 string.

08h Chipset Driver Name: The chipset driver name as a UTF-8 string.

09h Chipset Driver Version: The chipset driver version as a UTF-8 string.

0Ah Operating System Name and Build: The operating system name and build as a UTF-8 string.

0Bh System Product Name: The system product name as a UTF-8 string.

0Ch Firmware Version: The host firmware (e.g., UEFI) version as a UTF-8 string.

0Dh Operating System Driver Filename: The operating system driver filename as a UTF-8 string.

0Eh Display Driver Name: The display driver name as a UTF-8 string.

0Fh Display Driver Version: The display driver version as a UTF-8 string.

10h
Host-Determined Failure Record: A failure record (e.g., the reason the host has flagged a failure
for an NVMe Storage Device (refer to the NVM Express Management Interface Specification) FRU
which may be used for failure analysis) as a UTF-8 string.

11h to 17h Reserved

18h to 1Fh Vendor Specific

Refer to section 5.27.1.23 for the definitions of Command Dword 11 and the Host Metadata Data Structure.

The default value for the Number of Metadata Element Descriptors of the Enhanced Controller Metadata
Feature shall be 0h on a Controller Level Reset.

If a Get Features command with the SEL field set to 011b (i.e., Supported Capabilities) with the
Enhanced Controller Metadata Feature value is submitted, then the NS Specific bit in Dword 0 of the
corresponding completion queue entry shall be cleared to ‘0’.

5.27.1.23.2 Controller Metadata (Feature Identifier 7Eh)

This feature is used to store metadata about the host platform in an NVM subsystem for later retrieval.

The Controller Metadata Feature provides backward compatibility with Management Controllers (refer to
the NVM Express Management Interface Specification) compliant with version 1.1 and earlier versions of
the NVM Express Management Interface Specification.

If a controller supports both the Enhanced Controller Metadata Feature and the Controller Metadata
Feature, then the Controller Metadata Feature should not be used by the host.

The metadata element types defined in Figure 367 are used by this feature.

Refer to section 5.27.1.23 for the definitions of Command Dword 11 and the Host Metadata Data
Structure.

If a Set Features command’s Element Action field of Command Dword 11 is set to 10b (Add Entry Multiple),
then the controller shall abort the command with a status code of Invalid Field in Command and shall not
change the Host Metadata Feature value.

The default value for the Number of Metadata Element Descriptors of the Controller Metadata Feature
shall be 0h on a Controller Level Reset.

If a Get Features command with the SEL field set to 011b (i.e., Supported Capabilities) with the Controller
Metadata Feature value is submitted, then the NS Specific bit in Dword 0 of the corresponding completion
queue entry shall be cleared to ‘0’.

NVM Express® Base Specification, Revision 2.0e

336

5.27.1.23.3 Namespace Metadata (Feature Identifier 7Fh)

This feature is used to store metadata about a namespace associated with a controller in the NVM
subsystem for later retrieval. This feature is namespace specific. The Add Entry Multiple action is prohibited
for this feature.

Refer to section 5.27.1.23 for the definitions of Command Dword 11 and the Host Metadata Data Structure.

If a Get Features command with the SEL field set to 011b (i.e., Supported Capabilities) with the Namespace
Metadata Feature value is submitted, then the NS Specific bit in Dword 0 of the corresponding completion
queue entry shall be set to ‘1’.

5.27.1.24 Software Progress Marker (Feature Identifier 80h)

This Feature is a software progress marker. The software progress marker is persistent across power
states. This information may be used to indicate to an OS software driver whether there have been issues
with the OS successfully loading. The attributes are specified in Command Dword 11.

If a Get Features command is submitted for this Feature, the attributes specified in Figure 369 are returned
in Dword 0 of the completion queue entry for that command.

Figure 369: Software Progress Marker – Command Dword 11

Bits Description

31:08 Reserved

07:00

Pre-boot Software Load Count (PBSLC): Indicates the load count of pre-boot software. After
successfully loading and initializing the controller, pre-boot software should set this field to one
more than the previous value of the Pre-boot Software Load Count. If the previous value is 255,
then the value should not be updated by pre-boot software (i.e., the value does not wrap to 0). OS
driver software should set this field to 0h after the OS has successfully been initialized.

5.27.1.25 Host Identifier (Feature Identifier 81h)

This feature allows the host to register a Host Identifier with the controller. The Host Identifier is used by
the controller to determine whether other controllers in the NVM subsystem are associated with the same
host. The Host Identifier may be used to designate host elements that access an NVM subsystem
independently of each other or for reservations.

The Host Identifier is contained in the data structure indicated in Figure 371. The attributes are specified in
Command Dword 11. If a Get Features command is issued for this Feature, the data structure specified in
Figure 371 is returned in the data buffer for that command.

The requirements and use of the Host Identifier feature is dependent on whether the NVMe over PCIe
implementation or NVMe over Fabrics implementation are supported. Refer to section 5.27.1.25.1 and
section 5.27.1.25.2.

Figure 368: Namespace Metadata Element Types

Value Definition

00h Reserved

01h
Operating System Namespace Name: The name of the namespace in the operating system as
a UTF-8 string.

02h
Pre-boot Namespace Name: The name of the namespace in the pre-boot environment as a UTF-
8 string.

03h
Operating System Namespace Name Qualifier 1: The first qualifier of the Operating System
Namespace Name as a UTF-8 string.

04h
Operating System Namespace Name Qualifier 2: The second qualifier of the Operating System
Namespace Name as a UTF-8 string.

05h to 17h Reserved

18h to 1Fh Vendor Specific

NVM Express® Base Specification, Revision 2.0e

337

Figure 370: Host Identifier – Command Dword 11

Bits Description

31:01 Reserved

00

Enable Extended Host Identifier (EXHID): If set to ‘1’, then the host is requesting the use of an
extended 128-bit Host Identifier. If cleared to ‘0’, then the host is requesting the use of a 64-bit
Host Identifier. NVMe over Fabrics implementations shall use an extended 128-bit Host Identifier.

If the controller does not support a 128-bit Host Identifier as indicated in the Controller Attributes
field in the Identify Controller data structure and the host sets this bit to ‘1’, then a status code of
Invalid Field in Command shall be returned.

If the controller does not support a 64-bit Host Identifier (e.g., the device is an NVMe over Fabrics
device) and the host clears this bit to ‘0’, then a status code of Invalid Field in Command shall be
returned.

If the NVM subsystem supports a 64-bit Host Identifier, supports a 128-bit Host Identifier and
detects that another controller in the NVM subsystem is already using a non-zero Host Identifier
of a different size than the size requested in this command, then a status code of Host Identifier
Inconsistent Format shall be returned.

Figure 371: Host Identifier – Data Structure Entry

Bytes Description

15:00

Host Identifier (HOSTID): This field specifies a 64-bit or 128-bit identifier that uniquely identifies
the host associated with the controller within the NVM subsystem. The host provides an 8 byte or
16 byte data structure depending on the value specified in the Enable Extended Host Identifier bit.
The value of the Host Identifier used by a host, the method used to select this value, and the
method used to ensure uniqueness are outside the scope of this specification. Controllers in an
NVM subsystem that have the same Host Identifier are assumed to be associated with the same
host and have the same reservation and registration rights.

A Host Identifier value of 0h indicates that the host is not associated with any other controller in
the NVM subsystem.

5.27.1.25.1 PCIe Transport Implementations

The Host Identifier is an optional feature when implemented on a controller using a PCIe transport. The
controller may support a 64-bit Host Identifier and/or an extended 128-bit Host Identifier. It is recommended
that implementations support the extended 128-bit Host Identifier as indicated in the Controller Attributes
field in the Identify Controller data structure. The Host Identifier may be modified at any time using a Set
Features command causing the controller to be logically remapped from the original host associated with
the old Host Identifier to a new host associated with the new Host Identifier.

A Host Identifier value of 0h is a valid value that indicates that the host associated with the controller is not
associated with any other controller in the NVM subsystem. Specifically, two controllers in an NVM
subsystem that both have a Host Identifier of 0h indicates that the controllers are associated with different
hosts. Using a Host Identifier value of 0h is a valid configuration for the reservations feature. However,
reservations and registrations associated with a Host Identifier of 0h do not persist across a Controller Level
Reset since a host that uses a Host Identifier of 0h is treated as a different host after a Controller Level
Reset.

5.27.1.25.2 NVMe over Fabrics Implementations

The Host Identifier is a mandatory feature in NVMe over Fabrics implementations. The Host Identifier shall
be an extended 128-bit Host Identifier. The Host Identifier shall be set to a non-zero value in the Fabrics
Connect command. The Host Identifier shall not be modified. A Set Features command specifying the Host
Identifier Feature shall be aborted with a status code of Command Sequence Error. A Get Features
command specifying the Host Identifier Feature shall return the value set in the Fabrics Connect command.

NVM Express® Base Specification, Revision 2.0e

338

5.27.1.26 Reservation Notification Mask (Feature Identifier 82h)

This Feature controls the masking of reservation notifications on a per namespace basis. A Reservation
Notification log page is created whenever a reservation notification occurs on a namespace and the
corresponding reservation notification type is not masked on that namespace by this Feature. If reservations
are supported by the controller, then this Feature shall be supported. The attributes are specified in
Command Dword 11.

A Set Features command that uses a namespace ID other than FFFFFFFFh modifies the reservation
notification mask for the corresponding namespace only. A Set Features command that uses a namespace
ID of FFFFFFFFh modifies the reservation notification mask of all namespaces that are attached to the
controller and that support reservations. A Get Features command that uses a namespace ID other than
FFFFFFFFh returns the reservation notification mask for the corresponding namespace. A Get Features
command that uses a namespace ID of FFFFFFFFh should be aborted with status code of Invalid Field in
Command. If a Set Features command or a Get Features command attempts to access the Reservation
Notification Mask on a namespace that does not support reservations or is invalid, then that command is
aborted with status code of Invalid Field in Command.

If a Get Features command successfully completes for this Feature, the attributes specified in Figure 372
are returned in Dword 0 of the completion queue entry for that command.

Figure 372: Reservation Notification Configuration – Command Dword 11

Bits Description

31:04 Reserved

03
Mask Reservation Preempted Notification (RESPRE): If set to ‘1’, then mask the reporting of
reservation preempted notification by the controller. If cleared to ‘0’, then the notification is not
masked and a Reservation Notification log page is created whenever notification occurs.

02
Mask Reservation Released Notification (RESREL): If set to ‘1’, then mask the reporting of
reservation released notification by the controller. If cleared to ‘0’, then the notification is not
masked and a Reservation Notification log page is created whenever the notification occurs.

01
Mask Registration Preempted Notification (REGPRE): If set to ‘1’, then mask the reporting of
registration preempted notification by the controller. If cleared to ‘0’, then the notification is not
masked and a Reservation Notification log page is created whenever the notification occurs.

00 Reserved

5.27.1.27 Reservation Persistence (Feature Identifier 83h)

Each namespace that supports reservations has a Persist Through Power Loss (PTPL) state that may be
modified using either a Set Features command or a Reservation Register command (refer to section 7.3).
The Reservation Persistence feature attributes are specified in Command Dword 11.

The PTPL state is contained in the Reservation Persistence Feature that is namespace specific. A Set
Features command that uses the namespace ID FFFFFFFFh modifies the PTPL state associated with all
namespaces that are attached to the controller and that support PTPL (i.e., support reservations). A Set
Features command that uses a valid namespace ID other than FFFFFFFFh and corresponds to a
namespace that supports reservations, modifies the PTPL state for that namespace. A Get Features
command that uses a namespace ID of FFFFFFFFh should be aborted with a status code of Invalid Field
in Command. A Get Features command that uses a valid namespace ID other than FFFFFFFFh and
corresponds to a namespace that supports PTPL, returns the PTPL state for that namespace. If a Set
Features command or a Get Features command using a namespace ID other than FFFFFFFFh attempts
to access the PTPL state for a namespace that does not support this Feature Identifier, then the command
is aborted with status code of Invalid Field in Command.

This Feature should not be saveable (refer to Figure 200). If this Feature is saveable, then the host should
set the current value and the saved value to the same value.

If a Get Features command successfully completes for this Feature Identifier, the attributes specified in
Figure 373 are returned in Dword 0 of the completion queue entry for that command

NVM Express® Base Specification, Revision 2.0e

339

Figure 373: Reservation Persistence Configuration – Command Dword 11

Bits Description

31:01 Reserved

00
Persist Through Power Loss (PTPL): If set to '1', then reservations and registrants persist across
a power loss. If cleared to ‘0’, then reservations are released and registrants are cleared on a
power loss.

5.27.1.28 Namespace Write Protection Config (Feature Identifier 84h)

This Feature is used by the host to configure the namespace write protection state or to determine the write
protection state of a namespace. Refer to section 8.12 for definition and behaviors of the namespace write
protection states. The settings are specified in Command Dword 11.

This Feature is not saveable (refer to Figure 200). There is no default value for this Feature; the value of
the Feature after a power cycle or a Controller Level Reset is determined by the write protection state of
the namespace prior to the power cycle or Controller Level Reset, except for the Write Protect Until Power
Cycle write protection state (refer to section 8.12).

If a Get Features command is submitted for this Feature, the attributes specified in Figure 374 are returned
in Dword 0 of the completion queue entry for that command.

Figure 374: Write Protection – Command Dword 11

Bits Description

31:03 Reserved

02:00

Write Protection State: This field specifies the write protection state of the specified namespace.

Value Definition

000b No Write Protect

001b Write Protect

010b Write Protect Until Power Cycle

011b Permanent Write Protect

100b to 111b Reserved

If a Set Features command attempts to change the namespace write protection state of a namespace that
is in the Write Protect Until Power Cycle state or the Permanent Write Protect state, then the controller shall
abort the command with a status code of Feature Not Changeable.

If a Set Features command attempts to change the namespace write protection state of a namespace to
the Write Protect Until Power Cycle state and bit 0 of the of the Write Protection Control field is cleared to
‘0’, then the controller shall abort the command with a status code of Feature Not Changeable.

If a Set Features command attempts to change the namespace write protection state of a namespace to
the Write Protect Until Power Cycle state in a multi-domain NVM subsystem (i.e., the MDS bit is set to ‘1’
in the CTRATT field of the Identify Controller data structure (refer to Figure 280)), then the controller should
abort the command with a status code of Feature Not Changeable.

If a Set Features command changes the namespace to a write protected state, then the controller shall
commit all volatile write cache data and metadata associated with the specified namespace to non-volatile
storage medium as part of transitioning to the write protected state.

 Command Completion

Upon completion of the Set Features command, the controller posts a completion queue entry to the Admin
Completion Queue. If a status code of Successful Completion is returned, the completion queue entry shall
not be posted until the controller has completed setting attributes associated with the Feature. Set Features
command specific status values are defined in Figure 375.

NVM Express® Base Specification, Revision 2.0e

340

Figure 375: Set Features – Command Specific Status Values

Value Description

0Dh
Feature Identifier Not Saveable: The Feature Identifier specified does not support a saveable
value.

0Eh Feature Not Changeable: The Feature Identifier specified does not support a changeable value.

0Fh
Feature Not Namespace Specific: The Feature Identifier specified is not namespace specific.
The Feature Identifier settings apply across all namespaces.

14h
Overlapping Range: Command Set specific definition. Refer to each I/O Command Set
specification for applicability and details.

15h
I/O Command Set Combination Rejected: This error indicates that the controller did not accept
the request to select the requested I/O Command Set Combination.

5.28 Virtualization Management command

The Virtualization Management command is supported by primary controllers that support the Virtualization
Enhancements capability. This command is used for several functions:

• Modifying Flexible Resource allocation for the primary controller;

• Assigning Flexible Resources for secondary controllers; and

• Setting the Online and Offline state for secondary controllers.

Refer to section 8.26 for more on the Virtualization Enhancements capability and the Virtualization
Management command.

The Virtualization Management command uses the Command Dword 10 and Command Dword 11 fields.
All other command specific fields are reserved.

If the action requested specifies a range of controller resources that:

a) does not exist;
b) is a Private Resource (e.g., VQ resources are requested when VQ resources are not supported, VI

resources are requested when VI resources are not supported); or
c) is currently in use (e.g., the number of Controller Resources (NR) is greater than the number of

remaining available flexible resources),

then the command is aborted with a status code of Invalid Resource Identifier.

Figure 376: Virtualization Management – Command Dword 10

Bits Description

31:16
Controller Identifier (CNTLID): This field indicates the controller for which controller resources
are to be modified.

15:11 Reserved

10:08

Resource Type (RT): This field indicates the type of controller resource to be modified.

Value Description

000b VQ Resources

001b VI Resources

010b to 111b Reserved

07:04 Reserved

NVM Express® Base Specification, Revision 2.0e

341

Figure 376: Virtualization Management – Command Dword 10

Bits Description

03:00

Action (ACT): This field indicates the operation for the command to perform as described below.

Value Description

0h Reserved

1h

Primary Controller Flexible Allocation: Set the number of Flexible Resources
allocated to this primary controller following the next Controller Level Reset other
than a Controller Reset. If the Controller Identifier field does not correspond to this
primary controller, then a status code of Invalid Controller Identifier is returned.
This value is persistent across power cycles and resets.

2h to 6h Reserved

7h

Secondary Controller Offline: Place the secondary controller in the Offline state
and remove all Flexible Resources. If the Controller Identifier field does not
correspond to a secondary controller associated with this primary controller, then
a status code of Invalid Controller Identifier is returned.

It is not an error to request a secondary controller be placed in the offline state if
that secondary controller is already in the offline state.

8h

Secondary Controller Assign: Assign the number of controller resources
specified in Number of Controller Resources to the secondary controller. If the
Controller Identifier field does not correspond to a secondary controller associated
with this primary controller, then an error of Invalid Controller Identifier is returned.
If the secondary controller is not in the Offline state, then a status code of Invalid
Secondary Controller State is returned.

9h

Secondary Controller Online: Place the secondary controller in the Online state.
If the Controller Identifier field does not correspond to a secondary controller
associated with this primary controller, then an error of Invalid Controller Identifier
is returned. If the secondary controller is not configured appropriately (refer to
section 8.26) or the primary controller is not enabled, then a status code of Invalid
Secondary Controller State is returned.

It is not an error to request a secondary controller be placed in the online state if
that secondary controller is already in the online state.

Ah to Fh Reserved

Figure 377: Virtualization Management – Command Dword 11

Bits Description

31:16 Reserved

15:00
Number of Controller Resources (NR): This field indicates a number of controller resources to
allocate or assign.

 Command Completion

Command specific status values associated with the Virtualization management command are defined in
Figure 378.

Figure 378: Virtualization Management – Command Specific Status Values

Value Description

1Fh Invalid Controller Identifier: An invalid Controller Identifier was specified.

20h
Invalid Secondary Controller State: The action requested for the secondary controller
is invalid based on the current state of the secondary controller and its primary controller.

21h

Invalid Number of Controller Resources: The specified number of Flexible Resources
is invalid (e.g., the Number of Controller Resources (NR) is greater than VQ Resources
Flexible Total (VQFRT) (refer to Figure 286), the Number of Controller Resources (NR)
is greater than VQ Resources Flexible Secondary Maximum (VQFRSM) (refer to Figure
286)).

NVM Express® Base Specification, Revision 2.0e

342

Figure 378: Virtualization Management – Command Specific Status Values

Value Description

22h
Invalid Resource Identifier: At least one of the specified resource identifiers was invalid
(e.g., the Number of Controller Resources (NR) is greater than the number of remaining
available flexible resources).

Dword 0 of the completion queue entry contains information about the controller resources that were
modified as part of the Primary Controller Flexible Allocation and Secondary Controller Assign actions.
Dword 0 of the completion queue entry is defined in Figure 379.

Figure 379: Virtualization Management – Completion Queue Entry Dword 0

Bits Description

31:16 Reserved

15:00
Number of Controller Resources Modified (NRM): This field indicates the number of controller
resources that were allocated or assigned. The value may be smaller or larger than the number
requested.

NVM Express® Base Specification, Revision 2.0e

343

6 Fabrics Command Set

Fabrics commands are used to create queues and initialize a controller. Fabrics commands have an
Opcode field of 7Fh and are distinguished by the Fabrics Command Type as shown in Figure 380. Fabrics
commands are processed regardless of the state of controller enable (CC.EN). The Fabrics command
capsule is defined in section 3.3.2.1.1 and the Fabrics response capsule and status is defined in section
3.3.2.1.2.

Restrictions on processing commands listed in Figure 380 are defined in the Admin Command Set in
section 5 (e.g., while the NVM subsystem is performing a sanitize operation or processing of a Format NVM
command).

Figure 380: Fabrics Command Types

Fabrics Command Type by Field Combined
Fabrics

Command

Type
2

O/M
1
 I/O Queue

3
 Command

(07) (06:02) (01:00)

Generic
Command Function

Data

Transfer
4

0b 000 00b 00b 00h M No Property Set

0b 000 00b 01b 01h M Yes Connect
5

0b 000 01b 00b 04h M No Property Get

0b 000 01b 01b 05h O Yes Authentication Send

0b 000 01b 10b 06h O Yes Authentication Receive

0b 000 10b 00b 08h O Yes Disconnect

 Vendor Specific

1b na na C0h to FFh O Vendor specific

Notes:
1. O/M definition: O = Optional, M = Mandatory.
2. Fabrics Command Types not listed are reserved.
3. All Fabrics commands, other than the Disconnect command, may be submitted on the Admin Queue. The I/O

Queue supports Fabrics commands as specified in this column. If a Fabrics command that is not supported on
an I/O Queue is sent on an I/O Queue, that command shall be aborted with a status code of Invalid Field in
Command.

4. 00b = no data transfer; 01b = host to controller; 10b = controller to host; 11b = reserved
5. The Connect command is submitted and completed on the same queue that the Connect command creates.

Refer to section 3.3.2.2.

6.1 Authentication Receive Command and Response

The Authentication Receive command transfers the status and data result of one or more Authentication
Send commands that were previously submitted to the controller.

The association between an Authentication Receive command and previous Authentication Send
commands is dependent on the Security Protocol. The format of the data to be transferred is dependent on
the Security Protocol. Refer to SPC-5 for Security Protocol details.

Authentication Receive commands return the appropriate data corresponding to an Authentication Send
command as defined by the rules of the Security Protocol. The Authentication Receive command data shall
not be retained if there is a loss of communication between the controller and host, or if a Controller Level
Reset occurs.

Figure 381: Authentication Receive Command – Submission Queue Entry

Bytes Description

03:00 Command Dword 0: Refer to Figure 83.

04
Fabrics Command Type (FCTYPE): Set to 06h to indicate an Authentication Receive
command.

23:05 Reserved

NVM Express® Base Specification, Revision 2.0e

344

Figure 381: Authentication Receive Command – Submission Queue Entry

Bytes Description

39:24 SGL Descriptor 1 (SGL1): Refer to Figure 82.

40 Reserved

41
SP Specific 0 (SPSP0): The value of this field contains bits 07:00 of the Security Protocol
Specific field as defined in SPC-5.

42
SP Specific 1 (SPSP1): The value of this field contains bits 15:08 of the Security Protocol
Specific field as defined in SPC-5.

43
Security Protocol (SECP): This field specifies the security protocol as defined in SPC-5. The
controller shall abort the command with Invalid Parameter indicated if a reserved value of the
Security Protocol is specified.

47:44
Allocation Length (AL): The value of this field is specific to the Security Protocol as defined in
SPC-5 where INC_512 is cleared to ‘0’.

63:48 Reserved

Figure 382: Authentication Receive Response

Bytes Description

07:00 Reserved

09:08
SQ Head Pointer (SQHD): Indicates the current Submission Queue Head pointer for the
associated Submission Queue.

11:10 Reserved

13:12 Command Identifier (CID): Indicates the identifier of the command that is being completed.

15:14

Status (STS): Indicates status for the command.

Bits Definition

15:01 Status field for the command. Refer to section 3.3.3.2.1

00 Reserved

6.2 Authentication Send Command and Response

The Authentication Send command is used to transfer security protocol data to the controller. The data
structure transferred as part of this command contains security protocol specific commands to be performed
by the controller. The data structure may contain data or parameters associated with the security protocol
specific commands. Status and data that is to be returned to the host for the security protocol specific
commands submitted by an Authentication Send command are retrieved with the Authentication Receive
command defined in section 6.1.

The association between an Authentication Send command and subsequent Authentication Receive
commands is Security Protocol field dependent as defined in SPC-5.

Figure 383: Authentication Send Command – Submission Queue Entry

Bytes Description

03:00 Command Dword 0: Refer to Figure 83.

04 Fabrics Command Type (FCTYPE): Set to 05h to indicate an Authentication Send command.

23:05 Reserved

39:24 SGL Descriptor 1 (SGL1): Refer to Figure 82.

40 Reserved

41
SP Specific 0 (SPSP0): The value of this field contains bits 07:00 of the Security Protocol
Specific field as defined in SPC-5.

42
SP Specific 1 (SPSP1): The value of this field contains bits 15:08 of the Security Protocol
Specific field as defined in SPC-5.

43
Security Protocol (SECP): This field specifies the security protocol as defined in SPC-5. The
controller shall abort the command with a status code of Invalid Parameter indicated if a
reserved value of the Security Protocol is specified.

NVM Express® Base Specification, Revision 2.0e

345

Figure 383: Authentication Send Command – Submission Queue Entry

Bytes Description

47:44
Transfer Length (TL): The value of this field is specific to the Security Protocol as defined in
SPC-5 where INC_512 is cleared to ‘0’.

63:48 Reserved

Figure 384: Authentication Send Response

Bytes Description

07:00 Reserved

09:08
SQ Head Pointer (SQHD): Indicates the current Submission Queue Head pointer for the
associated Submission Queue.

11:10 Reserved

13:12 Command Identifier (CID): Indicates the identifier of the command that is being completed.

15:14

Status (STS): Indicates status for the command.

Bits Definition

15:01 Status field for the command. Refer to section 3.3.3.2.1

00 Reserved

6.3 Connect Command and Response

The Connect command is used to create a Submission and Completion Queue pair. If the Admin Queue is
specified, then the Connect command establishes an association between a host and a controller. The
fields for the submission queue entry are defined in Figure 385 and the fields for the data portion are defined
in Figure 386.

A host that uses a single Host NQN may employ multiple Host Identifiers to designate elements of the host
that access an NVM subsystem independently of each other (e.g., physical or logical partitions of the host).
Alternatively, a host may employ multiple Host NQN values to cause each element to be treated as a
separate host by an NVM subsystem.

If an NVM subsystem supports DH-HMAC-CHAP authentication (refer to section 8.13), then the Host NQN
and the NVM Subsystem NQN parameters in a Connect command are required to be different. If the Host
NQN and the NVM Subsystem NQN parameters in a Connect command are identical and the NVM
subsystem supports DH-HMAC-CHAP authentication, then the controller shall abort the command with a
status code of Connect Invalid Host.

The NVM subsystem shall not allocate a Controller ID in the range FFF0h to FFFFh as a valid Controller
ID on completion of a Connect command. If the host is not allowed to establish an association to any
controller in the NVM subsystem, then the controller shall abort the command with a status code of Connect
Invalid Host.

If the NVM subsystem supports the dynamic controller model, then:

• the Controller ID of FFFFh is specified as the Controller ID in a Connect command for the Admin
Queue. If the controller ID is not set to FFFFh, then the controller shall abort the command with a
status code of Connect Invalid Parameters;

• the NVM subsystem shall allocate any available controller to the host; and

• return that allocated Controller ID in the Connect response.

If the NVM subsystem supports the static controller model, then:

• The host is able to request a specific controller in a Connect command for the Admin Queue. If the
host is not allowed to establish an association to the specified controller, then the controller shall
abort the command with a status code of Connect Invalid Host;

• The Controller ID of FFFEh on the Admin Queue specifies that any Controller ID may be allocated
and returned in the Connect response; and

NVM Express® Base Specification, Revision 2.0e

346

• If the host specifies a Controller ID value of FFFFh for the Admin Queue, then the controller shall
abort the command with a status code of Connect Invalid Parameters.

The NVM subsystem may allocate specific controllers to particular hosts. If a host requests a controller that
is not allocated to that host, then the controller shall abort the command with a status code of Connect
Invalid Host. The mechanism for allocating specific controllers to particular hosts is outside the scope of
this specification.

The host shall establish an association with a controller and enable the controller before establishing a
connection with an I/O Queue of the controller. If the host sends a Connect command specifying a Queue
ID for an Admin Queue or I/O Queue that has already been created, then the controller shall abort the
command with a status code of Command Sequence Error.

The controller shall abort a Connect command with a status code of Connect Invalid Parameters if:

• the host sends a Connect command to create an I/O Queue while the controller is disabled;

• the Host Identifier, Host NQN, NVM Subsystem NQN, and the Controller ID values specified for an
I/O Queue are not the same as the values specified for the associated Admin Queue in which the
association between the host and controller was established;

• the Host NQN or NVM Subsystem NQN values do not match the values that the NVM subsystem
is configured to support;

• there is a syntax error in the Host NQN or NVM Subsystem NQN value (refer to section 4.4); or

• the Host Identifier is cleared to 0h.

If the NVMe Subsystem Port, NVMe Transport Type or NVMe Transport Address used by the NVMe
Transport (refer to section 6.3) are not the same as the values used for the associated Admin Queue in
which the association between the host and controller was established, then it is possible that the Connect
command is not received by an NVM subsystem. If the Connect command is received by an NVM
subsystem, then:

• the NVM subsystem that receives the command may not be the same NVM subsystem to which
the association between the host and controller was established (i.e., the NVMe Transport Type
and NVMe Transport Address are unique to an NVM Subsystem Port); and

• the values of the NVM Subsystem NQN or Controller ID may not be valid at that NVM Subsystem
Port (e.g., the NVM Subsystem NQN may specify a different NVM subsystem than the one that
received that Connect command, or the Controller ID may specify a controller that is already bound
to a different NVM Subsystem Port).

If this situation occurs and the Connect command is aborted, then the status code shall be set to Connect
Invalid Parameters. There is no requirement that such a Connect command be received by an NVM
subsystem (e.g., if the NVMe Transport Address is not a valid transport address, or is the address of a
fabric endpoint that does not support NVMe over Fabrics, then the resulting error, if any, is specific to the
fabric).

Submission Queue (SQ) flow control based on the SQ Head Pointer (SQHD) field in Fabrics response
capsules (refer to section 3.3.2.1.2) shall be supported by all hosts and controllers. Use of SQ flow control
is negotiated by the Connect command and response. A host requests that SQ flow control be disabled by
setting bit 2 of the Connect Attributes field to ‘1’ in a Connect command. A controller that agrees to disable
SQ flow control shall set the SQHD field to FFFFh in the response to that Connect command. A controller
that does not agree to disable SQ flow control shall set the SQHD field to a value other than FFFFh in the
response to that Connect command.

If the Connect command did not request that SQ flow control be disabled, then the controller shall not set
the SQHD field to FFFFh in the response to that Connect command.

SQ flow control is disabled and shall not be used for a created queue pair only if:

a) bit 2 is set to ‘1’ in the Connect Attributes field of the Connect command that creates the queue
pair; and

b) the SQHD field is set to FFFFh in the response to that Connect command.

NVM Express® Base Specification, Revision 2.0e

347

If SQ flow control is disabled, then the SQHD field is reserved in Fabrics response capsules for all command
completions on that queue pair after the response that completes the Connect command.

SQ flow control is enabled and shall be used for a created queue pair if:

a) bit 2 is cleared to ‘0’ in the Connect Attributes field of the Connect command that creates the queue
pair; or

b) the SQHD field is not set to FFFFh in the response to that Connect command.

If SQ flow control is enabled, then the controller shall use the SQHD field in Fabrics response capsules for
all command completions on that queue pair, except for command completions that omit the SQHD value
due to use of the SQHD pointer update optimization described in section 3.3.2.7.

Figure 385: Connect Command – Submission Queue Entry

Bytes Description

03:00 Command Dword 0: Refer to Figure 83.

04 Fabrics Command Type (FCTYPE): Set to 01h to indicate a Connect command.

23:05 Reserved

39:24 SGL Descriptor 1 (SGL1): Refer to Figure 82.

41:40
Record Format (RECFMT): Specifies the format of the Connect command capsule. The format
of the record specified in this definition shall be 0h. If the NVM subsystem does not support the
value specified, then a status code of Incompatible Format shall be returned.

43:42

Queue ID (QID): Specifies the Queue Identifier for the Admin Queue or I/O Queue to be created.
The identifier is used for both the Submission and Completion Queue. The identifier for the
Admin Submission Queue and Completion Queue is 0h. The identifier for an I/O Submission
and Completion Queue is in the range 1 to 65,534.

If the value in this field specifies the Queue ID of a queue that already exists, then the controller
shall abort the command with a status code of Invalid Queue Identifier.

45:44

Submission Queue Size (SQSIZE): This field indicates the size of the Submission Queue to
be created. If the size is 0h or larger than the controller supports, then a status code of Connect
Invalid Parameters shall be returned. The maximum size of the Admin Submission Queue is
specified in the Discovery Log Page Entry for the NVM subsystem. Refer to Figure 269. This is
a 0’s based value.

46

Connect Attributes (CATTR): This field indicates attributes for the connection.

Bits 7:4 are reserved.

Bit 3 indicates support for deleting individual I/O Queues. If this bit is set to ‘1’, then the host
supports the deletion of individual I/O Queues. If this bit is cleared to ‘0’, then the host does not
support the deletion of individual I/O Queues.

Bit 2 if set to ‘1’, then the host is requesting that SQ flow control be disabled. If cleared to ‘0’,
then SQ flow control shall not be disabled.

Bits 1:0 indicate the priority class to use for commands within this Submission Queue. This field
is only used when the weighted round robin with urgent priority class is the arbitration
mechanism selected (refer to CC.AMS in Figure 48), the field is ignored if weighted round robin
with urgent priority class is not used. Refer to section 3.4.4. This field is only valid for I/O Queues
and shall be cleared to 00b for Admin Queue connections.

Value Definition

00b Urgent

01b High

10b Medium

11b Low

47 Reserved

NVM Express® Base Specification, Revision 2.0e

348

Figure 385: Connect Command – Submission Queue Entry

Bytes Description

51:48

Keep Alive Timeout (KATO): In the Connect command for the Admin Queue, this field has the
same definition as the Keep Alive Timeout (KATO) field of the Keep Alive Timer feature (refer
to section 5.27.1.12). Upon successful completion of the Connect command, the controller shall
set the KATO field in the Keep Alive Timer feature. Refer to section 3.9.2 for a description of
activating the Keep Alive Timer.

In the Connect command for an I/O Queue, this field is reserved.

63:52 Reserved

Figure 386: Connect Command – Data

Bytes Description

15:00
Host Identifier (HOSTID): This field has the same definition as the Host Identifier defined
in section 5.27.1.25. The controller shall set the Host Identifer Feature to this value.

17:16

Controller ID (CNTLID): Specifies the controller ID requested. This field corresponds to
the Controller ID (CNTLID) value returned in the Identify Controller data structure for a
particular controller. If the NVM subsystem uses the dynamic controller model, then the
value shall be FFFFh for the Admin Queue and any available controller may be returned.
If the NVM subsystem uses the static controller model and the value is FFFEh for the
Admin Queue, then any available controller may be returned.

255:18 Reserved

511:256
NVM Subsystem NVMe Qualified Name (SUBNQN): NVMe Qualified Name (NQN) that
uniquely identifies the NVM subsystem. Refer to section 4.4.

767:512
Host NVMe Qualified Name (HOSTNQN): NVMe Qualified Name (NQN) that uniquely
identifies the host. Refer to section 4.4.

1023:768 Reserved

The Connect response provides status for the Connect command. If a connection is established, then the
Controller ID allocated to the host is returned. The Connect response is defined in Figure 387.

For a Connect command that fails, the controller shall not:

• return a status code of Invalid Field in Command; and

• add an entry to the Error Information log page (refer to section 5.16.1.2).

Figure 387: Connect Response

Bytes Description

03:00 Status Code Specific: The value is dependent on the status returned. Refer to Figure 388.

07:04 Reserved

09:08

SQ Head Pointer (SQHD): If the Connect command requested that SQ flow control be disabled,
then a value of FFFFh in this field indicates that SQ flow control is disabled for the created queue
pair. Otherwise, this field indicates the current Submission Queue Head pointer for the associated
Submission Queue and also indicates that SQ flow control is enabled for the created queue pair.

11:10 Reserved

13:12 Command Identifier (CID): Indicates the identifier of the command that is being completed.

15:14

Status (STS): Indicates status for the command.

Bits Definition

15:01
Status field for the command. Refer to section 3.3.3.2.1. Refer to Figure 100 for
values specific to the Connect command.

00 Reserved

NVM Express® Base Specification, Revision 2.0e

349

Figure 388: Connect Response – Dword 0 Value Based on Status Code

Status Code Definition of Dword 0

Successful
Completion

Bytes Description

01:00
Controller ID (CNTLID): Specifies the controller ID allocated to the host. If a
particular controller was specified in the CNTLID field of the Connect command,
then this field shall contain the same value.

03:02

Authentication and Security Requirements (AUTHREQ): Specifies the NVMe
in-band authentication and security requirements. The field is bit significant. If all
bits are cleared to ‘0’, then no requirements are specified.

Bits Definition

15:03 Reserved

02

Authentication and Secure Channel Required (ASCR): If this
bit is set to ‘1’, then authentication using NVMe over Fabrics
Authentication protocols followed by secure channel
establishment is required and the ATR bit should be cleared to
‘0’. If this bit is cleared to ‘0’, then authentication using NVMe over
Fabrics Authentication protocols followed by secure channel
establishment is not required.

01

Authentication Transaction Required (ATR): If this bit is set to
‘1’, then authentication using NVMe over Fabrics Authentication
protocols is required. If this bit is cleared to ‘0’, then authentication
using NVMe over Fabrics Authentication protocols is not required.

00 Obsolete.

Connect
Invalid

Parameters

Bytes Description

01:00
Invalid Parameter Offset (IPO): If an invalid parameter is reported, then this
field specifies the offset in bytes to the invalid parameter from the start of the
SQE or the data.

02

Invalid Attributes (IATTR): Specifies attributes of the invalid field parameter.
Bits 7:1 are reserved.
Bit 0 if cleared to ‘0’, then the invalid parameter is specified from the start of the
SQE. Bit 0 if set to ‘1’, then the invalid parameter is specified from the start of
the data.

03 Reserved

All Other
Status Values

Bytes Description

03:00 Reserved

6.4 Disconnect Command and Response

The Disconnect command is used to delete the I/O Queue on which the command is submitted. If a
Disconnect command is submitted on an Admin Queue, then the controller shall abort the command with a
status code of Invalid Queue Type. If the controller is not able to delete the I/O Queue, then the controller
shall abort the command with a status code of Controller Busy. The fields for the submission queue entry
are defined in Figure 389.

The NVMe Transport connection is not deleted upon issuance of a Disconnect command; the host and
controller may delete the NVMe Transport connection and associated resources after all NVMe Queues
(I/O Queues and/or Admin Queue) associated with that NVMe Transport connection have been deleted
(refer to section 3.3.2.4).

The completion queue entry for the Disconnect command shall be the last entry submitted to the I/O Queue
Completion queue by the controller (i.e., no completion queue entries shall be submitted to the I/O Queue
Completion Queue after the completion queue entry for the Disconnect command). The controller shall not
perform command processing for any command on an I/O queue after sending the completion queue entry
for the Disconnect command.

NVM Express® Base Specification, Revision 2.0e

350

The host should not submit commands to an I/O Submission Queue after the submission of a Disconnect
command to that I/O Submission Queue; submitting commands to an I/O Queue after a Disconnect
command is submitted to that I/O Queue results in undefined behavior.

Figure 389: Disconnect Command – Submission Queue Entry

Bytes Description

03:00 Command Dword 0: Refer to Figure 83. Byte 01 is cleared to 0h.

04 Fabrics Command Type (FCTYPE): Set to 08h to indicate a Disconnect command.

39:05 Reserved

41:40
Record Format (RECFMT): Specifies the format of the Disconnect command capsule. The format
of the record specified in this definition shall be 0h. If the NVM subsystem does not support the
value specified, then a status code of Incompatible Format shall be returned.

63:48 Reserved

The Disconnect response provides status for the Disconnect command. The Disconnect response is
defined in Figure 390.

Figure 390: Disconnect Response

Bytes Description

07:00 Reserved

09:08
SQ Head Pointer (SQHD): Indicates the current Submission Queue Head pointer for the
associated Submission Queue.

11:10 Reserved

13:12 Command Identifier (CID): Indicates the identifier of the command that is being completed.

15:14

Status (STS): Indicates status for the command.

Bits Definition

15:01
Status field for the command. Refer to section 3.3.3.2.1. Refer to Figure 100 for
values specific to the Connect command.

00 Reserved

6.5 Property Get Command and Response

The Property Get command is used to specify the property value to return to the host (refer to section 3.1.4).
The fields for the Property Get command are defined in Figure 391. If an invalid property or invalid offset is
specified, then a status code of Invalid Field in Command shall be returned.

Figure 391: Property Get Command – Submission Queue Entry

Bytes Description

03:00 Command Dword 0: Refer to Figure 83. Byte 01 is cleared to 0h.

04 Fabrics Command Type (FCTYPE): Set to 04h to indicate a Property Get command.

39:05 Reserved

40

Attributes (ATTRIB): Specifies attributes for the Property Get command.

Bits 7:3 are reserved.

Bits 2:0 specifies the size of the property to return. Valid values are shown in the table below.

Value Definition

000b 4 bytes

001b 8 bytes

010b to 111b Reserved

43:41 Reserved

47:44 Offset (OFST): Specifies the offset to the property to get. Refer to section 3.1.4.

63:48 Reserved

NVM Express® Base Specification, Revision 2.0e

351

The Property Get response is used to return the value of the property requested to the host. The Property
Get response is defined in Figure 392.

Figure 392: Property Get Response

Bytes Description

07:00
Value (VALUE): Indicates the value returned for the property if the Property Get command is
successful. If the size of the property is four bytes, then the value is specified in bytes 03:00 and
bytes 07:04 are reserved.

09:08
SQ Head Pointer (SQHD): Indicates the current Submission Queue Head pointer for the
associated Submission Queue.

11:10 Reserved

13:12 Command Identifier (CID): Indicates the identifier of the command that is being completed.

15:14

Status (STS): Indicates status for the command.

Bits Definition

15:01 Status field for the command. Refer to section 3.3.3.2.1.

00 Reserved

6.6 Property Set Command and Response

The Property Set command is used to set the value of a property (refer to section 3.1.4). The fields for the
Property Set command are defined in Figure 393. If an invalid property or invalid offset is specified, then a
status code of Invalid Field in Command shall be returned.

Figure 393: Property Set Command – Submission Queue Entry

Bytes Description

03:02 Command Dword 0: Refer to Figure 83. Byte 01 is cleared to 0h.

04 Fabrics Command Type (FCTYPE): Cleared to 00h to indicate a Property Set command.

39:05 Reserved

40

Attributes (ATTRIB): Specifies attributes for the Property Set command.

Bits 7:3 are reserved.

Bits 2:0 specifies the size of the property to update. Valid values are shown in the table below.

Value Definition

000b 4 bytes

001b 8 bytes

010b to 111b Reserved

43:41 Reserved

47:44 Offset (OFST): Specifies the offset to the property to set. Refer to section 3.1.4.

55:48
Value (VALUE): Specifes the value used to update the property. If the size of the property is four
bytes, then the value is specified in bytes 51:48 and bytes 55:52 are reserved.

63:56 Reserved

The Property Set response provides status for the Property Set command. The Property Set response is
defined in Figure 394.

Figure 394: Property Set Response

Bytes Description

07:00 Reserved

09:08
SQ Head Pointer (SQHD): Indicates the current Submission Queue Head pointer for the
associated Submission Queue.

11:10 Reserved

13:12 Command Identifier (CID): Indicates the identifier of the command that is being completed.

NVM Express® Base Specification, Revision 2.0e

352

Figure 394: Property Set Response

Bytes Description

15:14

Status (STS): Indicates status for the command.

Bits Definition

15:01 Status field for the command. Refer to section 3.3.3.2.1.

00 Reserved

NVM Express® Base Specification, Revision 2.0e

353

7 I/O Commands

An I/O command is a command submitted to an I/O Submission Queue. Figure 395 lists the I/O commands
that are defined for use in all I/O Command Sets. The following subsections provide definitions for each
command. Refer to section 3.1.3 for mandatory, optional, and prohibited I/O commands for the various
controller types. The following subsections describe the definition for each of these commands.

The user data format and any end-to-end protection information is I/O Command Set specific. Refer to each
I/O Command Set specification for applicability and additional details, if any. Refer to the referenced I/O
Command Set specification for all I/O Command Set specific commands described in Figure 395.

Commands shall only be submitted by the host when the controller is ready as indicated in the Controller
Status property (CSTS.RDY) and after appropriate I/O Submission Queue(s) and I/O Completion Queue(s)
have been created.

The submission queue entry (SQE) structure and the fields that are common to all I/O commands are
defined in section 3.3.3. The completion queue entry (CQE) structure and the fields that are common to all
I/O commands are defined in section 3.3.3.2. The command specific fields in the SQE and CQE structures
(i.e., SQE Command Dwords 10-15, CQE Dword 0, and CQE Dword 1) for I/O commands supported across
all I/O Command Sets are defined in this section.

Figure 395: Opcodes for I/O Commands

Opcode by Field

Combined

Opcode
1

Command
2
 Reference

(07) (06:02) (01:00)

Standard
Command

Function
Data

Transfer
3

0b 000 00b 00b 00h Flush
4
 7.1

0b 000 11b 01b 0Dh Reservation Register 7.3

0b 000 11b 10b 0Eh Reservation Report 7.5

0b 001 00b 01b 11h Reservation Acquire 7.2

0b 001 01b 01b 15h Reservation Release 7.4

0b 111 11b 11b 7Fh Fabrics Commands
5 6

Vendor Specific

1b n/a NOTE 3 80h to FFh Vendor specific

Notes:
1. Opcodes not listed are I/O Command Set specific or reserved.
2. All I/O commands use the Namespace Identifier (NSID) field. The value FFFFFFFFh is not supported in this field

unless footnote 4 in this figure indicates that a specific command does support that value.
3. Indicates the data transfer direction of the command. All options to the command shall transfer data as specified

or transfer no data. All commands, including vendor specific commands, shall follow this convention: 00b = no
data transfer; 01b = host to controller; 10b = controller to host; 11b = bidirectional.

4. This command may support the use of the Namespace Identifier (NSID) field set to FFFFFFFFh.
5. All Fabrics commands use the opcode 7Fh. Refer to section 6 for details.

7.1 Flush command

The Flush command is used to request that the contents of volatile write cache be made non-volatile.

If a volatile write cache is enabled (refer to section 5.27.1.4), then the Flush command shall commit data
and metadata associated with the specified namespace(s) to non-volatile storage medium. The flush
applies to all commands for the specified namespace(s) completed by the controller prior to the submission
of the Flush command. The controller may also flush additional data and/or metadata from any namespace.

If bits 2:1 are set to 11b in the VWC field (refer to Figure 280) and the specified NSID is FFFFFFFFh, then
the Flush command applies to all namespaces attached to the controller processing the Flush command.
If bits 2:1 are set to 10b in the VWC field and the specified NSID is FFFFFFFFh, then the controller aborts
the command with a status code of Invalid Namespace or Format. If bits 2:1 are cleared to 00b in the VWC

NVM Express® Base Specification, Revision 2.0e

354

field, then the controller behavior if the specified NSID is FFFFFFFFh is not indicated. Controllers compliant
with NVM Express Base Specification revision 1.4 and later shall not set bits 2:1 in the VWC field to the
value of 00b.

If a volatile write cache is not present or not enabled, then Flush commands shall have no effect and:

a) shall complete successfully if a sanitize operation is not in progress; and
b) may complete successfully if a sanitize operation is in progress.

All command specific fields are reserved.

 Command Completion

Upon completion of the Flush command, the controller posts a completion queue entry to the associated
I/O Completion Queue.

7.2 Reservation Acquire command

The Reservation Acquire command is used to

• acquire a reservation on a namespace;

• preempt a reservation held on a namespace; or

• preempt a reservation held on a namespace and abort outstanding commands for that namespace.

The command uses Command Dword 10 and a Reservation Acquire data structure in memory. If the
command uses PRPs for the data transfer, then PRP Entry 1 and PRP Entry 2 fields are used. If the
command uses SGLs for the data transfer, then the SGL Entry 1 field is used. All other command specific
fields are reserved.

Figure 396: Reservation Acquire – Data Pointer

Bits Description

127:00
Data Pointer (DPTR): This field specifies the location of a data buffer where data is transferred
from. Refer to Figure 90 for the definition of this field.

Figure 397: Reservation Acquire – Command Dword 10

Bits Description

31:16 Reserved

15:08
Reservation Type (RTYPE): This field specifies the type of reservation to be created. The field is
defined in Figure 399.

07:04 Reserved

03
Ignore Existing Key (IEKEY): If this bit is set to a ‘1’, the controller shall return an error of Invalid
Field in Command. If this bit is cleared to ‘0’, then the Current Reservation Key is checked.

02:00

Reservation Acquire Action (RACQA): This field specifies the action that is performed by the
command.

RACQA Value Description Reference

000b Acquire 8.19.5

001b Preempt 8.19.7

010b Preempt and Abort 8.19.7

011b to 111b Reserved

Figure 398: Reservation Acquire Data Structure

Bytes Description

07:00
Current Reservation Key (CRKEY): The field specifies the current reservation key
associated with the host.

NVM Express® Base Specification, Revision 2.0e

355

Figure 398: Reservation Acquire Data Structure

Bytes Description

15:08

Preempt Reservation Key (PRKEY): If the Reservation Acquire Action is set to 001b (i.e.,
Preempt) or 010b (i.e., Preempt and Abort), then this field specifies the reservation key to
be unregistered from the namespace. For all other Reservation Acquire Action values, this
field is reserved.

 Command Completion

When the command is completed, the controller shall post a completion queue entry to the associated I/O
Completion Queue indicating the status for the command.

7.3 Reservation Register command

The Reservation Register command is used to register, unregister, or replace a reservation key.

The command uses Command Dword 10 and a Reservation Register data structure in memory (refer to
Figure 402). If the command uses PRPs for the data transfer, then PRP Entry 1 and PRP Entry 2 fields are
used. If the command uses SGLs for the data transfer, then the SGL Entry 1 field is used. All other command
specific fields are reserved.

Figure 400: Reservation Register – Data Pointer

Bits Description

127:00
Data Pointer (DPTR): This field specifies the location of a data buffer where data is transferred
from. Refer to Figure 90 for the definition of this field.

Figure 401: Reservation Register – Command Dword 10

Bits Description

31:30

Change Persist Through Power Loss State (CPTPL): This field allows the Persist Through
Power Loss (PTPL) state associated with the namespace to be modified as a side effect of
processing this command. If the Reservation Persistence Feature (refer to section 5.27.1.27) is
saveable, then any change to the PTPL state as a result of processing this command shall be
applied to both the current value and the saved value of that feature.

CPTPL Value Description

00b No change to PTPL state

01b Reserved

10b
Clear PTPL state to ‘0’. Reservations are released and registrants are
cleared on a power on.

11b
Set PTPL state to ‘1’. Reservations and registrants persist across a power
loss.

29:04 Reserved

Figure 399: Reservation Type Encoding

Value Description

0h Reserved

1h Write Exclusive Reservation

2h Exclusive Access Reservation

3h Write Exclusive - Registrants Only Reservation

4h Exclusive Access - Registrants Only Reservation

5h Write Exclusive - All Registrants Reservation

6h Exclusive Access - All Registrants Reservation

7h to FFh Reserved

NVM Express® Base Specification, Revision 2.0e

356

Figure 401: Reservation Register – Command Dword 10

Bits Description

03

Ignore Existing Key (IEKEY): If this bit is set to a ‘1’, then Reservation Register Action (RREGA)
field values that use the Current Reservation Key (CRKEY) shall succeed regardless of the value
of the Current Reservation Key field in the command (i.e., the current reservation key, if any, is
not checked, and absence of a current reservation key does not cause an error).

02:00

Reservation Register Action (RREGA): This field specifies the registration action that is
performed by the command.

RREGA Value Description Reference

000b Register Reservation Key 8.19.3

001b Unregister Reservation Key 8.19.4

010b Replace Reservation Key 8.19.3

011b to 111b Reserved

Figure 402: Reservation Register Data Structure

Bytes Description

07:00

Current Reservation Key (CRKEY): If the Reservation Register Action is 001b (i.e.,
Unregister Reservation Key) or 010b (i.e., Replace Reservation Key), then this field contains
the current reservation key associated with the host. For all other Reservation Register
Action values, this field is reserved.

The controller ignores the value of this field when the Ignore Existing Key (IEKEY) bit is set
to ‘1’.

15:08

New Reservation Key (NRKEY): If the Reservation Register Action field is cleared to 000b
(i.e., Register Reservation Key) or 010b (i.e., Replace Reservation Key), then this field
contains the new reservation key associated with the host. For all other Reservation Register
Action values, this field is reserved.

 Command Completion

When the command is completed, the controller shall post a completion queue entry to the associated I/O
Completion Queue indicating the status for the command.

7.4 Reservation Release command

The Reservation Release command is used to release or clear a reservation held on a namespace.

The command uses Command Dword 10 and a Reservation Release data structure in memory. If the
command uses PRPs for the data transfer, then PRP Entry 1 and PRP Entry 2 fields are used. If the
command uses SGLs for the data transfer, then the SGL Entry 1 field is used. All other command specific
fields are reserved.

Figure 403: Reservation Release – Data Pointer

Bits Description

127:00
Data Pointer (DPTR): This field specifies the location of a data buffer where data is transferred
from. Refer to Figure 90 for the definition of this field.

Figure 404: Reservation Release – Command Dword 10

Bits Description

31:16 Reserved

NVM Express® Base Specification, Revision 2.0e

357

Figure 404: Reservation Release – Command Dword 10

Bits Description

15:08

Reservation Type (RTYPE): If the Reservation Release Action field is cleared to 000b (i.e.,
Release), then this field specifies the type of reservation that is being released. The reservation
type in this field shall match the current reservation type. If the reservation type in this field does
not match the current reservation type, then the controller should return a status code of Invalid
Field in Command. This field is defined in Figure 399.

07:04 Reserved

03
Ignore Existing Key (IEKEY): If this bit is set to a ‘1’, the controller shall return an error of Invalid
Field in Command. If this bit is cleared to ‘0’, then the Current Reservation Key is checked.

02:00

Reservation Release Action (RRELA): This field specifies the reservation action that is
performed by the command.

Value Description Reference

000b Release 8.19.6

001b Clear 8.19.8

010b to 111b Reserved

Figure 405: Reservation Release Data Structure

Bytes O/M Description

7:0 M
Current Reservation Key (CRKEY): The field specifies the current reservation key
associated with the host.

 Command Completion

When the command is completed, the controller shall post a completion queue entry to the associated I/O
Completion Queue indicating the status for the command.

7.5 Reservation Report command

The Reservation Report command returns a Reservation Status data structure to memory that describes
the registration and reservation status of a namespace.

The size of the Reservation Status data structure is a function of the number of registrants of the namespace
(i.e., there is a Registrant data structure and/or Registrant Extended data structure for each such registrant).
The controller returns the data structure in Figure 409 if the host has selected a 64-bit Host Identifier and
the data structure in Figure 410 if the host has selected a 128-bit Host Identifier (refer to section 5.27.1.25).

For controllers compliant with NVM Express Base Specification, Revision 2.0 and earlier, registrants of the
namespace that are not associated with any controller in the NVM subsystem may or may not be reported
by this command.

If a 64-bit Host Identifier has been specified and the Extended Data Structure bit is set to ‘1’ in Command
Dword 11, then the controller shall abort the command with the status code of Host Identifier Inconsistent
Format. If a 128-bit Host Identifier has been specified and the Extended Data Structure bit is cleared to ‘0’
in Command Dword 11, then the controller shall abort the command with the status code of Host Identifier
Inconsistent Format.

The command uses Command Dword 10 and Command Dword 11. If the command uses PRPs for the
data transfer, then PRP Entry 1 and PRP Entry 2 fields are used. If the command uses SGLs for the data
transfer, then the SGL Entry 1 field is used. All other command specific fields are reserved.

Figure 406: Reservation Report – Data Pointer

Bits Description

127:00
Data Pointer (DPTR): This field specifies the location of a data buffer where data is transferred
to. Refer to Figure 90 for the definition of this field.

NVM Express® Base Specification, Revision 2.0e

358

Figure 407: Reservation Report – Command Dword 10

Bits Description

31:00

Number of Dwords (NUMD): This field specifies the number of dwords of the Reservation Status
data structure to transfer. This is a 0’s based value.

If this field corresponds to a length that is less than the size of the Reservation Status data
structure, then only that specified portion of the data structure is transferred. If this field
corresponds to a length that is greater than the size of the Reservation Status data structure, then
the entire contents of the data structure are transferred and no additional data is transferred.

Figure 408: Reservation Report – Command Dword 11

Bits Description

31:01 Reserved

00
Extended Data Structure (EDS): If set to ‘1’, then the controller returns the extended data
structure defined in Figure 410. If cleared to ‘0’, then the controller returns the data structure
defined in Figure 409.

Figure 409: Reservation Status Data Structure

Bytes Description

03:00

Generation (GEN): This field contains a 32-bit wrapping counter that is incremented any time
any one the following occur:

• a Reservation Register command completes successfully on any controller
associated with the namespace;

• a Reservation Release command with Reservation Release Action (RRELA) set to
001b (i.e., Clear) completes successfully on any controller associated with the
namespace; and

• a Reservation Acquire command with Reservation Acquire Action (RACQA) set to
001b (Preempt) or 010b (Preempt and Abort) completes successfully on any
controller associated with the namespace.

If the value of this field is FFFFFFFFh, then the field shall be cleared to 0h when incremented
(i.e., rolls over to 0h).

04

Reservation Type (RTYPE): This field indicates whether a reservation is held on the
namespace. A value of 0h indicates that no reservation is held on the namespace. A non-zero
value indicates a reservation is held on the namespace and the reservation type is defined in
Figure 399.

06:05

Number of Registrants (REGSTRNT): This field indicates the number of registrants of the
namespace. This indicates the number of Registrant data structures or Registrant Extended
data structures contained in this data structure.

Note: This field was formerly named Number of Registered Controllers (REGCTL).

08:07 Reserved

09

Persist Through Power Loss State (PTPLS): This field indicates the Persist Through Power
Loss State associated with the namespace.

PTPLS Value Description

0 Reservations are released and registrants are cleared on a power on.

1 Reservations and registrants persist across a power loss.

23:10 Reserved

47:24
Registrant Data Structure 0

Note: This field was formerly named Registered Controller Data Structure 0.

 ...

24*n+47:
24*(n+1)

Registrant Data Structure n

NVM Express® Base Specification, Revision 2.0e

359

Figure 410: Reservation Status Extended Data Structure

Bytes Description

23:00 Refer to Figure 409 for definition.

63:24 Reserved

127:64
Registrant Extended Data Structure 0

Note: This field was formerly named Registered Controller Extended Data Structure 0.

 ...

64*(n+1)+63:
64*(n+1)

Registrant Extended Data Structure n

Figure 411: Registrant Data Structure

Bytes Description

01:00

Controller ID (CNTLID): If a registrant of the namespace is associated with a controller in the
NVM subsystem, then this field contains the controller ID (i.e., the value of the CNTLID field in
the Identify Controller data structure) of the controller that is associated with the registrant
whose host identifier is indicated in the Host Identifier field of this Registrant data structure.

If a registrant of the namespace is not associated with any controller in the NVM subsystem,
then the controller processsing the command shall set this field to FFFFh.

02

Reservation Status (RCSTS): This field indicates the reservation status of the registrant
associated with this data structure (i.e., the registrant whose host identifier is indicated in the
Host Identifier field of this Registrant data structure).

Bits 7:1 are reserved.

Bit 0 is set to '1' if the registrant associated with this data structure holds a reservation on the
namespace.

07:03 Reserved

15:08
Host Identifier (HOSTID): This field contains the 64-bit Host Identifier of the registrant of the
namespace described by this data structure.

23:16
Reservation Key (RKEY): This field contains the reservation key of the registrant described
by this data structure.

Figure 412: Registered Controller Extended Data Structure

Bytes Description

01:00 Controller ID (CNTLID): Refer to Figure 411 for definition.

02 Reservation Status (RCSTS): Refer to Figure 411 for definition.

07:03 Reserved

15:08 Reservation Key (RKEY): Refer to Figure 411 for definition.

31:16
Host Identifier (HOSTID): This field contains the 128-bit Host Identifier of the registrant of the
namespace described by this data structure.

63:32 Reserved

 Command Completion

When the command is completed, the controller shall post a completion queue entry to the associated I/O
Completion Queue indicating the status for the command.

NVM Express® Base Specification, Revision 2.0e

360

8 Extended Capabilities

This section of the document describes extended capabilities that are optional and available for
implementation on an NVMe device.

8.1 Asymmetric Namespace Access Reporting

 Asymmetric Namespace Access Reporting Overview

Asymmetric Namespace Access (ANA) occurs in environments where namespace access characteristics
(e.g., performance or ability to access the media) may vary based on:

• the controller used to access the namespace (e.g., Fabrics); and

• the internal configuration of the NVM subsystem. Asymmetric Namespace Access Reporting is
used to indicate to the host information about those access characteristics.

Shared namespaces may be accessed through controllers via multiple PCIe ports or fabric ports (refer to
section 2.4.1). The controllers that provide access to a shared namespace may provide identical access
characteristics through all controllers (i.e., symmetric access), or may provide different access
characteristics through some controllers (i.e., asymmetric access).

Private namespaces are accessed by only one controller at a time. The access characteristics of the
namespace through that controller may be impacted as a result of changes to the internal configuration of
the NVM subsystem. If the access characteristics of the namespace through that controller are impacted
by the internal configuration of the NVM subsystem, then asymmetric access occurs.

Symmetric access to a namespace occurs when:

• the access characteristics using one controller are identical to the access characteristics when
using a different controller; and

• changes to the internal configuration of the NVM subsystem do not impact the access
characteristics.

Asymmetric access to a namespace occurs when:

• the access characteristics using one controller may differ from the access characteristics when
using a different controller; or

• changes to the internal configuration of the NVM subsystem may impact the access characteristics.

While commands may be sent to a shared namespace through any attached controller with asymmetric
access, the characteristics (e.g., performance or ability to access the media) may differ based on which
controller is used; as a result, the host should consider those characteristics when selecting which controller
to use for each command that accesses the namespace. The NVM subsystem may perform autonomous
internal reconfiguration that results in a change to the access characteristics.

If an NVM subsystem supports Asymmetric Namespace Access Reporting, then all controllers in that NVM
subsystem shall:

• set bit 3 to ‘1’ in the Controller Multi-path I/O and Namespace Sharing Capabilities (CMIC) field in
the Identify Controller data structure (refer to Figure 280) to indicate support for Asymmetric
Namespace Access Reporting;

• set bit 0 to ‘1’ in the Asymmetric Namespace Access Capabilities (ANACAP) field in the Identify
Controller data structure to indicate that the ANA Optimized state is able to be reported;

• set bit 1 to ‘1’ in the ANACAP field in the Identify Controller data structure if ANA Non-Optimized
state is able to be reported;

• set bit 2 to ‘1’ in the ANACAP field in the Identify Controller data structure if ANA Inaccessible state
is able to be reported;

• set bit 3 to ‘1’ in the ANACAP field in the Identify Controller data structure if ANA Persistent Loss
state is able to be reported;

NVM Express® Base Specification, Revision 2.0e

361

• set bit 4 to ‘1’ in the ANACAP field in the Identify Controller data structure if ANA Change state is
able to be reported;

• support Asymmetric Namespace Access Change Notices (refer to section 5.27.1.8); and

• support the Asymmetric Namespace Access log page (refer to section 5.16.1.13).

Namespaces attached to a controller that supports Asymmetric Namespace Access Reporting shall:

• be members of an ANA Group; and

• supply a valid ANA Group Identifier in the ANA Group Identifier (ANAGRPID) field in the Identify
Namespace data structure (refer to the applicable I/O Command Set specification).

A controller that supports Asymmetric Namespace Access Reporting may also support multiple domains
(refer to section 3.2.4).

Figure 413 shows an example of an NVM subsystem where access characteristics vary as a result of the
presence of two independent domains. In this example, the non-volatile storage medium for namespace B
and for namespace C are contained within the same domain that contains controller 2. As a result, controller
2 provides optimized access to namespace B and to namespace C while controller 1 does not provide
optimized access to namespace B or to namespace C. In an NVM subsystem that supports multiple
domains (refer to section 3.2.4), the Media Access Boundary shown in Figure 413 may be a Communication
boundary as shown in Figure 77 and Figure 78.

Figure 413: Namespace B and C optimized through Controller 2

NVMe Controller 1

NS

B

NSID 2

NVMe Controller 2

Port x Port yNVM

Subsystem

NSID 3NSID 3

NS

C

NSID 2

Media Access

Boundary

To provide optimized access to namespace B through controller 1, the NVM subsystem may be
administratively reconfigured, or may perform autonomous internal reconfiguration actions that change the
access characteristics of namespace B when accessed through controller 1 and controller 2 as shown in
Figure 414. Controller 2 provides optimized access to namespace C while controller 1 provides optimized
access to namespace B. In an NVM subsystem that supports multiple domains (refer to section 3.2.4), the
Media Access Boundary shown in Figure 414 may be a Communication boundary as shown in Figure 77
and Figure 78.

NVM Express® Base Specification, Revision 2.0e

362

Figure 414: Namespace B optimized through Controller 1

NVMe Controller 1

NSID 2

NVMe Controller 2

Port x Port yNVM

Subsystem

NSID 3NSID 3

NS

C

NSID 2

NS

B

Media Access

Boundary

 ANA Groups

Namespaces that are members of the same ANA Group perform identical asymmetric namespace access
state transitions. The ANA Group maintains the same asymmetric namespace access state for all
namespaces that are members of that ANA Group (i.e., a change in the asymmetric namespace access
state of one namespace only occurs as part of a change in the asymmetric namespace access state of all
namespaces that are members of that ANA Group). Namespaces that are members of the same ANA
Group shall be members of the same domain (refer to section 2.3.1). The method for assigning namespaces
to ANA Groups is outside the scope of this specification.

An ANA Group may contain zero or more namespaces, zero or more NVM Sets, or zero or more Endurance
Groups. The mapping of namespaces, NVM Sets, and Endurance Groups to ANA Groups is vendor
specific.

A valid ANA Group Identifier is a non-zero value that is less than or equal to ANAGRPMAX (refer to Figure
280).

The ANA Group Identifier (ANAGRPID) for each ANA Group shall be unique within the NVM subsystem. If
bit 6 in the ANACAP field in the Identify Controller data structure is set to ‘1’, then the ANA Group Identifier
shall not change while the namespace is attached to any controller in the NVM subsystem. If bit 6 in the
ANACAP field is cleared to ‘0’, then the ANA Group Identifier may change while the namespace is attached
to any controller in the NVM subsystem. If the ANA Group Identifier changes, the controller shall issue the
Asymmetric Namespace Access Change Notice as described in 8.1.3.6.

Figure 415 shows the following four namespaces:

• the private namespace A in a first ANA Group;

• namespace B and namespace D, that are in the same second ANA Group; and

• namespace C that is in a third ANA Group.

NVM Express® Base Specification, Revision 2.0e

363

Figure 415: Multiple Namespace groups

NSID 1 NSID 2

NVMe Controller 1

NS

A

NS

B

NVMe Controller 2

Port x Port yNVM

Subsystem

Port z

NVMe Controller 3

NSID 2

NS

D

NSID 4 NSID 4NSID 4

NS

C

NSID 3NSID 2 NSID 3

Media Access

Boundary

ANA Group
ANA Group

ANA Group

 Asymmetric Namespace Access states

The Asymmetric Namespace Access State indicates information about the characteristics of the
relationship between a controller and an ANA Group. The following asymmetric namespace access states
are defined:

• ANA Optimized (refer to section 8.1.3.1);

• ANA Non-Optimized (refer to section 8.1.3.2);

• ANA Inaccessible (refer to section 8.1.3.3);

• ANA Persistent Loss (refer to section 8.1.3.4); and

• ANA Change (refer to section 8.1.3.5).

8.1.3.1 ANA Optimized state

While the relationship between the controller and an ANA group is in this state, the characteristic of that
relationship to each namespace in that group is optimized. Commands processed by a controller that
reports this state for an ANA Group provide optimized access characteristics to any namespace in that ANA
Group. A controller that supports ANA Reporting shall support reporting this state.

While in this state, all commands, functions, and operations supported by the namespace shall perform as
described in this specification.

8.1.3.2 ANA Non-Optimized state

While the relationship between the controller and an ANA group is in this state, the characteristic of that
relationship to each namespace in that group is non-optimized. Commands processed by a controller that
reports this state for an ANA Group provide non-optimized access characteristics (e.g., the processing of
some commands, especially those involving data transfer, may operate with lower performance or may use
NVM subsystem resources less effectively than if a controller is used that reports the optimized state) to
any namespace in that ANA Group. Support for reporting this state is optional.

While in this state, all commands, functions, and operations supported by the namespace shall perform as
described in this specification.

NVM Express® Base Specification, Revision 2.0e

364

8.1.3.3 ANA Inaccessible state

While the relationship between the controller and an ANA group is in this state, the characteristic of that
relationship to each namespace in that group is inaccessible. Commands processed by a controller that
reports this state for an ANA Group are not able to access user data of namespaces in that ANA Group.
The namespaces may become accessible through the controller reporting this state at a future time (i.e., a
subsequent ANA state transition may occur). Support for reporting this state is optional.

While in this state, accurate namespace related capacity information may not be available. As a result,
some namespace capacity information returned in the Identify Namespace data structure (e.g., the NUSE
field and the NVMCAP field), are cleared to 0h. For that namespace capacity information, hosts should use
the Identify Namespace data structure returned from a controller that reports the relationship between the
controller and the namespace to be in the ANA Optimized state or in the ANA Non-Optimized state.

A controller shall abort commands, other than those described in section 8.1.4, with a status code of
Asymmetric Access Inaccessible if those commands are submitted while the relationship between the
specified namespace and the controller processing the command is in this state.

While ANA Inaccessible state is reported by a controller for the namespace, the host should retry the
command on a different controller that is reporting ANA Optimized state or ANA Non-Optimized state. If no
controllers are reporting ANA Optimized state or ANA Non-Optimized state, then a transition may be
occurring such that a controller reporting the Inaccessible state may become accessible and the host should
retry the command on the controller reporting Inaccessible state for at least ANATT seconds (refer to Figure
280). Refer to section 8.10.2.

8.1.3.4 ANA Persistent Loss state

While the relationship between the controller and an ANA group is in this state, the characteristic of that
relationship to each namespace in that group is persistently inaccessible. Commands processed by a
controller that reports this state for an ANA Group are persistently not able to access user data of
namespaces in that ANA Group. The relationship between a controller and an ANA Group in this state shall
not transition to any other ANA state. Support for reporting this state is optional.

While in this state, accurate namespace related capacity information may not be available. As a result,
some namespace capacity information returned in the Identify Namespace data structure (e.g., the NUSE
field and the NVMCAP field), are cleared to 0h. For that namespace capacity information, hosts should use
the Identify Namespace data structure returned from a controller that reports the relationship between the
controller and the namespace to be in the ANA Optimized state or in the ANA Non-Optimized state.

A controller shall abort commands, other than those described in section 8.1.4, with a status code of
Asymmetric Access Persistent Loss if those commands are submitted while the relationship between the
specified namespace and the controller processing the command is in this state.

While ANA Persistent Loss state is reported by a controller for the namespace, the host should retry the
command on a different controller that is reporting ANA Optimized state or ANA Non-Optimized state. If no
controllers are reporting ANA Optimized state or ANA Non-Optimized state, then a transition may be
occurring such that a controller reporting the Inaccessible state may become accessible and the host should
retry the command on the controller reporting Inaccessible state for at least ANATT seconds (refer to Figure
280).

8.1.3.5 ANA Change state

The change from one asymmetric namespace access state to another asymmetric namespace access state
is called a transition. Transitions may occur in such a way that the ANA Change state is not visible to the
host (i.e., the ANA Change state may or may not be reported in the Asymmetric Namespace Access State
field in the Asymmetric Namespace Access log page (refer to section 5.16.1.13)). Support for reporting this
state is optional.

A controller shall abort commands, other than those described in 8.1.4, with a status code of Asymmetric
Access Transition if those commands are submitted while the relationship between the specified
namespace and the controller processing the command is in this state.

NVM Express® Base Specification, Revision 2.0e

365

While ANA Change state is reported by a controller for the namespace, the host should:

a) after a short delay, retry the command on the same controller for at least ANATT (refer to Figure
280) seconds (e.g., if ANATT is 30, perform 3 retries at 10 s intervals, or 10 retries at 3 s intervals);
or

b) retry the command on a different controller that is reporting ANA Optimized state or ANA Non-
Optimized state.

8.1.3.6 Asymmetric Namespace Access Change Notifications

If Asymmetric Namespace Access Change Notices are enabled on a controller, then an Asymmetric
Namespace Access Change Notice shall be sent as described in section 5.27.1.8 by the controllers where
the change occurred:

a) if an ANA Group Identifier (refer to Figure 280) changes;
b) if an asymmetric namespace access state transition fails (e.g., a transition begins, but does not

complete and the controller returns to the state that existed before the transition began); or
c) upon entry to the following ANA states, unless the state entry is a result of a namespace
attachment:

• ANA Optimized State;

• ANA Non-Optimized State;

• ANA Inaccessible State; and

• ANA Persistent Loss State.

 Asymmetric Namespace Access States Command Processing Effects

Processing of Admin commands that:

• are not NVM Command Set specific commands; and

• do not use the Namespace Identifier (i.e., Figure 144 – “Namespace Identifier Used” column
indicates “No”),

are not affected by ANA states, except as specified in Figure 416.

Figure 416 describes Asymmetric Namespace Access effects on command processing.

Figure 416: ANA effects on Command Processing

Command ANA State Effects on command processing

Get Features
ANA Inaccessible,

ANA Persistent Loss,
or ANA Change

The following feature identifiers are not available
1

:

a) Reservation Notification Mask (i.e., 82h);
b) Reservation Persistence (i.e., 83h); and

c) I/O Command Set specific feature identifiers
2

.

NVM Express® Base Specification, Revision 2.0e

366

Figure 416: ANA effects on Command Processing

Command ANA State Effects on command processing

Get Log Page
ANA Inaccessible,

ANA Persistent Loss,
or ANA Change

The following log pages are affected:

a) Error Information (i.e., 01h): The log page is not
required to contain entries for namespaces whose
relationship to the controller processing the
command is in the:

a. ANA Inaccessible state (refer to section
8.1.3.3);

b. the ANA Persistent Loss state (refer to
section 8.1.3.4); or

c. the ANA Change state (refer to section
8.1.3.5).

The following log pages are not available
1

:

a) Media Unit Status log page (refer to section
5.16.1.16); and

b) Supported Capacity Configuration List log page
(refer to section 5.16.1.17).

Identify
ANA Inaccessible or
ANA Persistent Loss

Capacity fields in the Identify Namespace data structure
(refer to the applicable I/O Command Set specification)
information are cleared to 0h.

Set Features ANA Inaccessible

The saving of features shall not be supported and the

following feature identifiers are not available
1

:

a) Reservation Notification Mask (i.e., 82h);
b) Reservation Persistence (i.e., 83h); and

I/O Command Set specific feature identifiers
2

.

If the NSID is set to FFFFFFFFh, then the command shall

abort
3
 with a status code of Asymmetric Access Inaccessible

(refer to section 8.1.3.3).

NVM Express® Base Specification, Revision 2.0e

367

Figure 416: ANA effects on Command Processing

Command ANA State Effects on command processing

ANA Change

The saving of features shall not be supported and the

following feature identifiers are not available
1

:

a) Reservation Notification Mask (i.e., 82h);
b) Reservation Persistence (i.e., 83h); and

c) I/O Command Set specific feature identifiers
2

.

If the NSID is set to FFFFFFFFh, then the command shall

abort
3

 with a status code of Asymmetric Access Transition

(refer to section 8.1.3.5).

ANA Persistent Loss
The command shall abort with a status code of Asymmetric
Access Persistent Loss (refer to section 8.1.3.4).

Notes:
1. If the ANA state is ANA Inaccessible State, then commands that use feature identifiers or log pages

that are not available shall abort with a status code of Asymmetric Access Inaccessible. If the ANA
state is ANA Persistent Loss State, then commands that use feature identifiers or log pages that are
not available shall abort with a status code of Asymmetric Access Persistent Loss. If the ANA state
is ANA Change State, then commands that use feature identifiers or log pages that are not available
shall abort with a status code of Asymmetric Access Transition.

2. I/O Command Set specific definition. Refer to each I/O Command Set specification for applicability
and additional details, if any.

3. If any namespace that is attached to the controller is in an ANA Group that is in the ANA Inaccessible
state, the ANA Persistent Loss state, or the ANA Change state, then the command shall abort with
the indicated status. Depending on the ANA state of the ANA Group that contains a namespace
(e.g., an ANA state changes during the processing of the command), the specified feature identifier
may be altered for some attached namespaces and not altered for other attached namespaces.

8.2 Boot Partitions

Boot Partitions provide an optional area of NVM storage that may be read by the host without the host
initializing queues or enabling the controller. The simplified interface to access Boot Partitions may be used
for platform initialization code (e.g., a bootloader that is executed from host ROM) to boot to a pre-OS
environment (e.g., UEFI) instead of storing the image on another non-volatile storage medium (e.g., SPI
flash). Refer to section 8.2.1 for the procedure to read the contents of a Boot Partition.

A controller that supports Boot Partitions has two Boot Partitions of equal size using Boot Partition identifiers
0h and 1h. The two Boot Partitions allow the host to update one and verify the contents before marking the
Boot Partition active. Controllers in the NVM subsystem may share the same Boot Partitions.

The contents of Boot Partitions are only modified using the Firmware Image Download and Firmware
Commit commands (refer to section 8.2.2) and may be secured using Replay Protected Memory Block to
prevent unauthorized modifications (refer to section 8.2.3).

 Reading from a Boot Partition

A Boot Partition is a continuous block of data as shown in Figure 417, that the host may read via NVMe
properties.

NVM Express® Base Specification, Revision 2.0e

368

Figure 417: Boot Partition Overview

To read the contents of a Boot Partition using NVMe properties, the host allocates a Boot Partition Memory
Buffer in host memory for the controller to copy contents from a Boot Partition. The host initializes the Boot
Partition Memory Buffer Base Address. The host sets the Boot Partition ID, Boot Partition Read Size, and
Boot Partition Read Offset to initiate the Boot Partition read operation. The host may continue reading from
the Boot Partition until the entire Boot Partition has been read.

A portion of the Boot Partition may be read by the host any time the NVM subsystem is powered (i.e.,
whether or not CC.EN is set to ‘1’). The host shall not modify transport specific properties (described in the
applicable NVMe Transport binding specification), reset, or shutdown the controller while a Boot Partition
read is in progress.

To read data from a Boot Partition, the host follows these steps:

1. Initialize the transport (e.g., PCIe link), if necessary;
2. Determine if Boot Partitions are supported by the controller (CAP.BPS);
3. Determine which Boot Partition is active (BPINFO.ABPID) and the size of the Boot Partition

(BPINFO.BPSZ);
4. Allocate a physically contiguous memory buffer in the host to store the contents of a Boot Partition;
5. Initialize the address (BPMBL.BMBBA) into the memory buffer where the contents should be

copied;
6. Initiate the transfer of data from a Boot Partition by writing to the Boot Partition Read Select

(BPRSEL) property. This includes setting the Boot Partition identifier (BPRSEL.BPID), size of
Boot Partition Read Size (BPRSEL.BPRSZ) and Boot Partition Read Offset (BPRSEL.BPROF).
The controller sets the Boot Read Status (BPINFO.BRS) field while transferring the Boot Partition
contents to indicate a Boot Partition read operation is in progress; and

7. Wait for the controller to completely transfer the requested portion of the Boot Partition, indicated
in the status field (BPINFO.BRS). If BPINFO.BRS is set to 10b, the requested Boot Partition data
has been transferred to the Boot Partition Memory Buffer. If BPINFO.BRS is set to 11b, there was
an error transferring the requested Boot Partition data and the host may request the Boot Partition
data again.

In constrained memory environments, the host may read the contents of a Boot Partition with a small Boot
Partition Memory Buffer by reading a small portion of a Boot Partition, moving the data out of the Boot
Memory Buffer to another memory location, and then reading another portion of the Boot Partition until the
entire Boot Partition has been read.

If the Boot Partition log page is supported (refer to section 5.16.1.1), then the Boot Partition can be accessed
through the Boot Partition log page (refer to section 5.16.1.21).

 Writing to a Boot Partition

Boot Partition contents may be modified by the host using the Firmware Image Download and Firmware
Commit commands while the controller is enabled (CC.EN set to ‘1’).

The process for updating a Boot Partition is:

NVM Express® Base Specification, Revision 2.0e

369

1. The host issues a Firmware Image Download command to download the contents of the Boot
Partition to a controller. There may be multiple portions of the Boot Partition to download, thus the
offset for each portion of the Boot Partition being downloaded is specified in the Firmware Image
Download command. Host software shall send the Boot Partition image in order starting with the
beginning of the Boot Partition;

2. Unlock Boot Partitions for writing (refer to section 8.2.3);
3. The host submits a Firmware Commit command (refer to section 5.12) on that controller with a

Commit Action of 110b which specifies that the downloaded image replaces the contents of the
Boot Partition specified in the Boot Partition ID field;

4. The controller completes the Firmware Commit command. The following actions are taken in
certain error scenarios:
a. If the firmware activation was not successful because the Boot Partition could not be written,

then the controller reports an error of Boot Partition Write Prohibited;
5. (Optional) The host reads the contents of the Boot Partition to verify they are correct (refer to section

8.2.1). Host software updates the active Boot Partition ID by issuing a Firmware Commit command
with a Commit Action of 111b; and

6. The host locks Boot Partition access to prevent further modification (refer to section 8.2.3).

If an internal error, reset, or power loss condition occurs while committing the downloaded image to a Boot
Partition, the contents of the Boot Partition may contain the old contents, new contents, or a mixture of both.
Host software should verify the contents of a Boot Partition before marking that Boot Partition active to
ensure the active Boot Partition is stable.

Host software should not read the contents of a Boot Partition while writing to the Boot Partition. The
controller may return a combination of new and old data if the host attempts to perform a Boot Partition
read operation while overwriting the contents.

Host software should not overlap firmware/boot partition image update command sequences (refer to
section 1.5.24). During a boot partition image update command sequence, if a Firmware Image Download
command or a Firmware Commit command is submitted for another firmware/boot partition image update
command sequence, the results of both that command and the in-progress firmware image update are
undefined.

Host software should use the same controller or Management Endpoint (refer to the NVM Express
Management Interface Specification) for all commands that are part of a boot partition image update
command sequence. If the commands for a single firmware/boot partition image update command
sequence are submitted to more than one controller and/or Management Endpoint, the controller may abort
the Firmware Commit command with Invalid Firmware Image status.

 Boot Partition Protection

A controller that supports Boot Partitions and RPMB shall support Boot Partition Protection. Boot Partition
Protection may be configured using RPMB (refer to section 8.18). Figure 418 shows an overview of Boot
Partition Protection.

NVM Express® Base Specification, Revision 2.0e

370

Figure 418: Boot Partition Protection Overview

BP Protection Disabled

BPs Unlocked

Power up or

any reset

BP Protection Enabled

BPs Unlocked

BPs Locked
Power up or

any reset

Authenticated Device

Configuration Block Write

Enable BP Protection

Prior to activating Boot Partition Protection, the default state for all Boot Partitions is the “Unlocked” state.
In this state, host software may read and write a Boot Partition.

All Boot Partitions remain unlocked until Boot Partition Protection is enabled by host software. Host software
enables Boot Partition Protection by setting the Boot Partition Protection Enabled bit in the RPMB Device
Configuration Block data structure (refer to section 8.18). Once Boot Partition Protection is enabled, the
controller shall reject Authenticated Device Configuration Block Writes that disable Boot Partition Protection
(i.e., enabling Boot Partition Protection is permanent). Once Boot Partition Protection is enabled, Boot
Partitions are able to be modified only after unlocking the Boot Partition using RPMB.

After activating Boot Partition Protection:

a) The default state for all Boot Partitions is the “Locked” state. In this state, host software may read
a Boot Partition. In this state, the controller rejects attempts to write to a Boot Partition using the
Firmware Commit command;

b) Each Boot Partition may be locked or unlocked independently using the corresponding bit in the
Device Configuration Block data structure. A Boot Partition may be unlocked in the same command
that enables Boot Partition Protection; and

c) If any Boot Partition has been unlocked, a power cycle or Controller Level Reset event results in
that Boot Partition becoming locked.

8.3 Capacity Management

 Overview

Capacity Management is a capability for organizing physical media into Endurance Groups and NVM Sets.
There are two different forms of Capacity Management, Fixed Capacity Management and Variable Capacity
Management. A controller that supports Capacity Management shall support at least one form.

The host uses Fixed Capacity Management to create Endurance Groups and NVM Sets by selecting a
configuration which explicitly allocates Media Units (refer to section 8.3.2) to Endurance Groups and NVM
Sets.

The host uses Variable Capacity Management to:

• create a single Endurance Group by specifying the desired capacity;

NVM Express® Base Specification, Revision 2.0e

371

• create a single NVM Set by specifying the desired capacity;

• delete a single Endurance Group; and

• delete a single NVM Set.

The Capacity Adjustment Factor is the ratio between the capacity consumed by an Endurance Group from
the Unallocated NVM Capacity field in the Identify Controller data structure and the total NVM capacity in
that Endurance Group, i.e.:

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝐼𝑁𝑇𝐸𝐺𝐸𝑅 (
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑

𝐸𝑛𝑑𝑢𝑟𝑎𝑛𝑐𝑒 𝐺𝑟𝑜𝑢𝑝 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
∗ 100)

(E.g., the value 200 indicates that creation of an Endurance Group with a total NVM capacity of 5 GiB
consumes 10 GiB of the Unallocated NVM Capacity indicated by the controller).

If an Endurance Group is created, then the controller performs the following actions as an atomic operation:

a) the value indicated by the Unallocated NVM Capacity (UNVMCAP) field of the Identify Controller
data structure is changed based on the requested capacity, the Capacity Adjustment Factor of
the created Endurance Group, and the granularity at which the controller allocates NVM capacity;
and

b) the Endurance Group Identifier is added to the Endurance Group List.

If an Endurance Group is deleted, then the controller performs the following actions in sequence:

1) the Endurance Group Identifier is removed from the Endurance Group List;
2) if the Media Unit Status log page is supported, then the Endurance Group Identifier field is

cleared to 0h in all Media Unit Status Descriptors, if any, that indicate the deleted Endurance
Group;

3) every NVM Set in the Endurance Group is deleted; and
4) the value indicated by the Unallocated NVM Capacity (UNVMCAP) field of the Identify Controller

data structure is increased by the value that was indicated by the Total Endurance Group
Capacity (TEGCAP) field of the Endurance Group Information log page of the deleted Endurance
Group.

If any of the entities modified by the above sequence are accessed after the sequence begins and before
it completes, then the results are indeterminate.

If an NVM Set is created, then the controller performs the following actions as an atomic operation:

a) the NVM Set Identifier is added to the NVM Set List; and
b) the Unallocated Endurance Group Capacity indicated by the Endurance Group Information log

page (refer to Figure 222) is decreased by the amount of capacity allocated to the NVM Set; the
controller may allocate NVM capacity in units such that the requested size for an NVM Set may
be rounded up to the next unit boundary.

If an NVM Set is deleted, then the controller performs the following actions in sequence:

1) the NVM Set Identifier is removed from the NVM Set List;
2) if the Media Unit Status log page is supported, then the NVM Set Identifier field is cleared to 0h in

all Media Unit Status Descriptors, if any, that indicated the deleted NVM Set;
3) for each namespace in the deleted NVM Set:

a. all commands targeting the namespace are handled as described for namespace
deletion in section 8.11;

b. the namespace identifier is removed from the Allocated Namespace ID list;
c. the namespace is deleted;
d. the namespace identifier is added to the Changed Namespace List; and
e. a Namespace Attribute Changed event is generated for hosts other than the host which

issued the Capacity Management command;
and

4) the Unallocated Endurance Group Capacity indicated by the Endurance Group Information log

NVM Express® Base Specification, Revision 2.0e

372

page is increased by the amount of capacity formerly allocated to the NVM Set.

If any of the entities modified by the above sequence are accessed after the sequence begins and before
it completes, then the results are indeterminate.

If an NVM Set is created or deleted, the value indicated by the Unallocated NVM Capacity (UNVMCAP)
field of the Identify Controller data structure is not changed.

 Fixed Capacity Management

A Media Unit represents a component of the underlying media in a domain. An implementation may choose
to represent each die as a separate Media Unit; however, this is not required. A Media Unit is the smallest
media component for which the controller reports wear information (refer to the Available Spare field and
the Percentage Used field in the Media Unit Status Descriptor, Figure 254).

Two or more I/O operations to a Media Unit at the same time may interfere with each other as they contend
for resources internal to or shared by that Media Unit.

A controller supporting Fixed Capacity Management:

a) shall support the Media Unit Status log page (refer to section 5.16.1.16);
b) shall support Endurance Groups (refer to section 3.2.3);
c) may support NVM Sets (refer to section 3.2.2);
d) shall set the Fixed Capacity Management bit to ‘1’ in the CTRATT field of the Identify Controller

data structure (refer to Figure 280);
e) shall support the Supported Capacity Configuration List log page (refer to section 5.16.1.17); and
f) shall support the Select Capacity Configuration operation of the Capacity Management command

(refer to section 5.3).

Media Units are accessed by way of Channels that represent communication pathways that may be a
source of contention. This information is reported to facilitate the composition of NVM Sets that minimize
interference between independent writers competing for this type of resource.

The host allocates the Media Units in a domain to Endurance Groups and NVM Sets by:

1) reading the Supported Capacity Configuration List log page (refer to Figure 255) and selecting
the desired configuration; and

2) issuing a Capacity Management command specifying the Select Capacity Configuration operation
and the Capacity Configuration Identifier of the desired configuration.

Following successful completion of the command, each Media Unit is allocated to one Endurance Group
and to one NVM Set. The resulting configuration of Media Units is reported by the Media Unit Status log
page (refer to section 5.16.1.16).

 Variable Capacity Management

Variable Capacity Management allows the dynamic creation and deletion of Endurance Groups and NVM
Sets.

A controller supporting Variable Capacity Management:

a) may support the Media Unit Status log page;
b) shall support Endurance Groups;
c) may support NVM Sets;
d) shall set the Variable Capacity Management bit to ‘1’ in the CTRATT field of the Identify

Controller data structure (refer to Figure 280);
e) shall support the Create Endurance Group operation of the Capacity Management command;
f) may support the Delete Endurance Group operation of the Capacity Management command; and
g) if NVM Sets are supported:

a. shall support the Create NVM Set operation of the Capacity Management command;

NVM Express® Base Specification, Revision 2.0e

373

b. shall report non-zero values in the Total Endurance Group Capacity field and the
Unallocated Endurance Group Capacity field in the Endurance Group Information log
page (refer to Figure 222); and

c. may support the Delete NVM Set operation of the Capacity Management command.

If a controller supports the Delete Endurance Group operation of the Capacity Management command,
then it shall set the Delete Endurance Group bit to ‘1’ in the CTRATT field of the Identify Controller data
structure.

If a controller supports the Delete NVM Set operation of the Capacity Management command, then it shall
set the Delete NVM Set bit to ‘1’ in the CTRATT field of the Identify Controller data structure.

A typical sequence of operations for allocating capacity is:

1) determine the available capacities in each domain (refer to section 3.2.4);
2) create Endurance Group with desired capacity (refer to section 5.3);
3) create NVM Set with desired capacity in the Endurance Group (refer to section 5.3); and
4) create namespace with desired capacity in the NVM Set (refer to section 5.23).

A typical sequence of operations for deallocating capacity is:

1) delete namespace, if any, (refer to section 5.23);
2) delete NVM Set, if any, (refer to section 5.3); and
3) delete Endurance Group (refer to section 5.3).

If there is insufficient unallocated capacity in an Endurance Group for the controller to create an NVM Set,
then the host can delete one or more NVM Sets in that Endurance Group and create the new NVM Set
using some or all of the available capacity.

If there is insufficient unallocated capacity in a domain for the controller to create an Endurance Group,
then the host can delete one or more Endurance Groups in that domain and create a new Endurance Group
using some or all of the available capacity.

8.4 Command and Feature Lockdown

The Command and Feature Lockdown capability is used to prohibit the execution of commands submitted
to NVM Express controllers and/or Management Endpoints in an NVM subsystem. Within this feature,
commands and Feature Identifiers are defined with the following scopes:

• Admin Command Set commands defined by the Opcode field;

• Set Features command features defined by the Feature Identifier field;

• Management Interface Command Set commands defined by the Opcode field (refer to the NVM
Express Management Interface Specification); and

• PCIe Command Set commands defined by the Opcode field (refer to the NVM Express
Management Interface Specification).

Admin Command Set commands and Feature Identifiers are defined to be prohibitable by this feature,
however it is vendor specific which of the Command Set commands and Feature Identifiers are prohibitable
from execution, including the Lockdown command itself.

The prohibition of commands or Feature Identifiers on an interface is specified in the Interface field of the
Lockdown command (refer to section 5.19). The prohibition applies to all applicable:

• NVM Express controllers; and

• Management Endpoints,

in the NVM subsystem, as specified in the Interface field.

The Lockdown command is used to specify commands that are prohibited from execution (i.e., locked
down) and may be used further to then again allow that command to be executed.

The prohibiting of execution of a command as part of this feature shall persist until:

a) power cycle of the NVM subsystem; or

NVM Express® Base Specification, Revision 2.0e

374

b) further being allowed by a follow-on Lockdown command.

If a prohibited Admin Command Set command or Feature Identifier is processed by a controller in the NVM
subsystem, then that command shall be aborted with a status code of Command Prohibited by Command
and Feature Lockdown.

If a prohibited Management Interface Command Set command or PCIe Command Set command is
processed by a management endpoint in the NVM subsystem, then that command shall be aborted and
send a Response Message with an Access Denied Error Response (refer to the NVM Express Management
Interface Specification).

The prohibition or allowance of the execution of commands using this feature treats from where the
command was received, being an NVM Express controller Admin Submission Queue or an out-of-band
Management Endpoint independently. This means that a command may be prohibited if received on an
NVM Express controller Admin Submission Queue but allowed if received on an out-of-band Management
Endpoint, if supported. The Interface field in the Lockdown command is used to specify this behavior.

A host may use the Command and Feature Lockdown log page (refer to section 5.16.1.20) to determine
the commands and Feature Identifiers that are allowed to be prohibited from execution. A Get Log Page
command specifying the Command and Feature Lockdown log page returns a list of command opcodes or
Feature Identifiers depending on the scope specified in the Get Log Page command. The returned list of
opcodes or Feature Identifiers are the opcodes or Feature Identifiers that are:

a) supported as being prohibitable from execution using the Lockdown command;
b) currently prohibited from execution if received on an NVM Express controller submission queue;

or
c) currently prohibited from execution if received out-of-band on a Management Endpoint.

If the Command and Feature Lockdown capability is supported (i.e., bit 10 in the OACS field in Figure 280
is set to ‘1’), then the controller shall support the Lockdown command and the Command and Feature
Lockdown log.

8.5 Controller Memory Buffer

The Controller Memory Buffer (CMB) is a region of general purpose read/write memory on the controller.
The controller indicates support for the CMB by setting CAP.CMBS to ‘1’. The host indicates intent to use
the CMB by setting CMBMSC.CRE to ‘1’. Once this bit is set to ‘1’, the controller indicates the properties of
the CMB via the CMBLOC and CMBSZ properties (refer to section 3.1.4).

The CMB may be used for a variety of purposes. The controller indicates which purposes the memory may
be used for by setting support flags in the CMBSZ property.

The CMB’s PCI Express address range is used for external memory read and write requests to the CMB.
The PCI Express base address of the CMB is defined by the PCI Base Address Register (BAR) indicated
by CMBLOC.BIR, and the offset indicated by CMBLOC.OFST. The size of the CMB is indicated by
CMBSZ.SZ.

The controller uses the CMB’s controller address range to reference CMB with addresses supplied by the
host. The PCI Express address range and the controller address range of the CMB may differ, but both
ranges have the same size, and equivalent offsets within each range have a one-to-one correspondence.
The host configures the controller address range via the CMBMSC property.

The host enables the CMB’s controller memory space via the CMBMSC.CMSE bit. When controller memory
space is enabled, if host supplies an address referencing the CMB’s controller address range, then the
controller directs memory read or write requests for this address to the CMB.

When the CMB’s controller memory space is disabled, the controller does not consider any host-supplied
address to reference the CMB’s controller address range, and memory read and write requests are directed
elsewhere (e.g., to memory other than the CMB).

NVM Express® Base Specification, Revision 2.0e

375

To prevent possible misdirection of the controller’s memory requests, before host software enables the
CMB’s controller memory space, the host should configure the CMB’s controller address range to so that
the addresses do not overlap any address that host software intends to use for DMA.

In versions prior to NVM Express Base Specification revision 1.4, for a controller that supports the CMB,
the CMB’s controller address range is fixed to be equal to its PCI Express address range, and the CMB’s
controller memory space is always enabled whenever the controller is enabled. To prevent misdirection of
controller memory requests when such a controller is assigned to a virtual machine, host software (on the
hypervisor or host OS) should not enable translation of the CMB’s PCI Express address range and should
ensure that this address range does not overlap any range of pre-translated addresses that the virtual
machine may use for DMA.

A host may configure the CMBMSC property so that CMB operates when the controller is assigned to a
virtual machine that only supports NVM Express Base Specification revision 1.3 and earlier. To prevent that
virtual machine from unintentionally clearing the CMBMSC property to 0h, the contents of the CMBSMC
property are preserved across Controller Reset and Function Level Reset (refer to the NVM Express NVMe
over PCIe Transport Specification).

Submission Queues in host memory require the controller to perform a PCI Express read from host memory
in order to fetch the submission queue entries. Submission Queues in controller memory enable host
software to directly write the entire submission queue entry to the controller's internal memory space,
avoiding one read from the controller to the host. This approach reduces latency in command execution
and improves efficiency in a PCI Express fabric topology that may include multiple switches. Similarly, PRP
Lists or SGLs require separate fetches across the PCI Express fabric, which may be avoided by writing the
PRP or SGL to the Controller Memory Buffer. Completion Queues in the Controller Memory Buffer may be
used for peer to peer or other applications. For writes of small amounts of data, it may be advantageous to
have the host write the data and/or metadata to the Controller Memory Buffer rather than have the controller
fetch it from host memory.

The contents of the Controller Memory Buffer are undefined as the result of:

• the CMBMSC.CMSE bit transitioning from ‘0’ to ‘1’;

• a Controller Reset; or

• a Function Level Reset.

Host software should initialize any memory in the Controller Memory Buffer before being referenced (e.g.,
a Completion Queue shall be initialized by host software in order for the Phase Tag to be used correctly).

A CMB implementation has a maximum sustained write throughput. The CMB implementation may also
have an optional write elasticity buffer used to buffer writes from CMB PCIe write requests. When the CMB
sustained write throughput is less than the PCI Express link throughput, then such a write elasticity buffer
allows PCIe write request burst throughput to exceed the CMB sustained write throughput without back
pressuring into the PCI Express fabric.

The time required to transfer data from the write elasticity buffer to the CMB is the amount of data written
to the elasticity buffer divided by the Controller Memory Buffer Sustained Write Throughput (refer to section
3.1.4.18). The time to transfer the entire contents of the write elasticity buffer is the Controller Memory
Buffer Elasticity Buffer Size (refer to section 3.1.4.17) divided by the Controller Memory Buffer Sustained
Write Throughput.

A controller memory-based queue is used in the same manner as a host memory-based queue – the
difference is the memory address used is located within the controller’s own memory rather than in the host
memory. The Admin or I/O Queues may be placed in the Controller Memory Buffer. If the
CMBLOC.CQMMS bit (refer to Figure 54) is cleared to ‘0’, then for a particular queue, all memory
associated with it shall reside in either the Controller Memory Buffer or outside the Controller Memory
Buffer.

If the CMBLOC.CQPDS bit (refer to Figure 54) is cleared to ‘0’, then for all queues in the Controller Memory
Buffer, the queue shall be physically contiguous.

NVM Express® Base Specification, Revision 2.0e

376

The controller may support PRP Lists and SGLs in the Controller Memory Buffer. If the CMBLOC.CDPMLS
bit (refer to Figure 54) is cleared to ‘0’, then for a particular PRP List or SGL associated with a single
command, all memory containing the PRP List or SGL shall be either entirely located in the Controller
Memory Buffer or entirely located outside the Controller Memory Buffer.

PRP Lists and SGLs associated with a command may be placed in the Controller Memory Buffer if that
command is present in a Submission Queue in the Controller Memory Buffer. If:

a) CMBLOC.CDPCILS bit (refer to Figure 54) is cleared to ‘0’; and
b) a command is not present in a Submission Queue in the Controller Memory Buffer,

then the PRP Lists and SGLs associated with that command shall not be placed in the Controller Memory
Buffer.

The controller may support data and metadata in the Controller Memory Buffer. If the CMBLOC.CDMMMS
bit (refer to Figure 54) is cleared to ‘0’, then all data and metadata, if any, associated with a particular
command shall be either entirely located in the Controller Memory Buffer or entirely located outside the
Controller Memory Buffer.

If the requirements for the Controller Memory Buffer use are violated by the host, the controller shall abort
the associated command with a status code of Invalid Use of Controller Memory Buffer.

The address region allocated for the CMB shall be 4 KiB aligned. It is recommended that a controller
allocate the CMB on an 8 KiB boundary. The controller shall support burst transactions up to the maximum
payload size, support byte enables, and arbitrary byte alignment. The host shall ensure that all writes to the
CMB that are needed for a command have been sent before updating the SQ Tail doorbell property. The
Memory Write Request to the SQ Tail doorbell property shall not have the Relaxed Ordering bit set to ‘1’
(refer to the PCI Express Base Specification), to ensure that prior writes to the CMB have completed.

8.6 Device Self-test Operations

A device self-test operation is a diagnostic testing sequence that tests the integrity and functionality of the
controller and may include testing of the media associated with namespaces. The operation is broken
down into a series of segments, where each segment is a set of vendor specific tests. The segment
number in the Self-test Result Data Structure (refer to section 5.16.1.7) is used for reporting purposes to
indicate where a test failed, if any. The test performed in each segment may be the same for the short
device self-test operation and the extended device self-test operation.

A device self-test operation is performed in the background allowing concurrent processing of some
commands and requiring suspension of the device self-test operation to process other commands. Which
commands may be processed concurrently versus require suspension of the device self-test operation is
vendor specific.

If the controller receives any command that requires suspension of the device self-test operation to
process and complete, then the controller shall:

1) suspend the device self-test operation;
2) process and complete that command; and
3) resume the device self-test operation.

During a device self-test operation, the performance of the NVM subsystem may be degraded (e.g.,
controllers not performing the device self-test operation may also experience degraded performance).

The following device self-test operations are defined:

a) short device self-test operation (refer to section 8.6.1); and
b) extended device self-test operation (refer to section 8.6.2).

Figure 419 is an informative example of a device self-test operation with the associated segments and tests
performed in each segment.

NVM Express® Base Specification, Revision 2.0e

377

Figure 419: Example Device Self-test Operation (Informative)

Segment Test Performed Failure Criteria

1 – RAM Check
Write a test pattern to RAM, followed by a read and
compare of the original data.

Any uncorrectable error or
data miscompare

2 – SMART Check
Check SMART or health status for Critical Warning bits
set to ‘1’ in SMART / Health Information Log.

Any Critical Warning bit set to
‘1’ fails this segment

3 – Volatile memory
backup

Validate volatile memory backup solution health (e.g.,
measure backup power source charge and/or discharge
time).

Significant degradation in
backup capability

4 – Metadata validation Confirm/validate all copies of metadata.
Metadata is corrupt and is
not recoverable

5 – NVM integrity
Write/read/compare to reserved areas of each NVM.
Ensure also that every read/write channel of the
controller is exercised.

Data miscompare

E
x
te

n
d
e

d
 o

n
ly

6 – Data Integrity

Perform background housekeeping tasks, prioritizing
actions that enhance the integrity of stored data.

Exit this segment in time to complete the remaining
segments and meet the timing requirements for
extended device self-test operation indicated in the
Identify Controller data structure.

Metadata is corrupt and is
not recoverable

7 – Media Check

Perform random reads from every available good
physical block.

Exit this segment in time to complete the remaining
segments. The time to complete is dependent on the
type of device self-test operation.

Inability to access a physical
block

8 – Drive Life
End-of-life condition: Assess the drive’s suitability for
continuing write operations.

The Percentage Used is set
to 255 in the SMART / Health
Information Log or an
analysis of internal key
operating parameters
indicates that data is at risk if
writing continues

9 – SMART Check Same as 2 – SMART Check

 Short Device Self-Test Operation

A short device self-test operation should complete in two minutes or less. The percentage complete of the
short device self-test operation is indicated in the Current Percentage Complete field in the Device Self-
test Log (refer to section 5.16.1.7).

A short device self-test operation:

a) shall be aborted by any Controller Level Reset that affects the controller on which the device
self-test is being performed;

b) shall be aborted by a Format NVM command as described in Figure 420;
c) shall be aborted when a sanitize operation is started (refer to section 5.24);
d) shall be aborted if a Device Self-test command with the Self-Test Code field set to Fh is

processed; and
e) may be aborted if the specified namespace is removed from the namespace inventory.

NVM Express® Base Specification, Revision 2.0e

378

Figure 420: Format NVM command Aborting a Device Self-Test Operation

SES FNA bit 0 FNA bit 1
NSID in Format NVM

command
NSID in Device Self-

test command

Abort Device
Self-Test

operation?

000b
(i.e.,
not a

secure
erase)

0

N/A

Any allocated NSID value
(refer to section 3.2.1.3)

Any active NSID value
(refer to section 3.2.1.2)

Yes, if the NSID
values are the

same

0 FFFFFFFFh
Any active NSID value

(refer to section 3.2.1.2)
Yes

0
Any allocated NSID value
(refer to section 3.2.1.3)

FFFFFFFFh Optional

0 FFFFFFFFh FFFFFFFFh Yes

1 Ignored Ignored Yes

001b
or

010b
(i.e.,

secure
erase)

N/A

0
Any allocated NSID value
(refer to section 3.2.1.3)

Any active NSID value
(refer to section 3.2.1.2)

Yes, if the NSID
values are the

same

0 FFFFFFFFh
Any active NSID value

(refer to section 3.2.1.2)
Yes

0
Any allocated NSID value
(refer to section 3.2.1.3)

FFFFFFFFh Optional

0 FFFFFFFFh FFFFFFFFh Yes

1 Ignored Ignored Yes

Key:
Optional = The device self-test operation is not required to be aborted but may be aborted.

 Extended Device Self-Test Operation

An extended device self-test operation should complete in the time indicated in the Extended Device Self-
test Time field in the Identify Controller data structure or less. The percentage complete of the extended
device self-test operation is indicated in the Current Percentage Complete field in the Device Self-test Log
(refer to section 5.16.1.7).

An extended device self-test operation shall persist across any Controller Level Reset and shall resume
after completion of the reset or any restoration of power, if any. The segment where the extended device
self-test operation resumes is vendor specific, but implementations should only have to perform tests
again within the last segment that was being tested prior to the reset.

An extended device self-test operation:

a) shall be aborted by a Format NVM command as described in Figure 420;
b) shall be aborted when a sanitize operation is started (refer to section 5.24);
c) shall be aborted if a Device Self-test command with the Self-Test Code field set to Fh is

processed; and
d) may be aborted if the specified namespace is removed from the namespace inventory.

8.7 Directives

Directives is a mechanism to enable host and NVM subsystem or controller information exchange. The
Directive Receive command (refer to section 5.10) is used to transfer data related to a specific Directive
Type from the controller to the host. The Directive Send command (refer to section 5.11) is used to transfer
data related to a specific Directive Type from the host to the controller. Other commands may include a
Directive Specific value specific for a given Directive Type (e.g., the Write command in the NVM Command
Set).

Support for Directives is optional and is indicated in the Optional Admin Command Support (OACS) field in
the Identify Controller data structure (refer to Figure 280).

If a controller supports Directives, then the controller shall:

NVM Express® Base Specification, Revision 2.0e

379

• Indicate support for Directives in the Optional Admin Command Support (OACS) field in the
Identify Controller data structure;

• Support the Directive Receive command;

• Support the Directive Send command; and

• Support the Identify Directive (i.e., Type 00h).

The Directive Types that may be supported by a controller (refer to Figure 421) are the Identify Directive
(refer to section 8.7.2), and the Streams Directive (refer to section 8.7.3). The Directive Specific field and
Directive Operation field are dependent on the Directive Type specified in the command (e.g., Directive
Send, Directive Receive, or I/O command).

Figure 421: Directive Types

Directive Directive Type Value Definition I/O Command Directive

Identify 00h Section 8.7.2 No

Streams 01h Section 8.7.3 Yes

If a Directive is not supported or is supported and disabled, then all Directive Send commands and Directive
Receive commands with that Directive Type shall be aborted with a status code of Invalid Field in
Command.

Support for a specific Directive Type is indicated using the Return Parameters operation of the Identify
Directive. A specific Directive may be enabled or disabled using the Enable operation of the Identify
Directive. Before using a specific Directive, the host should determine if that Directive is supported and
should enable that Directive using the Identify Directive.

 Directive Use in I/O Commands

I/O Command Directives are the subset of Directive Types that may be used as part of I/O commands. For
example, a Write command in the NVM Command Set may specify a Directive Type and an associated
Directive Specific value. I/O Command Directives shall have a Directive Type value that is less than or
equal to 0Fh due to the size of the Directive Type field in I/O commands. When a Directive Type is specified
in an I/O command, the most significant four bits are assumed to be 0h. A Directive Type of 00h in an I/O
command specifies that the I/O command is not using Directives.

In an I/O command, if the Directive Type (DTYPE) field is set to an I/O Command Directive, then the
Directive Specific (DSPEC) field includes additional information for the associated I/O command (refer to
Figure 422).

Figure 422: Directive Specific Field Interpretation

Directive Type Value Directive Specific Field Definition

00h (Directives not in use) Field not used.

01h (Streams) Specifies the identifier of the stream associated with the data.

02h to 0Fh Reserved

In an I/O command:

• if no I/O Command Directive is enabled or the DTYPE field is cleared to 00h, then the DTYPE field
and the DSPEC field are ignored; and

• if one or more I/O Command Directives is enabled and the DTYPE field is set to a value that is not
supported or not enabled, then the controller shall abort the command with a status code of Invalid
Field in Command.

For the Streams Directive (i.e., DTYPE field set to 01h), if the DSPEC field is cleared to 0h in an I/O
command that supports the Streams Directive, then that I/O command shall be processed normally (i.e., as
if DTYPE field is cleared to 00h).

NVM Express® Base Specification, Revision 2.0e

380

 Identify (Directive Type 00h)

The Identify Directive is used to determine the Directive Types that the controller supports and to enable
use of the supported Directives. If Directives are supported, then this Directive Type shall be supported.

The Directive operations that shall be supported for the Identify Directive are listed in Figure 423.

Figure 423: Identify Directive – Directive Operations

Directive Command Directive Operation Name Directive Operation Value Definition

Directive Receive
Return Parameters 01h Section 8.7.2.1.1

Reserved All other values

Directive Send
Enable Directive 01h Section 8.7.2.2.1

Reserved All other values

8.7.2.1 Directive Receive

This section defines operations used with the Directive Receive command for the Identify Directive.

8.7.2.1.1 Return Parameters (Directive Operation 01h)

This operation returns a data structure that contains a bit vector specifying the Directive Types supported
by the controller and a bit vector specifying the Directive Types enabled for the namespace. The data
structure returned is defined in Figure 424. If an NSID value of FFFFFFFFh is specified, then the controller
shall abort the command with a status code of Invalid Field in Command. The DSPEC field in command
Dword 11 is not used for this operation.

Figure 424: Identify Directive – Return Parameters Data Structure

Bytes Bits Description

 Directives Supported

31:00

255:02 Reserved

01
Streams Directive: This bit is set to ‘1’ if the Streams Directive is supported. This bit is
cleared to ‘0’ if the Streams Directive is not supported.

00
Identify Directive: This bit shall be set to ‘1’ to indicate that the Identify Directive is
supported.

 Directives Enabled

63:32

255:02 Reserved

01
Streams Directive: This bit is set to ‘1’ if the Streams Directive is enabled. This bit is
cleared to ‘0’ if the Streams Directive is not enabled.

00
Identify Directive: This bit shall be set to ‘1’ to indicate that the Identify Directive is
enabled.

4095:64 n/a Reserved

8.7.2.2 Directive Send

This section defines operations used with the Directive Send command for the Identify Directive.

8.7.2.2.1 Enable Directive (Directive Operation 01h)

The Enable Directive operation is used to enable a specific Directive for use within a namespace by all
controllers that are associated with the same Host Identifier. The DSPEC field in command Dword 11 is not
used for this operation. The Identify Directive is always enabled. The enable state of each Directive on each
shared namespace attached to enabled controllers associated with the same non-zero Host Identifier is the
same. If an NSID value of FFFFFFFFh is specified, then the Enable Directive operation applies to the NVM
subsystem (i.e., all namespaces and all controllers associated with the NVM subsystem). On an NVM
Subsystem Reset, all Directives other than the Identify Directive are disabled in the Domains impacted by
that reset (refer to section 3.7.1).

On a Controller Level Reset:

NVM Express® Base Specification, Revision 2.0e

381

• all Directives other than the Identify Directive are disabled for that controller; and

• if there is an enabled controller associated with the Host Identifier for the controller that was reset,
then for namespaces attached to enabled controllers associated with that Host Identifier, Directives
are not disabled.

If a host sets the Host Identifier of a controller to the same non-zero Host Identifier as one or more other
controllers in the NVM subsystem, then setting that Host Identifier shall result in each shared namespace
attached to that controller having the same enable state for each Directive as the enable state for each
Directive for that namespace attached to other controllers associated with that Host Identifier.

If a host enables a controller that has the same non-zero Host Identifier as one or more other controllers in
the NVM subsystem, then enabling that controller shall result in each shared namespace attached to that
controller having the same enable state for each Directive as the enable state for each Directive for that
namespace attached to other controllers associated with that Host Identifier.

For all controllers in an NVM subsystem that have the same non-zero Host Identifier, if a host changes the
enable state of any Directive for a shared namespace attached to a controller by a means other than a
Controller Level Reset, then that change shall be made to the enable state of that Directive for that
namespace attached to any other controller associated with that Host Identifier.

Figure 425: Enable Directive – Command Dword 12

Bits Description

31:16 Reserved

15:08
Directive Type (DTYPE): This field specifies the Directive Type to enable or disable. If this field
specifies the Identify Directive (i.e., 00h), then a status code of Invalid Field in Command shall be
returned.

07:01 Reserved

00
Enable Directive (ENDIR): If set to ‘1’ and the Directive Type is supported, then the Directive is
enabled. If cleared to ‘0’, then the Directive is disabled. If this bit is set to ‘1’ for a Directive that is
not supported, then a status code of Invalid Field in Command shall be returned.

Figure 426: Enable Directive – Command Specific Status Values

Value Description

7Fh
Stream Resource Allocation Failed: The controller failed to enable the Streams Directive for the
specified namespace and Host Identifier due to insufficient resources.

 Streams (Directive Type 01h, Optional)

The Streams Directive enables the host to indicate (i.e., by using the stream identifier) to the controller that
the specified user data in a User Data Out command (e.g., logical blocks in a write command) are part of
one group of associated data. This information may be used by the controller to store related data in
associated locations or for other performance enhancements.

The controller provides information in response to the Return Parameters operation about the configuration
of the controller that indicates Stream Write Size, Stream Granularity Size, and stream resources at the
NVM subsystem and namespace levels.

Data that is aligned to and in multiples of the Stream Write Size (SWS) provides optimal performance of
the write commands to the controller. The SWS unit of granularity is defined independently for each I/O
Command Set. The Stream Granularity Size indicates the size of the media that is prepared as a unit for
future allocation for write commands and is a multiple of the Stream Write Size. The controller may allocate
and group together a stream in Stream Granularity Size (SGS) units. Refer to Figure 427.

NVM Express® Base Specification, Revision 2.0e

382

Figure 427: Directive Streams – Stream Alignment and Granularity

SGS (first) SGS (last)...

Complete Stream

Stream Granularity (SGS)

SWS

(first)

SWS

(last)...

One example of this is if the host issues an NVM Command Set Dataset Management command (refer to
the Dataset Management command section of the NVM Command Set Specification) to deallocate logical
blocks that are associated with a stream, that host should specify a starting LBA and length that is aligned
to and in multiples of the Stream Granularity Size. This provides optimal performance and endurance of the
media.

Stream resources are the resources in the NVM subsystem that are necessary to track operations
associated with a specified stream identifier. There are a maximum number of stream resources that are
available in an NVM subsystem as indicated by the Max Stream Limit (MSL) field in the Return Parameters
data structure (refer to Figure 431).

Available NVM subsystem stream resources are stream resources that are not allocated for exclusive use
in any namespace. Available NVM subsystem stream resources are reported in the NVM Subsystem
Streams Available (NSSA) field (refer to Figure 431) and may be used by any host in any namespace that:

• has the Streams Directive enabled;

• has not been allocated exclusive stream resources by that host if bit 0 of the NSSC field is cleared
to ‘0’; and

• has not been allocated exclusive stream resources by any host if bit 0 of the NSSC field is set to
‘1’.

Each time stream resources are allocated for exclusive use in a specified namespace, the available NVM
subsystem stream resources reported in the NSSA field are reduced.

For a given namespace:

a) a host allocates stream resources to that namespace for the exclusive use of that host(s) by issuing
the Allocate Resources operation;

b) other hosts may concurrently allocate stream resources to that namespace for their exclusive use;
and

c) hosts which have not allocated stream resources to that namespace may use available NVM
subsystem stream resources for access to that namespace.

The Directive operations that shall be supported if the Streams Directive is supported are listed in Figure
428. The Directive Specific field in a command is referred to as the Stream Identifier when the Directive
Type field is set to the Streams Directive.

Figure 428: Streams – Directive Operations

Directive Command
Directive Operation

Name
Directive Operation Value Definition

Directive Receive

Return Parameters 01h Section 8.7.3.1.1

Get Status 02h Section 8.7.3.1.2

Allocate Resources 03h Section 8.7.3.1.3

Reserved All other values

Directive Send

Release Identifier 01h Section 8.7.3.2.1

Release Resources 02h Section 8.7.3.2.2

Reserved All other values

NVM Express® Base Specification, Revision 2.0e

383

Stream identifiers are assigned by the host and may be in the range 0001h to FFFFh. The host may specify
a sparse set of stream identifiers (i.e., there is no requirement for the host to use Stream Identifiers in any
particular order).

The host may access a namespace through multiple controllers in the NVM subsystem. The controllers in
an NVM subsystem indicate in bit 0 of the NSSC field (refer to Figure 431) if a stream identifier is unique
based on the Host Identifier (i.e., the same stream identifier used to access the same namespace by a host
that has registered a different Host Identifier is referencing a different stream), or if a stream identifier may
be used by multiple Host Identifiers (i.e., the same stream identifier used to access the same namespace
by a host that has registered a different Host Identifier is referencing the same stream). All controllers in an
NVM subsystem shall report the same value in the NSSC field.

If multiple controllers receive a registration of a Host Identifier (refer to section 5.27.1.16) that has the same
non-zero value, then that value represents a single host that is accessing the namespace through those
controllers and a stream identifier is used across those controllers to access the same stream on the
namespace. If a Host Identifier has a unique non-zero value, then each value represents a unique host that
is accessing the namespace and:

• if bit 0 of the NSSC field is cleared to ‘0’, then the same stream identifier on controllers with different
non-zero Host Identifiers does not have the same meaning for a particular namespace (i.e., the
stream identifier is not used across controllers with different non-zero Host Identifiers to access the
same stream on the namespace); and

• if bit 0 of the NSSC field is set to ‘1’, then the same stream identifier on any controller with a non-
zero Host Identifier has the same meaning for a particular namespace (i.e., the stream identifier is
used across controllers to access the same stream on the namespace).

If a Host Identifier is cleared to 0h, then a unique host is accessing the namespace and the stream identifier
does not have the same meaning for a particular namespace.

Figure 429: Example Multi-Stream and NSSC

Namespace

NSID 1

NVM Express

Controller 1
Host ID = A

NSID 1

NVM Express

Controller 2
Host ID = A

NSID 1

NVM Express

Controller 3
Host ID = B

NSID 1

Host

A

Host

B

Host

C

NVM Subsystem

NVM Express

Controller 4
Host ID = C

Stream

ID 1-a

Stream

ID 1-b

Stream

ID 1-c
Stream

ID 1-d

In the example shown in Figure 429, if NSSC bit 0 is cleared to ‘0’, then there are three streams as follows:

• Stream ID 1-a and Stream ID 1-b have the same meaning;

• Stream ID 1-c has a different meaning; and

• Stream ID 1-d has a different meaning.

NVM Express® Base Specification, Revision 2.0e

384

In the example shown in Figure 429, if NSSC bit 0 is set to ‘1’, then there is one stream as follows:

• Stream ID 1-a, Stream ID 1-b, Stream ID 1-c, and Stream ID 1-d have the same meaning.

The controller(s) recognized by the NVM subsystem as being associated with a specific host or hosts and
attached to a specific namespace either:

• utilizes a number of stream resources allocated for exclusive use of that namespace as returned
in response to an Allocate Resources operation; or

• utilizes resources from the NVM subsystem stream resources.

The value of Namespace Streams Allocated (NSA) indicates how many resources for individual stream
identifiers have been allocated for exclusive use for the specified namespace by the associated controllers.
This indicates the maximum number of stream identifiers that may be open at any given time in the specified
namespace by the associated controllers. To request a different number of resources than are currently
allocated for exclusive use by the associated controllers for a specific namespace, all currently allocated
resources are first required to be released using the Release Resources operation. There is no mechanism
to incrementally increase or decrease the number of allocated resources for a given namespace.

Streams are opened by the controller when the host issues a Write command that specifies a stream
identifier that is not currently open. While a stream is open the controller maintains context for that stream
(e.g., buffers for associated data). The host may determine the streams that are open using the Get Status
operation.

For a namespace that has a non-zero value of Namespace Streams Allocated (NSA), if the host submits a
Write command specifying a stream identifier not currently in use and stream resources are exhausted,
then an arbitrary stream identifier for that namespace is released by the controller to free the stream
resources associated with that stream identifier for the new stream. The host may ensure the number of
open streams does not exceed the allocated stream resources for the namespace by explicitly releasing
stream identifiers as necessary using the Release Identifier operation.

For a namespace that has zero namespace stream resources allocated, if the host submits an I/O command
specifying a stream identifier not currently in use and:

• NVM subsystem streams available are exhausted, then an arbitrary stream identifier for an arbitrary
namespace that is using NVM subsystem stream resources is released by the NVM subsystem to
free the stream resources associated with that stream identifier for the new stream; or

• all NVM subsystem stream resources have been allocated for exclusive use for specific
namespaces, then the Write command is treated as a normal Write command that does not specify
a stream identifier.

The host determines parameters associated with stream resources using the Return Parameters operation.
The host may get a list of open stream identifiers using the Get Status operation.

If the Streams Directive becomes disabled for use by a host within a namespace, then all stream resources
and stream identifiers shall be released for that host for the affected namespace. If the host issues a Format
NVM command, then all stream identifiers for all open streams for affected namespaces shall be released.
If the host deletes a namespace, then all stream resources and all stream identifiers for that namespace
shall be released. If the write protection state of a namespace changes such that the namespace becomes
write protected (refer to section 8.12), then the controller shall release all stream resources and stream
identifiers for that namespace.

Streams Directive defines the command specific status values specified in Figure 430.

Figure 430: Streams Directive – Command Specific Status Values

Value Description

7Fh
Stream Resource Allocation Failed: The controller was not able to allocate stream resources for
exclusive use of the specified namespace and no NVM subsystem stream resources are available.

NVM Express® Base Specification, Revision 2.0e

385

8.7.3.1 Directive Receive

This section defines operations used with the Directive Receive command for the Streams Directive.

8.7.3.1.1 Return Parameters (Directive Operation 01h)

The Return Parameter operation returns a data structure that specifies the features and capabilities
supported by the Streams Directive, including namespace specific values. The DSPEC field in command
Dword 11 is not used for this operation. The data structure returned is defined in Figure 431. If an NSID
value of FFFFFFFFh is specified, then the controller:

• returns the NVM subsystem specific values;

• may return any namespace specific values that are the same for all namespaces (e.g., SWS);
and

• clears all other namespace specific fields to 0h.

Figure 431: Streams Directive – Return Parameters Data Structure

Bytes Description

NVM Subsystem Specific Fields

01:00
Max Streams Limit (MSL): This field indicates the maximum number of concurrently open
streams that the NVM subsystem supports. This field returns the same value independent of
specified namespace.

03:02

NVM Subsystem Streams Available (NSSA): This field indicates the number of NVM subsystem
stream resources available. These are the stream resources that are not allocated for the
exclusive use by a host in any specific namespace. This field returns the same value independent
of specified namespace.

05:04

NVM Subsystem Streams Open (NSSO): This field indicates the number of open streams in the
NVM subsystem that are not associated with a namespace for which resources were allocated
using an Allocate Resources operation. This field returns the same value independent of specified
namespace.

06

NVM Subsystem Stream Capability (NSSC): This field indicates the stream capabilities of the
NVM subsystem.

Bits 7:1 are reserved.

Bit 0 indicates whether stream identifiers may be shared by multiple Host Identifiers, or if a stream
identifier is associated with a single Host Identifier. If bit 0 is cleared to ‘0’, then the stream identifier
is associated with a single non-zero Host Identifier. If bit 0 is set to ‘1’, then the stream identifier
may be associated with multiple non-zero Host Identifiers.

15:07 Reserved

Namespace Specific Fields

19:16

Stream Write Size (SWS): This field indicates the alignment and size of the optimal stream write
as a number for the specified namespace where the unit of granularity is specified by the
applicable I/O Command Set. The size indicated should be less than or equal to Maximum Data
Transfer Size (MDTS) that is specified in units of minimum memory page size. SWS may change
if the namespace is reformatted with a different User Data Format. If the NSID value is set to
FFFFFFFFh, then this field may be cleared to 0h if a single user data size cannot be indicated.

Refer to the applicable I/O Command Set specification for how this field is utilized to optimize
performance and endurance.

21:20

Stream Granularity Size (SGS): This field indicates the stream granularity size for the specified
namespace in Stream Write Size (SWS) units. If the NSID value is set to FFFFFFFFh, then this
field may be cleared to 0h.

Refer to the applicable I/O Command Set specification for how this field is utilized to optimize
performance and endurance.

NVM Express® Base Specification, Revision 2.0e

386

Figure 431: Streams Directive – Return Parameters Data Structure

Bytes Description

Namespace and Host Identifier Specific Fields

23:22

Namespace Streams Allocated (NSA): This field indicates the number of stream resources
allocated for exclusive use of the specified namespace.

If bit 0 of the NSSC field is cleared to ‘0’, then those exclusive stream resources are shared by the
controller processing the Return Parameters operation and by all other controllers that share the
same non-zero Host Identifier, and are attached to the specified namespace.

If bit 0 of the NSSC field is set to ‘1’, then those exclusive stream resources are shared by all
controllers that are associated with any non-zero Host Identifier and are attached to this
namespace.

If this value is non-zero, then the namespace may have up to NSA number of concurrently open
streams. If this field is cleared to 0h, then no stream resources are currently allocated to this
namespace and the namespace may have up to NSSA number of concurrently open streams.

25:24

Namespace Streams Open (NSO): This field indicates the number of open streams in the
specified namespace.

If bit 0 of the NSSC field is cleared to ‘0’, then this field indicates the number of streams that were
opened by the controller processing the Return Parameters operation and by all other controllers
that share the same non-zero Host Identifier, and are attached to this namespace.

If bit 0 of the NSSC field is set to ‘1’, then this field indicates the number of streams that were
opened by the controller processing the Return Parameters operation and all other controllers that
are associated with any non-zero Host Identifier and are attached to this namespace.

NOTE: It is not possible for a host to retrieve the number of open streams using resources
allocated to the specified namespace by other hosts.

31:26 Reserved

8.7.3.1.2 Get Status (Directive Operation 02h)

The Get Status operation returns information about the status of currently open streams for the specified
namespace and the host issuing the Get Status operation. The DSPEC field in command Dword 11 is not
used for this operation.

If NSSC bit 0 is cleared to ‘0’, then the information returned describes only those resources for the specified
namespace that are associated with hosts that are registered with the same non-zero Host Identifier value
as the host issuing the Get Status operation. If NSSC bit 0 is set to ‘1’, then the information returned
describes the resources for the specified namespace that are associated with hosts that are registered with
any non-zero Host Identifier.

If an NSID value of FFFFFFFFh is specified, then the controller shall return information about the status of
currently open streams in the NVM subsystem that use resources which are not allocated for the exclusive
use of a particular namespace. If a stream identifier value being returned is in use by different namespaces,
then that stream identifier shall be returned only once.

Stream Identifier 1 (i.e., returned at offset 03:02) contains the value of the open stream of lowest numerical
value. Each subsequent field contains the value of the next numerically greater stream identifier of an open
stream.

The data structure returned is defined in Figure 432. All fields are specific to the specified namespace if the
NSID value was not set to FFFFFFFFh.

Figure 432: Streams Directive – Get Status Data Structure

Bytes Description

01:00 Open Stream Count: This field specifies the number of streams that are currently open.

03:02
Stream Identifier 1: This field specifies the stream identifier of the first (numerically lowest) open
stream.

NVM Express® Base Specification, Revision 2.0e

387

Figure 432: Streams Directive – Get Status Data Structure

Bytes Description

05:04 Stream Identifier 2: This field specifies the stream identifier of the second open stream.

… …

131071:
131070

Stream Identifier 65,535: This field specifies the stream identifier of the 65,535th open stream.

8.7.3.1.3 Allocate Resources (Directive Operation 03h)

The Allocate Resources operation indicates the number of streams that the host requests for the exclusive
use for the specified namespace. If bit 0 of the NSSC field is cleared to ‘0’, then those resources are for the
exclusive use of hosts that are registered with the same Host Identifier as the host that made the request.
If bit 0 of the NSSC field is set to ‘1’, then those resources are for the exclusive use of any host that is
registered with any non-zero Host Identifier. The DSPEC field in command Dword 11 is not used for this
operation. The operation returns the number of streams allocated in Dword 0 of the completion queue entry.
The value allocated may be less than or equal to the number requested. The allocated resources shall be
reflected in the Namespace Streams Allocated field of the Return Parameters data structure.

If the controller is unable to allocate any stream resources for the exclusive use for the specified
namespace, then the controller shall:

• return a status value of Stream Resource Allocation Failed; or

• if NVM subsystem stream resources are available, then clear NSA to 0h in the completion queue
entry to indicate that the host may use stream resources from the NVM subsystem for this
namespace.

If the specified namespace already has stream resources allocated for the exclusive use of the host issuing
the Allocate Resources operation, then the controller shall return a status code of Invalid Field in Command.
To allocate additional streams resources, the host should release resources and request a complete set of
resources.

No data transfer occurs.

Figure 433: Allocate Resources – Command Dword 12

Bits Description

31:16 Reserved

15:00
Namespace Streams Requested (NSR): This field specifies the number of stream resources the
host is requesting be allocated for exclusive use by the specified namespace.

Figure 434: Allocate Resources – Completion Queue Entry Dword 0

Bits Description

31:16 Reserved

15:00
Namespace Streams Allocated (NSA): This field indicates the number of streams resources that
have been allocated for exclusive use by the specified namespace. The allocated resources are
available to all controllers associated with that host.

8.7.3.2 Directive Send

This section defines operations used with the Directive Send command for the Streams Directive.

8.7.3.2.1 Release Identifier (Directive Operation 01h)

The Release Identifier operation specifies that the stream identifier specified in the DSPEC field in
command Dword 11 is no longer in use by the host. Specifically, if the host uses that stream identifier in a
future operation, then that stream identifier is referring to a different stream. If the specified identifier does
not correspond to an open stream for the specified namespace, then the Directive Send command should
not fail as a result of the specified identifier. If there are stream resources allocated for the exclusive use of

NVM Express® Base Specification, Revision 2.0e

388

the specified namespace, then those exclusive stream resources remain allocated for this namespace and
may be re-used in a subsequent write command. If there are no stream resources allocated for the exclusive
use of the specified namespace, then the stream resources are returned to the NVM subsystem stream
resources for future use by a namespace without exclusive allocated stream resources. If an NSID value
of FFFFFFFFh is specified, then the controller shall abort the command with a status code of Invalid Field
in Command.

No data transfer occurs.

8.7.3.2.2 Release Resources (Directive Operation 02h)

The Release Resources operation is used to release all streams resources allocated for the exclusive use
of the namespace attached to all controllers:

• associated with the same non-zero Host Identifier of the controller that processed the operation if
bit 0 of the NSSC field is cleared to ‘0’; and

• associated with any non-zero Host Identifier if bit 0 of the NSSC field is set to ‘1’.

On successful completion of this command, the exclusive allocated stream resources are released and the
Namespace Streams Allocated (refer to Figure 431) field is cleared to 0h for the specified namespace. If
this command is issued when no streams resources are allocated for the exclusive use of the namespace,
then the Directive Send command shall take no action and shall not fail as a result of no allocated stream
resources.

No data transfer occurs.

8.8 Doorbell Stride for Software Emulation

The doorbell stride, specified in CAP.DSTRD (refer to Figure 38), may be used to separate doorbells by a
number of bytes in memory space. The doorbell stride is a number of bytes equal to (2 ̂ (2 + CAP.DSTRD)).
This is useful in software emulation of an NVM Express controller. In this case, a software thread is
monitoring doorbell notifications. The software thread may be made more efficient by monitoring one
doorbell per discrete cacheline or utilize the monitor/mwait CPU instructions. For hardware implementations
of the NVM Express interface, the expected doorbell stride value is 0h.

8.9 Host Memory Buffer

The Host Memory Buffer (HMB) feature allows the controller to utilize an assigned portion of host memory
exclusively. The use of the host memory resources is vendor specific. Host software may not be able to
provide any or a limited amount of the host memory resources requested by the controller. The controller
shall function properly without host memory resources. Refer to section 5.27.1.10.

The controller may indicate limitations for the minimum usable descriptor entry size and the maximum
number of descriptor entries (refer to the HMMINDS and HMMAXD fields in the Identify Controller data
structure, Figure 280). If the host does not create the Host Memory Buffer within the indicated limits, then
the host memory allocated for use by the controller may not be fully utilized (e.g., descriptor entries beyond
the maximum number of entries indicated may be ignored by the controller).

During initialization, host software may provide a descriptor list that describes a set of host memory address
ranges for exclusive use by the controller. The host memory resources assigned are for the exclusive use
of the controller (host software should not modify the ranges) until host software requests that the controller
release the ranges and the controller completes the Set Features command. The controller is responsible
for initializing the host memory resources. Host software should request that the controller release the
assigned ranges prior to a shutdown event, a Runtime D3 event, or any other event that requires host
software to reclaim the assigned ranges. After the controller acknowledges that the ranges are no longer
in use, host software may reclaim the host memory resources. In the case of Runtime D3, host software
should provide the host memory resources to the controller again and inform the controller that the ranges
were in use prior to the RTD3 event and have not been modified.

The host memory resources are not persistent in the controller across a Controller Level Reset. Host
software should provide the previously allocated host memory resources to the controller after that reset

NVM Express® Base Specification, Revision 2.0e

389

completes. If host software is providing previously allocated host memory resources (with the same
contents) to the controller, the Memory Return bit (refer to Figure 335) is set to ‘1’ in the Set Features
command.

The controller shall ensure that there is no data loss or data corruption in the event of a surprise removal
while the Host Memory Buffer feature is being utilized.

8.10 Host Operation with Asymmetric Namespace Access Reporting (Informative)

 Host ANA Normal Operation

The host determines if ANA is supported by examining bit 3 in the CMIC field in the Identify Controller data
structure (refer to Figure 280). The NSID or Identifier (refer to section 4.3) is used to determine when
multiple paths to the same namespace are available. The host examines the ANA log page (refer to section
5.16.1.13) for each controller to determine the ANA state of each group of namespaces attached to that
controller.

To send a command to a namespace, the host should select a controller that reports the ANA Optimized
State (refer to section 8.1.3.1) and send the command to that controller. If more than one controller that
reports the ANA Optimized state for a namespace are found, then the host may use all of those controllers
to send commands.

If there are no controllers that report the ANA Optimized state for a namespace, then the host should select
a controller that reports ANA Non-Optimized State (refer to section 8.1.3.2) for that namespace and send
the command to that controller. If more than one controller that reports ANA Non-Optimized state for a
namespace are found, then the host may use all of those controllers to send commands.

If multiple controllers are being used, then the algorithm for determining which controller to use next is
outside the scope of this specification (e.g., the host may select a simple round robin algorithm, a queue
depth weighted algorithm, a transfer length weighted algorithm, or any other algorithm).

If there are no controllers that report the ANA Optimized state for a namespace and there are no controllers
that report the ANA Non-Optimized state for that namespace, then the host should examine controllers that
report the ANA Inaccessible state as described in section 8.10.2.

 Host ANA Inaccessible Operation

If the ANA log page reports an ANA state of ANA Inaccessible State for an ANA Group or a command
returns a status code of Asymmetric Access Inaccessible, then the host should:

• not use that controller to send commands to any namespace in that ANA Group; and

• select a different controller for sending commands to all namespaces in that ANA Group.

If there are no controllers that report the ANA Optimized state for a namespace and there are no controllers
that report the ANA Non-Optimized state, then a transition may be occurring that also impacts controllers
that are reporting the ANA Inaccessible state. As a result, the host should use the methods described for
Host ANA Transition operation (refer to section 8.10.5) to determine if the controller reporting ANA
Inaccessible state transitions during the ANATT time interval to an ANA state that enables commands to
be processed by that controller.

 Host ANA Persistent Loss Operation

If the ANA log page reports an ANA state of ANA Persistent Loss State for an ANA Group or a command
returns a status code of Asymmetric Access Persistent Loss, then the host should not use that controller to
send commands to any namespace in that ANA Group, and select a different controller for sending
commands to any namespace in that ANA Group. If the controller supports the Namespace Management
capability (refer to section 8.11), then the namespaces in an ANA Group reporting this state should be
detached.

NVM Express® Base Specification, Revision 2.0e

390

 Host ANA Change Notice Operation

If the ANA log page reports an ANA state of ANA Change State for an ANA Group or a command returns
a status code of Asymmetric Access Transition, then the host should temporarily not use that controller to
send commands to any namespace in that ANA Group. If only controllers reporting ANA Inaccessible State
are available, then the host should follow these procedures to determine which controller to use. To use a
controller, the host may:

a) if Asymmetric Namespace Access Change Notices are enabled (refer to section 5.27.1.8) on the
controller, wait for an Asymmetric Namespace Access Change Notice from that controller. Upon
receipt of that notice, the host should examine the ANA log page to determine the new ANA state
and resume sending commands based on the new ANA state. Such notice should occur within the
ANATT time (refer to Figure 280); or

b) delay and retry the command during the ANATT time interval. The host should not immediately
retry, but rather, divide the ANATT time into equal intervals for command retry purposes (e.g., if
ANATT is 30, perform 3 retries at 10 s intervals, or 10 retries at 3 s intervals). During or upon
completion of the ANATT time interval, the new ANA state of the ANA Group should be known
(e.g., one of the command retries returned a different status that indicates completion of the
transition to a new ANA state). If the retried command did not complete without error, the ANA log
page should be examined on each controller that provides access to the namespace and the host
should resume sending commands based on the new ANA state.

If the ANATT time interval expires, then the host should use a different controller for sending commands to
the namespaces in that ANA Group. The ANATT interval reported by the controller should prevent this type
of timer expiration from occurring.

 Host ANA Transition Operation

Receipt of an Asymmetric Namespace Access Change Notice from a controller may indicate:

a) that the ANA state reported in one or more ANA Group Descriptors has changed;
b) a new NSID has been added to one or more of the ANA Group Descriptors;
c) an NSID has been removed from one or more of the ANA Group Descriptors; and/or
d) the NSID of a namespace has moved from one ANA Group Descriptor to a different ANA Group

Descriptor (i.e., the ANAGRPID field in the Identify Namespace data structure for that namespace
has changed), if bit 6 in the ANACAP field is cleared to ‘0’ in the Identify Controller data structure
(refer to Figure 280).

As a result of receiving an Asymmetric Namespace Access Change Notice, the host should read the ANA
log page (refer to section 5.16.1.13) to check for each of those possible changes.

 All Paths Down Condition

An all paths down condition occurs when there are no paths available on the host to access the
namespaces in an ANA Group (i.e., the NVM media). To determine whether an all paths down condition
has occurred, the host may examine the ANA log page on each controller that provides access to the
namespaces in a particular ANA Group. All paths that are not in the ANA Persistent Loss state should be
checked. If no paths to the namespaces in that ANA Group become available (i.e., transition to the ANA
Optimized state or the ANA Non-Optimized state) for the duration of an ANATT time interval, then an all
paths down condition has occurred for the namespaces in that ANA Group.

8.11 Namespace Management

The Namespace Management capability consists of the Namespace Management command (refer to
section 5.23) and the Namespace Attachment command (refer to section 5.22). The Namespace
Management command is used to create a namespace or delete a namespace. The Namespace
Attachment command is used to attach and detach controllers from a namespace. The Namespace
Management capability is intended for use during manufacturing or by a system administrator.

If the Namespace Management capability is supported, then the controller:

NVM Express® Base Specification, Revision 2.0e

391

a) shall support the Namespace Management command and the Namespace Attachment
command;

b) shall set bit 3 to ‘1’ in the OACS field (refer to Figure 280);
c) should support the Namespace Attribute Changed asynchronous event (refer to Figure 152

and section 5.27.1.8); and
d) may support Namespace Granularity (refer to the NVM Command Set Specification).

If a namespace is detached from a controller, then the NSID that referred to that namespace becomes an
inactive NSID (refer to section 3.2.1.4) on that controller. If a namespace is deleted from the NVM
subsystem, then the NSID that referred to that namespace becomes an unallocated NSID (refer to section
3.2.1.3) in the NVM subsystem. Previously submitted but uncompleted or subsequently submitted
commands to the affected NSID are handled by the controller as if they were issued to an inactive NSID
(refer to Figure 90).

The size of a namespace is based on the size requested in a create operation, the format of the namespace,
and any characteristics (e.g., endurance). The controller determines the NVM capacity allocated for that
namespace. Namespaces may be created with different usage characteristics (e.g., endurance) that utilize
differing amounts of NVM capacity. Namespace characteristics and the mapping of these characteristics to
NVM capacity usage are outside the scope of this specification.

Reporting of capacity information for the NVM subsystem, Domain, Endurance Group, and NVM Set are
described in section 3.8. For each namespace, the NVM Set and the Endurance Group that contain the
namespace are reported in the Identify Namespace data structure. The NVM Set to be used for a
namespace is based on the value in the NVM Set Identifier field in a create operation. If the NVM Set
Identifier field is cleared to 0h in a create operation, then the controller shall choose the NVM Set from
which to allocate capacity to create the namespace.

If the NVM Set Identifier field and the Endurance Group Identifier field are both cleared to 0h in a create
operation, then the controller shall choose the Endurance Group and the NVM Set from which to allocate
capacity to create the namespace.

If the NVM Set Identifier field is cleared to 0h and the Endurance Group Identifier field is set to a non-zero
value in a create operation, then the controller shall choose the NVM Set in the specified Endurance Group
from which to allocate capacity to create the namespace.

If the NVM Set Identifier field is set to a non-zero value and the Endurance Group Identifier field is cleared
to 0h in a create operation, then the controller shall abort the command with a status code of Invalid Field
in Command.

If the NVM Set Identifier field and the Endurance Group Identifier field are both set to non-zero values in a
create operation and the specified NVM Set exists in the specified Endurance Group, then the controller
shall allocate capacity for the created namespace from the specified NVM Set.

If the NVM Set Identifier field and the Endurance Group Identifier field are both set to non-zero values in a
create operation and the specified NVM Set does not exist in the specified Endurance Group, then the
controller shall abort the command with a status code of Invalid Field in Command.

For each namespace, the NVM capacity used for that namespace is reported in the Identify Namespace
data structure (refer to the applicable I/O Command Set specification). The controller may allocate NVM
capacity in units such that the requested size for a namespace may be rounded up to the next unit boundary.
The units in which NVM capacity is allocated are reported in the Namespace Granularity List (refer to the
NVM Command Set Specification), if supported. For example when using the NVM Command Set, if host
software requests a namespace of 32 logical blocks with a logical block size of 4 KiB for a total size of
128 KiB and the allocation unit for the implementation is 1 MiB, then the NVM capacity consumed may be
rounded up to 1 MiB. The NVM capacity fields may not correspond to the logical block size multiplied by
the total number of logical blocks.

The method of allocating ANA Group identifiers is outside the scope of this specification. If the ANA Group
Identifier (refer to Figure 285 and the Identify Namespace data structure in the NVM Command Set
Specification) is cleared to 0h, then the controller shall determine the ANAGRPID that is assigned to that
namespace.

NVM Express® Base Specification, Revision 2.0e

392

To create a namespace, host software performs the following actions:

1. Host software requests the Identify Namespace data structure that specifies common namespace
capabilities (i.e., using an Identify command with the NSID field set to FFFFFFFFh and the CNS
field cleared to 0h);

2. If the controller supports reporting of I/O Command Set specific Namespace Management
content (refer to the Namespace Management section in the applicable I/O Command Set
specification), host software optionally requests that information (e.g. Namespace Granularity).

3. Host software determines available capacity (refer to section 3.8);
4. Host software creates the data structure defined in Figure 305 (e.g., taking into account the

common namespace capabilities, available capacity);
5. Host software issues the Namespace Management command specifying the Create operation

and the data structure. On successful completion of the command, the Namespace Identifier of
the new namespace is returned in Dword 0 of the completion queue entry. At this point, the new
namespace is not attached to any controller; and

6. Host software requests the Identify Namespace data structures for the new namespace to
determine all attributes of the namespace.

To attach a namespace, host software performs the following actions:

1. Host software issues the Namespace Attachment command specifying the Controller Attach
operation to attach the specified namespace to one or more controllers; and

2. If Namespace Attribute Notices are enabled, the controller(s) newly attached to the namespace
report a Namespace Attribute Changed asynchronous event to the host.

To detach a namespace, host software performs the following actions:

1. Host software issues the Namespace Attachment command specifying the Controller Detach
operation to detach the specified namespace from one or more controllers; and

2. If Namespace Attribute Notices are enabled, the controllers that were detached from the
namespace report a Namespace Attribute Changed asynchronous event to the host.

To delete a namespace, host software performs the following actions:

1. Host software should detach the namespace from all controllers;
2. Host software issues the Namespace Management command specifying the Delete operation for

the specified namespace. On successful completion of the command, the namespace has been
deleted; and

3. If Namespace Attribute Notices are enabled, any controller(s) not processing the Namespace
Management command that was attached to the namespace reports a Namespace Attribute
Changed asynchronous event to the host.

8.12 Namespace Write Protection

Namespace Write Protection is an optional configurable controller capability that enables the host to control
the write protection state of a namespace or to determine the write protection state of a namespace. Support
for this capability is reported in the Namespace Write Protection Capabilities (NWPC) field in the Identify
Controller data structure (refer to Figure 280).

Figure 435 defines the write protection states that may be supported for a namespace. All states persist
across power cycles and Controller Level Resets (refer to section 3.7.2) except Write Protect Until Power
Cycle state, which transitions to the No Write Protect state on the occurrence of a power cycle.

 Figure 435: Namespace Write Protection State Definitions

M/O State Definition

Persistent Across

Power
Cycles

Controller
Level Resets

M No Write Protect The namespace is not write protected. Yes Yes

M Write Protect The namespace is write protected. Yes Yes

NVM Express® Base Specification, Revision 2.0e

393

 Figure 435: Namespace Write Protection State Definitions

M/O State Definition

Persistent Across

Power
Cycles

Controller
Level Resets

O
Write Protect Until
Power Cycle

The namespace is write protected until
the next power cycle.

No Yes

O
Permanent Write
Protect

The namespace is permanently write
protected.

Yes Yes

Notes:
M – If the Namespace Write Protection capability is supported, then support of this state is mandatory.
O – If the Namespace Write Protection capability is supported, then support of this state is optional.

The Write Protect Until Power Cycle state should not be used in multi-domain NVM subsystems because
clearing that state requires simultaneous power cycle of the namespace and all controllers to which that
namespace is attached. The result of a command that attempts to use that state in a multi-domain NVM
subsystem is specified in section 5.27.1.28.

Figure 436 defines the transition between write protection states. All state transitions are based on Set
Features commands unless otherwise specified. The initial state of a namespace at the time of its creation
is the No Write Protect state.

Figure 436: Namespace Write Protection State Machine Model

The Write Protect Until Power Cycle and Permanent Write Protect states are subject to the controls defined
in the Write Protection Control field (refer to Figure 466), which determines whether the controller processes
or aborts Set Features commands which cause a transition into either of these two states (refer to section
8.18).

The results of using Namespace Write Protection in combination with an external write protection system
(e.g., TCG Storage Interface Interactions Specification) are outside the scope of this specification.

 Namespace Write Protection – Theory of Operation

If Namespace Write Protection is supported by the controller, then the controller shall:

• indicate the level of support for Namespace Write Protection capabilities in the Namespace Write
Protection Capabilities (NWPC) field in the Identify Controller data structure by:

o setting bit 0 to ‘1’ in the NWPC field;
o setting bit 1 to ‘1’ in the NWPC field, if the Write Protect Until Power Cycle state is

supported; and
o setting bit 2 to ‘1’ in the NWPC field, if the Permanent Write Protect state is supported;

NVM Express® Base Specification, Revision 2.0e

394

and

• support the Namespace Write Protection Config Feature (refer to section 5.27.1.28).

If the controller supports the Write Protect Until Power Cycle state or the Permanent Write Protect state,
then the controller shall support the Write Protection Control field in the RPMB Device Configuration Block
data structure (refer to section 8.18).

The controller shall not set the Critical Warning field, bit 3 (refer to Figure 212) to ‘1’ if the read-only condition
on the media is a result of a change in the namespace write protection state as defined by the Namespace
Write Protection State Machine (refer to Figure 436), or due to any autonomous namespace write protection
state transitions (e.g., power cycle). Host software may check the current namespace write protection state
of a namespace using the Get Features command with the Namespace Write Protection Config Feature
Identifier.

If any controller in the NVM subsystem supports Namespace Write Protection, then the write protection
state of a namespace shall be enforced by any controller to which that namespace is attached.

8.12.1.1 Namespace Write Protection – Command Interactions

Unless otherwise noted, the commands listed in Figure 437 are processed normally when specifying an
NSID for a namespace that is write protected.

Figure 437: Commands Allowed when Specifying a Write Protected NSID

Admin Command Set NVM Command Set

Device Self–test Compare

Directive Send
1
 Dataset Management

1

Directive Receive
3
 Read

Get Features Reservation Register

Get Log Page Reservation Report

Identify Reservation Acquire

Namespace Attachment Reservation Release

Security Receive
1
 Vendor Specific

1

Security Send
1
 Flush

2

Set Features
1
 Verify

Vendor Specific
1

Notes:
1. The controller shall fail commands if the specified action attempts to modify the non-

volatile storage medium of the specified namespace.
2. A Flush command shall complete successfully with no effect. All volatile write cache

data and metadata associated with the specified namespace is written to non-volatile
storage medium as part of transitioning to the write protected state (refer to section
5.27.1.28).

3. A Directive Receive command which attempts to allocate streams resources shall
be aborted with a status code of Namespace is Write Protected.

Commands not listed in Figure 437, and which meet the following conditions, shall be aborted with a status
code of Namespace Is Write Protected (refer to Figure 97):

a) Commands that specify an NSID for a namespace that is write protected;
b) Commands that specify an NSID for a namespace that is not write protected and the execution of

which would modify another namespace that is write protected (e.g., a Format NVM command);
and

c) Commands that do not specify an NSID, and the execution of which would modify a namespace
that is write protected (e.g., Sanitize command).

NVM Express® Base Specification, Revision 2.0e

395

8.13 NVMe over Fabrics Secure Channel and In-band Authentication

NVMe over Fabrics supports both fabric secure channel (that includes authentication) and NVMe in-band
authentication. Fabric authentication is part of establishing a fabric secure channel via an NVMe Transport
specific protocol that provides authentication, encryption, and integrity checking (e.g., IPsec; refer to RFC
4301 or TLS; refer to RFC 8446). NVMe in-band authentication is performed immediately after a Connect
command (refer to section 6.3) succeeds using the Authentication Send and Authentication Receive
commands (refer to section 6.1 and section 6.2) to tunnel authentication protocol commands between the
host and the controller.

Enrollment of the host and controller in an authentication mechanism, including provisioning of
authentication credentials to the host and controller, is outside the scope of this specification.

If both fabric secure channel and NVMe in-band authentication are used, the identities for these two
instances of authentication may differ for the same NVMe Transport connection. For example, if an iWARP
NVMe Transport is used with IPsec as the fabric secure channel technology, the IPsec identities for
authentication are associated with the IP network (e.g., DNS host name or IP address), whereas NVMe in-
band authentication uses NVMe identities (i.e., Host NQNs). The NVMe Transport binding specification
may provide further guidance and requirements on the relationship between these two identities, but
determination of which NVMe Transport identities are authorized to be used with which NVMe identities is
part of the security policy for the deployed NVM subsystem.

 Fabric Secure Channel

The Transport Requirements field in the Fabrics Discovery Log Page Entry (refer to Figure 269) indicates
whether a fabric secure channel shall be used for an NVMe Transport connection to an NVM subsystem.
The secure channel mechanism is specific to the type of fabric.

If establishment of a secure channel fails or a secure channel is not established when required by the
controller, the resulting errors are fabric-specific and may not be reported to the NVMe layer on the host.
Such errors may result in the controller being inaccessible to the host via the NVMe Transport connection
on which the failure to establish a fabric secure channel occurred.

An NVM subsystem that requires use of a fabric secure channel (i.e., as indicated by the TREQ field in the
associated Discovery Log Page Entry) shall not allow capsules to be transferred until a secure channel has
been established for the NVMe Transport connection.

All Discovery Log Page Entries for an NVM subsystem should report the same value of TREQ to each host.
Discovery Log Page Entries for an NVM subsystem may report different values of TREQ to different hosts.

Figure 438 shows an example of secure channel establishment using TLS.

NVM Express® Base Specification, Revision 2.0e

396

Figure 438: Example of TLS secure channel establishment

TCP/TLS secure channel establishment

Secure channel and queue set up

Host Controller

1. A TCP/TLS session negotiation is performed and a
secure channel is established

2. The Connect exchange is performed to set up
NVMe queue and associate host to controller

3. Secure channel and queue are set up, ready for
subsequent operations

Connect Comm.

Connect Resp.

 NVMe In-band Authentication

The Authentication and Security Requirements (AUTHREQ) field in the Connect response capsule (refer
to Figure 387) indicates whether NVMe in-band authentication is required.

If one or more of the bits in the AUTHREQ field are set to ‘1’, then the controller requires that the host
authenticate on that queue in order to proceed with Fabrics, Admin, and I/O commands. Authentication
success is defined by the specific security protocol that is used for authentication. If any command other
than Connect, Authentication Send, or Authentication Receive is received prior to authentication success,
then the controller shall abort the command with Authentication Required status.

If all bits in the AUTHREQ field are cleared to ‘0’, then the controller does not require the host to
authenticate, and the NVM subsystem shall not abort any command with a status code value of
Authentication Required.

If NVMe in-band authentication succeeds, then any supported commands for the associated queue type
may be processed.

The host may initiate a subsequent authentication transaction at any time for reauthentication purposes.
Initiating reauthentication shall not invalidate a prior authentication. If the reauthentication transaction
concludes with the controller sending an AUTH_Failure1 message (refer to section 8.13.4.2), then the
controller shall terminate all commands with a status code of Operation Denied and disconnect the NVMe
over Fabrics connection. If the reauthentication transaction concludes with the host sending an
AUTH_Failure2 message, then the host shall disconnect the NVMe over Fabrics connection.

The state of an in-progress authentication transaction is soft-state. If the subsequent command in an
authentication transaction is not received by the controller within a timeout equal to:

• the Keep Alive Timeout value (refer to Figure 385), if the Keep Alive Timer is enabled; or

• the default Keep Alive Timeout value (i.e., two minutes), if the Keep Alive Timer is disabled;

then the authentication transaction has timed out and the controller should discard the authentication
transaction state (including the T_ID value, refer to section 8.13.4.1).

For an initial authentication, an authentication transaction timeout should be treated as an authentication
failure with termination of the transport connection. For reauthentication, an authentication transaction
timeout should not be treated as an authentication failure. Authentication commands used to continue that
transaction after an authentication transaction timeout should be aborted with a status code of Command
Sequence Error.

NVM Express® Base Specification, Revision 2.0e

397

Figure 439 shows an example of authentication transaction for NVMe/TCP.

Figure 439: Example of authentication transaction for NVMe/TCP

TCP session establishment

Authentication Transaction

Host Controller

1. A TCP session is established

2. The Connect exchange is performed to set up
NVMe queue and associate host to controller

3. The host performs an authentication transaction
with the controller to authenticate the end-points

4. Queue is ready for subsequent operations

Connect Comm.

Connect Resp.

Queue set up

8.13.2.1 NVMe In-band Authentication Protocol-Specific Requirements

Authentication requirements for security commands are based on the security protocol indicated by the
SECP field in the command.

The authentication protocols defined by this specification use the security protocol identifier E9h (assigned
to NVMe by SPC-5, a SCSI standard). The messages of the defined authentication protocols are self-
identifying, therefore the SPSP0 field and the SPSP1 field of the Authentication Send and Authentication
Receive commands shall be set to 01h. Authentication messages are mapped to NVMe over Fabrics
command and response pairs. The mapping of authentication messages to the Authentication Send
command is shown in Figure 440.

Figure 440: Mapping of authentication messages to the Authentication Send command

Field1 Value

SPSP0 01h

SPSP1 01h

SECP E9h

TL Specifies the amount of data to transfer in bytes

Notes:
1. Refer to section 6.2.

The mapping of authentication messages to the Authentication Receive command is shown in Figure 441.
Security processing requirements associated with the Authentication Receive command (e.g., delays in
third-party authentication verification) may result in delays in controller completion of an Authentication
Receive command. The host should consider these possible delays associated with the Authentication
Receive command.

Figure 441: Mapping of authentication messages to the Authentication Receive command

Field1 Value

SPSP0 01h

NVM Express® Base Specification, Revision 2.0e

398

Field1 Value

SPSP1 01h

SECP E9h

AL Specifies the amount of data to transfer in bytes2

Notes:
1. Refer to section 6.1.
2. The size of the largest authentication message that could be received.

 NVMe In-band Authentication Followed by Secure Channel Establishment

It is possible to leverage an authentication transaction to generate shared key material to use as pre-shared
key (PSK) to establish a secure channel (e.g., with IPsec or TLS). In this case, the PSK generated to set
up a secure channel on the Admin Queue may be reused to set up additional secure channels on the I/O
queues. Figure 442 shows an example of this possibility for TLS.

Figure 442: Example of TLS secure channel concatenated to an authentication transaction

TCP session establishment

Authentication Transaction generating a PSK

Host Controller

1. A TCP session is established

2. The Connect exchange is performed to set up
NVMe queue and associate host to controller

3. The host performs an authentication transaction
with the controller, transaction that generates a
pre-shared key PSK between host and controller

4. The pre-shared key PSK is used to perform a TLS
negotiation and to establish a secure channel

5. Secure channel and queue are set up, ready for
subsequent operations

Connect Comm.

Connect Resp.

TLS secure channel establishment using the PSK

Secure channel and queue set up

 Common Authentication Messages

8.13.4.1 AUTH_Negotiate Message

The AUTH_Negotiate message is sent from the host to the controller and is used to indicate the
authentication protocols the host is able to use in this authentication transaction and which secure channel
protocol, if any, to concatenate to this authentication transaction. The AUTH_Negotiate message format is
shown in Figure 443.

Figure 443: AUTH_Negotiate message format

Bytes Description

0 AUTH_TYPE: 00h (i.e., common messages)

1 AUTH_ID: 00h (i.e., AUTH_Negotiate)

3:2 Reserved

5:4 T_ID: 16-bit transaction identifier

NVM Express® Base Specification, Revision 2.0e

399

Bytes Description

6 SC_C: Secure channel concatenation

7 NAPD: Number of authentication protocol descriptors

71:8 Authentication protocol descriptor #1

135:72 Authentication protocol descriptor #2

…

NAPD*64+7:(NAPD-1)*64+8 Authentication protocol descriptor #NAPD

The SC_C field determines if a secure channel concatenation to the authentication transaction is requested
and with which secure channel protocol, as shown in Figure 444.

Figure 444: Secure channel protocol identifiers

Value Description
Transport

Applicability

00h No secure channel concatenation n/a

01h Secure channel concatenation with TLS (refer to section 8.13.5.9) TCP

All other
values

Reserved

The AUTH_Negotiate message is structured as a list of 64-byte authentication protocol descriptors to
enable extensibility to define additional authentication protocols. Currently only one authentication protocol
is defined (i.e., DH-HMAC-CHAP), therefore the AUTH_Negotiate message carries only one authentication
protocol descriptor (i.e., NAPD=1). Implementations should support more than one descriptor to enable
protocol extensibility. The first byte of an authentication protocol descriptor identifies the specific
authentication protocol, as shown in Figure 445.

Figure 445: Authentication protocol identifiers

Value Description

01h DH-HMAC-CHAP (refer to section 8.13.5)

All other values Reserved

Upon receiving an AUTH_Negotiate message, if the SC_C value indicated by the host does not satisfy the
security requirements of the controller (e.g., the host did not request secure channel concatenation, but the
controller’s security policy requires secure channel concatenation), then the controller shall:

• reply to the AUTH_Negotiate message with an AUTH_Failure1 message having reason code
‘Authentication failure’ and reason code explanation ‘Secure channel concatenation mismatch’; and

• disconnect the NVMe over Fabrics connection upon transmitting the AUTH_Failure1 message.

Upon receiving an AUTH_Negotiate message, if the protocol descriptors proposed by the host do not satisfy
the security requirements of the controller, then the controller shall:

• reply to the AUTH_Negotiate message with an AUTH_Failure1 message having reason code
‘Authentication failure’ and reason code explanation ‘Authentication protocol not usable’; and

• disconnect the NVMe over Fabrics connection upon transmitting the AUTH_Failure1 message.

8.13.4.2 AUTH_Failure Messages

The AUTH_Failure1 message is sent from the controller to the host, the AUTH_Failure2 message is sent
from the host to the controller. The format of the AUTH_Failure1 message and of the AUTH_Failure2
message is shown in Figure 446.

NVM Express® Base Specification, Revision 2.0e

400

Figure 446: AUTH_Failure1 and AUTH_Failure2 message format

Bytes Description

0 AUTH_TYPE: 00h (i.e., common messages)

1
AUTH_ID:
F0h (i.e., AUTH_Failure2)
F1h (i.e., AUTH_Failure1)

3:2 Reserved

5:4 T_ID: 16-bit transaction identifier

6 Reason code

7 Reason code explanation

The AUTH_Failure reason codes are listed in Figure 447.

Figure 447: AUTH_Failure reason codes

Value Description

01h Authentication failure: The authentication transaction failed

All other values Reserved

The AUTH_Failure reason code explanations are listed in Figure 448.

Figure 448: AUTH_Failure reason code explanations

Value Description

01h Authentication failed: Authentication of the involved host or NVM subsystem failed.

02h
Authentication protocol not usable: The protocol descriptors proposed by the host do
not satisfy the security requirements of the controller (refer to section 8.13.4.1).

03h
Secure channel concatenation mismatch: The SC_C value indicated by the host does
not satisfy the security requirements of the controller (refer to section 8.13.4.1).

04h
Hash function not usable: The HashIDList proposed by the host does not satisfy the
security requirements of the controller (refer to section 8.13.5.2).

05h
DH group not usable: The DHgIDList proposed by the host does not satisfy the security
requirements of the controller (refer to section 8.13.5.2).

06h Incorrect payload: The payload of the received message is not correct.

07h
Incorrect protocol message: The received message is not the expected next message
in the authentication protocol sequence.

All other values Reserved

8.13.4.3 Mapping of Common Authentication Messages to Authentication Commands

The AUTH_Negotiate message and the AUTH_Failure2 message are sent from the host to the controller,
therefore they are mapped to the Authentication Send command. The AUTH_Failure1 message is sent
from the controller to the host, therefore it is mapped to the Authentication Receive command.

 DH-HMAC-CHAP Protocol

8.13.5.1 Protocol Operations

DH-HMAC-CHAP is a key based Authentication and key management protocol that uses the Challenge
Handshake Authentication Protocol (CHAP, refer to RFC 1994) enhanced to use the Hashed Message
Authentication Code (HMAC) mechanism (refer to RFC 2104) with stronger hash functions and augmented
with an optional Diffie-Hellman (DH) exchange (refer to RFC 2631, clause 2.2.1). DH-HMAC-CHAP
provides bidirectional or unidirectional Authentication between a host and a controller.

The Diffie-Hellman part of the protocol is optional. When the Diffie-Hellman part of the protocol is not used,
DH-HMAC-CHAP is referred to as HMAC-CHAP. If insufficiently random keys are used (refer to section
8.13.5.7), HMAC-CHAP potentially allows a passive eavesdropper to discover the key through an off-line
dictionary attack, so its usage should be minimized. DH-HMAC-CHAP provides strong protection from

NVM Express® Base Specification, Revision 2.0e

401

passive eavesdroppers. However, an active attacker could reduce the operation of this protocol so that only
HMAC-CHAP is used, and as a result gain sufficient information to mount an off-line dictionary attack on
the HMAC-CHAP key.

An implementation that supports DH-HMAC-CHAP authentication shall support DH-HMAC-CHAP with a
NULL DH exchange. All implementations of DH-HMAC-CHAP shall be configurable to require a DH
exchange (i.e., to not use HMAC-CHAP).

In order to authenticate with the DH-HMAC-CHAP protocol, each host and NVM subsystem shall be
provided with a DH-HMAC-CHAP key that is associated with the entity’s NQN. Two entities may
impersonate one another if they have the same key, therefore when the assigned keys are not different for
each entity there is a security vulnerability (refer to section 8.13.5.7).

To authenticate another entity, an entity is required to either:

a) know the key associated with the entity to be authenticated; or
b) rely on a third party that knows the key to verify the authentication.

An example of a DH-HMAC-CHAP authentication transaction is shown in Figure 449, with the notation
shown in Figure 450. The DH-HMAC-CHAP_Success2 message that is shown as a dashed line is used
only for bidirectional authentication.

Figure 449: Example of DH-HMAC-CHAP authentication transaction

AUTH_Negotiate

(T_ID, SC_C, AuthID, HashIDList, DHgIDList)

DH-HMAC-CHAP_Reply

(T_ID, R1, g
y
 mod p, [S2, C2])

DH-HMAC-CHAP_Challenge

(T_ID, HashID, DHgID, S1, C1, g
x
 mod p)

DH-HMAC-CHAP_Success1

(T_ID, [R2])

[DH-HMAC-CHAP_Success2]

(T_ID)

Host Controller

NVM Express® Base Specification, Revision 2.0e

402

Figure 450: Mathematical notations for DH-HMAC-CHAP

Symbols Description

NQNc, NQNh NQN of the NVM subsystem that contains the controller and NQN of the host

Kc, Kh
DH-HMAC-CHAP key of the NVM subsystem that contains the controller and
DH-HMAC-CHAP key of the host

p, g Modulus (p) and generator (g) of the chosen DH group (refer to Figure 453)

x, y Random numbers used as exponents in a DH exchange

C1, C2 Random challenge values

Ca1, Ca2 Augmented challenge values

S1, S2 32-bit sequence numbers

R1, R2 Reply values

T_ID Authentication transaction identifier

SC_C Secure channel concatenation indication

H() One-way hash function (refer to Figure 452)

HMAC(K, Str) HMAC function (refer to RFC 2104) with key K on string Str using hash function H()

|| Concatenation operation

KS Session key

When used with a non-NULL DH exchange, the DH-HMAC-CHAP protocol is able to generate a session
key KS to be used to establish a TLS session between host and controller (refer to section 8.13.5.9).

For an NVM subsystem, the controller is the entity running the protocol, using the identity and credentials
of the NVM subsystem. The DH-HMAC-CHAP protocol proceeds in the following order:

1) The authentication transaction shall begin with the host sending the common AUTH_Negotiate
message to negotiate the authentication protocol to use and its associated parameters (refer to
section 8.13.4.1). The AUTH_Negotiate message carries the transaction identifier (T_ID) for the
entire authentication transaction and the list of authentication protocol descriptors for the
authentication protocols that may be used in this authentication transaction. For DH-HMAC-CHAP,
the authentication protocol descriptor includes the list of hash functions (HashIDList) and Diffie-
Hellman group identifiers (DHgIDList) that may be used in this authentication protocol transaction.

2) If the parameters of the received DH-HMAC-CHAP protocol descriptor are compatible with the
controller’s policies, then the controller shall reply with a DH-HMAC-CHAP_Challenge message
(refer to section 8.13.5.3) carrying the same transaction identifier value (T_ID) received in the
AUTH_Negotiate message, the identifiers of the hash function (HashID) and the DH group (DHgID)
selected for use among the ones proposed by the host in the AUTH_Negotiate message, a
sequence number (S1), a random challenge value (C1), and the DH exponential (gx mod p). If the
controller selects a NULL DH group identifier, then the DH portion of the DH-HMAC-CHAP protocol
shall not be used, and the protocol reduces to a HMAC-CHAP transaction.

3) If the received DH-HMAC-CHAP_Challenge message is valid, then the host shall send a DH-
HMAC-CHAP_Reply message (refer to section 8.13.5.4) carrying the same transaction identifier
value (T_ID), the response R1 to the challenge value C1, and its own DH exponential (gy mod p).
The DH Value Length shall be cleared to 0h if the controller has sent a NULL DH group identifier
in the DH-HMAC-CHAP_Challenge message. If bidirectional authentication is requested, then the
DH-HMAC-CHAP_Reply message shall carry also a sequence number S2 and a random challenge
value C2 that differs from the challenge value C1 received in the DH-HMAC-CHAP_Challenge
message.

4) If the authentication verification by the controller succeeds, then the controller shall reply with a
DH-HMAC-CHAP_Success1 message (refer to section 8.13.5.5) carrying the same transaction
identifier value (T_ID). If bidirectional authentication was requested, then the DH-HMAC-
CHAP_Success1 message shall also carry the response R2 to the challenge value C2. If the
authentication verification fails, then the controller shall send an AUTH_Failure1 message and
disconnect the NVMe over Fabrics connection upon transmitting it.

NVM Express® Base Specification, Revision 2.0e

403

5) The authentication transaction ends here, unless bidirectional authentication has been requested.
In this case, as shown by the dashed arrow in Figure 449, if the authentication verification by the
host succeeds, then the host shall send a DH-HMAC-CHAP_Success2 message (refer to section
8.13.5.6) carrying the same transaction identifier value (T_ID). If the authentication verification fails,
then the host shall send an AUTH_Failure2 message and disconnect the NVMe over Fabrics
connection upon transmitting it.

If the controller receives a message that is not the expected next message in the DH-HMAC-CHAP protocol
sequence, then the controller shall:

• reply with an AUTH_Failure1 message having reason code ‘Authentication failure’ and reason code
explanation ‘Incorrect protocol message’; and

• disconnect the NVMe over Fabrics connection upon transmitting the AUTH_Failure1 message.

If the host receives a message that is not the expected next message in the DH-HMAC-CHAP protocol
sequence, then the host shall:

• reply with an AUTH_Failure2 message having reason code ‘Authentication failure’ and reason code
explanation ‘Incorrect protocol message’; and

• disconnect the NVMe over Fabrics connection upon transmitting the AUTH_Failure2 message.

The payload format of a message shall be validated before performing any other security computation.

8.13.5.2 DH-HMAC-CHAP Authentication Protocol Descriptor

The authentication protocol descriptor for DH-HMAC-CHAP (refer to section 8.13.4.1) is shown in Figure
451.

Figure 451: Authentication protocol descriptor for DH-HMAC-CHAP

Bytes Description

0 AuthID: Authentication protocol identifier (01h for DH-HMAC-CHAP)

1 Reserved

2 HashIDList Length (HALEN): Number of hash function identifiers (1 to 30)

3 DHgIDList Length (DHLEN): Number of Diffie-Hellman group identifiers (1 to 30)

3+HALEN:4 HashIDList: Array of hash function identifiers (one byte per identifier)

33:4+HALEN Padding bytes cleared to 0h, if present

33+DHLEN:34 DHgIDList: Array of Diffie-Hellman Group identifiers (one byte per identifier)

63:34+DHLEN Padding bytes cleared to 0h, if present

The one-way hash functions used by DH-HMAC-CHAP are shown in Figure 452.

Figure 452: DH-HMAC-CHAP hash function identifiers

Identifier Hash Function Hash Length (bytes) Hash Block Size1 (bytes) Reference

00h Reserved

01h SHA-256 32 64 RFC 6234

02h SHA-384 48 128 RFC 6234

03h SHA-512 64 128 RFC 6234

04h-DFh Reserved

E0h-FEh Vendor specific

FFh Reserved

Notes:
1. The hash block size is used by the HMAC calculation

The SHA-256 hash function shall be supported.

NVM Express® Base Specification, Revision 2.0e

404

Upon receiving an AUTH_Negotiate message, if the HashIDList proposed by the host does not satisfy the
security requirements of the controller (e.g., the host proposed SHA-256, but the controller’s security policy
requires a SHA-384 hash), then the controller shall:

• reply to the AUTH_Negotiate message with an AUTH_Failure1 message having reason code
‘Authentication failure’ and reason code explanation ‘Hash function not usable’; and

• disconnect the NVMe over Fabrics connection upon transmitting the AUTH_Failure1 message.

The Diffie-Hellman (DH) groups used by DH-HMAC-CHAP are shown in Figure 453.

Figure 453: DH-HMAC-CHAP Diffie-Hellman group identifiers

Identifier DH group size Generator (g) Modulus (p) and Reference

00h NULL n/a n/a

01h 2048-bit 2 refer to RFC 7919

02h 3072-bit 2 refer to RFC 7919

03h 4096-bit 2 refer to RFC 7919

04h 6144-bit 2 refer to RFC 7919

05h 8192-bit 2 refer to RFC 7919

06h-DFh Reserved

E0h-FEh Vendor specific

FFh Reserved

The 00h identifier indicates that no Diffie-Hellman exchange is performed, which reduces the DH-HMAC-
CHAP protocol to the HMAC-CHAP protocol.

The 2048-bit DH group and the 3072-bit DH group shall be supported. A mechanism shall be provided to
disable (i.e., prohibit) use of the 2048-bit DH group.

Upon receiving an AUTH_Negotiate message, if the DHgIDList proposed by the host does not satisfy the
security requirements of the controller (e.g., the host proposed only the NULL DH group, but the controller’s
security policy requires a DH group whose size is 3072-bit or larger), then the controller shall:

• reply to the AUTH_Negotiate message with an AUTH_Failure1 message having reason code
‘Authentication failure’ and reason code explanation ‘DH group not usable’; and

• disconnect the NVMe over Fabrics connection upon transmitting the AUTH_Failure1 message.

8.13.5.3 DH-HMAC-CHAP_Challenge Message

The DH-HMAC-CHAP_Challenge message is sent from the controller to the host. The format of the DH-
HMAC-CHAP_Challenge message is shown in Figure 454.

Figure 454: DH-HMAC-CHAP_Challenge message format

Bytes Description

0 AUTH_TYPE: 01h (i.e., DH-HMAC-CHAP)

1 AUTH_ID: 01h (i.e., DH-HMAC-CHAP_Challenge)

3:2 Reserved

5:4 T_ID: 16-bit transaction identifier

6 Hash Length (HL): Length in bytes of the selected hash function

7 Reserved

8 HashID: Identifier of selected hash function

9 DHgID: Identifier of selected Diffie-Hellman group

11:10
DH Value Length (DHVLEN): Length in bytes of DH value. If no DH value is
included in the message, then this field is cleared to 0h

15:12 Sequence Number (SEQNUM): Sequence number S1

15+HL:16 Challenge Value (CVAL): Challenge C1

NVM Express® Base Specification, Revision 2.0e

405

Bytes Description

15+HL+DHVLEN:16+HL
DH Value (DHV): DH exponential gx mod p. This field is not present (i.e., the
CVAL field is the last field in the message) if DHVLEN is cleared to 0h

Hash Length (HL): Shall be set to the length in bytes of the selected hash function, as specified in Figure
452.

HashID: Shall be set to the hash function identifier (refer to Figure 452) selected for this authentication
transaction among those proposed in the DH-HMAC-CHAP protocol descriptor in the AUTH_Negotiate
message. The controller shall select a hash function in accord with its applicable policy.

DHgID: Shall be set to the DH group identifier (refer to Figure 453) selected for this authentication
transaction among those proposed in the DH-HMAC-CHAP protocol descriptor in the AUTH_Negotiate
message. The controller shall select a DH group identifier in accord with its applicable policy. If this field is
cleared to 0h, the DH portion of the DH-HMAC-CHAP protocol shall not be performed in this authentication
transaction.

DH Value Length (DHVLEN): Diffie-Hellman exponential length. This length shall be a multiple of 4. If the
DH group identifier is cleared to 0h (i.e., NULL DH exchange), this field shall be cleared to 0h. Otherwise,
it shall be set to the length in bytes of the DH Value.

Sequence Number (SEQNUM): 32-bit sequence number S1. A random non-zero value shall be used as
the initial value. The sequence number is incremented modulo 232 after each use, except that the value 0h
is skipped (i.e., incrementing the value FFFFFFFFh results in the value 00000001h).

Challenge Value (CVAL): Shall be set to a random challenge value C1 (refer to section 8.13.5.7). Each
challenge value should be unique and unpredictable, since repetition of a challenge value in conjunction
with the same key may reveal information about the key or the correct response to this challenge. The
algorithm for generating the challenge value is outside the scope of this specification. Randomness of the
challenge value is crucial to the security of the protocol (refer to section 8.13.5.7). The CVAL length is the
same as the length of the selected hash function (i.e., HL).

DH Value (DHV): Diffie-Hellman exponential. If the DH Value Length is cleared to 0h, this field is not
present. The DH value shall be set to the value of gx mod p, where x is a random number selected by the
controller that shall be at least 256 bits long (refer to section 8.13.5.7) and p and g shall have the values
indicated in Figure 453, based on the selected DH group identifier.

Upon receiving a DH-HMAC-CHAP_Challenge message, if:

• the Hash Length (HL) does not match the value specified in Figure 452 for the selected hash
function;

• the Sequence Number (SEQNUM) is cleared to 0h;

• DHgID is non-zero and the DH Value Length (DHVLEN) is cleared to 0h; or

• DHgID is non-zero and the DH Value (DHV) is 0, 1, or p-1;

then the host shall:

• reply with an AUTH_Failure2 having reason code ‘Authentication failure’ and reason code
explanation ‘Incorrect payload’; and

• disconnect the NVMe over Fabrics connection.

8.13.5.4 DH-HMAC-CHAP_Reply Message

The DH-HMAC-CHAP_Reply message is sent from the host to the controller. The host may request
authentication of the controller to enable bidirectional authentication, by including a DH-HMAC-CHAP
challenge value C2 in this message. The challenge value C2 shall be different from the challenge value C1
received in the DH-HMAC-CHAP_Challenge message.

The format of the DH-HMAC-CHAP_Reply message is shown in Figure 455.

NVM Express® Base Specification, Revision 2.0e

406

Figure 455: DH-HMAC-CHAP_Reply message format

Bytes Description

0 AUTH_TYPE: 01h (i.e., DH-HMAC-CHAP)

1 AUTH_ID: 02h (i.e., DH-HMAC-CHAP_Reply)

3:2 Reserved

5:4 T_ID: 16-bit transaction identifier

6 Hash Length (HL): Length in bytes of the selected hash function

7 Reserved

8

Challenge Valid (CVALID):

Value Definition

00h The Challenge Value is not valid

01h The Challenge Value is valid

All other
values

Reserved

9 Reserved

11:10
DH Value Length (DHVLEN): Length in bytes of DH value. If no DH value
is included in the message, then this field is cleared to 0h

15:12 Sequence Number (SEQNUM): Sequence number S2

15+HL:16 Response Value (RVAL): Response R1

15+2*HL:16+HL
Challenge Value (CVAL): Challenge C2, if valid (i.e., if the CVALID field
is set to 01h), cleared to 0h otherwise

15+2*HL+DHVLEN:16+2*HL
DH Value (DHV): DH exponential gy mod p. This field is not present (i.e.,
the CVAL field is the last field in the message) if DHVLEN is cleared to 0h

Hash Length (HL): Shall be set to the length in bytes of the selected hash function, as specified in Figure
452.

Challenge Valid: If the host does not require bidirectional authentication or no establishment of a secure
channel after unidirectional authentication is sought (refer to section 8.13.5.9), this field shall be cleared to
0h. Otherwise, this field shall be set to 01h.

DH Value Length (DHVLEN): Diffie-Hellman exponential length. This length shall be a multiple of 4. If the
DH group identifier is cleared to 0h (i.e., NULL DH exchange), this field shall be cleared to 0h. Otherwise,
it shall be set to the length in bytes of the DH Value.

Sequence Number (SEQNUM): 32-bit sequence number S2. A random non-zero value shall be used as
the initial value. The sequence number is incremented modulo 232 after each use, except that the value 0h
is skipped (i.e., incrementing the value FFFFFFFFh results in the value 00000001h). The value 0h is used
to indicate that bidirectional authentication is not performed, but a challenge value C2 is carried in order to
generate a pre-shared key (PSK) for subsequent establishment of a secure channel (refer to section
8.13.5.9).

Response Value (RVAL): DH-HMAC-CHAP response value R1. The value of R1 is computed using the
hash function H() selected by the HashID parameter in the DH-HMAC-CHAP_Challenge message, and
the augmented challenge Ca1. If the NULL DH group has been selected, the augmented challenge Ca1 is
equal to the challenge C1 received from the controller (i.e., Ca1 = C1). If a non-NULL DH group has been
selected, the augmented challenge is computed applying the HMAC function using the hash function H()
selected by the HashID parameter in the DH-HMAC-CHAP_Challenge message with the hash of the
ephemeral DH key resulting from the combination of the random value y selected by the host with the DH
exponential (i.e., gx mod p) received from the controller as HMAC key (refer to RFC 2104) to the challenge
C1 (i.e., Ca1 = HMAC(H((gx mod p)y mod p), C1) = HMAC(H(gxy mod p), C1)). The value of R1 shall be
computed applying the HMAC function using the hash function H() selected by the HashID parameter in
the DH-HMAC-CHAP_Challenge message with key Kh as HMAC key to the concatenation of the
augmented challenge Ca1, the sequence number S1, the transaction identifier T_ID, the secure channel
concatenation indication SC_C sent in the AUTH_Negotiate message, the eight ASCII characters
”HostHost” to indicate the host is computing the reply, the host NQN not including the null terminator, a 00h

NVM Express® Base Specification, Revision 2.0e

407

byte, and the NVM subsystem NQN not including the null terminator (i.e., R1 = HMAC(Kh, Ca1 || S1 || T_ID
|| SC_C || ”HostHost” || NQNh || 00h || NQNc)). Using C language notation:

Ca1 = (DHgID == 00h) ? C1 : HMAC(H((gx mod p)y mod p)), C1)

R1 = HMAC(Kh, Ca1 || S1 || T_ID || SC_C || ”HostHost” || NQNh || 00h || NQNc)

Challenge Value (CVAL): Shall be set to a random challenge value C2 (refer to section 8.13.5.7). Each
challenge value should be unique and unpredictable, since repetition of a challenge value in conjunction
with the same key may reveal information about the key or the correct response to this challenge. The
algorithm for generating the challenge value is outside the scope of this specification. Randomness of the
challenge value is crucial to the security of the protocol (refer to section 8.13.5.7). The CVAL length is the
same as the length of the selected hash function (i.e., HL).

DH Value (DHV): Diffie-Hellman exponential. If the DH Value Length is cleared to 0h, this field is not
present. The DH Value shall be set to the value of gy mod p, where y is a random number selected by the
host that shall be at least 256 bits long (refer to section 8.13.5.7) and p and g shall have the values indicated
in Figure 453, based on the selected DH group identifier.

Upon receiving a DH-HMAC-CHAP_Reply message, if:

• the Hash Length (HL) does not match the value specified in Figure 452 for the selected hash
function;

• DHgID is non-zero and the DH Value Length (DHVLEN) is cleared to 0h; or

• DHgID is non-zero and the DH Value (DHV) is 0, 1, or p-1;

then the controller shall:

• reply with an AUTH_Failure1 message having reason code ‘Authentication failure’ and reason code
explanation ‘Incorrect payload’; and

• disconnect the NVMe over Fabrics connection.

In addition, the controller shall:

• check the challenge value C2, if the Challenge Valid field is set to 01h, to verify it is different from
the challenge value C1 the controller previously sent. If C2 is equal to C1, the controller shall:

o reply with an AUTH_Failure1 message having reason code ‘Authentication failure’ and
reason code explanation ‘Authentication failed’; and

o disconnect the NVMe over Fabrics connection; and

• verify the response value R1 using the negotiated hash function. If verification of the response value
R1 does not succeed, the controller shall:

o reply with an AUTH_Failure1 message having reason code ‘Authentication failure’ and
reason code explanation ‘Authentication failed’; and

o disconnect the NVMe over Fabrics connection.

If verification of the response value R1 succeeds, the host has been authenticated and the controller
shall continue with a DH-HMAC-CHAP_Success1 message.

8.13.5.5 DH-HMAC-CHAP_Success1 Message

The DH-HMAC-CHAP_Success1 message is sent from the controller to the host and indicates that the
controller has successfully authenticated the host. The format of the DH-HMAC-CHAP_Success1 message
is shown in Figure 456.

Figure 456: DH-HMAC-CHAP_Success1 message format

Bytes Description

0 AUTH_TYPE: 01h (i.e., DH-HMAC-CHAP)

1 AUTH_ID: 03h (i.e., DH-HMAC-CHAP_Success1)

3:2 Reserved

NVM Express® Base Specification, Revision 2.0e

408

Bytes Description

5:4 T_ID: 16-bit transaction identifier

6 Hash Length (HL): Length in bytes of the selected hash function

7 Reserved

8

Response Valid (RVALID):

Value Definition

00h The Response Value is not valid

01h The Response Value is valid

All other values Reserved

15:9 Reserved

15+HL:16
Response Value (RVAL): Response R2, if valid (i.e., if the RVALID field is set to 01h), cleared
to 0h otherwise

Hash Length (HL): Shall be set to the length in bytes of the selected hash function, as specified in Figure
452.

Response Valid: If the host did not request authentication of the controller (i.e., bidirectional authentication)
this field shall be cleared to 0h to indicate that no response is conveyed (i.e., the Response Value field is
not valid). If the host did request authentication of the controller, this field shall be set to 01h.

Response Value (RVAL): DH-HMAC-CHAP response value R2. The value of R2 is computed using the
hash function H() selected by the HashID parameter of the DH-HMAC-CHAP_Challenge message, and
the augmented challenge Ca2. If the NULL DH group has been selected, the augmented challenge Ca2 is
equal to the challenge C2 received from the host (i.e., Ca2 = C2). If a non-NULL DH group has been selected,
the augmented challenge is computed applying the HMAC function using the hash function H() selected
by the HashID parameter in the DH-HMAC-CHAP_Challenge message with the hash of the ephemeral DH
key resulting from the combination of the random value x selected by the controller with the DH exponential
(i.e., gy mod p) received from the host as HMAC key (refer to RFC 2104) to the challenge C2 (i.e., Ca2 =
HMAC(H((gy mod p)x mod p), C2) = HMAC(H(gxy mod p)), C2). The value of R2 shall be computed applying
the HMAC function using the hash function H() selected by the HashID parameter in the DH-HMAC-
CHAP_Challenge message with key Kc as HMAC key to the concatenation of the augmented challenge
Ca2, the sequence number S2, the transaction identifier T_ID, the secure channel concatenation indication
SC_C received in the AUTH_Negotiate message, the ten ASCII characters ”Controller” to indicate the
controller is computing the reply, the NVM subsystem NQN not including the null terminator, a 00h byte,
and the host NQN not including the null terminator (i.e., R2 = HMAC(Kc, Ca2 || S2 || T_ID || SC_C ||
”Controller” || NQNc || 00h || NQNh)). Using C language notation:

Ca2 = (DHgID == 00h) ? C2 : HMAC(H((gy mod p)x mod p)), C2)

R2 = HMAC(Kc, Ca2 || S2 || T_ID || SC_C || ”Controller” || NQNc || 00h || NQNh)

Upon receiving a DH-HMAC-CHAP_Success1 message:

• if the Hash Length (HL) does not match the value specified in Figure 452 for the selected hash
function, the host shall:

o reply with an AUTH_Failure2 message having reason code ‘Authentication failure’ and
reason code explanation ‘Incorrect payload’; and

o disconnect the NVMe over Fabrics connection; and

• if the Response Valid field is set to 01h, the host shall verify the response value R2 using the
negotiated hash function and DH group. If verification of the response value R2 does not succeed,
the host shall:

o reply with an AUTH_Failure2 message having reason code ‘Authentication failure’ and
reason code explanation ‘Authentication failed’; and

o disconnect the NVMe over Fabrics connection.

If verification of the response value R2 succeeds, the controller has been authenticated and the host
shall continue with a DH-HMAC-CHAP_Success2 message.

NVM Express® Base Specification, Revision 2.0e

409

8.13.5.6 DH-HMAC-CHAP_Success2 Message

The DH-HMAC-CHAP_Success2 message is sent from the host to the controller and indicates that the host
has successfully authenticated the controller. The format of the DH-HMAC-CHAP_Success2 message is
shown in Figure 457.

Figure 457: DH-HMAC-CHAP_Success2 message format

Bytes Description

0 AUTH_TYPE: 01h (i.e., DH-HMAC-CHAP)

1 AUTH_ID: 04h (i.e., DH-HMAC-CHAP_Success2)

3:2 Reserved

5:4 T_ID: 16-bit transaction identifier

15:6 Reserved

8.13.5.7 DH-HMAC-CHAP Security Requirements

In order to authenticate with the DH-HMAC-CHAP protocol, each host or controller uses a DH-HMAC-
CHAP key that is associated with the entity’s NQN. A DH-HMAC-CHAP key is unidirectional (i.e., used only
for one direction of an authentication transaction). A DH-HMAC-CHAP key should not be associated with
more than one NQN as this opens security vulnerabilities. All DH-HMAC-CHAP implementations should
check for use of the same key with more than one NQN and should generate an administrative warning if
this situation occurs (e.g., as a result of configuring a DH-HMAC-CHAP key to verify authentication of
another entity).

The DH-HMAC-CHAP key is derived from an administratively configured secret (refer to section 8.13.5.8).
Each host and NVM subsystem shall support:

• transforming the provided secret into a key applying the HMAC function using the hash function
specified in the secret representation (refer to section 8.13.5.8) with the secret as HMAC key to the
concatenation of its own NQN not including the null terminator and the seventeen ASCII characters
“NVMe-over-Fabrics” (i.e., key = HMAC(secret, NQN || ”NVMe-over-Fabrics”)). This transformation
ensures the resulting key is uniquely associated with the entity identified by the NQN; and

• using the provided secret as a key. This is intended for use with key management solutions able to
ensure that key is uniquely associated with the entity identified by the NQN.

NVM subsystems should support the ability to use a different NVM subsystem key with each host. Hosts
should support the ability to use a different host key with each NVM subsystem. NVM subsystems should
support the ability to use a different NVM subsystem secret with each host. Hosts should support the ability
to use a different host secret with each NVM subsystem.

If an implementation of NVMe over Fabrics is capable of functioning as both a host and an NVM subsystem,
then that implementation shall use either:

• one NQN for the host functionality and a different NQN for the NVM subsystem functionality; or

• one NQN for both host functionality and NVM subsystem functionality.

DH-HMAC-CHAP implementations may reuse a DH exponential (e.g., gx mod p or gy mod p). The primary
risk in allowing reuse of a DH exponential is replay of a prior authentication sequence based on the attacker
reusing the other exponential. For DH-HMAC-CHAP, replay is prevented with extremely high probability by
the requirement that all challenges be randomly generated. See section 2.12 of RFC 7296 for guidance on
DH exponential reuse.

The security of the DH-HMAC-CHAP protocol requires secrets, challenges, and DH exponents (i.e., x and
y) to be generated from actual randomness. For a discussion of randomness and sources of randomness,
refer to RFC 4086.

Implementations shall use a cryptographic random number generator that should be seeded with at least
256 bits of entropy to generate random numbers for this protocol. The secret provisioning mechanism for

NVM Express® Base Specification, Revision 2.0e

410

each host and controller is outside of scope of this specification. For instance, secrets could be provisioned
via an encrypted HTTPS-based connection.

8.13.5.8 Secret Representation

In order to facilitate provisioning, management, and interchange (e.g., copy & paste in an administrative
configuration tool) of secrets, all NVMe over Fabrics entities shall support the following ASCII representation
of secrets:

DHHC-1:xx:<Base64 encoded string>:

Where:

• ”DHHC-1” indicates this is a version 1 representation of a secret for the DH-HMAC-CHAP protocol;

• ‘:’ is used both as a separator and a terminator;

• xx indicates the hash function to be used to transform the secret in key (refer to section 8.13.5.7),
encoded as the ASCII representation of the hexadecimal value specified in Figure 452 (e.g., the
two ASCII characters “01” indicate SHA-256). The two ASCII characters “00” indicate no transform
(i.e., use the secret as a key); and

• The Base64 (refer to RFC 4648) string encodes the secret (32, 48, or 64 bytes binary) followed by
the CRC-32 (refer to RFC 1952) of the secret (4 bytes binary).

As an example, the 32-byte secret:

89AEB31A 874EAF84 841B4673 6B0DFDF2 BA58D30A A2A545A3 E235A352 1E07594Ch

is represented as: “DHHC-1:00:ia6zGodOr4SEG0Zzaw398rpY0wqipUWj4jWjUh4HWUz6aQ2n:”

when intended to be used as a key without transform.

When provided with a secret in this format, NVMe over Fabrics entities shall verify the validity of the
provided secret by computing the CRC-32 value of the secret and checking the computed value with the
provided value. If they do not match, then the secret shall not be used.

8.13.5.9 Generated PSK for TLS

When used with a non-NULL DH exchange, the DH-HMAC-CHAP protocol is able to generate a session
key KS used to generate a pre-shared key (PSK) to establish a secure channel session with the TLS protocol
between host and controller. A TLS session is concatenated to an authentication transaction when the
SC_C indication is set to 01h in the AUTH_Negotiate message. A TLS session should not be concatenated
to an authentication transaction if the involved host and controller are administratively configured with a
PSK for use with each other. In this case, host and controller should just establish a TLS session based on
the configured PSK.

The session key KS shall be computed from the ephemeral DH key (i.e., gxy mod p) generated during the
DH-HMAC-CHAP transaction by applying the hash function H() selected by the HashID parameter in the
DH-HMAC-CHAP_Challenge message (i.e., KS = H(gxy mod p)). The size of the session key KS is
determined by the selected hash function, as shown in Figure 452. Specifically:

• The host computes KS as the hash of the ephemeral DH key resulting from the combination of the
random value y selected by the host with the DH exponential (i.e., gx mod p) received from the
controller (i.e., KS = H((gx mod p)y mod p) = H(gxy mod p)).

• The controller computes KS as the hash of the ephemeral DH key resulting from the combination
of the random value x selected by the controller with the DH exponential (i.e., gy mod p) received
from the host (i.e., KS = H((gy mod p)x mod p) = H(gxy mod p)).

The generated PSK for TLS shall be computed applying the HMAC function using the hash function H()
selected by the HashID parameter in the DH-HMAC-CHAP_Challenge message with the session key KS
as key to the concatenation of the two challenges C1 and C2 (i.e., generated PSK = HMAC(KS, C1 || C2)).
The generated PSK used to set up a TLS secure channel on the Admin Queue may be reused to set up
additional TLS secure channels on the I/O queues (refer to the PSK Reuse section of the NVMe TCP
Transport Specification). The lifetime of this generated PSK should be no more than ten minutes; this
requires authentication for I/O queues created after this time.

NVM Express® Base Specification, Revision 2.0e

411

The host may request secure channel concatenation with the TLS protocol by setting the SC_C indication
in the AUTH_Negotiate message to 01h while performing only unidirectional authentication. In this case the
host shall still send a challenge value C2 to the controller and clear the sequence number S2 to 0h to indicate
that controller authentication is not requested.

8.13.5.10 Mapping of DH-HMAC-CHAP Messages to Authentication Commands

The DH-HMAC-CHAP_Reply message and the DH-HMAC-CHAP_Success2 message are sent from the
host to the controller, therefore they are mapped to the Authentication Send command. The DH-HMAC-
CHAP_Challenge message and the DH-HMAC-CHAP_Success1 message are sent from the controller to
the host, therefore they are mapped to the Authentication Receive command.

8.14 Persistent Memory Region

The Persistent Memory Region (PMR) is an optional region of general purpose PCI Express read/write
persistent memory that may be used for a variety of purposes. The controller indicates support for the PMR
by setting CAP.PMRS (refer to section 3.1.4.1) to ‘1’ and indicates whether the controller supports
command data and metadata transfers to or from the PMR by setting support flags in the PMRCAP property.
When command data and metadata transfers to or from PMR are supported, all data and metadata
associated with a particular command shall be either entirely located in the Persistent Memory Region or
outside the Persistent Memory Region.

The PMR’s PCI Express address range is used for external memory read and write requests to the PMR.
The PCI Express address range and size of the PMR is defined by the PCI Base Address Register (BAR)
indicated by PMRCAP.BIR. The PMR consumes the entire address region exposed by the BAR and
supports all the required features of the PCI Express programming model (i.e., it in no way restricts what is
otherwise permitted by PCI Express).

The controller uses the PMR’s controller address range to reference PMR with addresses supplied by the
host. The PCI Express address range and the controller address range of the PMR may differ, but both
ranges have the same size, and equivalent offsets within each range have a one-to-one correspondence.
The host configures the controller address range via the PMRMSCU and PMRMSCL properties.

The host enables the PMR’s controller memory space via the PMRMSCL.CMSE bit. When controller
memory space is enabled, if host supplies an address referencing the PMR’s controller address range, then
the controller directs memory read or write requests for this address to the PMR.

When the PMR’s controller memory space is disabled, the controller does not consider any host-supplied
address to reference the PMR’s controller address range, and memory read and write requests are directed
elsewhere (e.g., to memory other than the PMR).

The contents of data written to the PMR while the PMR is ready persists across power cycles, Controller
Level Resets, and disabling of the PMR. The mechanism used to make a write to the PMR persistent is
implementation specific. For example, in one implementation this may mean that a write to non-volatile
memory has completed while in another implementation this may mean that the write has been stored in a
non-volatile write buffer and is written to non-volatile memory at some later point.

A PMR implementation has a maximum sustained write throughput. The PMR implementation may also
have an optional write elasticity buffer used to buffer writes from PMR PCIe write requests. When the PMR
sustained write throughput is less than the PCI Express link throughput, then such a write elasticity buffer
allows PCIe write request burst throughput to exceed the PMR sustained write throughput without back
pressuring into the PCI Express fabric.

The time required to transfer data from the write elasticity buffer to nonvolatile media is the amount of data
written to the elasticity buffer divided by the Persistent Memory Region Sustained Write Throughput (refer
to section 3.1.4.26). The time to transfer the entire contents of the write elasticity buffer is the Persistent
Memory Region Elasticity Buffer Size (refer to section 3.1.4.25) divided by the Persistent Memory Region
Sustained Write Throughput.

The host enables the PMR by setting PMRCTL.EN to ‘1’. Once enabled, the controller indicates that the
PMR is ready by clearing PMRSTS.NRDY to ‘0’. It is not necessary to enable the controller to enable the

NVM Express® Base Specification, Revision 2.0e

412

PMR. Restoring and saving the contents of the PMR may take time to complete. When the host modifies
the value of PMRCTL.EN, the host should wait for at least the time interval specified in PMRCAP.PMRTO
for PMRSTS.NRDY to reflect the change.

When the PMR is not ready, PMR reads complete successfully and return an undefined value while PMR
writes complete normally, but do not update memory (i.e., the contents of the PMR address written remains
unchanged). The undefined value returned by a PMR read following a sanitize operation is such that
recovery of any previous user data from any cache or the non-volatile storage medium is not possible.

When the PMR becomes read-only or unreliable, then a critical warning is reported in the SMART/Health
Information Log which may be used to trigger an NVMe interface asynchronous event. Since reporting of
an asynchronous event may occur an unspecified amount of time after the PMR health status has changed,
the host should assume that all operations to the PMR have been affected since the last time normal
operation was reported in PMRSTS.HSTS.

PMRCAP.PMRWBM enumerates supported PMR write barrier mechanisms. At least one mechanism shall
be supported. An implementation may optionally support a mechanism where a PCI Express read of any
size to the PMR, including a “zero-length read,” ensures that all previous memory writes (i.e., Posted PCI
Express requests) to the PMR have completed and are persistent. An implementation may optionally
support a write barrier mechanism that utilizes a read of the PMRSTS property. When supported, a read of
the PMRSTS property allows a host to:

• ensure that previously issued memory writes to the PMR have completed; and

• determine whether the PMR updates associated with those writes have completed without error
and are persistent.

A PMR memory write error may be the result of a poisoned PCI Express TLP, an NVM subsystem internal
error, or a PMR health status issue.

Regardless of the supported PMR write barrier mechanisms, a host may periodically read the PMRSTS
property to ensure that reads to the PMR have returned valid data. For example, if a read to the PMRSTS
property indicates that the PMR is operating normally is then followed by a series of reads, and finally a
second read to the PMRSTS property that indicates the PMR is unreliable, then one or more of the reads
between the two PMRSTS property reads may have returned invalid data. Such polling of the PMRSTS
property may be unnecessary if the host handles poisoned TLPs and/or poisoned TLP error reporting is
enabled.

The PMR write elasticity buffer size along with the PMR sustained write throughput allows a host to
determine the amount of time for a read associated with a Persistent Memory Region write barrier
mechanism to complete.

Support for PRPs, SGL Lists, Completion Queues, and Submission Queues in the Persistent Memory
Region is outside the scope of this specification. If the host attempts to use the Persistent Memory Region
for a PRP, SGL List, Completion Queue, or Submission Queue, the controller may abort the command with
a status code of Invalid Field in Command.

8.15 Power Management

The power management capability allows the host to manage NVM subsystem power statically or
dynamically. Static power management consists of the host determining the maximum power that may be
allocated to an NVM subsystem and setting the NVM Express power state to one that consumes this
amount of power or less. Dynamic power management is illustrated in Figure 458 and consists of the host
modifying the NVM Express power state to best satisfy changing power and performance objectives. This
power management mechanism is meant to complement and not replace autonomous power management
or thermal management performed by a controller.

NVM Express® Base Specification, Revision 2.0e

413

Figure 458: Dynamic Power Management

The number of power states implemented by a controller is returned in the Number of Power States
Supported (NPSS) field in the Identify Controller data structure. If the controller supports this feature, at
least one power state shall be defined and optionally, up to a total of 32 power states may be supported.
Power states shall be contiguously numbered starting with zero such that each subsequent power state
consumes less than or equal to the maximum power consumed in the previous state. Thus, power state
zero indicates the maximum power that the NVM subsystem is capable of consuming.

Associated with each power state is a Power State Descriptor in the Identify Controller data structure (refer
to Figure 281). The descriptors for all implemented power states may be viewed as forming a table as
shown in the example in Figure 459 for a controller with seven implemented power states. Note that Figure
459 is illustrative and does not include all fields in the power state descriptor. The Maximum Power (MP)
field indicates the sustained maximum power that may be consumed in that state, where power
measurement methods are outside the scope of this specification. The controller may employ autonomous
power management techniques to reduce power consumption below this level, but under no circumstances
is power allowed to exceed this level except for non-operational power states as described in section 8.15.1.

Figure 459: Example Power State Descriptor Table

Power
State

Maximum
Power
(MP)

Entry
Latency
(ENLAT)

Exit
Latency
(EXLAT)

Relative
Read

Throughput
(RRT)

Relative
Read

Latency
(RRL)

Relative
Write

Throughput
(RWT)

Relative
Write

Latency
(RWL)

0 25 W 5 µs 5 µs 0 0 0 0

1 18 W 5 µs 7 µs 0 0 1 0

2 18 W 5 µs 8 µs 1 0 0 0

3 15 W 20 µs 15 µs 2 0 2 0

4 10 W 20 µs 30 µs 1 1 3 0

5 8 W 50 µs 50 µs 2 2 4 0

6 5 W 20 µs 5,000 µs 4 3 5 1

The Idle Power (IDLP) field indicates the typical power consumed by the NVM subsystem over 30 seconds
in the power state when idle (e.g., there are no pending commands, property accesses, background
processes, nor device self-test operations). The measurement starts after the NVM subsystem has been
idle for 10 seconds.

The Active Power (ACTP) field indicates the largest average power of the NVM subsystem over a 10 second
window on a particular workload (refer to section 8.15.3). Active Power measurement starts when the first
command is submitted and ends when the last command is completed. The largest average power over a
10 second window, consumed by the NVM subsystem in that state is reported in the Active Power field. If
the workload completes faster than 10 seconds, the average active power should be measured over the
period of the workload. Non-operational states shall set Active Power Scale, Active Power Workload, and
Active Power fields to 0h.

NVM Express® Base Specification, Revision 2.0e

414

The host may dynamically modify the power state using the Set Features command and determine the
current power state using the Get Features command. The host may directly transition between any two
supported power states. The Entry Latency (ENLAT) field in the Power State Descriptor data structure
indicates the maximum amount of time in microseconds to enter that power state and the Exit Latency
(EXLAT) field indicates the maximum amount of time in microseconds to exit that state.

The maximum amount of time to transition between any two power states is equal to the sum of the old
state’s exit latency and the new state’s entry latency. The host is not required to wait for a previously
submitted power state transition to complete before initiating a new transition. The maximum amount of
time for a sequence of power state transitions to complete is equal to the sum of transition times for each
individual power state transition in the sequence.

Associated with each power state descriptor are Relative Read Throughput (RRT), Relative Write
Throughput (RWT), Relative Read Latency (RRL) and Relative Write Latency (RWL) fields that provide the
host with an indication of relative performance in that power state. Relative performance values provide an
ordering of performance characteristics between power states. Relative performance values may repeat,
may be skipped, and may be assigned in any order (i.e., increasing power states are not required to have
increasing relative performance values).

A lower relative performance value indicates better performance (e.g., higher throughput or lower latency).
For example, in Figure 459 power state 1 has higher read throughput than power state 2, and power states
0 through 3 all have the same read latency. Relative performance ordering is only with respect to a single
performance characteristic. Thus, although the relative read throughput value of one power state may equal
the relative write throughput value of another power state, this does not imply that the actual read and write
performance of these two power states are equal.

The default NVM Express power state is implementation specific and shall correspond to a state that does
not consume more power than the lowest value specified in the applicable form factor specification, if any.
Refer to the Power Management section in the applicable NVM Express transport specification for transport
specific power requirements impacting NVMe power states, if any.

 Non-Operational Power States

A power state may be a non-operational power state, as indicated by Non-Operational State (NOPS) field
in Figure 281. Non-operational power states allow the following operations:

• property accesses;

• PMR accesses, if any;

• CMB accesses, if any;

• processing of Admin commands and processing background operations, if any, initiated by that
command (e.g., Device Self-test command (refer to section 5.9), Sanitize command (refer to
section 5.24)); and

• additional transport-specific accesses as defined in the applicable NVMe Transport binding
specification.

For the operations listed in the preceding paragraph, the controller:

• may exceed the power advertised by the non-operational power state;

• shall logically remain in the current non-operational power state unless an I/O command is received
or if an explicit transition is requested by a Set Features command with the Power Management
Feature Identifier; and

• shall not exceed the maximum power advertised for the most recent operational power state.

Execution of controller initiated background operations may exceed the power advertised by the non-
operational power state, if the Non-Operational Power State Permissive Mode is supported and enabled
(refer to section 5.27.1.14).

No I/O commands are processed by the controller while in a non-operational power state. The host should
wait until there are no pending I/O commands prior to issuing a Set Features command to change the
current power state of the device to a non-operational power state and not submit new I/O commands until

NVM Express® Base Specification, Revision 2.0e

415

the Set Features command completes. Issuing an I/O command in parallel may result in the controller being
in an unexpected power state.

When in a non-operational power state, regardless of whether autonomous power state transitions are
enabled, the controller shall autonomously transition back to the most recent operational power state to
process an I/O command.

 Autonomous Power State Transitions

The controller may support autonomous power state transitions, as indicated in the Identify Controller data
structure in Figure 280. Autonomous power state transitions provide a mechanism for the host to configure
the controller to automatically transition between power states on certain conditions without software
intervention.

The entry condition to transition to the Idle Transition Power State is that the controller has been in idle for
a continuous period of time exceeding the Idle Time Prior to Transition time specified. The controller is idle
when there are no commands outstanding to any I/O Submission Queue. If a controller has an operation in
process (e.g., device self-test operation) that would cause controller power to exceed that advertised for
the proposed non-operational power state, then the controller should not autonomously transition to that
state.

The power state to transition to shall be a non-operational power state (a non-operational power state may
autonomously transition to another non-operational power state). If an operational power state is specified
by a Set Features command specifying the Autonomous Power State Transitions feature (i.e., the Feature
Identifier field set to 0Ch (refer to section 5.27.1.9), then the controller should abort the command with a
status code of Invalid Field in Command. Refer to section 8.15.1 for more details.

 NVM Subsystem Workloads

The workload values described in this section may specify a workload hint in the Power Management
Feature (refer to section 5.27.1.2) to inform the NVM subsystem or indicate the conditions for the active
power level.

Active power values in the power state descriptors are specified for a particular workload since they may
vary based on the workload of the NVM subsystem. The workload field indicates the conditions to observe
the energy values. If Active Power is indicated for a power state, a corresponding workload shall also be
indicated.

The workload values are described in Figure 460.

Figure 460: Workload Hints

Value Description

000b No Workload: The workload is unknown or not provided.

001b

Workload #1: Extended Idle Period with a Burst of Random Writes. Workload #1 consists of five
(5) minutes of idle followed by thirty-two (32) random write commands of size 1 MiB submitted to a
single controller while all other controllers in the NVM subsystem are idle, and then thirty (30)
seconds of idle.

010b

Workload #2: Heavy Sequential Writes. Workload #2 consists of 80,000 sequential write
commands of size 128 KiB submitted to a single controller while all other controllers in the NVM
subsystem are idle. The submission queue(s) should be sufficiently large allowing the host to ensure
there are multiple commands pending at all times during the workload.

011b to 111b Reserved

 Runtime D3 (RTD3) Transitions

In Runtime D3, main power is removed from the controller. Auxiliary power may or may not be provided.
RTD3 is used for additional power savings when the controller is expected to be idle for a period of time.

In this specification, RTD3 refers to the D3cold power state described in the PCI Express Base Specification.
RTD3 does not include the PCI Express D3hot power state because main power is not removed from the

NVM Express® Base Specification, Revision 2.0e

416

controller in the D3hot power state. Refer to the PCI Express Base Specification for details on the D3hot
power state and the D3cold power state.

To enable host software to determine when to use RTD3, the controller reports the RTD3 Entry Latency
(RTD3E) field and the RTD3 Resume Latency (RTD3R) field in the Identify Controller data structure in
Figure 280. The host may use the sum of these two values to evaluate whether the expected idle period is
long enough to benefit from a transition to RTD3.

The RTD3 Resume Latency is the expected elapsed time from the time power is applied until the controller
is able to:

a) process and complete I/O commands; and
b) access the NVM associated with attached namespace(s), if any, as part of I/O command

processing.

The latency reported is based on a normal shutdown with optimal controller settings preceding the RTD3
resume. The latency reported assumes that host software enables and initializes the controller and sends
a 4 KiB read operation.

If CSTS.ST is cleared to ‘0’, then the RTD3 Entry Latency is the expected elapsed time from the time
CC.SHN is set to 01b by host software until CSTS.SHST is set to 10b by the controller. When CSTS.SHST
is set to 10b, it is safe for host software to remove power from the controller.

 Host Controlled Thermal Management

A controller may support host controlled thermal management (HCTM), as indicated in the Host Controlled
Thermal Management Attributes of the Identify Controller data structure in Figure 280. Host controlled
thermal management provides a mechanism for the host to configure a controller to automatically transition
between active power states or perform vendor specific thermal management actions in order to attempt to
meet thermal management requirements specified by the host. If active power states transitions are used
to attempt to meet these thermal management requirements specified by the host, then those active power
states transitions are vendor specific.

The host specifies and enables the thermal management requirements by setting the Thermal Management
Temperature 1 field and/or Thermal Management Temperature 2 field (refer to section 5.27.1.13) in a Set
Features command to a non-zero value. The supported range of values for the Thermal Management
Temperature 1 field and Thermal Management Temperature 2 field are indicated in the Identify Controller
data structure in Figure 280.

The Thermal Management Temperature 1 specifies that if the Composite Temperature (refer to Figure 213)
is:

a) greater than or equal to this value; and
b) less than the Thermal Management Temperature 2, if non-zero,

then the controller should start transitioning to lower power active power states or perform vendor specific
thermal management actions while minimizing the impact on performance in order to attempt to reduce the
Composite Temperature (e.g., transition to an active power state that performs light throttling).

The Thermal Management Temperature 2 field specifies that if the Composite Temperature is greater than
or equal to this value, then the controller shall start transitioning to lower power active power states or
perform vendor specific thermal management actions regardless of the impact on performance in order to
attempt to reduce the Composite Temperature (e.g., transition to an active power state that performs heavy
throttling).

If the controller is currently in a lower power active power state or performing vendor specific thermal
management actions because of this feature (e.g., throttling performance) because the Composite
Temperature is:

a) greater than or equal to the current value of the Thermal Management Temperature 1 field; and
b) less than the current value of the Thermal Management Temperature 2 field,

NVM Express® Base Specification, Revision 2.0e

417

and the Composite Temperature decreases to a value below the current value of the Thermal Management
Temperature 1 field, then the controller should return to the active power state that the controller was in
prior to going to a lower power active power state or stop performing vendor specific thermal management
actions because of this feature, the Composite Temperature and the current value of the Thermal
Management Temperature 1 field.

If the controller is currently in a lower power active power state or performing vendor specific thermal
management actions because the Composite Temperature is greater than or equal to the current value of
the Thermal Management Temperature 2 field and the Composite Temperature decreases to a value less
than the current value of the Thermal Management Temperature 1 field, then the controller should return
to the active power state that the controller was in prior to going to a lower power active power state or stop
performing vendor specific thermal management actions because of this feature, and the Composite
Temperature.

The temperature at which the controller stops being in a lower power active power state or performing
vendor specific thermal management actions because of this feature is vendor specific (i.e., hysteresis is
vendor specific).

Figure 461 shows examples of how the Composite Temperature may be affected by this feature.

Figure 461: HCTM Example

TMT1

Vendor

Specific

TMT2

No Thermal Management

e.g., light throttle

e.g., heavy thottling

Lines represent the

Composite Temperature

Note: Since the host controlled thermal management (HCTM) feature uses the Composite Temperature,
the actual interactions between a platform (e.g., tablet, or laptop) and two different device implementations
may vary even with the same Thermal Management Temperature 1 and Thermal Management
Temperature 2 temperature settings. The use of this feature requires validation between those devices’
implementations and the platform in order to be used effectively.

The SMART / Health Information log page (refer to section 5.16.1.3) contains statistics related to Host
Controller Thermal Management.

NVM Express® Base Specification, Revision 2.0e

418

8.16 Predictable Latency Mode

Predictable Latency Mode is used to achieve predictable latency for read and write operations. When
configured to operate in this mode using the Predictable Latency Mode Config Feature (refer to section
5.27.1.16), the namespaces in an NVM Set (refer to section 3.2.2) provide windows of operation for
deterministic operation or non-deterministic operation.

When Predictable Latency Mode is enabled:

• NVM Sets and their associated namespaces have vendor specific quality of service attributes;

• I/O commands that access NVM in the same NVM Set have the same quality of service attributes;
and

• I/O commands that access NVM in one NVM Set do not impact the quality of service of I/O
commands that access NVM in a different NVM Set.

The quality of service attributes apply within the NVM subsystem and do not include the PCIe or fabric
connection. To enhance isolation, the host should submit I/O commands for different NVM Sets to different
I/O Submission Queues.

Read Recovery Levels (refer to section 8.17) shall be supported when Predictable Latency Mode is
supported. The host configures the Read Recovery Level to specify the tradeoff between the quality of
service versus the amount of error recovery to apply for a particular NVM Set.

The Deterministic Window (DTWIN) is the window of operation during which the NVM Set is able to provide
deterministic latency for read and write operations. The Non-Deterministic Window (NDWIN) is the window
of operation during which the NVM Set is not able to provide deterministic latency for read and write
operations as a result of preparing for a subsequent Deterministic Window. Examples of actions that may
be performed in the Non-Deterministic Window include background operations on the non-volatile storage
medium. The current window that an NVM Set is operating in is configured by the host using the Predictable
Latency Mode Window Feature or by the controller as a result of an autonomous action.

Figure 462: Deterministic and Non-Deterministic Windows

To remain in the Deterministic Window, the host is required to follow operating rules (refer to section 8.16.1)
ensuring that certain attributes do not exceed the typical or maximum values indicated in the Predictable
Latency Per NVM Set log page. If the attributes exceed any of the typical or maximum values indicated in
the Predictable Latency Per NVM Set log page or a Deterministic Excursion occurs, then the associated
NVM Set may autonomously transition to the Non-Deterministic Window. A Deterministic Excursion is a
rare occurrence in the NVM subsystem that requires immediate action by the controller.

The host configures Predictable Latency Events to report using the Predictable Latency Mode Config
feature. The host may configure a Predictable Latency Event to be triggered when that value exceeds a
specific value in order to manage window changes and avoid autonomous transitions by the controller.
Refer to section 8.16.3.

NVM Express® Base Specification, Revision 2.0e

419

If Predictable Latency Mode is supported, then all controllers in the NVM subsystem shall:

• Support one or more NVM Sets;

• Support Read Recovery Levels;

• Support the Predictable Latency Mode log page for each NVM Set;

• Support the Predictable Latency Event Aggregate log page;

• Support the Predictable Latency Mode Config Feature;

• Support the Predictable Latency Mode Window Feature;

• Support Predictable Latency Event Aggregate Log Change Notices; and

• Indicate support for Predictable Latency Mode in the Controller Attributes field in the Identify
Controller data structure.

 Host Operating Rules to Achieve Determinism

In order to achieve deterministic operation, the host is required to follow operating rules.

An NVM Set remains in the Deterministic Window while attributes do not exceed any of the typical or
maximum values indicated in the Predictable Latency Per NVM Set log page, there is not a Deterministic
Excursion, and the host does not request a transition to the Non-Deterministic Window. The attributes
specified in this specification are the number of random 4 KiB reads, the number of writes in Optimal Write
Size, and time in the Deterministic Window. Additional attributes are vendor specific.

For reads, writes, and time in the Deterministic Window, two values are provided in the Predictable Latency
Per NVM Set log page (refer to section 5.16.1.11):

• A typical or maximum amount of that attribute that the host may consume during any given DTWIN;
and

• A reliable estimate of the amount of that attribute that remains to be consumed during the current
DTWIN.

Figure 463 shows how the Typical, Maximum, and Reliable Estimates for the DTWIN attributes increase or
decrease when the associated NVM Set is in the Deterministic Window or Non-Deterministic Window.

NVM Express® Base Specification, Revision 2.0e

420

Figure 463: DTWIN Attributes and Estimates

An NVM Set may transition autonomously to the NDWIN if, since entry to the current DTWIN:

a) the number of reads is greater than the value indicated in the DTWIN Reads Typical field;
b) the number of writes is greater than the value indicated in the DTWIN Writes Typical field;
c) the amount of time indicated in the DTWIN Time Maximum field has passed; or
d) a Deterministic Excursion occurs.

Figure 464 is an example that shows the relationship between the typical and reliable estimate values for
DTWIN Reads. DTWIN Reads Reliable Estimate begins near the DTWIN Reads Typical value at the start
of the current DTWIN at time 0. During the first time increment, the host reads x units, and the value of the
reliable estimate at time t2 is decremented by approximately x. During the second time increment, the host
reads a smaller amount consisting of y units and thus the reliable estimate at t3 is decremented by
approximately y.

NVM Express® Base Specification, Revision 2.0e

421

Figure 464: Typical and Reliable Estimate Example

The host configures the current window to be either DTWIN or NDWIN using a Set Features command with
the Predictable Latency Mode Window Feature. The host may use the reliable estimates provided in the
Predictable Latency Mode log page to ensure that the host transitions the NVM Set to the NDWIN prior to
any reliable estimates exceeding one of the typical or maximum values (e.g., DTWIN Reads Estimate = 0).

The reliable estimates provided shall have the following properties when in the Deterministic Window:

• The estimates shall be monotonically decreasing towards 0h for the entirety of the DTWIN,
depending on the attribute. For example, DTWIN Reads Reliable Estimate is monotonically
decreasing and thus does not increase without transitioning from the DTWIN to the NDWIN; and

• The estimates shall not change abruptly unless operating conditions have changed abruptly. The
estimate should be based on averaging or smoothing of data collected over some period of time.

 Configuring Periodic Windows

When using the NVM Set in Predictable Latency Mode, the host should transition the controller to NDWIN
for periodic maintenance. The maintenance is required in order for the NVM subsystem to reliably provide
the amount of time indicated for Deterministic Windows.

There are three static time based parameters reported in the Predictable Latency Per NVM Set log page
(refer to section 5.16.1.11) that may be used by the host to configure periodic windows. The values provided
are worst-case for the life of the NVM subsystem:

• NDWIN Time Minimum Low is the minimum time that the NVM Set remains in the Non-Deterministic
Window. The controller may delay completion of a Set Features command requesting a transition
to the Deterministic Window until this time is completed. This time does not account for additional
host activity in the Non-Deterministic Window;

• NDWIN Time Minimum High is the minimum time that the host should allow the NVM Set to remain
in the Non-Deterministic Window after the NVM Set remained in the previous Deterministic Window
for DTWIN Time Maximum. This time does not account for additional host activity in the Non-
Deterministic Window; and

• DTWIN Time Maximum is the maximum time that the NVM Set is able to stay in a Deterministic
Window.

NVM Express® Base Specification, Revision 2.0e

422

The DTWIN Time Maximum and NDWIN Time Minimum High may provide a ratio of the amount of
maintenance that needs to be performed based on the time that the NVM Set remains in the DTWIN,
assuming no threshold is exceeded. Any scaling of the time in the Non-Deterministic Window based on the
read, write, and time behavior in the previous Deterministic Window is implementation dependent.

The DTWIN Time Estimate may be used by the host when a Deterministic Excursion has occurred. This
estimate allows the host to re-synchronize an NVM Set with other NVM Sets operating in Predictable
Latency Mode, if applicable.

 Configuring and Managing Events

The host may configure events to be triggered when thresholds do not exceed certain levels or when
autonomous transitions occur using the Predictable Latency Mode Feature. The host submits a Set Feature
command for the particular NVM Set and configures the specific event(s) and threshold(s) values that shall
trigger a Predictable Latency Event Aggregate Log Change Notice event for that particular NVM Set to the
host. Refer to Figure 353.

The host determines the NVM Sets that have outstanding events by reading the Predictable Latency Event
Aggregate log page (refer to section 5.16.1.12). An entry is returned for each NVM Set that has an event
outstanding. The host may use the NVM Set Identifier Maximum value reported in the Identify Controller
data structure in order to determine the maximum size of this log page.

To determine the specific event(s) that have occurred for a reported NVM Sets, the host reads the
Predictable Latency Per NVM Set log page (refer to section 5.16.1.11) for that NVM Set. The Event Type
field indicates the event(s) that have occurred (e.g., an autonomous transition to the NDWIN). An event(s)
for a particular NVM Set is cleared if the controller successfully processes a read for the Predictable Latency
Per NVM Set log page for the affected NVM Set where the Get Log Page command has the Retain
Asynchronous Event parameter cleared to ‘0’. If the Event Type field in the Predictable Latency Per NVM
Set log page is cleared to 0h, then events for that particular NVM Set are not reported in the Predictable
Latency Event Aggregate log page.

8.17 Read Recovery Level

The Read Recovery Level (RRL) is an NVM Set configurable attribute that balances the completion time
for read commands and the amount of error recovery applied to those read commands. The Read Recovery
Level applies to an NVM Set with which the Read Recovery Level is associated. A namespace created
within an NVM Set inherits the Read Recovery Level of that NVM Set. If NVM Sets are not supported, all
namespaces in the NVM subsystem use an identical Read Recovery Level.

The controller indicates support for Read Recovery Levels in the Controller Attributes field in the Identify
Controller data structure (refer to Figure 280). If Read Recovery Levels are supported, then the specific
levels supported are indicated in the Read Recovery Levels Supported field in the Identify Controller data
structure. There are 16 levels that may be supported. Level 0, if supported, provides the maximum amount
of recovery. Level 4 is a mandatory level that provides a nominal amount of recovery and is the default
level. Level 15 is a mandatory level that provides the minimum amount of recovery and is referred to as the
‘Fast Fail’ level. The levels are organized based on the amount of recovery supported, such that a higher
numbered level provides less recovery than the preceding lower level.

Interactions between the Read Recovery Level and the Limited Retry (LR) field in I/O commands are
implementation specific.

The Read Recovery Level may be configured using a Set Features command for the Read Recovery Level
Config Feature. The Read Recovery Level may be determined using a Get Features command for the Read
Recovery Level Config Feature.

NVM Express® Base Specification, Revision 2.0e

423

Figure 465: Read Recovery Level Overview

Level O/M Description

0 O
Maximum
Recovery

1 O

D
e
c
re

a
s
in

g
 A

m
o
u

n
t o

f R
e
c
o
v
e
ry

2 O

3 O

4 M Default

5 O

6 O

7 O

8 O

9 O

10 O

11 O

12 O

13 O

14 O

15 M Fast Fail
Minimum
Recovery

If Read Recovery Levels are supported, then the NVM subsystem and all controllers shall:

• Support at least Level 4 and Level 15;

• Indicate support for Read Recovery Levels in the Controller Attributes field in the Identify
Controller data structure;

• Support the Read Recovery Levels Supported field in the Identify Controller data structure; and

• Support the Read Recovery Level Config Feature.

8.18 Replay Protected Memory Block

The Replay Protected Memory Block (RPMB) provides a means for the system to store data to a specific
memory area in an authenticated and replay protected manner. This is provided by first programming
authentication key information to the controller that is used as a shared secret. The system is not
authenticated in this phase, therefore the authentication key programming should be done in a secure
environment (e.g., as part of the manufacturing process). The authentication key is utilized to sign the read
and write accesses made to the replay protected memory area with a Message Authentication Code (MAC).
Use of random number (nonce) generation and a write count property provide additional protection against
replay of messages where messages could be recorded and played back later by an attacker.

Any attempt to access the replay protected memory area prior to the Authentication Key being programmed
results in an RPMB Operation Result Operation Status field set to 07h (i.e., Authentication Key not yet

NVM Express® Base Specification, Revision 2.0e

424

programmed) (refer to Figure 468). Once the key is programmed, RPMB Operation Result Operation Status
field shall not be set to 07h.

An Authenticated Data Write to the RPMB Device Configuration Block data structure that attempt to set the
Boot Partition Lock when the Boot Partition Protection is disabled results in an RPMB Operation Result
Operation Status field set to 05h (i.e., Write failure) (refer to Figure 468).

The controller may support multiple RPMB targets. RPMB targets are not contained within a namespace.
Controllers in the NVM subsystem may share the same RPMB targets. Security Send and Security Receive
commands for RPMB do not use the namespace ID field; NSID shall be cleared to 0h. Each RPMB target
operates independently – there may be requests outstanding to multiple RPMB targets at once (where the
requests may be interleaved between RPMB targets). In order to guarantee ordering the host should issue
and wait for completion for one Security Send or Security Receive command at a time. Each RPMB target
requires individual authentication and key programming. Each RPMB target may have its own unique
Authentication Key.

The message types defined in Figure 467 are used by the host to communicate with an RPMB target.
Request Message Types are sent from the host to the controller using Security Send commands. Response
Message Types are retrieved by the host from the controller using Security Receive commands.

Figure 466 defines the RPMB Device Configuration Block data structure – the non-volatile contents stored
within the controller for RPMB target 0.

Figure 466: RPMB Device Configuration Block Data Structure

Bytes Type Description

00 RW

Boot Partition Protection Enable:This field specifies whether Boot Partition Protection is
enabled.

Bits Description

7:1 Reserved

00

Boot Partition Protection Enabled: If this bit is set to ‘1’, then Boot Partition
Protection is enabled. If this bit is cleared to ‘0’, then Boot Partition Protection is
disabled or not supported. Once enabled, the controller shall prevent disabling
Boot Partition Protection.

01 RW

Boot Partition Lock Status: This field specifies the current status of the Boot Partition Lock.
This field shall be cleared to 0h unless Boot Partition Protection is enabled. Refer to section
8.2.3.

Bits Description

7:2 Reserved

1
Boot Partition Protection 1 Locked: If this bit is set to ‘1’, then the Boot
Partition 1 (i.e., the BPID bit in Figure 186 is set to ‘1’) is locked. If this bit is
cleared to ‘0’, then the Boot Partition 1 is unlocked.

0
Boot Partition Protection 0 Locked: If this bit is set to ‘1’, then the Boot
Partition 0 (i.e., the BPID bit in Figure 186 is cleared to ‘0’) is locked. If this bit is
cleared to ‘0’, then the Boot Partition 0 is unlocked.

NVM Express® Base Specification, Revision 2.0e

425

Figure 466: RPMB Device Configuration Block Data Structure

Bytes Type Description

02 RW

Write Protection Control: This field specifies whether the controller processes or aborts Set
Features commands which enable certain namespace write protection states (refer to section
8.12 and section 5.27.1.28). If the controller does not support Namespace Write Protection, then
this field shall be cleared to 0h. If the controller supports Namespace Write Protection, then bits
1:0 of this field shall be cleared to 00b after a power cycle or a Controller Level Reset.

Bits Description

7:2 Reserved

1

Permanent Write Protect Control: This bit cleared to ‘0’ specifies that the
controller shall fail a Set Features command which attempts to set the
namespace write protection state to Permanent Write Protect, as defined in
section 8.12. This bit is set to ‘1’ specifies that the controller shall process a Set
Features command which attempts to set the namespace write protection state
to Permanent Write Protect.

0

Write Protect Until Power Cycle Control (WPUPCC): This bit cleared to ‘0’
specifies that the controller shall fail a Set Features command which attempts to
set the namespace write protection state to Write Protect Until Power Cycle, as
defined in section 8.12. This bit is set to ‘1’ specifies that the controller shall
process a Set Features command which sets the namespace write protection
state to Write Protect Until Power Cycle.

511:03 Reserved

Each RPMB Data Frame is 256 bytes in size plus the size of the Data field, and is organized as shown in
Figure 470. RPMB uses a sector size of 512 bytes. The RPMB sector size is independent and not related
to the user data size used for the namespace(s).

Figure 467: RPMB Request and Response Message Types

Request Message Types Description
Requires

Data

RPMB
Frame
Length
(bytes)

0001h
Authentication key
programming request

The host is attempting to program the
Authentication Key for the selected RPMB target
to the controller

No 256

0002h
Reading of the Write
Counter value request

The host is requesting to read the current Write
Counter value from the selected RPMB target

No 256

0003h
Authenticated data
write request

The host is attempting to write data to the selected
RPMB target

Yes M + 256

0004h
Authenticated data
read request

The host is attempting to read data from the
selected RPMB target

No 256

0005h Result read request
The host is attempting to read the result code for
any of the other Message Types

No 256

0006h
Authenticated Device
Configuration Block
write request

The host is attempting to write Device
Configuration Block (DCB) to the selected RPMB
target. This request message type is only valid for
RPMB target 0.

Yes 512 + 256

0007h
Authenticated Device
Configuration Block
read request

The host is attempting to read Device
Configuration Block (DCB) from the selected
RPMB target. This request message type is only
valid for RPMB target 0.

No 256

0100h
Authentication key
programming response

Returned as a result of the host requesting a
Result read request Message Type after
programming the Authentication Key

No 256

0200h
Reading of the Write
Counter value
response

Returned as a result of the host requesting a
Result read request Message Type after
requesting the Write Counter value

No 256

NVM Express® Base Specification, Revision 2.0e

426

Figure 467: RPMB Request and Response Message Types

Request Message Types Description
Requires

Data

RPMB
Frame
Length
(bytes)

0300h
Authenticated data
write response

Returned as a result of the host requesting a
Result read request Message Type after
attempting to write data to an RPMB target

No 256

0400h
Authenticated data
read response

Returned as a result of the host requesting a
Result read request Message Type after
attempting to read data from an RPMB target

Yes M + 256

0600h
Authenticated Device
Configuration data
write response

Returned as a result of the host requesting a
Result read request Message Type after
attempting to write a Device Configuration Block
to an RPMB target

No 256

0700h
Authenticated Device
Configuration data
read response

Returned as a result of the host requesting a
Result read request Message Type after
attempting to read DCB from an RPMB target

Yes 512 + 256

The operation result defined in Figure 468 indicates whether an RPMB request was successful or not.

Figure 468: RPMB Operation Result

Bits Description

15:08 Reserved

07
Write Counter Status: Indicates if the Write Counter has expired (i.e., reached its maximum value). A
value of ‘1’ indicates that the Write Counter has expired. A value of ‘0’ indicates a valid Write Counter.

06:00

Operation Status: Indicates the operation status. Valid operation status values are listed below.

Value Description

00h Operation successful

01h General failure

02h Authentication failure (MAC comparison not matching, MAC calculation failure)

03h Counter failure (counters not matching in comparison, counter incrementing failure)

04h Address failure (address out of range, wrong address alignment)

05h Write failure (data/counter/result write failure)

06h Read failure (data/counter/result read failure)

07h Authentication Key not yet programmed

08h Invalid RPMB Device Configuration Block – this may be used when the target is not 0h

09 to 3Fh Reserved

Figure 469 defines the non-volatile contents stored within the controller for each RPMB target.

Figure 469: RPMB Contents

Content Type Size Description

Authentication
Key

Write once, not
erasable or

readable

Size is dependent on
authentication method

reported in Identify
Controller data

structure (e.g., SHA-
256 is 32 bytes (refer to

RFC 6234))

Authentication key which is used to authenticate
accesses when MAC is calculated.

NVM Express® Base Specification, Revision 2.0e

427

Figure 469: RPMB Contents

Content Type Size Description

Write Counter Read only 4 bytes

Counter value for the total amount of successful
authenticated data write requests made by the
host. The initial value of this property after
manufacture is 00000000h. The value is
incremented by one automatically by the controller
with each successful programming access. The
value is not resettable. After the counter has
reached the maximum value of FFFFFFFFh, the
controller shall no longer increment to prevent
overflow.

RPMB Data
Area

Readable and
writable, not

erasable

Size is reported in
Identify Controller data

structure (128 KiB
minimum, 32 MiB

maximum)

Data that is able to be read and written only via
successfully authenticated read/write access.

Each RPMB Data Frame is 256 bytes in size plus the size of the Data field, and is organized as shown in
Figure 470. RPMB uses a sector size of 512 bytes. The RPMB sector size is independent and not related
to the user data size used for the namespace(s).

Figure 470: RPMB Data Frame

Bytes Component Name Description

222-N:00 Stuff Bytes
Padding for the frame. Values in this field are not part of the MAC
calculation. The size is 223 bytes minus the size of the Authentication
Key (N).

222:222-(N-1)
Authentication Key or

Message Authentication
Code (MAC)

Size is dependent on authentication method reported in the Identify
Controller data structure (e.g., SHA-256 key is 32 bytes (refer to
RFC 6234)).

223 RPMB Target

Indicates which RPMB this Request/Response is targeted for. Values
0-6 are supported. If the value in this field is not equal to the NVMe
Security Specific Field (NSSF) in the Security Send or Security
Receive command, then the controller shall return an error of Invalid
Field in Command for the Security Send or Security Receive
command.

239:224 Nonce
Random number generated by the host for the requests and copied
to the response by the RPMB target.

243:240 Write Counter Total amount of successfully authenticated data write requests.

247:244 Address Starting address of data to be programmed to or read from the RPMB.

251:248 Sector Count Number of sectors (512 bytes) requested to be read or written.

253:252 Result
Defined in Figure 468. Note: The Result field is not needed for
Requests.

255:254
Request/Response

Message
Defined in Figure 467.

(M-1)+256:256 Data (Optional)
Data to be written or read by signed access where M = 512 * Sector
Count.

Security Send and Security Receive commands are used to encapsulate and deliver data packets of any
security protocol between the host and controller without interpreting, dis-assembling or re-assembling the
data packets for delivery. Security Send and Security Receive commands used for RPMB access are
populated with the RPMB Data Frame(s) defined in Figure 470. The controller shall not return successful
completion of a Security Send or Security Receive command for RPMB access until the requested RPMB
Request/Response Message Type indicated is completed. The Security Protocol used for RPMB is defined
in section 5.25.3.

NVM Express® Base Specification, Revision 2.0e

428

 Authentication Method

A controller supports one Authentication Method as indicated in the Identify Controller data structure.

If the Authentication Method supported is HMAC SHA-256 (refer to RFC 6234), then the message
authentication code (MAC) is calculated using HMAC SHA-256 as defined in RFC 6234. The key used to
generate a MAC using HMAC SHA-256 is the 256-bit Authentication Key stored in the controller for the
selected RPMB target. The HMAC SHA-256 calculation takes as input a key and a message. Input to the
MAC calculation is the concatenation of the fields in the RPMB Data Frame (request or response) excluding
stuff bytes and the MAC itself – i.e., bytes [223:255] and Data of the frame in that order.

 RPMB Operations

The host sends a Request Message Type to the controller to request an operation by the controller or to
deliver data to be written into the RPMB memory block. To deliver a Request Message Type, the host uses
the Security Send command. If the data to be delivered to the controller is more than reported in Identify
Controller data structure, the host sends multiple Security Send commands to transfer the entire data.

The host sends a Response Message Type to the controller to read the result of a previous operation
request, to read the Write Counter, or to read data from the RPMB memory block. To deliver a Response
Message Type, the host uses the Security Receive command. If the data to be read from the controller is
more than reported in Identify Controller data structure, the host sends multiple Security Receive
commands to transfer the entire data.

8.18.2.1 Authentication Key Programming

Authentication Key programming is initiated by a Security Send command to program the Authentication
Key to the specified RPMB target, followed by a subsequent Security Send command to request the result,
and lastly, the host issues a Security Receive command to retrieve the result.

Figure 471: RPMB – Authentication Key Data Flow

Command Bytes in Command Field Name Value Objective

Security
Send 1

Data populated by the host and sent to the controller

Send
Authentication
Key to be
Programmed to
the controller

222-N:00 Stuff Bytes 0…00h

222:222-(N-1)
MAC/Key Key to be

programmed

223
RPMB Target RPMB target to

access

239:224 Nonce 0…00h

243:240 Write Counter 00000000h

247:244 Address 00000000h

251:248 Sector Count 00000000h

253:252 Result 0000h

255:254 Request/Response 0001h (Request)

Security
Send 2

Data populated by the host and sent to the controller

Request Result of
Key
Programming

222-N:00 Stuff Bytes 0…00h

222:222-(N-1) MAC/Key 0…00h

223
RPMB Target RPMB target to

access

239:224 Nonce 0…00h

243:240 Write Counter 00000000h

247:244 Address 00000000h

251:248 Sector Count 00000000h

253:252 Result 0000h

255:254 Request/Response 0005h (Request)

Security
Receive 1

Data populated by the controller and returned to the host Retrieve the Key
Programming
Result

222-N:00 Stuff Bytes 0…00h

222:222-(N-1) MAC/Key 0…00h

NVM Express® Base Specification, Revision 2.0e

429

Figure 471: RPMB – Authentication Key Data Flow

Command Bytes in Command Field Name Value Objective

223
RPMB Target RPMB target

response was sent
from

239:224 Nonce 0…00h

243:240 Write Counter 00000000h

247:244 Address 00000000h

251:248 Sector Count 00000000h

253:252 Result Result Code

255:254 Request/Response 0100h (Response)

8.18.2.2 Read Write Counter Value

The Read Write Counter Value sequence is initiated by a Security Send command to request the Write
Counter value, followed by a Security Receive command to retrieve the Write Counter result.

Figure 472: RPMB – Read Write Counter Value Flow

Command Bytes in Command Field Name Value Objective

Security
Send 1

Data populated by the host and sent to the controller

Request Write
Counter Read

222-N:00 Stuff Bytes 0…00h

222:222-(N-1) MAC/Key 0…00h

223 RPMB Target RPMB target to access

239:224
Nonce Nonce generated by the

host

243:240 Write Counter 00000000h

247:244 Address 00000000h

251:248 Sector Count 00000000h

253:252 Result 0000h

255:254 Request/Response 0002h (Request)

Security
Receive 1

Data populated by the controller and returned to the host

Retrieve Write
Counter Read
Result

222-N:00 Stuff Bytes 0…00h

222:222-(N-1)
MAC/Key MAC generated by the

controller

223
RPMB Target RPMB target response

was sent from

239:224
Nonce Copy of the Nonce

generated by the host

243:240
Write Counter Current Write Counter

value

247:244 Address 00000000h

251:248 Sector Count 00000000h

253:252 Result Result Code

255:254 Request/Response 0200h (Response)

8.18.2.3 Authenticated Data Write

The Authenticated Data Write is initiated by a Security Send command. The RPMB Data Frame delivered
from the host to the controller includes the Request Message Type = 0003h, Block Count, Address, Write
Counter, Data and MAC.

When the controller receives this RPMB Data Frame, that controller first checks whether the Write Counter
has expired. If the Write Counter has expired, then that controller sets the RPMB Operation Result to 0085h
(write failure, write counter expired) and no data is written to the RPMB data area.

NVM Express® Base Specification, Revision 2.0e

430

After checking the Write Counter is not expired, the Address is checked. If there is an error in the Address
(e.g., out of range), then the result is set to 0004h (address failure) and no data is written to the RPMB data
area.

After checking the Address is valid, the controller calculates the MAC (refer to section 8.18.1) and compares
this with the MAC in the request. If the MAC in the request and the calculated MAC are different, then the
controller sets the result to 0002h (authentication failure) and no data is written to the RPMB data area.

If the MAC in the request and the calculated MAC are equal, then the controller compares the Write Counter
in the request with the Write Counter stored in the controller. If the counters are different, then the controller
sets the result to 0003h (counter failure) and no data is written to the RPMB data area.

If the MAC and Write Counter comparisons are successful, then the write request is authenticated. The
Data from the request is written to the Address indicated in the request and the Write Counter is
incremented by one.

If the write fails, then the returned result is 0005h (write failure). If another error occurs during the write
procedure, then the returned result is 0001h (general failure).

The controller returns a successful completion for the Security Send command when the Authenticated
Data Write operation is completed regardless of whether the Authenticated Data Write was successful or
not.

The success of programming the data should be checked by the host by reading the result property of the
RPMB:

1) The host initiates the Authenticated Data Write verification process by issuing a Security Send
command with delivery of a RPMB data frame containing the Request Message Type = 0005h;

2) The controller returns a successful completion of the Security Send command when the
verification result is ready for retrieval;

3) The host should then retrieve the verification result by issuing a Security Receive command; and
4) The controller returns a successful completion of the Security Receive command and returns the

RPMB data frame containing the Response Message Type = 0300h, the incremented counter
value, the data address, the MAC and result of the data programming operation.

NVM Express® Base Specification, Revision 2.0e

431

Figure 473: RPMB – Authenticated Data Write Flow

Command Bytes in Command Field Name Value Objective

Security
Send 1

 Data populated by the host and sent to the controller

Program data
request

222-N:00 Stuff Bytes 0…00h

222:222-(N-1) MAC/Key MAC generated by the host

223 RPMB Target RPMB target to access

239:224 Nonce 0…00h

243:240 Write Counter Current Write Counter value

247:244 Address Address in the RPMB

251:248 Sector Count Number of 512B blocks

253:252 Result 0000h

255:254 Request/Response 0003h (Request)

(M-1)+256:256 Data Data to be written

Security
Send 2

Data populated by the host and sent to the controller

Request Result of
data
programming

222-N:00 Stuff Bytes 0…00h

222:222-(N-1) MAC/Key 0…00h

223 RPMB Target RPMB target to access

239:224 Nonce 0…00h

243:240 Write Counter 00000000h

247:244 Address 00000000h

251:248 Sector Count 00000000h

253:252 Result 0000h

255:254 Request/Response 0005h (Request)

Security
Receive 1

Data populated by the controller and returned to the host

Retrieve Result
from data
programming

222-N:00 Stuff Bytes 0…00h

222:222-(N-1)
MAC/Key MAC generated by the

controller

223
RPMB Target RPMB target response was

sent from

239:224 Nonce 0…00h

243:240
Write Counter Incremented Write Counter

value

247:244 Address Address in RPMB

251:248 Sector Count 00000000h

253:252 Result Result Code

255:254 Request/Response 0300h (Response)

8.18.2.4 Authenticated Data Read

The Authenticated Data Read sequence is initiated by a Security Send command. The RPMB data frame
delivered from the host to the controller includes the Request Message Type = 0004h, Nonce, Address,
and the Sector Count.

When the controller receives this RPMB Data Frame, that controller first checks the Address. If there is an
error in the Address, then the result is set to 0004h (address failure) and the data read is not valid.

When the host receives a successful completion of the Security Send command from the controller, that
host should send a Security Receive command to the controller to retrieve the data. The controller returns
an RPMB Data Frame with Response Message Type (0400h), the Sector Count, a copy of the Nonce
received in the request, the Address, the Data, the controller calculated MAC, and the Result. Note: It is
the responsibility of the host to verify the MAC returned on an Authenticated Data Read Request.

If the data transfer from the addressed location in the controller fails, the returned Result is 0006h (read
failure). If the Address provided in the Security Send command is not valid, then the returned Result is
0004h (address failure). If another error occurs during the read procedure, then the returned Result is 0001h
(general failure).

NVM Express® Base Specification, Revision 2.0e

432

Figure 474: RPMB – Authenticated Data Read Flow

Command Bytes in Command Field Name Value Objective

Security
Send 1

Data populated by the host and sent to the controller

Read Data
request

222-N:00 Stuff Bytes 0…00h

222:222-(N-1) MAC/Key 0…00h

223 RPMB Target RPMB target to access

239:224 Nonce Nonce generated by the host

243:240 Write Counter 00000000h

247:244 Address Address in RPMB

251:248 Sector Count Number of 512B blocks

253:252 Result 0000h

255:254 Request/Response 0004h (Request)

Security
Receive 1

Data populated by the controller and returned to the host

Retrieve result
and data from
read request

222-N:00 Stuff Bytes 0…00h

222:222-(N-1)
MAC/Key MAC generated by the

controller

223
RPMB Target RPMB target response was

sent from

239:224
Nonce Copy of the Nonce generated

by the host

243:240 Write Counter 0000h

247:244 Address Address in RPMB

251:248 Sector Count Number of 512B blocks

253:252 Result Result Code

255:254 Request/Response 0400h (Response)

(M-1)+256:256 Data Data read from RPMB target

 Authenticated Device Configuration Block Write

The Authenticated Device Configuration Block Write is initiated by a Security Send command. The RPMB
Data Frame delivered from the host to the controller includes the Request Message Type = 0006h, Sector
Count = 01h, MAC, Write Counter set to the current Write Counter value, and the RPMB Device
Configuration Block data structure (refer to Figure 475). All other fields are cleared to 0h.

If the Write Counter has expired, then that controller sets the result to 0005h (write failure, write counter
expired) and no data is written to the Device Configuration Block.

The controller calculates the MAC of Request Type, Block Count, Write Counter, Address and Data, and
compares this with the MAC in the request. If the MAC in the request and the calculated MAC are different,
then the controller sets the result to 0002h (authentication failure) and no data is written to the RPMB Device
Configuration Block.

If the Data from the RPMB Device Configuration Block attempts to disable Boot Partition Protection, then
the controller sets the result to 0008h (Invalid RPMB Device Configuration Block) and no data is written to
the RPMB Device Configuration Block.

If the MAC in the request and the calculated MAC are equal, then the write request is authenticated. The
Data from the request is written to the RPMB Device Configuration Block.

If any other error occurs during the write procedure, then the returned result is 0001h (general failure).

The controller returns a successful completion for the Security Send command when the Authenticated
Data Write operation is completed regardless of whether the Authenticated Device Configuration Block
Write was successful or not.

When the host receives a successful completion of the Security Send command from the controller, that
host should send a Security Receive command to the controller to retrieve the data. The controller returns
an RPMB Data Frame with Response Message Type (0600h), the incremented counter value, the MAC,
and the Result. All other fields are cleared to 0h.

NVM Express® Base Specification, Revision 2.0e

433

The Write Counter for the Device Configuration Block is independent of the Write Counter for RPMB target
0. Authenticated Device Configuration Block Writes do not affect the Write Counter for RPMB target 0 since
the data is not part of the RPMB data area. The current value of the Write Counter for the Device
Configuration Block may be read using an Authenticated Device Configuration Block Read (refer to section
8.18.4).

Figure 475: RPMB – Authenticated Device Configuration Block Write Flow

Command Bytes in Command Field Name Value Objective

Security
Send 1

 Data populated by the host and sent to the controller

Request Device
Configuration
Block Write

222-N:00 Stuff Bytes 0…00h

222:222-(N-1)
MAC/Key MAC generated by the

host

223 RPMB Target 00h

239:224 Nonce 0…00h

243:240
Write Counter Current Write Counter

value

247:244 Address 00000000h

251:248 Sector Count 00000001h

253:252 Result 0000h

255:254 Request/Response 0006h (Request)

767:256
Data RPMB Device

Configuration Block data
structure

Security
Send 2

Data populated by the host and sent to the controller

Request Result of
data
programming

222-N:00 Stuff Bytes 0…00h

222:222-(N-1) MAC/Key 0…00h

223 RPMB Target RPMB target to access

239:224 Nonce 0…00h

243:240 Write Counter 00000000h

247:244 Address 00000000h

251:248 Sector Count 00000000h

253:252 Result 0000h

255:254 Request/Response 0005h (Request)

Security
Receive 1

Data populated by the controller and returned to the host

Retrieve Device
Configuration
Block Write
Result

222-N:00 Stuff Bytes 0…00h

222:222-(N-1)
MAC/Key MAC generated by the

controller

223 RPMB Target 00h

239:224 Nonce 0…00h

243:240
Write Counter Incremented Write

Counter value

247:244 Address 00000000h

251:248 Sector Count 00000000h

253:252 Result Result Code

255:254 Request/Response 0600h (Response)

 Authenticated Device Configuration Block Read

The Authenticated Device Configuration Block Read sequence is initiated by a Security Send command.
The RPMB data frame delivered from the host to the controller includes the Nonce, Request Message Type
= 0007h and the Sector Count = 01h. All other fields are cleared to 0h.

When the host receives a successful completion of the Security Send command from the controller, that
host should send a Security Receive command to the controller to retrieve the data. The controller returns
an RPMB Data Frame with Response Message Type (0700h), the Sector Count = 01h, a copy of the Nonce

NVM Express® Base Specification, Revision 2.0e

434

received in the request, the RPMB Device Configuration Block Data Structure (refer to Figure 466), the
MAC, the Write Counter set to the current Write Counter value, and the Result. All other fields are cleared
to 0h.

The Write Counter for the Device Configuration Block is independent of the Write Counter for RPMB target
0. The controller returns the Device Configuration Block Write Counter as shown in Figure 476.

The MAC is calculated from Response Type, Nonce, Address, Data and Result fields. If the MAC calculation
fails, then the returned result is 0002h (authentication failure). If another error occurs during the read
procedure, then the returned Result is 0001h (general failure).

Figure 476: RPMB – Authenticated Device Configuration Block Read Flow

Command Bytes in Command Field Name Value Objective

Security
Send 1

Data populated by the host and sent to the controller

Request Device
Configuration
Block Read

222-N:00 Stuff Bytes 0…00h

222:222-(N-1) MAC/Key 0…00h

223 RPMB Target 00h

239:224
Nonce Nonce generated by the

host

243:240 Write Counter 00000000h

247:244 Address 00000000h

251:248 Sector Count 00000001h

253:252 Result 0000h

255:254 Request/Response 0007h (Request)

Security
Receive 1

Data populated by the controller and returned to the host

Retrieve Device
Configuration
Block Read
Result

222-N:00 Stuff Bytes 0…00h

222:222-(N-1)
MAC/Key MAC generated by the

controller

223 RPMB Target 00h

239:224
Nonce Copy of the Nonce

generated by the host

243:240 Write Counter Current Write Counter value

247:244 Address 00000000h

251:248 Sector Count 00000001h

253:252 Result Result Code

255:254 Request/Response 0700h (Response)

767:256
Data RPMB Device

Configuration Block data
structure

8.19 Reservations

NVM Express reservations provide capabilities that may be utilized by two or more hosts to coordinate
access to a shared namespace. The protocol and manner in which these capabilities are used is outside
the scope of this specification. Incorrect application of these capabilities may corrupt data and/or otherwise
impair system operation.

Reservation operation after a division event (refer to section 3.2.4.1) is described in section 3.2.4.2.

A reservation on a namespace restricts hosts access to that namespace. If a host submits a command to
a namespace in the presence of a reservation and lacks sufficient rights, then the command is aborted by
the controller with a status code of Reservation Conflict. If a host submits a command with the NSID set to
FFFFFFFFh in the presence of a reservation on any of the namespaces impacted by that command and
that host lacks sufficient rights on all the impacted namespaces, then the command is aborted by the
controller with a status code of Reservation Conflict. Capabilities are provided that allow recovery from a
reservation on a namespace held by a failing or uncooperative host.

A command is checked for reservation conflict at the time that the controller begins processing that
command. If that reservation conflict check allows the command to be performed (i.e., the host has sufficient

NVM Express® Base Specification, Revision 2.0e

435

rights for that command with respect to existing reservations, if any), then that command shall not be
subsequently aborted by the controller with a status code of Reservation Conflict (e.g., due to a subsequent
reservation).

Figure 477: Example Multi-Host System

Namespace

NSID 1

NVM Express

Controller 1
Host ID = A

NSID 1

NVM Express

Controller 2
Host ID = A

NSID 1

NVM Express

Controller 3
Host ID = B

NSID 1

Host

A

Host

B

Host

C

NVM Subsystem

NVM Express

Controller 4
Host ID = C

A reservation requires an association between a host and a namespace. As shown in Figure 477, each
controller in a multi-path I/O and namespace sharing environment is associated with exactly one host. While
it is possible to construct systems where two or more hosts share a single controller, such usage is outside
the scope of this specification.

A host may be associated with multiple controllers. In Figure 477 host A is associated with two controllers
while hosts B and C are each associated with a single controller. A host registers a Host Identifier (refer to
section 5.27.1.25) with each controller with which that host is associated using a Set Features command
(refer to section 5.27) prior to performing any operations associated with reservations. The Host Identifier
allows the NVM subsystem to identify controllers associated with the same host and preserve reservation
properties across these controllers (i.e., a host issued command has the same reservation rights no matter
which controller associated with the host processes the command).

Support for reservations by a namespace or controller is optional. A namespace indicates support for
reservations by reporting a non-zero value in the Reservation Capabilities (RESCAP) field in the Identify
Namespace data structure. A controller indicates support for reservations through the Optional NVM
Command Support (ONCS) field in the Identify Controller data structure (refer to Figure 280). If a host
submits a command associated with reservations (i.e., Reservation Report, Reservation Register,
Reservation Acquire, and Reservation Release) to a controller or a namespace that do not both support
reservations, then the command is aborted by the controller with a status code of Invalid Command Opcode.

Controllers that make up an NVM subsystem shall all have the same support for reservations. Although
strongly encouraged, namespaces that make up an NVM subsystem are not all required to have the same
support for reservations. For example, some namespaces within a single controller may support
reservations while others do not, or the supported reservation types may differ among namespaces. If a
controller supports reservations, then the controller shall:

• Indicate support for reservations by returning a '1' in bit 5 of the Optional NVM Command Support
(ONCS) field in the Identify Controller data structure;

NVM Express® Base Specification, Revision 2.0e

436

• Support the Reservation Report command (refer to section 7.5), Reservation Register command
(refer to section 7.3), Reservation Acquire command (refer to section 7.2), and Reservation
Release command (refer to section 7.4);

• Support the Reservation Notification log page;

• Support the Reservation Log Page Available asynchronous events;

• Support the Reservation Notification Mask Feature;

• Support the Host Identifier Feature; and

• Support the Reservation Persistence Feature.

If a namespace supports reservations, then the namespace shall:

• Report a non-zero value in the Reservation Capabilities (RESCAP) field in the Identify Namespace
data structure;

• Support Persist Through Power Loss (PTPL) state; and

• Support sufficient resources to allow a host to successfully register a reservation key on every
controller in the NVM subsystem with access to the shared namespace (i.e., a Reservation Register
command shall never fail due to lack of resources).

NOTE: The behavior of Ignore Existing Key has been changed to improve compatibility with SCSI based
implementations. Conformance to the modified behavior is indicated in the Reservation Capabilities
(RESCAP) field of the Identify Namespace data structure. For the previous definition of Ignore Existing Key
behavior, refer to NVM Express Base Specification revision 1.2.1.

 Reservation Types

The NVM Express interface supports six types of reservations:

• Write Exclusive;

• Exclusive Access;

• Write Exclusive - Registrants Only;

• Exclusive Access - Registrants Only;

• Write Exclusive - All Registrants; and

• Exclusive Access - All Registrants.

Figure 478: Command Behavior in the Presence of a Reservation

Reservation Type

Reservation
Holder

Registrant
Non-

Registrant Reservation Holder
Definition

Read Write Read Write Read Write

Write Exclusive Y Y Y N Y N One Reservation Holder

Exclusive Access Y Y N N N N One Reservation Holder

Write Exclusive -
Registrants Only

Y Y Y Y Y N One Reservation Holder

Exclusive Access -
Registrants Only

Y Y Y Y N N One Reservation Holder

Write Exclusive - All
Registrants

Y Y Y Y Y N
All Registrants are Reservation
Holders

Exclusive Access - All
Registrants

Y Y Y Y N N
All Registrants are Reservation
Holders

The differences between these reservation types are: the type of access that is excluded (i.e., writes or all
accesses), whether registrants have the same access rights as the reservation holder, and whether
registrants are also considered to be reservation holders. These differences are summarized in Figure 478
and the specific behavior for each NVM Express command is shown in Figure 479.

Reservations and registrations persist across all Controller Level Resets and all NVM Subsystem Resets
except reset due to power loss. A reservation may be optionally configured to be retained across a reset
due to power loss using the Persist Through Power Loss State (PTPLS). A Persist Through Power Loss

NVM Express® Base Specification, Revision 2.0e

437

State (PTPLS) is associated with each namespace that supports reservations and may be modified as a
side effect of a Reservation Register command (refer to section 7.3) or a Set Features command (refer to
section 5.27).

Figure 479: Command Behavior in the Presence of a Reservation

NVMe Command

Write
Exclusive

Reservation

Exclusive
Access

Reservation

Write Exclusive
Registrants

Only
or

Write Exclusive
All Registrants

Reservation

Exclusive Access
Registrants Only

or
Exclusive Access

All Registrants
Reservation

N
o

n
-R

e
g

is
tra

n
t

R
e

g
is

tra
n

t

N
o

n
-R

e
g

is
tra

n
t

R
e

g
is

tra
n

t

N
o

n
-R

e
g

is
tra

n
t

R
e

g
is

tra
n

t

N
o

n
-R

e
g

is
tra

n
t

R
e

g
is

tra
n

t

Copy Command Group

I/O Command Set specific Copy

Commands
2

C C C C C A C A

Read Command Group

Security Receive (Admin)
I/O Command Set specific Read

Commands
2

A A C C A A C A

Write Command Group

Capacity Management (Admin)
Flush
Format NVM (Admin)
Namespace Attachment (Admin)
Namespace Management (Admin)
Sanitize (Admin)
Security Send (Admin)
I/O Command Set specific Write

Commands
2

C C C C C A C A

Reservation Command Groups

Reservation Acquire - Acquire C C C C C C C C

Reservation Acquire - Preempt
Reservation Acquire - Preempt and
Abort Reservation Release

C A C A C A C A

All Other Commands Group

All other commands
1
 A A A A A A A A

Key:
A definition: A=Allowed, command processed normally by the controller
C definition: C=Conflict, command aborted by the controller with a status code of Reservation Conflict

Notes:
1. The behavior of a vendor specific command is vendor specific.
2. Refer to the applicable I/O Command Set specification

 Reservation Notifications

There are three types of reservation notifications: registration preempted, reservation released, and
reservation preempted. Conditions that cause a reservation notification to occur are described in the
following sections. A Reservation Notification log page is created whenever an unmasked reservation
notification occurs on a namespace associated with the controller (refer to section 5.16.1.24). Reservation
notifications may be masked from generating a Reservation Notification log page on a per reservation

NVM Express® Base Specification, Revision 2.0e

438

notification type and per namespace ID basis through the Reservation Notification Mask feature (refer to
section 5.27.1.26). A host may use the Asynchronous Event Request command (refer to section 5.2) to be
notified of the presence of one or more available Reservation Notification log pages (refer to section
5.16.1.24).

 Registering

Prior to establishing a reservation on a namespace, a host shall become a registrant of that namespace by
registering a reservation key. This reservation key may be used by the host as a means of identifying the
registrant (host), authenticating the registrant, and preempting a failed or uncooperative registrant. The
value of the reservation key used by a host and the method used to select its value is outside the scope of
this specification.

Registering a reservation key with a namespace creates an association between a host and a namespace.
A host that is a registrant of a namespace may use any controller with which that host is associated (i.e.,
that has the same Host Identifier, refer to section 5.27.1.25) to access that namespace as a registrant.
Thus, a host is only required to register on a single controller to become a registrant of the namespace on
all controllers in the NVM subsystem that have access to the namespace and are associated with the host.

A host registers a reservation key by executing a Reservation Register command (refer to section 7.3) on
the namespace with the Reservation Register Action (RREGA) field cleared to 000b (i.e., Register
Reservation Key) and supplying a reservation key in the New Reservation Key (NRKEY) field.

A host that is a registrant of a namespace may register the same reservation key value multiple times with
the namespace on the same or different controllers. For a Reservation Register command with the RREGA
field cleared to 000b:

a) the IEKEY field shall be ignored; and
b) if a host that is already a registrant of a namespace attempts to register with that namespace using

a different reservation key value, then the command shall be aborted with a status code of
Reservation Conflict.

There are no restrictions on the reservation key value used by hosts with different Host Identifiers. For
example, multiple hosts may all register with the same reservation key value.

A host that is a registrant of a namespace may replace the existing reservation key value for that
namespace by executing a Reservation Register command on the namespace with the:

a) RREGA field set to 010b (i.e., Replace Reservation Key);
b) current reservation key in the Current Reservation Key (CRKEY) field; and
c) new reservation key in the NRKEY field.

The current reservation key value shall be replaced by the new reservation key value in all controllers to
which the namespace is attached that have the same Host Identifier as the Host Identifier of the controller
processing the command. If the contents of the CRKEY field do not match the key currently associated with
the host, then the command shall be aborted with a status code of Reservation Conflict. A host may replace
its reservation key without regard to its registration status or current reservation key value by setting the
Ignore Existing Key (IEKEY) bit to '1' in the Reservation Register command. Replacing a reservation key
has no effect on any reservation that may be held on the namespace.

 Unregistering

A host that is a registrant of a namespace may unregister with the namespace by executing a Reservation
Register command (refer to section 7.3) on the namespace with the RREGA field set to 001b (i.e.,
Unregister Reservation Key) and supplying its current reservation key in the CRKEY field. If the contents
of the CRKEY field do not match the key currently associated with the host, then the command is aborted
with a status code of Reservation Conflict. If the host is not a registrant, then the command is aborted with
a status code of Reservation Conflict.

NVM Express® Base Specification, Revision 2.0e

439

Successful completion of an unregister operation causes the host to no longer be a registrant of that
namespace. A host may unregister without regard to its current reservation key value by setting the IEKEY
bit to '1' in the Reservation Register command.

Unregistering by a host may cause a reservation held by the host to be released. If a host is the last
remaining reservation holder (i.e., the reservation type is Write Exclusive - All Registrants or Exclusive
Access - All Registrants) or is the only reservation holder, then the reservation is released when the host
unregisters.

If a reservation is released and the type of the released reservation was Write Exclusive - Registrants Only
or Exclusive Access - Registrants Only, then a reservation released notification occurs on all controllers
associated with a registered host other than the host that issued the Reservation Register command.

 Acquiring a Reservation

In order for a host to obtain a reservation on a namespace, that host shall be a registrant of that namespace.
A registrant obtains a reservation by executing a Reservation Acquire command (refer to section 7.1),
clearing the Reservation Acquire Action (RACQA) field to 000b (Acquire), and supplying the current
reservation key associated with the host in the Current Reservation Key (CRKEY) field. The CRKEY value
shall match that used by the registrant to register with the namespace. If the CRKEY value does not match,
then the command is aborted with a status code of Reservation Conflict. If the host is not a registrant, then
the command is aborted with a status code of Reservation Conflict.

Only one reservation is allowed at a time on a namespace. If a registrant attempts to obtain a reservation
on a namespace that already has a reservation holder, then the command is aborted with a status code of
Reservation Conflict. If a reservation holder attempts to obtain a reservation of a different type on a
namespace for which that host already is the reservation holder, then the command is aborted with a status
code of Reservation Conflict. If a reservation holder attempts to obtain a reservation of the same type on a
namespace for which that host already is the reservation holder, then it is not a Reservation Conflict and
the command is processed. A reservation holder may preempt a reservation to change the reservation type.

 Releasing a Reservation

Only a reservation holder is able to release a reservation held on a namespace. A host should release a
reservation using the following sequence:

a) executing a Reservation Release command (refer to section 7.4);
b) clearing the Reservation Release Action (RRELA) field to 000b (i.e., Release);
c) setting the Reservation Type (RTYPE) field to the type of reservation being released; and
d) supplying the current reservation key associated with the host in the Current Reservation Key

(CRKEY) field. The CRKEY value shall match that used by the host to register with the namespace.

If the key value doesn’t match, then the command is aborted with a status code of Reservation Conflict. If
the RTYPE field does not match the type of the current reservation, then the command completes with a
status code of Invalid Field in Command.

An attempt by a registrant to release a reservation using the Reservation Release command in the absence
of a reservation held on the namespace or when the host is not the reservation holder shall cause the
command to complete successfully, but shall have no effect on the controller or namespace.

When a reservation is released as a result of actions described in this section and the reservation type is
not Write Exclusive or Exclusive Access, a reservation released notification occurs on all controllers in the
NVM subsystem that are associated with hosts that are registrants except for controllers that are associated
with the host that issued the Reservation Release command.

 Preempting a Reservation or Registration

A host that is a registrant may preempt a reservation and/or registration by executing a Reservation Acquire
command (refer to section 7.2), specifying:

NVM Express® Base Specification, Revision 2.0e

440

• the Reservation Acquire Action (RACQA) field set to 001b (i.e., Preempt) or set to 010b (i.e.,
Preempt and Abort); and

• the current reservation key associated with the host in the Current Reservation Key (CRKEY) field.

The CRKEY value shall match that used by the registrant to register with the namespace. If the CRKEY
value does not match, then the command is aborted with a status code of Reservation Conflict. The preempt
actions that occur are dependent on the type of reservation held on the namespace, if any, and the value
of the Preempt Reservation Key (PRKEY) field in the command. If the host is not a registrant, then the
command is aborted with a status code of Reservation Conflict. The remainder of this section assumes that
the host is a registrant.

If the existing reservation type is not Write Exclusive - All Registrants and not Exclusive Access - All
Registrants, then the actions performed by the command depend on the value of the PRKEY field as
follows:

a) If the PRKEY field value matches the reservation key of the current reservation holder, then the
following occur as an atomic operation:

• all registrants with a matching reservation key other than the host that issued the command
are unregistered;

• the reservation is released; and

• a new reservation is created of the type specified by the Reservation Type (RTYPE) field in the
command for the host that issued the command as the reservation key holder;

or

b) If the PRKEY field value does not match that of the current reservation holder and is not equal to
0h, then registrants whose reservation key matches the value of the PRKEY field are unregistered.
If the PRKEY field value does not match that of the current reservation holder and is equal to 0h,
then the command is aborted with a status code of Invalid Field in Command.

If the existing reservation type is Write Exclusive - All Registrants or Exclusive Access - All Registrants,
then the actions performed by the command depend on the value of the PRKEY field as follows:

a) If the PRKEY field value is 0h, then the following occurs as an atomic operation:

• all registrants other than the host that issued the command are unregistered;

• the reservation is released; and

• a new reservation is created of the type specified by the Reservation Type (RTYPE) field in the
command for the host that issued the command as the reservation key holder;

or

b) If the PRKEY value is non-zero, then registrants whose reservation key matches the value of the
PRKEY field are unregistered. If the PRKEY value is non-zero and there are no registrants whose
reservation key matches the value of the PRKEY field, the controller should return an error of
Reservation Conflict.

If there is no reservation held on the namespace, then execution of the command causes registrants whose
reservation key match the value of the PRKEY field to be unregistered.

If the existing reservation type is not Write Exclusive - All Registrants and not Exclusive Access - All
Registrants, then a reservation holder may preempt itself using the above mechanism. When a host
preempts itself the following occurs as an atomic operation:

• registration of the host is maintained;

• the reservation is released; and

• a new reservation is created for the host of the type specified by the RTYPE field.

A host may abort commands as a side effect of preempting a reservation by executing a Reservation
Acquire command (refer to section 7.1) and setting the RACQA field to 010b (Preempt and Abort). The

NVM Express® Base Specification, Revision 2.0e

441

behavior of such a command is exactly the same as that described above with the RACQA field set to 001b
(Preempt), with two exceptions:

• After the atomic operation changes namespace reservation and registration state, all controllers
associated with any host whose reservation or registration is preempted by that atomic operation
are requested to abort all commands being processed that were addressed to the specified
namespace in the NSID field in the Reservation Acquire command (refer to section 3.4.4 for the
definition of “being processed”); and

• Completion of the Reservation Acquire command shall not occur until all commands that are
requested to be aborted are completed, regardless of whether or not each command is actually
aborted.

As with the Abort command (refer to section 5.1), aborting a command as a side effect of preempting a
reservation is best effort; as a command that is requested to be aborted may currently be at a point in
execution where that command is no longer able to be aborted or may have already completed, when a
Reservation Acquire or Abort Admin command is submitted. Although prompt execution of abort requests
reduces delay in completing the Reservation Acquire command, a command which is requested to be
aborted shall either be aborted or otherwise completed before the completion of the Reservation Acquire
command.

When a registrant is unregistered as a result of actions described in this section, then a registration
preempted notification occurs on all controllers associated with a host that was unregistered other than the
host that issued the Reservation Acquire command.

When the type of reservation held on a namespace changes as a result of actions described in this section,
then a reservation released notification occurs on all controllers associated with hosts that remain
registrants of the namespace except the host that issued the Reservation Acquire command.

 Clearing a Reservation

A host that is a registrant may clear a reservation (i.e., force the release of a reservation held on the
namespace and unregister all registrants) by:

a) executing a Reservation Release command (refer to section 7.4);
b) setting the Reservation Release Action (RRELA) field to 001b (i.e., Clear); and
c) supplying the current reservation key associated with the host in the Current Reservation Key

(CRKEY) field.

If the value in the CRKEY field does not match the value used by the host to register with the namespace,
then the command shall be aborted with a status code of Reservation Conflict. If the host is not a registrant,
then the command is aborted with a status code of Reservation Conflict. When a command to clear a
reservation is executed the following occur as an atomic operation: the reservation held on the namespace,
if any, is released, and all registrants are unregistered from the namespace.

A reservation preempted notification occurs on all controllers in the NVM subsystem that are associated
with hosts that have their registrations removed as a result of actions taken in this section except those
associated with the host that issued the Reservation Release command.

 Reporting Reservation Status

A host may determine the current reservation status associated with a namespace by executing a
Reservation Report command (refer to section 7.5).

8.20 Rotational Media

Rotational media has different operational, endurance and performance characteristics than non-rotational
media (e.g., NAND). Rotational media utilizes electromechanical methods for accessing data.

Rotational media contains one or more spinning platters containing the media, and one or more actuators
that provide physical access to the data on that media (e.g., a hard disk drive or a CD-ROM).
A controller that supports namespaces that store user data on rotational media shall:

NVM Express® Base Specification, Revision 2.0e

442

a) set the Rotational Media bit to ‘1’ in the NSFEAT field of the I/O Command Set Independent Identify
Namespace data structure (refer to the NVM Command Set Specification) for any namespace that
stores data on rotational media;

b) support the Rotational Media Information log page (refer to section 5.16.1.21);
c) support the Spinup Control feature (refer to section 5.27.1.22);
d) support Endurance Groups (refer to section 3.2.3); and
e) set the EG Rotational Media bit to ‘1’ in the EGFEAT field in the Endurance Group Information log

page for each Endurance Group that stores data on rotational media.

If a namespace that stores data on rotational media is attached to a controller, and the spindle used by
that namespace is not spinning, then that controller shall be in a non-operational power state (i.e., NOPS
is set to ‘1’, refer to Figure 281).

If:

a) a domain contains an Endurance Group that stores data on rotational media;
b) that domain processes an NVM Subsystem Reset; and
c) the Spinup Control feature (refer to section 5.27.1.22) is:

a. disabled, then initial spinup for all such Endurance Groups in that domain shall be
initiated; and

b. enabled, then initial spinup for all such Endurance Groups in that domain shall be
inhibited during processing of the NVM Subsystem Reset until any controller within that
domain processes a Set Features (Power Management) command that specifies an
operational power state.

If the PCIe transport is used for a controller, then the PCIe Slot Power Control feature may affect the
power states supported (refer to the PCI Express Base Specification).

8.21 Sanitize Operations

A sanitize operation alters all user data in the NVM subsystem such that recovery of any previous user data
from any cache, the non-volatile storage medium, or any Controller Memory Buffer is not possible. It is
implementation specific whether Submission Queues and Completion Queues within a Controller Memory
Buffer are altered by a sanitize operation; all other data stored in all Controller Memory Buffers is altered
by a sanitize operation. If a portion of the user data was not altered and the sanitize operation completed
successfully, then the NVM subsystem shall ensure permanent inaccessibility of that portion of the user
data for any future use within the NVM subsystem (e.g., retrieval from NVM media, caches, or any Controller
Memory Buffer) and permanent inaccessibility of that portion of the user data via any interface to the NVM
subsystem, including management interfaces as defined by the NVM Express Management Interface
Specification.

The scope of a sanitize operation is all locations in the NVM subsystem that are able to contain user data,
including caches, Persistent Memory Regions, and unallocated or deallocated areas of the media. If the
composition of the NVM subsystem (refer to section 3.2.4) changes (e.g., a new domain is added, or a
division event occurs) and that change prevents the successful completion of a sanitize operation, then the
sanitize operation shall fail. Sanitize operations do not affect the Replay Protected Memory Block, boot
partitions, or other media and caches that do not contain user data. A sanitize operation also may alter log
pages as necessary (e.g., to prevent derivation of user data from log page information). A sanitize operation
is only able to be started if the NVM subsystem is not divided (refer to section 3.2.4). Once started, a
sanitize operation is not able to be aborted and continues after a Controller Level Reset including across
power cycles. Refer to Annex A for further information about sanitize operations.

The Sanitize command (refer to section 5.24) is used to start a sanitize operation or to recover from a
previously failed sanitize operation. All sanitize operations are performed in the background (i.e., completion
of the Sanitize command does not indicate completion of the sanitize operation). The completion of a
sanitize operation is indicated in the Sanitize Status log page, and with either the Sanitize Operation
Completed asynchronous event or the Sanitize Operation Completed With Unexpected Deallocation
asynchronous event (if an Asynchronous Event Request Command is outstanding).

NVM Express® Base Specification, Revision 2.0e

443

The Sanitize Capabilities (SANICAP) field of the Identify Controller data structure (refer to Figure 280)
indicates the sanitize operation types supported and controller attributes specific to sanitize operations.

The sanitize operation types are:

• The Block Erase sanitize operation alters user data with a low-level block erase method that is
specific to the media for all locations on the media within the NVM subsystem in which user data
may be stored;

• The Crypto Erase sanitize operation alters user data by changing the media encryption keys for all
locations on the media within the NVM subsystem in which user data may be stored; and

• The Overwrite sanitize operation alters user data by writing a fixed data pattern or related patterns
to all locations on the media within the NVM subsystem in which user data may be stored one or
more times. Figure 480 defines the data pattern or patterns that are written.

Controller attributes specific to sanitize operations include:

• The No-Deallocate Modifies Media After Sanitize (NODMMAS) field which indicates if media is
modified by the controller after a sanitize operation successfully completes that had been
requested with No-Deallocate After Sanitize set to ‘1’ in the Sanitize command that started the
sanitize operation; and

• No-Deallocate Inhibited (NDI) bit which indicates if the controller supports the No-Deallocate After
Sanitize bit in the Sanitize command.

The NODMMAS field in the Identify Controller data structure (refer to Figure 280), specifies that if a Sanitize
command includes No-Deallocate After Sanitize set to ‘1’ and NODMMAS is set to 10b, then a sanitize
operation has an associated additional media modification operation. This additional media modification
operation acts upon the results of the requested sanitize operation with the purpose of making all LBA
contents readable. Refer to Annex A.3 for further information about sanitize operations and interactions
with integrity circuits.

This additional media modification shall complete before the NVM subsystem:

a) reports sanitize completion by Asynchronous Event (refer to section 5.2); and
b) reports sanitize completion in the Sanitize Status log (refer to section 5.16.1.25).

The Overwrite sanitize operation is media specific and may not be appropriate for all media types. For
example, if the media is NAND, multiple pass overwrite operations may have an adverse effect on media
endurance.

Figure 480: Sanitize Operations – Overwrite Mechanism

OIPBP
1

Overwrite

Pass Count
1

Overwrite
Pass Number

User Data except PI Metadata Protection Information
2

‘0’ All All Overwrite Pattern
1
 Each byte set to FFh

‘1’ Even

First Inversion of Overwrite Pattern
1

 Each byte cleared to 00h

Subsequent Inversion of Overwrite Pattern
1

 from previous pass (i.e., each bit

XORed with ‘1’)

‘1’ Odd

First Overwrite Pattern
1
 Each byte set to FFh

Subsequent Inversion of Overwrite Pattern
1

 from previous pass (i.e., each bit

XORed with ‘1’)

Notes:
1. Parameters are specified in Command Dword 10 and Command Dword 11 of the corresponding Sanitize

command that started the Overwrite operation. The Overwrite Invert Pattern Between Passes (OIPBP) field is
defined in Command Dword 10. The Overwrite Pass Count is defined in Command Dword 10. The Overwrite
Pattern is defined in Command Dword 11. Refer to section 5.24.

2. If Protection Information is present within the metadata.

NVM Express® Base Specification, Revision 2.0e

444

To start a sanitize operation, the host submits a Sanitize command specifying one of the sanitize operation
types (i.e., Block Erase, Overwrite, or Crypto Erase). The host sets command parameters, including the
Allow Unrestricted Sanitize Exit bit and the No-Deallocate After Sanitize bit. After validating the Sanitize
command parameters, the controller starts the sanitize operation in the background, updates the Sanitize
Status log page and then completes the Sanitize command with Successful Completion status. If the
sanitize operation is to be followed by an associated additional media modification operation (refer to
NODMMAS in Figure 280), then the associated additional media modification operation shall be completed
before the controller reports sanitize operation complete. If a Sanitize command is completed with any
status code other than Successful Completion, then the controller shall not start the sanitize operation and
shall not update the Sanitize Status log page. The controller ignores Critical Warning(s) in the SMART /
Health Information log page (e.g., read only mode) and attempts to complete the sanitize operation
requested. Refer to section 5 for further information about restrictions on Admin commands during the
processing of a Format NVM command.

Following a successful sanitize operation, the values of user data, protection information, and non-PI
metadata that result from an audit (refer to section 1.5.6) of the NVM subsystem are defined in the I/O
command set specifications.
The Sanitize Status log page (refer to section 5.16.1.25) contains estimated times for sanitize operations
and a consistent snapshot of information about the most recently started sanitize operation, including
whether a sanitize operation is in progress, the sanitize operation parameters and the status of the most
recent sanitize operation. The controller shall report sanitize operation in progress if either a sanitize
operation is in progress or an associated additional media modification operation is in progress. If a sanitize
operation is not in progress, then the Global Data Erased bit in the log page indicates whether the NVM
subsystem may contain any user data (i.e., has not been written to since the most recent successful sanitize
operation).

The Sanitize Status log page shall be updated as described:

• Initialize before any controller in the NVM subsystem is ready as described in sections 3.5.3 and
3.5.4;

• Update before a Sanitize command that starts a sanitize operation is completed (i.e., prior to the
completion queue entry being posted for the Sanitize command); and

• Update when a sanitize operation is complete (e.g., immediately prior to the completion queue
entry being posted for the Sanitize Operation Completed asynchronous event or for the Sanitize
Operation Completed With Unexpected Deallocation asynchronous event).

The Sanitize Status log page should be updated periodically during a sanitize operation to make progress
information available to hosts.

During a sanitize operation, the host may periodically examine the Sanitize Status log page to check for
progress, however, the host should limit this polling (e.g., to at most once every several minutes) to avoid
interfering with the progress of the sanitize operation itself.

On completion of a sanitize operation:

• If the sanitize operation is successful, then the Global Data Erased bit shall be set to ‘1’;

• The Sanitize Status log page is updated;

• The controller to which the Sanitize command was submitted completes an Asynchronous Event
Request command (if one is outstanding) with the following information:

o The Log Page Identifier field is set to 81h (i.e., Sanitize Status);
o The Asynchronous Event Information field is set to Sanitize Operation Completed or to Sanitize

Operation Completed With Unexpected Deallocation asynchronous event (refer to section 5.2);
and

o The Asynchronous Event Type field is set to 110b (i.e., I/O Command specific status);

and

• All controllers in the NVM subsystem may resume any power management that was suspended
when the sanitize operation started.

NVM Express® Base Specification, Revision 2.0e

445

Upon completion of a sanitize operation, the host should read the Sanitize Status log page with the Retain
Asynchronous Event bit cleared to ‘0’ (which clears the asynchronous event, if one was generated).

If a sanitize operation fails, all controllers in the NVM subsystem shall abort any command not allowed
during a sanitize operation with a status code of Sanitize Failed (refer to section 8.21.1) until a subsequent
sanitize operation is started or successful recovery from the failed sanitize operation occurs. A subsequent
successful sanitize operation or the Exit Failure Mode action may be used to recover from a failed sanitize
operation. Refer to section 5.24 for recovery details.

If the Sanitize command is supported, then the NVM subsystem and all controllers shall:

• Support the Sanitize Status log page;

• Support the Sanitize Operation Completed asynchronous event;

• Support the Sanitize Operation Completed With Unexpected Deallocation asynchronous event, if
the Sanitize Config feature is supported;

• Support the Exit Failure Mode action for a Sanitize command;

• Support at least one of the following sanitize operation types: Block Erase, Overwrite, or Crypto
Erase;

• Support the same set of sanitize operation types; and

• Indicate the supported sanitize operation types in the Sanitize Capabilities field in the Identify
Controller data structure.

The Sanitize Config Feature Identifier (refer to section 5.27.1.19) contains the No-Deallocate Response
Mode (NODRM) bit that specifies the response of the controller to a Sanitize command processed with the
No-Deallocate After Sanitize bit (refer to Figure 308) set to ‘1’ if the No-Deallocate Inhibited bit is set to ‘1’
in the Sanitize Capabilities field of the Identify Controller data structure (refer to Figure 280). In the No-
Deallocate Error Response Mode, the controller aborts such Sanitize commands with a status code of
Invalid Field in Command. In the No-Deallocate Warning Response Mode, the controller processes such
Sanitize commands, and if a resulting sanitize operation is completed successfully, then bits 2:0 of the
Sanitize Status field are set to 100b in the Sanitize Status log page (refer to Figure 272).

 Sanitize Operation Restrictions

While performing a sanitize operation and while a failed sanitize operation has occurred but successful
recovery from that failure has not occurred, all enabled controllers and namespaces in the NVM
subsystem are restricted to performing only a limited set of actions.

While a sanitize operation is in progress:

• All controllers in the NVM subsystem shall only process the Admin commands listed in Figure 145
subject to the additional restrictions stated in that figure;

• All I/O commands other than a Flush command shall be aborted with a status code of Sanitize In
Progress;

• Processing of a Flush command is specified in section 7.1;

• Any command or command option that is not explicitly permitted in Figure 145 shall be aborted
with a status code of Sanitize In Progress if fetched by any controller in the NVM subsystem; and

• The Persistent Memory Region shall be prevented from being enabled (i.e., setting PMRCTL.EN
to ‘1’ does not result in PMRSTS.NRDY being cleared to ‘0’).

While a failed sanitize operation has occurred, a subsequent sanitize operation has not started and
successful recovery from the failed sanitize operation has not occurred:

• All controllers in the NVM subsystem shall only process the Sanitize command (refer to section
5.24) and the Admin commands listed in Figure 145 subject to the additional restrictions noted in
that figure;

• All I/O commands other than a Flush command (refer to section 7.1) shall be aborted with a
status code of Sanitize Failed;

• The Sanitize command is permitted with action restrictions (refer to section 5.24);

NVM Express® Base Specification, Revision 2.0e

446

• Aside from the Sanitize command, any other command or command option that is not explicitly
permitted in Figure 145 shall be aborted with a status code of Sanitize Failed if fetched by any
controller in the NVM subsystem; and

• The Persistent Memory Region shall be prevented from being enabled (i.e., setting PMRCTL.EN
to ‘1’ does not result in PMRSTS.NRDY being cleared to ‘0’).

8.22 Submission Queue (SQ) Associations

When Predictable Latency Mode is enabled, all I/O commands for namespaces in a given NVM Set have
the same quality of service attributes and shall exhibit predictable latencies as described in section 8.16.

The SQ Associations capability provides hints to the controller as to which specific I/O Queues are
associated with a given NVM Set. The controller uses this information to further enhance performance when
Predictable Latency Mode is enabled.

The SQ Associations capability is an optional capability. Predictable Latency Mode (refer to section 8.16)
is not dependent on the use of the SQ Associations capability.

If a controller supports SQ Associations, then the controller shall:

• indicate support for the SQ Associations capability in the Controller Attributes (CTRATT) field in
the Identify Controller data structure;

• indicate support for NVM Sets in the Controller Attributes (CTRATT) field in the Identify Controller
data structure; and

• indicate support for Predictable Latency Mode in the Controller Attributes (CTRATT) field in the
Identify Controller data structure (refer to Figure 280).

The host enables the SQ Associations capability by creating an association between an NVM Set and a
Submission Queue at the time the Submission Queue is created (e.g., with a Create I/O Submission Queue
command (refer to section 5.5)).

For the SQ Associations capability to yield benefits, the host is required to:

a) create an association between each Submission Queue and some NVM Set; and
b) only issue I/O commands to Submission Queues that have an association with the NVM Set that

contains the namespace associated with the Namespace Identifier specified in that I/O command.

While this capability is enabled, failure to follow the specified operating rules may impact Predictable
Latency (refer to section 8.16).

8.23 Standard Vendor Specific Command Format

Controllers may support the standard Vendor Specific command format defined in Figure 91. Host storage
drivers may use the Number of Dwords fields to ensure that the application is not corrupting physical
memory (e.g., overflowing a data buffer). The controller indicates support of this format in the Identify
Controller data structure in Figure 280; refer to the Admin Vendor Specific Command Configuration field
and the I/O Command Set Vendor Specific Command Configuration field.

8.24 Telemetry

Telemetry enables manufacturers to collect internal data logs to improve the functionality and reliability of
products. The telemetry data collection may be initiated by the host or by the controller. The data is returned
in the Telemetry Host-Initiated log page or the Telemetry Controller-Initiated log page (refer to section
5.16.1.8 and 5.16.1.9). The data captured is vendor specific. The telemetry feature defines the mechanism
to collect the vendor specific data. The controller indicates support for the telemetry log pages and for the
Data Area 4 size in the Log Page Attributes (LPA) field in the Identify Controller data structure (refer to
Figure 280).

An important aspect to discovering issues by collecting telemetry data is the ability to qualify distinct issues
that are being collected. The ability to create a one to one mapping of issues to data collections is essential.
If a one to one mapping is not established, there is the risk that several payload collections appear distinct

NVM Express® Base Specification, Revision 2.0e

447

but are actually all caused by the same issue. Conversely, a single payload collection may have payloads
caused by several issues mixed together creating additional complexity in determining the root cause. As
a result, flexibility in size is provided in the collection of telemetry payloads and a three phase process is
typically used.

The first phase establishes that an issue exists and is best accomplished by collecting a minimum set of
data to identify the issue as being distinct from other issues. Once the number of instances of an issue
establish an investigation, another phase may be necessary to collect actionable information. In the second
phase, a targeted collection of more in depth medium size payloads are gathered and analyzed to identify
the source of the problem.

If the small or medium sized telemetry data collection provides insufficient information, a third phase may
be employed to collect additional details. If bit 6 is cleared to ‘0’ in the Log Page Attributes field, then the
third phase provides the largest and most complete payload to diagnose the issue. If bit 6 is set to ‘1’ in the
Log Page Attribute and the Extended Telemetry Data Area 4 Supported (ETDAS) field is set to 1h in the
Host Behavior Support feature (refer to section 5.27.1.18) then a fourth phase may be employed to collect
the largest and most complete payload to diagnose the issue. If Data Area 4 is created, then Data Area 3
of non-zero length shall also be created and populated as part of data collection.

There are two telemetry data logs (i.e., Telemetry Host-Initiated log page and Telemetry Controller-Initiated
log page) defined. Each telemetry data log is made up of a single set of Telemetry Data Blocks. Each
Telemetry Data Block is 512 bytes in size. Telemetry data is returned (refer to section 5.16.1.8 and section
5.16.1.9) in units of Telemetry Data Blocks. Each telemetry data log is segmented into:

a) Three Telemetry Data Areas (i.e., small, medium, and large), if bit 6 of the Log Page Attributes field
is cleared to ‘0’; or

b) Four Telemetry Data Areas (i.e., small, medium, large and extra-large) If bit 6 of the Log Page
Attributes field is set to ‘1’ and the Extended Telemetry Data Area 4 Supported (ETDAS) field is set
to 1h in the Host Behavior Support feature (refer to section 5.27.1.18).

All telemetry data areas start at Telemetry Data Block 1.

Each Telemetry Data Area shall represent the controller’s internal state at the time the telemetry data was
captured.

Each Telemetry Data Area is intended to capture a richer set of data to aid in resolution of issues. Telemetry
Data Area 1 is intended to have a small size payload (i.e., the first phase), Telemetry Data Area 2 is intended
to have a medium size payload (i.e., the second phase), and Telemetry Data Area 3 is intended to have a
large size payload (i.e., the third phase). Telemetry Data Area 4 is intended to have an extra-large size
payload (i.e. the fourth phase). The size of each Telemetry Data Area is vendor specific and may change
on each data collection. When possible, the host should retrieve the payload for all supported Telemetry
Data Areas to enable the best diagnosis of the issue(s).

The preparation, collection, and submission of telemetry data is similar for host-initiated and controller-
initiated data; the primary difference is the trigger for the collection. The operational model for telemetry is:

1. The host identifies controller support for Telemetry log pages in the Identify Controller data

structure;

2. The host may indicate the support for the Telemetry Host-Initiated Data Area 4 and Telemetry

Controller-Initiated Data Area 4 by setting the Extended Telemetry Data Area 4 Supported

(ETDAS) field to 1h in the Host Behavior Support feature (refer to section 5.27.1.18);

3. The host prepares an area to store telemetry data if needed;

4. To receive notification that controller-initiated telemetry data is available, the host enables

Telemetry Log Notices using the Asynchronous Event Configuration feature (refer to section

5.27.1.8); and

5. If the host decides to collect host-initiated telemetry data or the controller signals that controller-

initiated telemetry data is available:

a. The host reads the appropriate blocks of the Telemetry Data Area from the Telemetry Host-

Initiated log page (refer to section 5.16.1.8) or the Telemetry Controller-Initiated log page

NVM Express® Base Specification, Revision 2.0e

448

(refer to section 5.16.1.9). If possible, the host should collect Telemetry Data Area 1, 2, 3,

and 4. The host reads the log in 512 byte Telemetry Data Block units (i.e., a starting offset

that is a multiple of 512, and a length that is a multiple of 512). The host should set the Retain

Asynchronous Event bit to ‘1’;

b. The host re-reads the header of the log page and ensures that the Telemetry Host-Initiated

Data Generation Number field from the Telemetry Host-Initiated log page or the Telemetry

Controller-Initiated Data Generation Number field in the Telemetry Controller-Initiated log

page matches the original value read. If these values do not match, then the data captured is

not consistent and should be re-read from the log page with the Retain Asynchronous Event

bit set to ‘1’;

c. If the host is reading the Telemetry Controller-Initiated log page, then the host reads any

portion of that log page with the Retain Asynchronous Event bit cleared to ‘0’ to indicate to

the controller that the host has completed reading the Telemetry Controller-Initiated log page;

and

d. When all telemetry data has been saved, the data should be forwarded to the manufacturer

of the controller.

The trigger for the collection for host-initiated data is typically a system crash, but may also be initiated
during normal operation. The host proceeds with a host-initiated data collection by submitting the Get Log
Page command for the Telemetry Host-Initiated log page with the Create Telemetry Host-Initiated Data bit
set to ‘1’ in the Log Specific Parameter field. The controller should complete the command quickly (e.g., in
less than one second) to avoid a user rebooting the system prior to completion of the data collection.

The NVM subsystem is allowed to provide a Telemetry Host-Initiated log page per controller or a shared
Telemetry Host-Initiated log page across all controllers in the NVM subsystem. If a shared Telemetry Host-
Initiated log page is implemented, the Telemetry Host-Initiated Data Generation Number field in the
Telemetry Host-Initiated log page is used to allow the host to detect that the Telemetry Host-Initiated log
page has been changed by:

• a host through a different controller; or

• a Management Controller through a Management Endpoint (refer to the NVM Express
Management Interface Specification).

The controller notifies the host to collect controller-initiated data through the completion of an Asynchronous
Event Request command with an Asynchronous Event Type of Notice that indicates a Telemetry Log
Changed event. The host may also determine controller-initiated data is available via the Telemetry
Controller-Initiated Data Available field in the Telemetry Host-Initiated or the Telemetry Controller-Initiated
log pages. The host proceeds with a controller-initiated data collection by submitting the Get Log Page
command for the Telemetry Controller-Initiated log page. Once the host has started reading the Telemetry
Controller-Initiated log page, the controller should avoid modifying the controller-initiated data until the host
has finished reading all controller-initiated data. The amount of time for the host to read the controller-
initiated data is vendor specific.

Since there is only one set of controller-initiated data, the controller is responsible for prioritizing the version
of the controller-initiated data that is available for the host to collect. When the controller replaces the
controller-initiated data with new controller-initiated data, the controller shall increment the Telemetry
Controller-Initiated Data Generation Number field. The host needs to ensure that the Telemetry Controller-
Initiated Data Generation Number field has not changed between the start and completion of the controller-
initiated data collection to ensure the data captured is consistent.

 Telemetry Data Collection Examples (Informative)

This section includes several examples of Telemetry Host-Initiated Data Areas for illustration. The same
concepts apply to the Telemetry Controller-Initiated Data Areas.

If a Telemetry Host-Initiated log page has no data for collection, then the following fields are all cleared to
0h:

• Telemetry Host-Initiated Data Area 1 Last Block = 0;

NVM Express® Base Specification, Revision 2.0e

449

• Telemetry Host-Initiated Data Area 2 Last Block = 0; and

• Telemetry Host-Initiated Data Area 3 Last Block = 0.

When all three telemetry data areas are populated, then the Telemetry Host-Initiated log page has different
values in each of the Telemetry Host-Initiated Data Area n Last Block fields. For example, the following
values correspond to the layout shown in Figure 481:

• Telemetry Host-Initiated Data Area 1 Last Block = 65;

• Telemetry Host-Initiated Data Area 2 Last Block = 1,000; and

• Telemetry Host-Initiated Data Area 3 Last Block = 30,000.

As a result of telemetry data areas being made up of a single set of Telemetry Data Blocks starting at

Telemetry Data Block 1, the telemetry data contained in Telemetry Data Block 1 through Telemetry Data

Block 65 of data area 1, data area 2, and data area 3 is the same. In addition, the telemetry data contained

in Telemetry Data Block 66 through Telemetry Data Block 1,000 of data area 2 and data area 3 is the same.

Figure 481: Telemetry Log Example – All Data Areas Populated

Block Number Telemetry Host-Initiated Data Areas

1

65

Data Area 1 *

Data Area 2 *

Data Area 3 *

1,000

Data Area 2 +
continued

Data Area 3 +
continued

30,000

Data Area 3
continued

* Data Area 1, Data Area 2, and Data Area 3 contain the same telemetry data in blocks 1 through 65.
+ Data Area 2 and Data Area 3 contain the same telemetry data in blocks 66 through 1,000.

When only the second data areas is populated, then the Telemetry Host-Initiated log page has no data in
Telemetry Data Area 1 shown by having its corresponding last block value cleared to 0h, and no additional
data in Telemetry Data Area 3 shown by having its corresponding last block value set to the same value as
the last block value for Telemetry Data Area 2. For example, the following values correspond to the layout
shown in Figure 482:

• Telemetry Host-Initiated Data Area 1 Last Block = 0;

• Telemetry Host-Initiated Data Area 2 Last Block = 1,000; and

• Telemetry Host-Initiated Data Area 3 Last Block = 1,000.

NVM Express® Base Specification, Revision 2.0e

450

As a result of telemetry data areas being made up of a single set of Telemetry Data Blocks starting at
Telemetry Data Block 1, the telemetry data contained in Telemetry Data Block 1 through Telemetry Data
Block 1,000 of data area of data area 2 and data area 3 is the same.

Figure 482: Telemetry Log Example – Data Area 2 Populated

Block Number Telemetry Host-Initiated Data Areas

1

1,000

Data Area 1

(empty)

Data Area 2 *

Data Area 3 *

* Data Area 2, and Data Area 3 contain the same telemetry data in blocks 1 through 1,000.

8.25 Universally Unique Identifiers (UUIDs) for Vendor Specific Information

 UUIDs for Vendor Specific Information Introduction

Several commands send or receive information that contains fields described as Vendor Specific or that is
specified by a command field containing a value in a vendor specific range. Examples include the Set
Features command, which may specify a vendor specific feature identifier, and the Identify command, which
may retrieve a data structure having a vendor specific area.

The vendor specific information may have different definitions (e.g., a vendor specific log page identifier
with the contents of the page defined differently by different entities, such as an NVM subsystem vendor
and an NVM subsystem customer). By associating each definition of the information with a UUID specified
by the defining entity, a command is able to specify the particular definition of the information.

A command specifies a particular definition of the information by specifying an index into a list of UUIDs
supported by the controller (refer to section 5.17.2.16). The NVMe Invalid UUID (refer to section 8.25.2) is
used to replace a previously valid UUID in the UUID List (refer to Figure 289). This is done to keep the
values in the list at a static index, as that index is used by the Host to access the UUID List contents.

NVM subsystem vendors and customers communicate (by means outside the scope of this specification)
the UUID used for each definition of the information.

NVM Express® Base Specification, Revision 2.0e

451

 UUIDs for Vendor Specific Information Requirements

A UUID list is a list of non-zero UUID values, terminated by a 0h UUID value. Each non-zero UUID value
may be either a valid UUID or the NVMe Invalid UUID. The NVMe Invalid UUID is the hexadecimal value
FFFFFFFF_FFFFFFFF_7FFFFFFF_FFFFFFFFh. A valid UUID is any non-zero value other than the NVMe
Invalid UUID.

If a command supports selection of a UUID, then the UUID Selection Supported bit in the Commands
Supported and Effects data structure for that command (refer to Figure 216) shall be set to ‘1’. If a command
does not support selection of a UUID, then the UUID Selection Supported bit shall be cleared to ‘0’.

If the UUID Selection Supported bit is set to ‘1’ for one or more commands, then the UUID List bit in the
Controller Attributes field shall be set to ‘1’ (refer to Figure 280), and the controller shall support reporting
of a UUID List (refer to Figure 289).

If a command supports selection of a UUID, then that command contains a UUID Index field (refer to Figure
483).

Figure 483: UUID Index Field

Bits Description

6:0
UUID Index: If this field is set to a non-zero value, then the value of this field is the index of a
UUID in the UUID List (refer to Figure 289) that is used by the command. If this field is cleared to
0h, then no UUID index is specified.

If the UUID Index field specifies a valid UUID (i.e., the UUID Index field is set to a non-zero value and the
UUID at that index indicates a valid UUID) (refer to section 5.17.2.16), then the controller shall process the
command using the vendor specific information specified by that UUID. If the UUID Index field is cleared to
0h, then the command does not specify a UUID.

If no UUID is specified by the command, then the controller shall process the command, returning vendor
specific information.

The controller shall abort the command with a status code of Invalid Field in Command if:

a) The controller does not support the UUID specified by the UUID Index for the specified information;
b) The UUID specified by the UUID Index is cleared to 0h; or
c) The UUID specified by the UUID Index is the NVMe Invalid UUID.

If a firmware image is activated that has a UUID List in which an entry is different from that of the previously-
active firmware image, then a host that is unaware of the change may issue a command with the UUID
index value for that entry. Such a command may produce unexpected results because the UUID specified
by that UUID Index has changed. To avoid this, vendors should follow the following revision guidelines for
UUID lists when constructing firmware images that support UUID selection:

a) Add UUIDs that are not supported in prior firmware image revisions to the end of the UUID List in
subsequent firmware image revisions;

b) Remove UUIDs that are supported in prior firmware image revisions by replacing the UUID with
the NVMe Invalid UUID in the same entry in the UUID list in subsequent firmware image revisions;

c) Do not replace the NVMe Invalid UUID with a valid UUID in the same UUID list entry in subsequent
firmware image revisions; and

d) Do not shorten or remove the UUID list in subsequent firmware image revisions.

In these guidelines, the terms “prior” and “subsequent” refer to a linear sequence of firmware versions (e.g.,
based on the date and time of the construction of the downloadable firmware image).

Following these guidelines prevents the host from inadvertently specifying the wrong UUID because there
is at most one valid UUID for each entry in the UUID list. Hence a command that specifies a UUID Index
either specifies the intended UUID or is aborted because that entry in the UUID list is empty or contains the
NVMe Invalid UUID.

NVM Express® Base Specification, Revision 2.0e

452

The controller shall require a reset to activate a downloaded firmware image (refer to section 5.12) if the
downloaded image reports a UUID list with at least one slot in which a valid UUID replaces the NVMe
Invalid UUID or a different valid UUID in the existing image. All controllers that are affected by the UUID list
change caused by activation of a downloaded firmware image shall be reset as part of activating that
downloaded firmware image.

The above requirements for a reset to activate a downloaded firmware image do not require the controller
to directly compare the UUID lists in the current and downloaded firmware images. For example, a vendor
could use a vendor-specific major.minor firmware image revision numbering system (e.g., 3.5, 4.1) where
all downloadable firmware images with the same major revision number follow the above guidelines. In that
scenario, the controller is able to meet these reset requirements by requiring a reset if the downloaded
firmware image and the currently executing firmware have different major revision numbers.

 UUIDs for Vendor Specific Information Examples

This section includes examples of the use of UUIDs to select vendor specific information.

8.25.3.1 Vendor Specific Log Page Example

If entity C and entity V create different definitions for a vendor specific log page having the same log page
identifier (e.g., D0h), then each assigns a UUID to distinguish their definition (e.g., entity V assigns UUID V
and entity C assigns UUID C).

A controller supporting both definitions of the log page:

a) Sets the UUID List bit to ‘1’ in the CTRATT field of the Identify Controller data structure (refer to
Figure 280);

b) Sets the UUID Selection Supported bit to ‘1’ in the Commands Supported and Effects data structure
(refer to Figure 216) corresponding to the Get Log Page command; and

c) Reports both UUID V and UUID C in the UUID list (refer to Figure 289).

A host requesting the log page defined by entity C:

1) Determines the index of UUID C in the UUID list;
2) Sets the Log Page Identifier field of the Get Log Page command to D0h; and
3) Sets the UUID Index field of the Get Log Page command to the index of UUID C.

A host requesting the log page defined by entity V:

1) Determines the index of UUID V in the UUID list;
2) Sets the Log Page Identifier field of the Get Log Page command to D0h; and
3) Sets the UUID Index field of the Get Log Page command to the index of UUID V.

A host not specifying the definition of the log page clears the UUID Index field to 0h. The selection of the
log page definition returned by the controller is vendor specific (e.g., the controller may select any definition
for the returned data).

8.25.3.2 Vendor Specific Feature Example

If entity C and entity V create different definitions for a vendor specific feature having the same Feature
Identifier (e.g., F1h), then each assigns a UUID to distinguish their definitions (e.g., entity V assigns UUID
V and entity C assigns UUID C).

A controller supporting both definitions of the feature for the Get Features command:

a) Sets the UUID List bit to ‘1’ in the CTRATT field of the Identify Controller data structure (refer to
Figure 280);

b) Sets the UUID Selection Supported bit to ‘1’ in the Commands Supported and Effects data structure
(refer to Figure 216) corresponding to the Get Features command;

c) Sets the UUID Selection Supported bit to ‘1’ in the FID Supported and Effects log page (refer to
Figure 261); and

d) Reports both UUID V and UUID C in the UUID list (refer to Figure 289).

NVM Express® Base Specification, Revision 2.0e

453

A host retrieving the attributes of the feature defined by entity C:

1) Determines the index of UUID C in the UUID list;
2) Sets the Feature Identifier field of the Get Features command to F1h; and
3) Sets the UUID Index field of the Get Features command to the index of UUID C.

A host retrieving the attributes of the feature defined by entity V:

1) Determines the index of UUID V in the UUID list;
2) Sets the Feature Identifier field of the Get Features command to F1h; and
3) Sets the UUID Index field of the Get Features command to the index of UUID V.

8.26 Virtualization Enhancements

Virtualized environments may use an NVM subsystem with multiple controllers to provide virtual or physical
hosts direct I/O access. The NVM subsystem is composed of primary controller(s) and secondary
controller(s), where the secondary controller(s) depend on primary controller(s) for dynamically assigned
resources. A host may issue the Identify command to a primary controller specifying the Secondary
Controller List to discover the secondary controllers associated with that primary controller. All secondary
controllers shall be part of the same domain as the primary controller with which they are associated.

Controller resources may be assigned or removed from a controller using the Virtualization Management
command issued to a primary controller. The following types of controller resources are defined:

• Virtual Queue Resource (VQ Resource): a type of controller resource that manages one
Submission Queue (SQ) and one Completion Queue (CQ) (refer to section 8.26.1); and

• Virtual Interrupt Resource (VI Resource): a type of controller resource that manages one interrupt
vector (refer to section 8.26.2).

Flexible Resources are controller resources that may be assigned to the primary controller or one of its
secondary controllers. The Virtualization Management command is used to provision the Flexible
Resources between a primary controller and one of its secondary controller(s). A primary controller’s
allocation of Flexible Resources may be modified using the Virtualization Management command and the
change takes effect after any Controller Level Reset other than a Controller Reset. A secondary controller
only supports having Flexible Resources assigned or removed when in the Offline state.

Private Resources are controller resources that are permanently assigned to a primary or secondary
controller. These resources are not supported by the Virtualization Management command.

The primary controller is allowed to have a mix of Private and Flexible Resources for a particular controller
resource type. If there is a mix, then the Private Resources occupy the lower contiguous range of resource
identifiers starting with 0. Secondary controllers shall have all Private or all Flexible Resources for a
particular resource type. Controller resources assigned to a secondary controller always occupy a
contiguous range of identifiers with no gaps, starting with 0. If a particular controller resource type is
supported as indicated in the Controller Resource Types field of the Primary Controller Capabilities
Structure, then all secondary controllers shall have that controller resource type assigned as a Flexible
Resource. Figure 484 shows the controller resource allocation model for a controller resource type that is
assignable as a Flexible Resource.

NVM Express® Base Specification, Revision 2.0e

454

Figure 484: Controller Resource Allocation

For each controller resource type supported, the Primary Controller Capabilities Structure (refer to Figure
286) defines:

• The total number of Flexible Resources;

• The total number of Private Resources for the primary controller;

• The maximum number of Flexible Resources that may be assigned to a secondary controller using
the Virtualization Management command; and

• The assignment of resources to the primary controller.

Primary and secondary controllers may implement all features of this specification, except where
commands are defined as being only supported by a primary controller. It is recommended that only primary
controllers support the privileged actions described in section 3.10 so that untrusted hosts using secondary
controllers do not impact the entire NVM subsystem state.

The Secondary Controller List structure returned by the Identify command is used to determine the topology
of secondary controllers and the resources assigned. The secondary controller shall be in the Offline state
to configure resources. The Virtualization Management command is used to transition the secondary
controller between the Online state and the Offline state. Refer to section 8.26.3 for details on the Online
and Offline states.

To support the Virtualization Enhancements capability, the NVM subsystem shall support the following:

• One or more primary controllers, each of which supports:

o One or more secondary controllers;
o A pool of unassigned Flexible Resources that supports allocation to a primary controller and

dynamic assignment to its associated secondary controllers;

NVM Express® Base Specification, Revision 2.0e

455

o Two or more Private Resource queue pairs;
o Indicate support for the Virtualization Management command in the Optional Admin Command

Support (OACS) field in the Identify Controller data structure;
o The Virtualization Management command;
o The Primary Controller Capabilities Structure defined in Figure 286 (Identify command with

CNS value of 14h);
o The Secondary Controller List defined in Figure 287 (Identify command with CNS value of 15h);

and
o The Namespace Management capability (refer to section 8.11);

• One or more secondary controllers; and

• Flexible Resources, each of which supports all of the following:

o Assignment and removal by exactly one primary controller; and
o Assignment to no more than one controller at a time.

Within an NVM subsystem that supports both the Virtualization Enhancements capability and SR-IOV (refer
to section 8.26.4), all controllers that are SR-IOV PFs shall be primary controllers, and all controllers that
are SR-IOV VFs shall be secondary controllers of their associated PFs.

 VQ Resource Definition

A Virtual Queue Resource (VQ Resource) is a type of controller resource that manages one CQ and one
SQ. For a VQ Resource that is assigned to a controller, its resource identifier is equivalent to its Queue
Identifier.

The Controller Resource Types field of the Primary Controller Capabilities Structure indicates whether VQ
Resources are supported. If VQ Resources are unsupported, a primary controller and its associated
secondary controllers have all queues as Private Resources. The rest of this section assumes that VQ
Resources are supported.

The secondary controller is assigned VQ Resources using the Virtualization Management command. The
number of VQ Resources assigned is discoverable in the Secondary Controller List entry for the associated
secondary controller. The number of VQ Resources assigned may also be discovered using the Get
Features command with the Number of Queues Feature identifier (refer to section 5.27.1.5).

If a secondary controller has no assigned VQ Resources, then that controller remains in the Offline state.
A secondary controller is not able to transition to the Online state until VQ Resources for an Admin Queue
and one or more I/O Queues have been assigned to that controller (i.e., the minimum number of VQ
Resources that may be assigned is two).

A primary controller that supports VQ Resources shall have at least two queue pairs that are Private
Resources to ensure there is a minimum of an Admin Queue pair and one I/O queue pair for the primary
controller at all times. A primary controller may be allocated VQ Resources using the Primary Controller
Flexible Allocation action of the Virtualization Management command. The VQ resources allocated take
effect after a Controller Level Reset and are persistent across power cycles and resets. The number of VQ
Resources currently allocated is discoverable in the Primary Controller Capabilities Structure. The number
of VQ Resources currently allocated may also be discovered using the Get Features command with the
Number of Queues Feature identifier (refer to section 5.27.1.5).

 VI Resource Definition

A Virtual Interrupt Resource (VI Resource) is a type of controller resource that manages one interrupt
vector, such as an MSI-X vector. For a VI Resource that is assigned to a controller, its resource identifier
is equivalent to its interrupt vector number.

The Controller Resource Types field of the Primary Controller Capabilities Structure indicates whether VI
Resources are supported. If VI Resources are unsupported, a primary controller and its associated
secondary controllers have all interrupts as Private Resources. The rest of this section assumes that VI
Resources are supported.

NVM Express® Base Specification, Revision 2.0e

456

The secondary controller is assigned VI Resources using the Virtualization Management command. The
number of VI Resources assigned is discoverable in the Secondary Controller List entry for the associated
secondary controller.

While a primary controller and/or its associated secondary controllers may concurrently support multiple
types of interrupt vectors (e.g., MSI and MSI-X), all the controllers’ VI Resources shall contain interrupt
resources for interrupt vectors of the same type. In this revision, MSI-X is the only supported type of VI
Resource.

For a secondary controller that supports VI Resources with MSI-X vectors, if at least one VI Resource is
assigned to that controller, MSIXCAP.MXC.TS (refer to the MSI-X Capability section of the NVMe over
PCIe Transport Specification) indicates the number of VI Resources assigned to the controller. Since
MSIXCAP.MXC.TS is read-only, the value shall only be updated when the secondary controller is in the
Offline state. MSI-X Table Entries on the secondary controller for newly assigned VI Resources shall be
reset to default values.

If a secondary controller that supports VI Resources has no assigned VI Resources, then that controller
remains in the Offline state. A secondary controller is not able to transition to the Online state until a VI
Resource for interrupt vector 0 has been assigned to that controller. For a secondary controller that supports
VI Resources with MSI-X vectors, if no VI Resources are assigned to that controller, then
MSIXCAP.MXC.TS is reserved.

A primary controller that supports VI Resources shall have at least one interrupt that is a Private Resource.
Interrupt vector 0 is always assigned to the primary controller. A primary controller may be allocated VI
Resources using the Primary Controller Flexible Allocation action of the Virtualization Management
command. The VI resources allocated take effect after a Controller Level Reset and are persistent across
power cycles and resets. The number of VI Resources currently allocated is discoverable in the Primary
Controller Capabilities Structure. For a primary controller that supports VI Resources with MSI-X vectors,
MSIXCAP.MXC.TS indicates an MSI-X Table size equal to the total number of Private Resources and the
Flexible Resources currently allocated following a Controller Level Reset.

When an I/O CQ is created, the controller supports mapping that I/O CQ to any valid interrupt vector,
regardless of whether they have the same resource identifier, as long as the I/O CQ and the interrupt vector
are attached to the same controller.

 Secondary Controller States and Resource Configuration

A secondary controller shall be in one of the following states:

• Online: The secondary controller may be in use by a host. Required resources have been
assigned. The secondary controller may be enabled in this state (CC.EN may be set to ‘1’ and
CSTS.RDY may then transition to ‘1’); or

• Offline: The secondary controller may not be used by a host. CSTS.CFS shall be set to ‘1’.
Controller properties other than CSTS are undefined in this state.

The host may request a transition to the Online or Offline state using the Virtualization Management
command. When a secondary controller transitions from the Online state to the Offline state all Flexible
Resources are removed from the secondary controller.

To ensure that the host accurately detects capabilities of the secondary controller, the host should complete
the following procedure to bring a secondary controller Online:

1. Use the Virtualization Management command to set the secondary controller to the Offline state;
2. Use the Virtualization Management command to assign VQ resources and VI resources;
3. Perform a Controller Level Reset. If the secondary controller is a VF, then this should be a VF

Function Level Reset (refer to the NVM Express NVMe over PCIe Transport Specification); and
4. Use the Virtualization Management command to set the secondary controller to the Online state.

If VI Resources are supported, then following this process ensures the MSI-X Table size indicated by
MSIXCAP.MXC.TS is updated to reflect the appropriate number of VI Resources before the transition to
the Online state.

NVM Express® Base Specification, Revision 2.0e

457

A primary controller or secondary controller is enabled when CC.EN and CSTS.RDY are both set to ‘1’ for
that controller. A secondary controller is able to be enabled only when in the Online state. If the primary
controller associated with a secondary controller is disabled or undergoes a Controller Level Reset, then
the secondary controller shall implicitly transition to the Offline state. A secondary controller shall transition
to the Offline state when a shutdown occurs (refer to section 3.1.4.5 and section 3.1.4.20) on the primary
controller associated with that secondary controller.

Resources shall only be assigned to a secondary controller when in the Offline state. If the minimum number
of resources are not assigned to a secondary controller, then a request to transition to the Online state shall
fail for that secondary controller. For implementations that support SR-IOV, if VF Enable is cleared to ‘0’ or
NumVFs specifies a value that does not enable the associated secondary controller, then the secondary
controller shall implicitly transition to the Offline state.

 Single Root I/O Virtualization and Sharing (SR-IOV)

The PCI-SIG® Single Root I/O Virtualization and Sharing Specification (SR-IOV) defines extensions to PCI
Express that allow multiple System Images (SIs), such as virtual machines running on a hypervisor, to
share PCI hardware resources. The primary benefit of SR-IOV is that it eliminates the hypervisor from
participating in I/O operations which may be a significant factor limiting storage performance in some
virtualized environments and allows direct SI access to PCI hardware resources.

A Physical Function (PF) is a PCI Express Function that supports the SR-IOV Capability, which in turn
allows that PF to support one or more dependent Virtual Functions (VFs). These PFs and VFs may support
NVM Express controllers that share an underlying NVM subsystem with multi-path I/O and namespace
sharing capabilities (refer to section 2.4.1).

SR-IOV Virtual Functions (VFs) with an NVM Express Class Code (refer to the PCI Header section of the
NVMe over PCIe Transport Specification) shall implement fully compliant NVM Express controllers. This
ensures that the same host software developed for non-virtualized environments is capable of running
unmodified within an SI.

For hosts where SR-IOV is unsupported or not needed, a controller that is a PF shall support operation as
a stand-alone controller.

For a controller that is a PF, the requirements for SR-IOV Capability registers VF BAR0, VF BAR1, VF
BAR2, VF BAR4, and VF BAR5 are the same as the requirements for PCI registers BAR0, BAR1, BAR4,
and BAR5, respectively. For a controller that is a PF, SR-IOV Capability register VF BAR2 shall not support
Index/Data Pair. Refer to the PCI Header section of the NVMe over PCIe Transport Specification.

To accommodate SR-IOV address range isolation requirements, VF BAR2 and VF BAR3 may support a
64-bit prefetchable memory register space which shall only be used for MSI-X Tables and MSI-X PBAs of
VFs. MSI-X Table BIR = ‘2’ and MSI-X PBA BIR = ‘2’ are valid for controllers that are VFs. Refer to the
MSI-X Capability section of the NVMe over PCIe Transport Specification.

While the controller properties of a controller that is a VF are accessible only if SR-IOV Control.VF MSE is
set to ‘1’, clearing VF MSE from ‘1’ to ‘0’ does not cause a reset of that controller. In this case, controller
properties are hidden, but their values are not reset.

NVM Express® Base Specification, Revision 2.0e

458

9 Error Reporting and Recovery

9.1 Command and Queue Error Handling

In the case of serious error conditions, like Completion Queue Invalid, the operation of the associated
Submission Queue or Completion Queue may be compromised. In this case, host software should delete
the associated Completion Queue and/or Submission Queue. The delete of a Submission Queue aborts all
outstanding commands, and deletion of either queue type releases resources associated with that queue.
Host software should recreate the Completion Queue and/or Submission Queue to then continue with
operation.

In the case of serious error conditions for Admin commands, the entire controller should be reset using a
Controller Level Reset. The entire controller should also be reset if a completion is not received for the
deletion of a Submission Queue or Completion Queue.

For most command errors, there is not an issue with the Submission Queue and/or Completion Queue
itself. Thus, host software and the controller should continue to process commands. It is at the discretion
of host software whether to retry the failed command; the Retry bit in the completion queue entry indicates
whether a retry of the failed command may succeed.

9.2 Media and Data Error Handling

In the event that the requested operation could not be performed to the NVM media, the particular command
is completed with a media error indicating the type of failure using the appropriate status code.

If a read error occurs during the processing of a command, (e.g., End-to-end Guard Check Error,
Unrecovered Read Error), the controller may either stop the DMA transfer into the memory or transfer the
erroneous data to the memory. The host shall ignore the data in the memory locations for commands that
complete with such error conditions.

If a write error occurs during the processing of a command, (e.g., an internal error, End-to-end Guard Check
Error, End-to-end Application Tag Check Error), the controller may either stop or complete the DMA
transfer.

Additional I/O Command Set specific error handling is described within applicable I/O Command Set
specifications.

9.3 Memory Error Handling

For PCI Express implementations, memory errors such as target abort, master abort, and parity may cause
the controller to stop processing the currently executing command. These are serious errors that cannot be
recovered from without host software intervention.

A master/target abort error occurs when host software has provided, to the controller, the address of
memory that does not exist. When this occurs, the controller aborts the command with a Data Transfer
Error status code.

9.4 Internal Controller Error Handling

If a controller level failure (e.g., a DRAM failure) occurs during the processing of a command, then the
controller should abort the command with a status code of Internal Error. Any data transfer associated with
the command may be incomplete or incorrect, and therefore any transferred data should not be used for
any purpose other than error reporting or diagnosis. The host may choose to re-submit the command or
indicate an error to the higher level software.

9.5 Controller Fatal Status Condition

If the controller has a serious error condition and is unable to communicate with host software via
completion queue entries in the Admin Completion Queue or I/O Completion Queues, then the controller
may set the Controller Fatal Status (CSTS.CFS) bit to ‘1’ (refer to section 3.1.4.6). This indicates to host

NVM Express® Base Specification, Revision 2.0e

459

software that a serious error condition has occurred. When this condition occurs, host software should
attempt to reset and then re-initialize the controller.

The Controller Fatal Status condition is not indicated with an interrupt. If host software experiences timeout
conditions and/or repeated errors, then host software should consult the Controller Fatal Status
(CSTS.CFS) bit to determine if a more serious error has occurred.

If the Controller Fatal Status (CSTS.CFS) bit is set to ‘1’ on any controller in the NVM subsystem, the host
should issue a Controller Reset to that controller.

If that Controller Reset does not clear the Controller Fatal Status condition, the host should initiate an NVM
Subsystem Reset (refer to section 3.7.1), if supported.

Performing an NVM Subsystem Reset (NSSR) may cause PCI Express links to go down as part of resetting
the NVM subsystem. Host software may have undesirable effects related to PCI Express links going down
(e.g., some host operating systems or hypervisors may crash).

NVM Subsystem Reset should not be used if the host software has undesirable effects related to PCI
Express links going down. This host software includes, but is not limited to, operating systems using
Firmware First Error Handling (refer to the ACPI Specification). Such operating systems should not use
NSSR for recovery from CFS conditions.

NVM Express® Base Specification, Revision 2.0e

460

Annex A. Sanitize Operation Considerations (Informative)

A.1 Overview

The Sanitize command initiates a sanitize operation that makes all user data previously written to the device
inaccessible. To do this a Sanitize command is provided over the device’s physical interface that cause the
controller to process the requested operation. The actual result of the operation is very difficult to prove as
complete. This annex provides some context and considerations for understanding the result of the
operation and the practical limitations for auditing the result of the sanitize operation.

A.2 Hidden Storage (Overprovisioning)

Sanitize operations affect all physical storage that is able to hold user data. Many NVMe SSDs contain
more physical storage than is addressable through the interface (overprovisioning), which is used for vendor
specific purposes that may include providing increasing endurance, improving performance, and providing
extra capacity to allow retiring bad or worn-out storage without affecting capacity. This excess capacity as
well as any retired storage are not accessible through the interface. Vendor specific innovative use of this
extra capacity supports advantages to the end user, but the lack of observability makes it difficult to ensure
that all storage within the device has been affected. Only the accessible storage is able to be audited for
the results of a sanitization operation.

A.3 Integrity checks and No-Deallocate After Sanitize

Another issue is availability of the data returned through the interface. Some of the sanitize operations (e.g.,
Block Erase) affect the physical devices in such a way that directly reading the accessible storage may
trigger internal integrity checks resulting in error responses instead of returning the contents of the storage.
Other sanitize operations (e.g., Crypto Erase) may scramble the vendor specific internal format of the data
also resulting in error responses instead of returning the contents of the storage.

Some devices compensate for these issues by performing an additional internal write operation on all
storage that is able to be allocated for user data. However, this has the side effect of potentially significant
additional wear on the device as well as the side effect of obscuring the results of the initial sanitize
operation (i.e., the writes forensically destroy the ability to audit the result of the initial sanitize operation).
Given this side effect, process audits of sanitize behavior only prove effective results when the No-
Deallocate After Sanitize bit is set the same way (e.g., set to ‘1’) for both process audits and the individual
device audits.

The Sanitize command introduced in NVM Express Base Specification revision 1.3 included a mechanism
to specify that sanitized addressable storage not be deallocated, thereby allowing observations of the
results of the sanitization operation. However, some architectures and products (e.g., integrity checking
circuitry) interact with this capability in such a way as to defeat the sanitize result observability purpose.
New features were added to NVM Express Base Specification revision 1.4 that include extended
information about the sanitization capabilities of devices, a new asynchronous event, and configuration of
the response to No-Deallocate After Sanitize requests. These features are intended to both support new
systems that understand the new capabilities, as well to help manage legacy systems that do not
understand the new capabilities without losing the ability to sanitize as requested.

A.4 Bad Media and Vendor Specific NAND Use

Another audit capability that is not supported by NVM Express is checking that any media that could not be
sanitized (e.g., bad physical blocks) has been removed from the pool of storage that is able to be used as
addressable storage.

An approach that is performed under some circumstances is removing the storage components from the
NVM Express device after a sanitize operation and reading the contents in laboratory conditions. However,
this approach also has multiple difficulties. When physical storage devices are removed from an NVM
Express device, much context is lost. This includes:

a) any encoding for zero’s/one’s balance;
b) identification of which components contain device firmware or other non-data information; and

NVM Express® Base Specification, Revision 2.0e

461

c) which media has been retired and cannot be sanitized.

NVM Express® Base Specification, Revision 2.0e

462

Annex B. Host Considerations (Informative)

B.1 Basic Steps when Building a Command

When host software builds a command for the controller to execute, it first checks to make sure that the
appropriate Submission Queue (SQ) is not full. The Submission Queue is full when the number of entries
in the queue is one less than the queue size. Once an empty slot (pFreeSlot) is available:

1. Host software builds a command at SQ[pFreeSlot] with:

a. CDW0.OPC is set to the appropriate command to be executed by the controller;
b. CDW0.FUSE is set to the appropriate value, depending on whether the command is a

fused operation;
c. CDW0.CID is set to a unique identifier for the command when combined with the

Submission Queue identifier;
d. The Namespace Identifier, NSID field, is set to the namespace the command applies to;
e. MPTR shall be filled in with the offset to the beginning of the Metadata Region, if there is

a data transfer and the namespace format contains metadata as a separate buffer;
f. PRP1 and/or PRP2 (or SGL Entry 1 if SGLs are used) are set to the source/destination of

data transfer, if there is a data transfer; and
g. CDW10 – CDW15 are set to any command specific information;

2. Host software then completes a transport specific action in order to submit the command for
processing.

B.2 Creating an I/O Submission Queue

This example describes how host software creates an I/O Submission Queue that utilizes non-contiguous
PRP entries. Creating an I/O Submission Queue that utilizes a PRP List is only valid if the controller
supports non-contiguous queues as indicated in CAP.CQR.

Prior to creating an I/O Submission Queue, host software shall create the I/O Completion Queue that the
SQ uses with the Create I/O Completion Queue command.

To create an I/O Submission Queue, host software builds a Create I/O Submission Queue command for
the Admin Submission Queue. Host software builds the Create I/O Submission Queue command in the
next free Admin Submission Queue command location. The attributes of the command are:

• CDW0.OPC is set to 01h;

• CDW0.FUSE is cleared to 00b indicating that this is not a fused operation;

• CDW0.CID is set to a free command identifier;

• The NSID field is cleared to 0h; Submission Queues are not specific to a namespace;

• MPTR is cleared to 0h; metadata is not used for this command;

• PRP1 is set to the physical address of the PRP List. The PRP List is shown in Figure 485 for a
PRP List with three entries;

• PRP2 is cleared to 0h; PRP Entry 2 is not used for this command;

• CDW10.QSIZE is set to the size of queue to create. In this case, the value is set to 191, indicating
a queue size of 192 entries. The queue size shall not exceed the maximum queue entries
supported, indicated in the CAP.MQES field;

• CDW10.QID is set to the Submission Queue identifier;

• CDW11.CQID is set to the I/O Completion Queue identifier where command completions are
posted;

• CDW11.QPRIO is set to 10b, indicating a Medium priority queue; and

• CDW11.PC is cleared to ‘0’ indicating that the data buffer indicated by PRP1 is not physically
contiguously.

Host software then completes a transport specific action in order to submit the command for processing.
Host software shall maintain the PRP List unmodified in host memory until the Submission Queue is
deleted.

NVM Express® Base Specification, Revision 2.0e

463

Figure 485: PRP List Describing I/O Submission Queue

4 KiB Memory Page i

4 KiB Memory Page j

4 KiB Memory Page k

B.3 Executing a Fused Operation

This example describes how host software creates and executes a fused command, specifically Compare
and Write for a total of 16 KiB of data. In this case, there are two commands that are created. The first
command is the Compare, referred to as CMD0. The second command is the Write, referred to as CMD1.
In this case, end-to-end data protection is not enabled and the size of each logical block is 4 KiB.

To build commands for a fused operation, host software utilizes two available adjacent command locations
in the appropriate I/O Submission Queue as is described in section 3.4.2.

The attributes of the Compare command are:

• CMD0.CDW0.OPC is set to 05h for Compare;

• CMD0.CDW0.FUSE is set to 01b indicating that this is the first command of a fused operation;

• CMD0.CDW0.CID is set to a free command identifier;

• CMD0.NSID is set to identify the appropriate namespace;

NVM Express® Base Specification, Revision 2.0e

464

• If metadata is being used in a separate buffer, then the location of that buffer is specified in the
CMD0.MPTR field;

• The physical address of the first page of the data to compare:

o If PRPs are used, CMD0.PRP1 is set to the physical address of the first page of the data
to compare and CMD0.PRP2 is set to the physical address of the PRP List. The PRP List
is shown in Figure 486 for a PRP List with three entries; or

o If the command uses SGLs, CMD0.SGL1 is set to an appropriate SGL segment descriptor
depending on whether more than one descriptor is needed;

• CMD0.CDW10.SLBA is set to the first LBA to compare against. Note that this field also spans
Command Dword 11;

• CMD0.CDW12.LR is cleared to ‘0’ to indicate that the controller should apply all available error
recovery means to retrieve the data for comparison;

• CMD0.CDW12.FUA is cleared to ‘0’, indicating that the data may be read from any location,
including a volatile cache, in the NVM subsystem;

• CMD0.CDW12.PRINFO is cleared to 0h since end-to-end protection is not enabled;

• CMD0.CDW12.NLB is set to 3h, indicating that four logical blocks of a size of 4 KiB each are to be
compared against;

• CMD0.CDW14 is cleared to 0h since end-to-end protection is not enabled; and

• CMD0.CDW15 is cleared to 0h since end-to-end protection is not enabled.

Figure 486: PRP List Describing Data to Compare

LBA #0 (4 KiB)

LBA #1 (4 KiB)

LBA #2 (4 KiB)

LBA #3 (4 KiB)

The attributes of the Write command are:

• CMD1.CDW0.OPC is set to 01h for Write;

• CMD1.CDW0.FUSE is set to 10b indicating that this is the second command of a fused operation;

• CMD1.CDW0.CID is set to a free command identifier;

NVM Express® Base Specification, Revision 2.0e

465

• CMD1.NSID is set to identify the appropriate namespace. This value shall be the same as
CMD0.NSID;

• If metadata is being used in a separate buffer, then the location of that buffer is specified in the
CMD1.MPTR field;

• The physical address of the first page of data to write is identified:

o If the command uses PRPs, then CMD1.PRP1 is set to the physical address of the first
page of the data to write and CMD1.PRP2 is set to the physical address of the PRP List.
The PRP List includes three entries; or

o If the command uses SGLs, CMD1.SGL1 is set to an appropriate SGL segment descriptor
depending on whether more than one descriptor is needed;

• CMD1.CDW10.SLBA is set to the first LBA to write. Note that this field also spans Command Dword
11. This value shall be the same as CMD0.CDW10.SLBA;

• CMD1.CDW12.LR is cleared to ‘0’ to indicate that the controller should apply all available error
recovery means to write the data to the NVM;

• CMD1.CDW12.FUA is cleared to ‘0’, indicating that the data may be written to any location,
including a volatile cache, in the NVM subsystem;

• CMD1.CDW12.PRINFO is cleared to 0h since end-to-end protection is not enabled;

• CMD1.CDW12.NLB is set to 3h, indicating that four logical blocks of a size of 4 KiB each are to be
compared against. This value shall be the same as CMD0.CDW12.NLB;

• CMD1.CDW14 is cleared to 0h since end-to-end protection is not enabled; and

• CMD1.CDW15 is cleared to 0h since end-to-end protection is not enabled.

Host software then completes a transport specific action in order to submit the command for processing.
Note that the transport specific submit action shall indicate both commands have been submitted at one
time.

B.4 Asynchronous Event Request Host Software Recommendations

This section describes the recommended host software procedure for Asynchronous Event Requests.

The host sends n Asynchronous Event Request commands (refer to section 3.5.1, step 12). When an
Asynchronous Event Request completes (providing Event Type, Event Information, and Log Page details):

• If the event(s) in the reported Log Page may be disabled with the Asynchronous Event
Configuration feature (refer to section 5.27.1.8), then host software issues a Set Features
command for the Asynchronous Event Configuration feature specifying to disable reporting of all
events that utilize the Log Page reported. Host software should wait for the Set Features
command to complete;

• Host software issues a Get Log Page command requesting the Log Page reported as part of the
Asynchronous Event Command completion. Host software should wait for the Get Log Page
command to complete;

• Host software parses the returned Log Page. If the condition is not persistent, then host software
should re-enable all asynchronous events that utilize the Log Page. If the condition is persistent,
then host software should re-enable all asynchronous events that utilize the Log Page except for
the one(s) reported in the Log Page. The host re-enables events by issuing a Set Features
command for the Asynchronous Event Configuration feature;

• Host software should issue an Asynchronous Event Request command to the controller (restoring
to n the number of these commands outstanding); and

• If the reporting of event(s) was disabled, host software should enable reporting of the event(s)
using the Asynchronous Event Configuration feature. If the condition reported may persist, host
software should continue to monitor the event (e.g., spare below threshold) to determine if
reporting of the event should be re-enabled.

NVM Express® Base Specification, Revision 2.0e

466

B.5 Updating Controller Doorbell Properties using a Shadow Doorbell Buffer

B.5.1. Shadow Doorbell Buffer Overview

Controllers that support the Doorbell Buffer Config command are typically emulated controllers where this
feature is used to enhance the performance of host software running in Virtual Machines. If supported by
the controller, host software may enable Shadow Doorbell buffers by submitting the Doorbell Buffer Config
command (refer to section 5.8).

After the completion of the Doorbell Buffer Config command, host software shall submit commands by
updating the appropriate entry in the Shadow Doorbell buffer instead of updating the controller's
corresponding doorbell property. If updating an entry in the Shadow Doorbell buffer changes the value from
being less than or equal to the value of the corresponding EventIdx buffer entry to being greater than that
value, then the host shall also update the controller's corresponding doorbell property to match the value
of that entry in the Shadow Doorbell buffer. Queue wrap conditions shall be taken into account in all
comparisons in this paragraph.

The controller may read from the Shadow Doorbell buffer and update the EventIdx buffer at any time (e.g.,
before the host writes to the controller's doorbell property).

B.5.2. Example Algorithm for Controller Doorbell Property Updates

Host software may use modular arithmetic where the modulus is the queue depth to decide if the controller
doorbell property should be updated, specifically:

• Compute X as the new doorbell value minus the corresponding EventIdx value, modulo queue
depth; and

• Compute Y as the new doorbell value minus the old doorbell value in the shadow doorbell buffer,
also modulo queue depth.

If X is less than or equal to Y, the controller doorbell property should be updated with the new doorbell
value.

NVM Express® Base Specification, Revision 2.0e

467

Annex C. Power Management and Consumption (Informative)

NVM Express power management capabilities allow the host to manage power for a controller. Power
management includes both control and reporting mechanisms.

For information on transport power management (e.g., PCIe, RDMA), refer to the applicable NVM Express
transport specification.

The scope of NVM Express power management is the controller (refer to section 5.27.1.2).

NVM Express power management uses the following functionality:

a) Features:

• Power Management (refer to section 5.27.1.2 and section 8.15);

• Autonomous Power State Transition (refer to section 5.27.1.9 and section 8.15.2);

• Non-Operational Power State Configuration (refer to section 5.27.1.14 and section 8.15.1); and

• Spinup Control (refer to section 5.27.1.22);
b) NVM subsystem workloads (refer to section 8.15.3); and
c) Runtime D3 transitions (refer to section 8.15.4).

Controller thermal management may cause a transition to a lower power state, interacting with these
Features:

a) Temperature Threshold (refer to section 5.27.1.3); and
b) Host Controlled Thermal Management (refer to section 5.27.1.13 and section 8.15.5).

NVM Express power management uses these reporting mechanisms:

a) properties:

• Controller Power Scope (CAP.CPS) (refer to Figure 38);
b) fields in the Identify Controller data structure (refer to Figure 280):

• RTD3 Resume Latency (RTD3R);

• RTD3 Entry Latency (RTD3E);

• Non-Operational Power State Permissive Mode;

• Number of Power States Support (NPSS);

• Autonomous Power State Transition Attributes (APSTA); and

• Power State 0 Descriptor (PSD0) through Power State 31 Descriptor (PSD31) (refer to Figure
281);

c) Features:

• Power Management (refer to section 5.27.1.2);

• Temperature Threshold (refer to section 5.27.1.3);

• Autonomous Power State Transition (refer to section 5.27.1.9 and section 8.15.2);

• Non-Operational Power State Configuration (refer to section 5.27.1.14 and section 8.15.1);

• Host Controlled Thermal Management (refer to section 5.27.1.13 and section 8.15.5); and

• Spinup Control (refer to section 5.27.1.22);

and

d) log pages:

• SMART / Health Information log page fields (refer to section 5.16.1.3):
o Thermal Management Temperature [1-2] Transition Count; and
o Total Time For Thermal Management Temperature [1-2];

and

• Persistent Event Log fields (refer to section 5.16.1.14):
o Power On Hours (POH) (refer to Figure 229);
o Power Cycle Count (refer to Figure 229);
o Controller Power Cycle (refer to Figure 236); and
o Power on milliseconds (refer to Figure 236).

	1 Introduction
	1.1 Overview
	1.1.1 NVM Express® Specification Family

	1.2 Scope
	1.3 Outside of Scope
	1.4 Conventions
	1.4.1 Keywords
	1.4.1.1 mandatory
	1.4.1.2 may
	1.4.1.3 obsolete
	1.4.1.4 optional
	1.4.1.5 R
	1.4.1.6 reserved
	1.4.1.7 shall
	1.4.1.8 should

	1.4.2 Numerical Descriptions
	1.4.3 Byte, Word, and Dword Relationships

	1.5 Definitions
	1.5.1 Admin Queue
	1.5.2 Administrative controller
	1.5.3 arbitration burst
	1.5.4 arbitration mechanism
	1.5.5 association
	1.5.6 audit
	1.5.7 authentication commands
	1.5.8 cache
	1.5.9 candidate command
	1.5.10 capsule
	1.5.11 Channel
	1.5.12 command completion
	1.5.13 command submission
	1.5.14 controller
	1.5.15 Controller Reset
	1.5.16 Directive
	1.5.17 Discovery controller
	1.5.18 Discovery Service
	1.5.19 dynamic controller
	1.5.20 Domain
	1.5.21 emulated controller
	1.5.22 Endurance Group
	1.5.23 fabric (network fabric)
	1.5.24 firmware/boot partition image update command sequence
	1.5.25 firmware slot
	1.5.26 host
	1.5.27 host-accessible memory
	1.5.28 host memory
	1.5.29 Identify Controller data structures
	1.5.30 Identify Namespace data structures
	1.5.31 I/O command
	1.5.32 I/O Completion Queue
	1.5.33 I/O controller
	1.5.34 I/O Submission Queue
	1.5.35 Media Unit
	1.5.36 memory-based controller
	1.5.37 message-based controller
	1.5.38 metadata
	1.5.39 namespace
	1.5.40 namespace ID (NSID)
	1.5.41 NVM
	1.5.42 NVM Set
	1.5.43 NVM subsystem
	1.5.44 NVM subsystem port
	1.5.45 NVMe over Fabrics
	1.5.46 NVMe Transport
	1.5.47 NVMe Transport binding specification
	1.5.48 physical fabric interface (physical ports)
	1.5.49 Port ID
	1.5.50 primary controller
	1.5.51 private namespace
	1.5.52 property
	1.5.53 rotational media
	1.5.54 Runtime D3 (Power Removed)
	1.5.55 sanitize operation
	1.5.56 secondary controller
	1.5.57 shared namespace
	1.5.58 specified namespace
	1.5.59 spindown
	1.5.60 spinup
	1.5.61 static controller
	1.5.62 user data

	1.6 I/O Command Set specific definitions used in this specification
	1.6.1 Endurance Group Host Read Command
	1.6.2 Format Index
	1.6.3 SMART Data Units Read Command
	1.6.4 SMART Host Read Command
	1.6.5 User Data Format
	1.6.6 User Data Out Command

	1.7 NVM Command Set specific definitions used in this specification
	1.7.1 logical block
	1.7.2 logical block address (LBA)

	1.8 References
	1.9 References Under Development

	2 Theory of Operation
	2.1 Memory-Based Transport Model (PCIe)
	2.2 Message-Based Transport Model (Fabrics)
	2.2.1 Fabrics and Transports
	2.2.2 NVM Subsystem Ports
	2.2.3 Discovery Service
	2.2.4 Capsules and Data Transfer
	2.2.5 Authentication

	2.3 NVM Storage Model
	2.3.1 Storage Entities
	2.3.2 I/O Command Sets
	2.3.3 NVM Subsystem Examples

	2.4 Extended Capabilities Theory
	2.4.1 Multi-Path I/O and Namespace Sharing
	2.4.2 Asymmetric Controller Behavior

	3 NVM Express Architecture
	3.1 NVM Controller Architecture
	3.1.1 Memory-Based Controller Architecture (PCIe)
	3.1.2 Message-Based Controller Architecture (Fabrics)
	3.1.3 Controller Types
	3.1.3.1 I/O Controller
	3.1.3.1.1 Command Support
	3.1.3.1.2 Log Page Support
	3.1.3.1.3 Features Support

	3.1.3.2 Administrative Controller
	3.1.3.2.1 Command Support
	3.1.3.2.2 Log Page Support
	3.1.3.2.3 Features Support

	3.1.3.3 Discovery Controller
	3.1.3.3.1 Discovery Controller Initialization
	3.1.3.3.2 Command Support
	3.1.3.3.3 Log Page Support
	3.1.3.3.4 Features Support
	3.1.3.3.4.1 Asynchronous Event Configuration (Feature Identifier 0Bh)
	3.1.3.3.4.2 Discovery Controller Asynchronous Event Information – Requests and Notifications

	3.1.4 Controller Properties
	3.1.4.1 Offset 0h: CAP – Controller Capabilities
	3.1.4.2 Offset 8h: VS – Version
	3.1.4.2.1 VS Value for 1.0 Compliant Controllers
	3.1.4.2.2 VS Value for 1.1 Compliant Controllers
	3.1.4.2.3 VS Value for 1.2 Compliant Controllers
	3.1.4.2.4 VS Value for 1.2.1 Compliant Controllers
	3.1.4.2.5 VS Value for 1.3 Compliant Controllers
	3.1.4.2.6 VS Value for 1.4 Compliant Controllers
	3.1.4.2.7 VS Value for 2.0 Compliant Controllers

	3.1.4.3 Offset Ch: INTMS – Interrupt Mask Set
	3.1.4.4 Offset 10h: INTMC – Interrupt Mask Clear
	3.1.4.5 Offset 14h: CC – Controller Configuration
	3.1.4.6 Offset 1Ch: CSTS – Controller Status
	3.1.4.7 Offset 20h: NSSR – NVM Subsystem Reset
	3.1.4.8 Offset 24h: AQA – Admin Queue Attributes
	3.1.4.9 Offset 28h: ASQ – Admin Submission Queue Base Address
	3.1.4.10 Offset 30h: ACQ – Admin Completion Queue Base Address
	3.1.4.11 Offset 38h: CMBLOC – Controller Memory Buffer Location
	3.1.4.12 Offset 3Ch: CMBSZ – Controller Memory Buffer Size
	3.1.4.13 Offset 40h: BPINFO – Boot Partition Information
	3.1.4.14 Offset 44h: BPRSEL – Boot Partition Read Select
	3.1.4.15 Offset 48h: BPMBL – Boot Partition Memory Buffer Location
	3.1.4.16 Offset 50h: CMBMSC – Controller Memory Buffer Memory Space Control
	3.1.4.17 Offset 58h: CMBSTS – Controller Memory Buffer Status
	3.1.4.18 Offset 5Ch: CMBEBS – Controller Memory Buffer Elasticity Buffer Size
	3.1.4.19 Offset 60h: CMBSWTP – Controller Memory Buffer Sustained Write Throughput
	3.1.4.20 Offset 64h: NSSD – NVM Subsystem Shutdown
	3.1.4.21 Offset 68h: CRTO – Controller Ready Timeouts
	3.1.4.22 Offset E00h: PMRCAP – Persistent Memory Region Capabilities
	3.1.4.23 Offset E04h: PMRCTL – Persistent Memory Region Control
	3.1.4.24 Offset E08h: PMRSTS – Persistent Memory Region Status
	3.1.4.25 Offset E0Ch: PMREBS – Persistent Memory Region Elasticity Buffer Size
	3.1.4.26 Offset E10h: PMRSWTP – Persistent Memory Region Sustained Write Throughput
	3.1.4.27 Offset E14h: PMRMSCL – Persistent Memory Region Memory Space Control Lower
	3.1.4.28 Offset E18h: PMRMSCU – Persistent Memory Region Memory Space Control Upper

	3.2 NVM Subsystem Entities
	3.2.1 Namespaces
	3.2.1.1 Namespace Overview
	3.2.1.2 Valid and Invalid NSIDs
	3.2.1.3 Allocated and Unallocated NSID Types
	3.2.1.4 Active and Inactive NSID Types
	3.2.1.5 NSID and Namespace Relationships
	3.2.1.6 NSID and Namespace Usage
	3.2.1.7 I/O Command Set Associations

	3.2.2 NVM Sets
	3.2.3 Endurance Groups
	3.2.3.1 Configuring and Managing Endurance Group Events

	3.2.4 Domains and Divisions
	3.2.4.1 Overview
	3.2.4.2 Domains and Reservations
	3.2.4.3 Domain Identifier Use (Informative)

	3.3 NVM Queue Models
	3.3.1 Memory-based Transport Queue Model (PCIe)
	3.3.1.1 Queue Setup and Initialization
	3.3.1.2 Queue Usage
	3.3.1.2.1 Completion Queue Flow Control

	3.3.1.3 Queue Abort
	3.3.1.4 Empty Queue
	3.3.1.5 Full Queue

	3.3.2 Message-based Transport Queue Model (Fabrics)
	3.3.2.1 Capsules and Data Transfers
	3.3.2.1.1 Command Capsules
	3.3.2.1.2 Response Capsules
	3.3.2.1.3 Data Transfers
	3.3.2.1.3.1 Data and SGL Locations within a Command Capsule
	3.3.2.1.3.2 Data Transfer Examples

	3.3.2.2 Queue Creation
	3.3.2.3 Queue Initialization and Queue State
	3.3.2.4 I/O Queue Deletion
	3.3.2.5 Submission Queue Flow Control Negotiation
	3.3.2.6 Submission Queue Flow Control
	3.3.2.7 Submission Queue Head Pointer Update Optimization
	3.3.2.8 Completion Queue Considerations
	3.3.2.9 Transport Requirements

	3.3.3 Queueing Data Structures
	3.3.3.1 Submission Queue Entry
	3.3.3.2 Common Completion Queue Entry
	3.3.3.2.1 Status Field Definition
	3.3.3.2.1.1 Generic Command Status Definition
	3.3.3.2.1.2 Command Specific Status Definition
	3.3.3.2.1.3 Media and Data Integrity Errors Definition
	3.3.3.2.1.4 Path Related Status Definition

	3.3.3.2.2 Phase Tag
	3.3.3.2.2.1 Phase Tag Example

	3.3.3.3 Queue Size
	3.3.3.4 Queue Identifier
	3.3.3.5 Queue Priority
	3.3.3.6 Queue Coordination

	3.4 Command Architecture Submission and Completion Mechanism
	3.4.1 Command Ordering Requirements
	3.4.2 Fused Operations
	3.4.3 Atomic Operations
	3.4.4 Command Arbitration
	3.4.4.1 Round Robin Arbitration
	3.4.4.2 Weighted Round Robin with Urgent Priority Class Arbitration
	3.4.4.3 Vendor Specific Arbitration

	3.5 Controller Initialization
	3.5.1 Memory-based Controller Initialization (PCIe)
	3.5.2 Message-based Controller Initialization (Fabrics)
	3.5.3 Controller Ready Modes During Initialization
	3.5.4 Controller Ready Timeouts During Initialization
	3.5.4.1 Handling Errors During Initialization

	3.6 Shutdown Processing
	3.6.1 Memory-based Controller Shutdown (PCIe)
	3.6.2 Message-based Controller Shutdown (Fabrics)
	3.6.3 NVM Subsystem Shutdown
	3.6.3.1 NVM Subsystem Shutdown in a Single Domain NVM Subsystem
	3.6.3.2 Domain Shutdown in a Multiple Domain NVM Subsystem

	3.7 Resets
	3.7.1 NVM Subsystem Reset
	3.7.1.1 Single Domain NVM Subsystems
	3.7.1.2 Multiple Domain NVM Subsystems

	3.7.2 Controller Level Reset
	3.7.3 Queue Level Reset

	3.8 NVM Capacity Model
	3.8.1 Overview
	3.8.2 Media Unit Organization Examples
	3.8.2.1 Simple NVM Subsystem
	3.8.2.2 Vertically-Organized NVM Subsystem
	3.8.2.3 Horizontally-Organized Dual NAND NVM Subsystem

	3.8.3 Capacity Reporting

	3.9 Keep Alive
	3.9.1 Keep Alive Timer Configuration
	3.9.2 Keep Alive Timer Activation
	3.9.3 Command Based Keep Alive
	3.9.3.1 Command Based Keep Alive on the Controller
	3.9.3.2 Command Based Keep Alive on the Host

	3.9.4 Traffic Based Keep Alive
	3.9.4.1 Traffic Based Keep Alive on the Controller
	3.9.4.2 Traffic Based Keep Alive on the Host

	3.9.5 Keep Alive Timeout Cleanup

	3.10 Privileged Actions
	3.11 Firmware Update Process

	4 Data Structures
	4.1 Data Layout
	4.1.1 Physical Region Page Entry and List
	4.1.2 Scatter Gather List (SGL)
	4.1.2.1 SGL Example

	4.1.3 Metadata Region (MR)

	4.2 Feature Values
	4.3 Identifier Format and Layout (Informative)
	4.3.1 PCI Vendor ID (VID) and PCI Subsystem Vendor ID (SSVID)
	4.3.2 Serial Number (SN) and Model Number (MN)
	4.3.3 IEEE OUI Identifier (IEEE)
	4.3.4 IEEE Extended Unique Identifier (EUI64)
	4.3.5 Namespace Globally Unique Identifier (NGUID)
	4.3.6 Universally Unique Identifier (UUID)

	4.4 List Data Structures
	4.4.1 Controller List
	4.4.2 Namespace List

	4.5 NVMe Qualified Names
	4.5.1 Unique Identifier

	5 Admin Command Set
	5.1 Abort command
	5.1.1 Command Completion

	5.2 Asynchronous Event Request command
	5.2.1 Command Completion

	5.3 Capacity Management command
	5.3.1 Media Unit Configuration Selection
	5.3.2 Endurance Group Operations
	5.3.3 NVM Set Operations
	5.3.4 Command Completion

	5.4 Create I/O Completion Queue command
	5.4.1 Command Completion

	5.5 Create I/O Submission Queue command
	5.5.1 Command Completion

	5.6 Delete I/O Completion Queue command
	5.6.1 Command Completion

	5.7 Delete I/O Submission Queue command
	5.7.1 Command Completion

	5.8 Doorbell Buffer Config command
	5.8.1 Command Completion

	5.9 Device Self-test command
	5.9.1 Command Completion

	5.10 Directive Receive command
	5.10.1 Command Completion

	5.11 Directive Send command
	5.11.1 Command Completion

	5.12 Firmware Commit command
	5.12.1 Command Completion

	5.13 Firmware Image Download command
	5.13.1 Command Completion

	5.14 Format NVM command
	5.14.1 Command Completion

	5.15 Get Features command
	5.15.1 Select field
	5.15.2 Command Completion

	5.16 Get Log Page command
	5.16.1 Log Specific Information
	5.16.1.1 Supported Log Pages (Log Page Identifier 00h)
	5.16.1.2 Error Information (Log Page Identifier 01h)
	5.16.1.3 SMART / Health Information (Log Page Identifier 02h)
	5.16.1.4 Firmware Slot Information (Log Page Identifier 03h)
	5.16.1.5 Changed Namespace List (Log Page Identifier 04h)
	5.16.1.6 Commands Supported and Effects (Log Page Identifier 05h)
	5.16.1.7 Device Self-test (Log Page Identifier 06h)
	5.16.1.8 Telemetry Host-Initiated (Log Page Identifier 07h)
	5.16.1.9 Telemetry Controller-Initiated (Log Page Identifier 08h)
	5.16.1.10 Endurance Group Information (Log Page Identifier 09h)
	5.16.1.11 Predictable Latency Per NVM Set (Log Page Identifier 0Ah)
	5.16.1.12 Predictable Latency Event Aggregate (Log Page Identifier 0Bh)
	5.16.1.13 Asymmetric Namespace Access (Log Page Identifier 0Ch)
	5.16.1.14 Persistent Event (Log Page Identifier 0Dh)
	5.16.1.14.1 Persistent Event Log Events
	5.16.1.14.1.1 SMART / Health Log Snapshot Event (Event Type 01h)
	5.16.1.14.1.2 Firmware Commit Event (Event Type 02h)
	5.16.1.14.1.3 Timestamp Change Event (Event Type 03h)
	5.16.1.14.1.4 Power-on or Reset Event (Event Type 04h)
	5.16.1.14.1.5 NVM Subsystem Hardware Error Event (Event Type 05h)
	5.16.1.14.1.6 Change Namespace Event (Event Type 06h)
	5.16.1.14.1.7 Format NVM Start Event (Event Type 07h)
	5.16.1.14.1.8 Format NVM Completion Event (Event Type 08h)
	5.16.1.14.1.9 Sanitize Start Event (Event Type 09h)
	5.16.1.14.1.10 Sanitize Completion Event (Event Type 0Ah)
	5.16.1.14.1.11 Set Feature Event (Event Type 0Bh)
	5.16.1.14.1.12 Telemetry Log Create Event (Event Type 0Ch)
	5.16.1.14.1.13 Thermal Excursion Event (Event Type 0Dh)
	5.16.1.14.1.14 Vendor Specific Event (Event Type DEh)
	5.16.1.14.1.15 TCG Defined Event (Event Type DFh)

	5.16.1.15 Endurance Group Event Aggregate (Log Page Identifier 0Fh)
	5.16.1.16 Media Unit Status (Log Page Identifier 10h)
	5.16.1.17 Supported Capacity Configuration List (Log Page Identifier 11h)
	5.16.1.18 Feature Identifiers Supported and Effects (Log Page Identifier 12h)
	5.16.1.19 NVMe-MI Commands Supported and Effects (Log Page Identifier 13h)
	5.16.1.20 Command and Feature Lockdown (Log Page Identifier 14h)
	5.16.1.21 Boot Partition (Log Page Identifier 15h)
	5.16.1.22 Rotational Media Information Log (Log Page Identifier 16h)
	5.16.1.23 Discovery Log Page (Log Page Identifier 70h)
	5.16.1.24 Reservation Notification (Log Page Identifier 80h)
	5.16.1.25 Sanitize Status (Log Page Identifier 81h)

	5.16.2 Command Completion

	5.17 Identify command
	5.17.1 Identify command overview
	5.17.2 Identify Data Structures
	5.17.2.1 Identify Controller Data Structure (CNS 01h)
	5.17.2.2 Active Namespace ID list (CNS 02h)
	5.17.2.3 Namespace Identification Descriptor list (CNS 03h)
	5.17.2.4 NVM Set List (CNS 04h)
	5.17.2.5 I/O Command Set specific Identify Namespace data structure (CNS 05h)
	5.17.2.6 I/O Command Set specific Identify Controller data structure (CNS 06h)
	5.17.2.7 I/O Command Set specific Active Namespace ID list (CNS 07h)
	5.17.2.8 I/O Command Set Independent Identify Namespace data structure (CNS 08h)
	5.17.2.9 Allocated Namespace ID list (CNS 10h)
	5.17.2.10 Identify Namespace data structure for an Allocated Namespace ID (CNS 11h)
	5.17.2.11 Namespace Attached Controller list (CNS 12h)
	5.17.2.12 Controller list (CNS 13h)
	5.17.2.13 Primary Controller Capabilities data structure (CNS 14h)
	5.17.2.14 Secondary Controller list (CNS 15h)
	5.17.2.15 Namespace Granularity List (CNS 16h)
	5.17.2.16 UUID List (CNS 17h)
	5.17.2.17 Domain List (CNS 18h)
	5.17.2.18 Endurance Group List (19h)
	5.17.2.19 I/O Command Set specific Allocated Namespace ID list (CNS 1Ah)
	5.17.2.20 I/O Command Set specific Identify Namespace data structure for an Allocated Namespace ID (CNS 1Bh)
	5.17.2.21 Identify I/O Command Set data structure (CNS 1Ch)

	5.17.3 Command Completion

	5.18 Keep Alive command
	5.18.1 Command Completion

	5.19 Lockdown command
	5.19.1 Command Completion

	5.20 NVMe-MI Receive command
	5.21 NVMe-MI Send command
	5.22 Namespace Attachment command
	5.22.1 Command Completion

	5.23 Namespace Management command
	5.23.1 Command Completion

	5.24 Sanitize command
	5.24.1 Command Completion

	5.25 Security Receive command
	5.25.1 Command Completion
	5.25.2 Security Protocol 00h
	5.25.3 Security Protocol EAh

	5.26 Security Send command
	5.26.1 Command Completion

	5.27 Set Features command
	5.27.1 Feature Specific Information
	5.27.1.1 Arbitration (Feature Identifier 01h)
	5.27.1.2 Power Management (Feature Identifier 02h)
	5.27.1.3 Temperature Threshold (Feature Identifier 04h)
	5.27.1.4 Volatile Write Cache (Feature Identifier 06h)
	5.27.1.5 Number of Queues (Feature Identifier 07h)
	5.27.1.6 Interrupt Coalescing (Feature Identifier 08h)
	5.27.1.7 Interrupt Vector Configuration (Feature Identifier 09h)
	5.27.1.8 Asynchronous Event Configuration (Feature Identifier 0Bh)
	5.27.1.9 Autonomous Power State Transition (Feature Identifier 0Ch)
	5.27.1.10 Host Memory Buffer (Feature Identifier 0Dh)
	5.27.1.11 Timestamp (Feature Identifier 0Eh)
	5.27.1.12 Keep Alive Timer (Feature Identifier 0Fh)
	5.27.1.13 Host Controlled Thermal Management (Feature Identifier 10h)
	5.27.1.14 Non-Operational Power State Config (Feature Identifier 11h)
	5.27.1.15 Read Recovery Level Config (Feature Identifier 12h)
	5.27.1.16 Predictable Latency Mode Config (Feature Identifier 13h)
	5.27.1.17 Predictable Latency Mode Window (Feature Identifier 14h)
	5.27.1.18 Host Behavior Support (Feature Identifier 16h)
	5.27.1.19 Sanitize Config (Feature Identifier 17h)
	5.27.1.20 Endurance Group Event Configuration (Feature Identifier 18h)
	5.27.1.21 I/O Command Set Profile (Feature Identifier 19h)
	5.27.1.22 Spinup Control (Feature Identifier 1Ah)
	5.27.1.23 Host Metadata (Feature Identifier 7Dh), (Feature Identifier 7Eh), (Feature Identifier 7Fh)
	5.27.1.23.1 Enhanced Controller Metadata (Feature Identifier 7Dh)
	5.27.1.23.2 Controller Metadata (Feature Identifier 7Eh)
	5.27.1.23.3 Namespace Metadata (Feature Identifier 7Fh)

	5.27.1.24 Software Progress Marker (Feature Identifier 80h)
	5.27.1.25 Host Identifier (Feature Identifier 81h)
	5.27.1.25.1 PCIe Transport Implementations
	5.27.1.25.2 NVMe over Fabrics Implementations

	5.27.1.26 Reservation Notification Mask (Feature Identifier 82h)
	5.27.1.27 Reservation Persistence (Feature Identifier 83h)
	5.27.1.28 Namespace Write Protection Config (Feature Identifier 84h)

	5.27.2 Command Completion

	5.28 Virtualization Management command
	5.28.1 Command Completion

	6 Fabrics Command Set
	6.1 Authentication Receive Command and Response
	6.2 Authentication Send Command and Response
	6.3 Connect Command and Response
	6.4 Disconnect Command and Response
	6.5 Property Get Command and Response
	6.6 Property Set Command and Response

	7 I/O Commands
	7.1 Flush command
	7.1.1 Command Completion

	7.2 Reservation Acquire command
	7.2.1 Command Completion

	7.3 Reservation Register command
	7.3.1 Command Completion

	7.4 Reservation Release command
	7.4.1 Command Completion

	7.5 Reservation Report command
	7.5.1 Command Completion

	8 Extended Capabilities
	8.1 Asymmetric Namespace Access Reporting
	8.1.1 Asymmetric Namespace Access Reporting Overview
	8.1.2 ANA Groups
	8.1.3 Asymmetric Namespace Access states
	8.1.3.1 ANA Optimized state
	8.1.3.2 ANA Non-Optimized state
	8.1.3.3 ANA Inaccessible state
	8.1.3.4 ANA Persistent Loss state
	8.1.3.5 ANA Change state
	8.1.3.6 Asymmetric Namespace Access Change Notifications

	8.1.4 Asymmetric Namespace Access States Command Processing Effects

	8.2 Boot Partitions
	8.2.1 Reading from a Boot Partition
	8.2.2 Writing to a Boot Partition
	8.2.3 Boot Partition Protection

	8.3 Capacity Management
	8.3.1 Overview
	8.3.2 Fixed Capacity Management
	8.3.3 Variable Capacity Management

	8.4 Command and Feature Lockdown
	8.5 Controller Memory Buffer
	8.6 Device Self-test Operations
	8.6.1 Short Device Self-Test Operation
	8.6.2 Extended Device Self-Test Operation

	8.7 Directives
	8.7.1 Directive Use in I/O Commands
	8.7.2 Identify (Directive Type 00h)
	8.7.2.1 Directive Receive
	8.7.2.1.1 Return Parameters (Directive Operation 01h)

	8.7.2.2 Directive Send
	8.7.2.2.1 Enable Directive (Directive Operation 01h)

	8.7.3 Streams (Directive Type 01h, Optional)
	8.7.3.1 Directive Receive
	8.7.3.1.1 Return Parameters (Directive Operation 01h)
	8.7.3.1.2 Get Status (Directive Operation 02h)
	8.7.3.1.3 Allocate Resources (Directive Operation 03h)

	8.7.3.2 Directive Send
	8.7.3.2.1 Release Identifier (Directive Operation 01h)
	8.7.3.2.2 Release Resources (Directive Operation 02h)

	8.8 Doorbell Stride for Software Emulation
	8.9 Host Memory Buffer
	8.10 Host Operation with Asymmetric Namespace Access Reporting (Informative)
	8.10.1 Host ANA Normal Operation
	8.10.2 Host ANA Inaccessible Operation
	8.10.3 Host ANA Persistent Loss Operation
	8.10.4 Host ANA Change Notice Operation
	8.10.5 Host ANA Transition Operation
	8.10.6 All Paths Down Condition

	8.11 Namespace Management
	8.12 Namespace Write Protection
	8.12.1 Namespace Write Protection – Theory of Operation
	8.12.1.1 Namespace Write Protection – Command Interactions

	8.13 NVMe over Fabrics Secure Channel and In-band Authentication
	8.13.1 Fabric Secure Channel
	8.13.2 NVMe In-band Authentication
	8.13.2.1 NVMe In-band Authentication Protocol-Specific Requirements

	8.13.3 NVMe In-band Authentication Followed by Secure Channel Establishment
	8.13.4 Common Authentication Messages
	8.13.4.1 AUTH_Negotiate Message
	8.13.4.2 AUTH_Failure Messages
	8.13.4.3 Mapping of Common Authentication Messages to Authentication Commands

	8.13.5 DH-HMAC-CHAP Protocol
	8.13.5.1 Protocol Operations
	8.13.5.2 DH-HMAC-CHAP Authentication Protocol Descriptor
	8.13.5.3 DH-HMAC-CHAP_Challenge Message
	8.13.5.4 DH-HMAC-CHAP_Reply Message
	8.13.5.5 DH-HMAC-CHAP_Success1 Message
	8.13.5.6 DH-HMAC-CHAP_Success2 Message
	8.13.5.7 DH-HMAC-CHAP Security Requirements
	8.13.5.8 Secret Representation
	8.13.5.9 Generated PSK for TLS
	8.13.5.10 Mapping of DH-HMAC-CHAP Messages to Authentication Commands

	8.14 Persistent Memory Region
	8.15 Power Management
	8.15.1 Non-Operational Power States
	8.15.2 Autonomous Power State Transitions
	8.15.3 NVM Subsystem Workloads
	8.15.4 Runtime D3 (RTD3) Transitions
	8.15.5 Host Controlled Thermal Management

	8.16 Predictable Latency Mode
	8.16.1 Host Operating Rules to Achieve Determinism
	8.16.2 Configuring Periodic Windows
	8.16.3 Configuring and Managing Events

	8.17 Read Recovery Level
	8.18 Replay Protected Memory Block
	8.18.1 Authentication Method
	8.18.2 RPMB Operations
	8.18.2.1 Authentication Key Programming
	8.18.2.2 Read Write Counter Value
	8.18.2.3 Authenticated Data Write
	8.18.2.4 Authenticated Data Read

	8.18.3 Authenticated Device Configuration Block Write
	8.18.4 Authenticated Device Configuration Block Read

	8.19 Reservations
	8.19.1 Reservation Types
	8.19.2 Reservation Notifications
	8.19.3 Registering
	8.19.4 Unregistering
	8.19.5 Acquiring a Reservation
	8.19.6 Releasing a Reservation
	8.19.7 Preempting a Reservation or Registration
	8.19.8 Clearing a Reservation
	8.19.9 Reporting Reservation Status

	8.20 Rotational Media
	8.21 Sanitize Operations
	8.21.1 Sanitize Operation Restrictions

	8.22 Submission Queue (SQ) Associations
	8.23 Standard Vendor Specific Command Format
	8.24 Telemetry
	8.24.1 Telemetry Data Collection Examples (Informative)

	8.25 Universally Unique Identifiers (UUIDs) for Vendor Specific Information
	8.25.1 UUIDs for Vendor Specific Information Introduction
	8.25.2 UUIDs for Vendor Specific Information Requirements
	8.25.3 UUIDs for Vendor Specific Information Examples
	8.25.3.1 Vendor Specific Log Page Example
	8.25.3.2 Vendor Specific Feature Example

	8.26 Virtualization Enhancements
	8.26.1 VQ Resource Definition
	8.26.2 VI Resource Definition
	8.26.3 Secondary Controller States and Resource Configuration
	8.26.4 Single Root I/O Virtualization and Sharing (SR-IOV)

	9 Error Reporting and Recovery
	9.1 Command and Queue Error Handling
	9.2 Media and Data Error Handling
	9.3 Memory Error Handling
	9.4 Internal Controller Error Handling
	9.5 Controller Fatal Status Condition

	Annex A. Sanitize Operation Considerations (Informative)
	A.1 Overview
	A.2 Hidden Storage (Overprovisioning)
	A.3 Integrity checks and No-Deallocate After Sanitize
	A.4 Bad Media and Vendor Specific NAND Use

	Annex B. Host Considerations (Informative)
	B.1 Basic Steps when Building a Command
	B.2 Creating an I/O Submission Queue
	B.3 Executing a Fused Operation
	B.4 Asynchronous Event Request Host Software Recommendations
	B.5 Updating Controller Doorbell Properties using a Shadow Doorbell Buffer
	B.5.1. Shadow Doorbell Buffer Overview
	B.5.2. Example Algorithm for Controller Doorbell Property Updates

	Annex C. Power Management and Consumption (Informative)

