
Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

LEGAL NOTICE:

© Copyright 2008 to 2024 NVM Express®, Inc. ALL RIGHTS RESERVED.
This Technical Proposal is proprietary to the NVM Express, Inc. (also referred to as “Company”) and/or its
successors and assigns.

NOTICE TO USERS WHO ARE NVM EXPRESS, INC. MEMBERS: Members of NVM Express, Inc. have
the right to use and implement this Technical Proposal subject, however, to the Member’s continued
compliance with the Company’s Intellectual Property Policy and Bylaws and the Member’s Participation
Agreement.

NOTICE TO NON-MEMBERS OF NVM EXPRESS, INC.: If you are not a Member of NVM Express, Inc.
and you have obtained a copy of this document, you only have a right to review this document or make
reference to or cite this document. Any such references or citations to this document must acknowledge
NVM Express, Inc. copyright ownership of this document. The proper copyright citation or reference is as
follows: “© 2008 to 2024 NVM Express, Inc. ALL RIGHTS RESERVED.” When making any such
citations or references to this document you are not permitted to revise, alter, modify, make any
derivatives of, or otherwise amend the referenced portion of this document in any way without the prior
express written permission of NVM Express, Inc. Nothing contained in this document shall be deemed as
granting you any kind of license to implement or use this document or the specification described therein,
or any of its contents, either expressly or impliedly, or to any intellectual property owned or controlled by
NVM Express, Inc., including, without limitation, any trademarks of NVM Express, Inc.

LEGAL DISCLAIMER:

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN “AS IS”
BASIS. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, NVM EXPRESS, INC.
(ALONG WITH THE CONTRIBUTORS TO THIS DOCUMENT) HEREBY DISCLAIM ALL
REPRESENTATIONS, WARRANTIES AND/OR COVENANTS, EITHER EXPRESS OR IMPLIED,
STATUTORY OR AT COMMON LAW, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, VALIDITY,
AND/OR NONINFRINGEMENT.

All product names, trademarks, registered trademarks, and/or servicemarks may be claimed as the
property of their respective owners.
The NVM Express® design mark is a registered trademark of NVM Express, Inc.

NVM Express Workgroup
c/o VTM, Inc.
3855 SW 153rd Drive
Beaverton, OR 97003
USA
info@nvmexpress.org

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

NVM Express® Technical Proposal for New Feature

Technical Proposal ID TP 4129 – KATO Corrections and Clarifications

Change Date 2024/06/11

Builds on Specification
NVM Express Base Specification 2.0d
NVM Express TCP Transport Specification 1.0d
NVM Express RDMA Transport Specification 1.0c

References Ratified TPs TP 4097a Abort Enhancements

References ECNs

Technical Proposal Author(s)

Name Company

Fred Knight NetApp

John Meneghini RedHat

David Black Dell Technologies

Costa Sapuntzakis, Randy Jennings Pure

This Technical Proposal:

• Adds a description of host operation during a communication loss to avoid data corruption that
could be caused by interaction of outstanding commands with subsequent commands submitted
by that host. This includes:

o a requirement to determine the controller has stopped processing commands that can
change state on the controller before retrying or erroring out that command;

o requirements on retrying such commands; and
o examples of incorrect use of retries.

• Adds Command Quiesce Time (CQT) to allow for cleanup time for these outstanding commands
on the controller.

• Specifies corrections in the use of the KATO (Keep Alive Time Out) operation. Specifically:
o requires the controller to detect a KATO if the Keep Alive Timer expires;
o describes interactions and timings associated with host and target use cases for KATO;

and
o expands and corrects an example implementation for Keep Alive operation on the host,

illustrating how the implementation keeps the controller alive.

Revision History

Revision Date Change Description

8/2/2021 Initial creation

9/27/2021 Add host usage information

9/28/2021 Initial FMDS comment incorporation

10/12/2021 Restructure

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

1/3/2022 Reorganize content based on feedback from last FMDS meeting

1/11/2022
Add QEMPTY, 2X+n information to expand the section with KATO value setting
recommendations; including comments from FMDS meeting.

2022/07/11

Remove guidance around connection loss and KATO from 3.3.2.4
Remove QEMPTY
Rewrite Keep Alive section to be more requirements oriented and less
implementation description
Add KASMG (Keep Alive Support Millisecond Granularity) and CQAT (Command
Quiesce after Termination)
Add section with guidance around association loss and when host can retransmit

2022/08/08

Remove KASMG
Incorporate feedback from July 26, 2022
Keep Alive Feature -> Keep Alive Timer Feature
Keep Alive Feature is active -> Keep Alive Timer is active

2022/08/16 Much cleanup from the FMDS call

2022/08/17 Specify worst-case bounds in host recovery procedure in 9.1.b

2022/08/30
Back off of worst-case bounds
Add rationale for current bounds

2022/09/06

Keep Alive Timeout value time is now KATT
CQAT is now CQT and covers time to initiate cleanup
Describe why 2x KATT for Traffic Based Keep Alive

2022/09/23

Move end of 3.3.2.4 to its own section 3.3.2.5 and generalize
Add reference to 9.1.TBD in 3.6.2
Add language to NVM Express TCP transport specification on what the host
should consider indicating that a controller has seen a connection loss.

2022/09/28

Feedback from FMDS meeting
Add figure for 2 * KATT in TBKAS
Redo wording in 3.3.2.4 on controller behavior during Disconnect I/O Submission
Queue – aborting and completing are not distinct. Abort is a kind of completion
Delete sentence in 3.3.2.TBD about controller continuing to process commands.
Sentence is repeated in next section.

2022/10/04
Feedback from FMDS meeting – wording changes in Disconnect, TBKAS, and
9.1.TBD
Revise figure for TBKAS

2022/10/12

Talk about controllers and communications instead of associations and
connections
Fix the stricken text to reflect the current draft
Apply comments from Samsung
TBKAS – simplify description of when a Keep Alive Timeout occurs
Revive wording about Connect Command can go through after controller cleans
up – that seems to have disappeared

2022/10/17

Apply more comments from Samsung
Add wording about when Keep Alive Timeout occurs at host for 3.9.1 and 3.9.2
Fix when Keep Alive Timeout occurs for Keep Alive-Based Keep Alive – old
language says that only Keep Alive Command refreshes the timer
½ KATO -> 15 seconds
Get rid of accounting for … language when describing how often the host should
send a Keep Alive Command or command

2022/10/21

Simplify when a keep alive timeout occurs
Give guidance on implementing Keep Alive Command based Keep Alive to
controller implementor
15 seconds -> implementation specific time
Revert 10/17 change on when Keep Alive Timeout occurs for Keep Alive
Command-Based Keep Alive

2022/11/14
Added editorial comments explaining changes
Updated navigation pane and fixed font sizes
Updated according to some comments

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

Refined revised text in 3.9 to show the changes from original text more clearly
Added text in 9.1.TBD about when a commands execution status would be
unknown (under construction).

2022/11/28

Revise description of when host detect Keep Alive Timeout
Finish text in 9.1.TBD that generalizes the discussion to that of missing command
completions
Define Keep Alive Timeout occurs on controller for Traffic Based Keep Alive in
terms of Keep Alive Timeout Interval

2022/12/05

Edits from FMDS meeting
Revise host-based detection of Keep Alive Timeout for Traffic-based Keep Alive
based on simpler Linux implementation
Reword Keep Alive Timeout Interval in Traffic Based Keep Alive Controller to be
easier to follow
Add Controller Level Reset to conditions which stop command processing
Clarify that RDY gets set to 0 only after command processing is stopped and
queues are deleted

2022/12/07
Reframe host detection in terms of an example host implementation
Remove changes to 3.7.2 – deemed unnecessary and harmful
Minor edits from FMDS

2022/12/13

Tune host detection language using feedback from FMDS
Replace admin command or I/O command with just command
Recommend that host start using new value of KATT immediately after Set
Features

2022/12/14
2022/12/19

More language tuning – get rid of pronouns, use submit more instead of send

2023/01/05 Language tuning from FMDS review on 12/20

2023/01/17

Add new line 3.3.2.4 clarifying that the controller shall stop processing all other
commands before replying to disconnect command
Mention disconnect in 9.1.TBD as a way host can know that commands have
completed processing
Minor word tuning in traffic based keep alive

2023/01/30

Added section headers and some context for Identify figure and section in TCP spec.
Reduced the text of the change in 3.3.2.
Added Abort/Cancel immediate to list of situations host knows command
processing is done.
Modified some of the explanatory comments in 3.9; still working on it

2023/05/08
Rebased on top of ECN117, KATO clarifications, with appropriate revisions
Major rewrite of the Host-based algorithm

2023/05/15

Fixed Keep Alive Timer Activation text copied from ECN117 (missed removing red text).
For TBKA on the Host, changed the reason for checking for command completions at
KATT/4 to the more concrete “prevent the controller from detecting a Keep Alive
Timeout” (existing text).
“-“ -> “minus” (“-“ was easy to confuse with a dash instead of a minus.)
Added comments for issues the FMDS group wanted to return to.

2023/05/19

“If using” -> “For” for CBKA/TBKA controller/host sections (update from ECN117)
“to account for delays (e.g.,” when explaining why KATT/2 (update from ECN117)
Introduced Keep Alive Send function for the host (that gets activated/deactivated) so we
can talk about starting/stopping/expiring “a” Keep Alive Send Timer, and so the function
can stay active while a timer is not running. Also, associated Keep Alive Send function
with a controller on the host; the host has one for each controller to which it is
connected.
Fixed antecedent issues in Host algorithm descriptions.
Qualify the host looking for a completion on a Keep Alive command with if the Keep
Alive command was sent.
For TBKA on host, tighten up language in normative text around checking for
commands at the rate KATT/4

2023/05/23
Keep Alive Send function -> timer, but enable it instead of activate it (meaning of
function was not clear)
Host detecting KATO: “may” -> “in this example”

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

2023/05/31

In section 3.3.2.4 “initiates or detects an NVMe Transport connection loss” ->
“terminates an NVMe Transport connection or detects an NVMe Transport
connection loss”
In section 3.9.TBDcleanup, cleaned up intro (first part is about controller
detecting KATO; “cleanup actions” -> “actions”)
In section 9.1.TBD:
* Limit Cancel command discussion to just canceling specific command, and add note
about this not being in Base 2.0c spec.

* CSTS.RDY/ CSTS.SHST/Disconnect do not cover fabric commands.
* Host needs to wait for a controller to be able to do something, not for it to
finish doing something.
* Other editorial changes & reference additions.

2023/06/06

* Added TP 4097a Abort Enhancements as a referenced TP
* For Host-based Keep alive algorithms, Keep Alive Send Timer text
“enables/disables” -> “becomes enabled/disabled”
* Section 9.1.TBD host error recovery, “controller to be able to detect/stop
processing” -> “ensure the controller has detected/stopped processing”

2023/06/16

* “Keep Alive Send Timer associated with a controller in the host” -> “Keep
Alive Send Timer associated with a controller on the host”
* “Keep Alive Send Timer in the host” -> “Keep Alive Send Timer”
* “Keep Alive Timer in the controller” -> “Keep Alive Timer on the controller”
* When discussing how a host knows if processing a command has finished:
** clarified that a host reading CSTS.RDY of ‘0’ indicates a Controller Level
Reset is complete ()
** “CQE” -> “completion”
** “that command” -> “the command which status is in question”
* When discussing when a host will not know if processing a command has
finished, put transport-level disconnects last and clarified text.
* When describing how to calculate the time the host needs to wait, refer to the
new figure for TBKA instead of the section (3.9.2).
* Added Description of changes for Base & TCP spec
* Added that this document depends on ECN117 in the header.
* Revised TP Overview.

2023/06/21

* A few ‘when’ to ‘if replacements. There are still some ‘when’s in the text; they
have an element of time in them, so I think they belong.
* Revising current pointers to 9.1.TBD to be more dire and insistent.
* Adding pointers to 9.1.TBD in these sections:
** 3.3.1.3 Message-based I/O Queue Abort
** 3.6.1 Memory-based Controller Shutdown
** 3.7.2 Controller Level Reset
* Now that we have more sections pointing at 9.1.TBD, also pointed at 9.1.TBD
instead of a couple of messaging sections when defining CQT in the Identify
Controller Data Structure.

2023/07/14

* rebasing on most recent ECN117 version (2023/07/13)
* Description of changes -> past tense verbs
* fixed section numbering for CBKA/TBKA on controller

2023/08/02

* Added highlighting for 9.1.TBD/3.9.TBDactivate references
* Added reference for Set Features figure with KATO field to KATT
* brought forward a couple of member review changes from ECN117 that were
missed.
* minor editorial (spelling correction: ‘Iff -> ‘If’, verb fix: ‘processed’ -> ‘was
processed’

2023/08/23

Incorporated comments from ECN117 integration, including some fixes to this
TP:
* controller KATO algorithms reworded for “shall” (checked; Keep Alive & Set
Features do not have “shall” elsewhere for restarting the Keep Alive Timer.)

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

* a couple more host submits instead of sends
* qualify CBKA & TBKA use on controller with support for Keep Alive Timer
feature.

2023/08/29
From FMDS, receiving Keep Alive & Set Features restarts timer only when
Keep Alive Timer is active.

2023/09/29

* From ECN117 integration, 3.9 Keep Alive intro: “a watchdog timer intended to
detect” -> drop “intended”
* add pronunciation hint for KATT
* Adding a way to tell a command is completed for message based transport,
resuming communication with a controller.
* clarified a Keep Alive Send Timer exist on the host for each controller to
which it is connected.
* cleaned up text around enabling/disabling Keep Alive Send Timer.

2023/10/20

* Added pointer to outstanding command handling to RDMA Binding
specification.
* Added note about processing of command is different than background
processing triggered by a command.

2023/10/26

* Removed redundant “time” following “CQT”.
* From list of events that mark that there is no more processing happening on a
command, reworded to get rid of “in question”.
* Reworded text about lack of ordering of command execution.

2023/11/14

* Handle comments from David Black
* Revise host sections, primarily to provide more explanation of what the host
needs to do and how the example does it, clearer compare/contrast of CBKA &
TBKA example algorithms, active voice steps in algorithm, plus minor
grammatical changes.
* Remove redundant “the controller shall” from controller TBKA algorithm.
* Revised clarifying text on how long it takes a controller using TBKA to detect
a keep alive. (also, controller receive -> controller receive and fetch)
* Explain what “quiesce” means when used in CQT.
* Clarify text explaining when the host can tell a command has finished
processing (outstanding command, text around host controlling dependent
commands).
* Clarify text explaining determining communication lost.
* Revised text about CQT in recovery section, and calculated -> specified.

2023/11/21

* Added references to this TP in the “Description of Changes” sections.
* Added yellow highlighting to a figure reference
* Trying past tense for referencing the value to which Keep Alive Send Timer
was set when the Keep Alive Send Timer expires.
* Fixed more “last” -> “most recent”.
* TP4097 was not ratified after NVMe Base 2.0 spec.
* Communication loss ‘on’ -> ‘with’ a queue.
* time indicated in the ‘CQT’ -> ‘CQT field’
* A couple of minor punctuation/capitalization fixes.

2023/11/29

* Updated summary to identify corruption we are trying to prevent and added
rationale for the other changes.
* Revised TBKA diagram to refer to most recently fetched command. Made it
Word shapes so others can edit the diagram. Note, diagram word placement
looks wrong when you hide footers and spaces between pages.
* For detection of communication loss in 9.1.TBD, added “either” before “with
controller” and “with queue”.
* Moved Description of Changes for TCP/RDMA doc to top of doc.

2023/12/22

Initial draft text for Dell Member Review comments – section 9.1.TBD on
“Handling Outstanding Commands during a Communication Loss” split into two
sections in order to add material on how to handle outstanding commands
during a communication loss

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

2024/01/12

For section 9.1.TBD:
* Added back reference to 3.4.1 about command ordering, but reduced context
text around it.
* Moved host command dependency/retry text to an annex.
* Revised it to focus on deciding to retry.
* Added examples of what can go wrong when retrying.
* Updated copyright notices to 2024.

2024/01/19

Comments from FMDS:
* Added definition for idempotent commands
* Disconnect: controller does not process -> ensures no processing
* In the new annex section,
 * When talking generally about a missing response, used “missing response”
or “response not received” instead of “lost response”. A specific example still
refers to a “lost response”.
 * Reworded example “This shows how” sentence to describe what is required
first and then state the type of command being retried.
 * Added third controller to 2 host example
 * Made some misc. ordering & editorial changes.

2024/01/22

* Removed stray words on title page (same line as NVMe graphic)
* fixed Figure label & text referring to it (Detecting Timeout Takes up to 2 *
KATT)
Comments from Mike Allison & Judy Brock:
* Removed section references in description of changes
* Identified hosts more correctly (specifically or broadly, depending on context)
* Got rid of a couple more Keep Alive Command Based Keep Alive instances.
* Made some small word, punctuation & rearranging changes.

2024/01/29

Comments from Mike Allison & Judy Brock, refined by FMDS meeting:
* copy over comments about integration issue (duplicate ‘the’) and concern
about delayed command can cause corruption without interactions with other
commands (internal memory buffers)
* Refined pointer to the new error handling section (9.1.TBD); ‘could’ -> ‘is
possible’, and move reference to a parenthetical comment in the corruption
threat sentence
* Revised some Set Features text (going back to not qualifying timer
modification by new KATO value being lower, providing more context in host
example)
* Rearranged bullet order in host examples.
* Labeled periods in TBKA diagram
* Defined quiesce parenthetically instead of in a trailing sentence
* Removed ‘from host’ in transport specific command completion ‘events’
* Removed trailing command completion ‘events’ sentence and moved
background operations warning to own paragraph
* Explained where ‘two delays’ came from.
* Fixed TCP Transport Error Handling section number
* Added new changes (definition of idempotent, ensures no processing) to
Description of Changes.
* Removed editorial fixes from TCP spec and filed

https://bugzilla.nvmexpress.org/show_bug.cgi?id=283

2024/01/30

* Moved reference to 3.9.5 when host detects a Keep Alive Timeout from
example text to normative text (at beginning of Host CBKA/TBKA sections).
* Added categorizing of commands to section 9.1.TBD and added “shall”
instructions for the host based on them.
* Added stronger “this is able to cause corruption” language.
* Changed “implementation specific” -> “higher level software” for handling
non-retriable requests.

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

* Revised pictures in annex to be more clear about host determining controller
has stopped processing commands
Moved to base 2.0d
* Rectified some typos in text and updated section/figure numbers.
* ECN117 was integrated, updated TBD section numbers, removed coloring.

2024/02/05

* Added requirement to not retry or error out command until host ensures
processing has stopped to Technical Proposal summary
* Updated Description of changes
* “modify state on the controller” -> “modify state in the subsystem”
* Minor editorial and figure numbering updates

2024/02/06

* Move most of idempotent definition content and command retry categories to
a new error handling section.
* Reworked pointer to 9.1.TBD to state requirement on host
* “submitted by a host” -> “submitted by a host on another controller”
* “no processing” -> “no further processing”
* clarify command being referenced in a few places.

2024/02/13

* Extensive rework of section 9.* material to cleanly separate concepts:
-- loss detection, end of command processing, and command retry.
* Add some section 3.4 content to support FMDS discussion (see comments)
* Refer all mention of host reaction to communication loss to section 9.
* Edits and comments (e.g., editing instructions) from FMDS discussion.

2024/02/16

Correct date in previous entry, accept all changes, plus:
* Editorial and terminology changes from FMDS discussion
* Moved text on when a command is not outstanding to new 3.4.TBD section
* Extensive editing of Annex B examples to line up with 2/13 changes
* Added text to strongly discourage using commands such as Write and Set
Features for multi-host coordination and synchronization.

2024/02/20 Editorial changes from FMDS discussion, primarily to section 9.TBD material.

2024/02/27 Editorial changes from FMDS discussion, primarily to Annex B material.

2024/03/05

Editorial cleanup. Add a sentence to Annex B to point out that Compare and
Write is not idempotent (even though its components are).
* Revised technical proposal summary to include text about retries
* Revised description of changes for structural changes relating to outstanding
commands and retries.
* Minor edits on retry example figures
* Add a PCIe example for loss of communication

2024/03/06

Editorial changes from Mike Allison and the document editor.
Pick up additional keep alive text from Base Spec that is (or is not) being
modified by this TP.

2024/03/12 Additional editorial changes.

2024/03/14 Clean version for second member review

2024/06/11 Integrated

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

Markup Conventions:

Black: Unchanged (however, hot links are removed)
Red Strikethrough: Deleted
Blue: New
Blue Highlighted: TBD values, anchors, and links to be inserted in new text.
<Green Bracketed>: Notes to editor
Orange: Changes made by a referenced TP
Purple: Moved (to this location)
Purple: Moved (from this location)

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

Description for Changes Document for NVM Express Base Specification 2.0d
• Handling Outstanding Commands during a Communication Loss

o Feature Enhancements:

▪ Added Command Quiesce Time (CQT), which the controller reports as the time

it takes to stop processing commands after the controller detects a

communication loss with the host.

o Required Changes:

▪ Described, in a new section, error recovery if a communication loss happens and

there are outstanding commands, specifically:

• how a host detects loss of communication with a controller;

• how a host determines no further controller processing of outstanding

commands is possible; and

• restrictions for using retries of a command for recovery.

o References:

▪ TP 4129 KATO Corrections and Clarifications

• Keep Alive Corrections

o Feature Enhancements:

▪ Expanded the host examples of CBKA and TBKA, focusing them on sending Keep

Alive commands to keep the controller alive, covering more situations.

o Required Changes:

▪ Clarified that the concepts of Keep Alive Timer and Keep Alive Timer Interval

apply to the controller, not directly to the host.

▪ For TBKA, changed the interval the host checks to send a Keep Alive from

KATT/2 to KATT/4.

o Backwards Incompatible:

▪ If a Keep Alive Timer expires, the controller is required to detect a Keep Alive

Timeout.

o References:

▪ TP 4129 KATO Corrections and Clarifications

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

1 Introduction

1.5 Definitions

1.5.TBD idempotent command

A command that produces the same end state in the NVM subsystem and returns the same results if
that command is resubmitted one or more times with no intervening commands. Refer to section
9.TBD.3.1.

3 NVM Express Architecture

3.3 NVM Queue Models

3.3.1 Memory-based Transport Queue Model

3.3.1.3 Queue Abort

To abort a large number of commands, the host may use:

• the Cancel command (refer to section 7.TBD); or

• delete and recreate the I/O Submission Queue (refer to section 3.7.3).

Specifically, to abort all commands that are submitted to an I/O Submission Queue, host software should:

• issue a Cancel command to that queue with the Cancel Action set to Multiple Command Cancel
and the NSID field set to FFFFFFFFh; or

• issue a Delete I/O Submission Queue command for that queue. After that submission queue has
been successfully deleted, indicating that all commands have been completed or aborted, then
host software should recreate the queue by submitting a Create I/O Submission Queue command.
Host software may then re-submit commands to the associated I/O Submission Queue.

If the host is no longer able to communicate with the controller before that host receives either:

• completions for all outstanding commands submitted on that I/O Submission Queue (refer to
section 3.4.TBD); or

• a successful completion for the Delete I/O Submission Queue command for that I/O Submission
Queue,

then it is strongly recommended that the host take the steps described in section 9.TBD to avoid possible
data corruption caused by interaction between outstanding commands and subsequent commands
submitted by that host to another controller.

3.3.2 Message-based Transport Queue Model

3.3.2.4 I/O Queue Deletion

NVMe over Fabrics deletes an individual I/O Queue and may delete the associated NVMe Transport
connection as a result of:

• the exchange of a Disconnect command and response (refer to section 6.4) between a host and
controller; or

• the detection and processing of a transport error on an NVMe Transport connection.

…

A Disconnect command is the last I/O Submission Queue entry processed by the controller for an I/O
Queue. Controller processing of the Disconnect command completes or aborts all commands on the I/O
Queue on which the Disconnect command was received. The controller determines whether to complete
or abort each of those commands. Until the controller detects an NVMe Transport connection loss or
sends a successful completion for a Disconnect command, outstanding commands may continue being
processed by the controller. The controller ensures that there is no further processing of any command

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

sent on that I/O Queue after posting the completion queue entry for the Disconnect command as
described in section 6.4.

The response to the Disconnect command is the last I/O Completion Queue entry processed by the host
for an I/O Queue. To avoid command aborts, the host should wait for all outstanding commands on an I/O
Queue to complete before sending the Disconnect command.

If the controller terminates an NVMe Transport connection or detects an NVMe Transport connection loss,
then the controller shall stop processing all commands received on the I/O Queues associated with that
NVMe Transport connection within the time reported in the CQT field (refer to Figure 276), if non-zero.
Until the controller detects an NVMe Transport connection loss or sends a successful completion for a
Disconnect command, outstanding commands may continue being processed by the controller.

If the host terminates an NVMe Transport connection or detects an NVMe Transport connection loss
before the responses are received for all outstanding commands submitted to the associated I/O Queue
(refer to section 3.4.TBD), then it is strongly recommended that the host take the steps described in
section 9.TBD to avoid possible data corruption caused by interaction between outstanding commands
and subsequent commands submitted by that host to another controller. then there is no further
information available to the host about the state of those commands (e.g., each individual outstanding
command may have been completed or aborted by the controller).

If an NVMe Transport connection is lost as a result of an NVMe Transport error, then before performing
recovery actions related to commands sent on I/O queues associated with that NVMe Transport connection,
the host should wait for at least the longer of:

• the NVMe Keep Alive timeout; or

• the underlying fabric transport timeout, if any.

3.4 Command Processing Architecture Submission and Completion Mechanism

3.4.TBD Outstanding Commands

A command is outstanding if:

• the host has submitted that command to the controller;

• the host has not received a completion for that command; and

• as described in this section:
o the host has not performed an action that causes that command to no longer be

outstanding; and
o the host has not otherwise determined that that command is no longer outstanding.

A submitted command is no longer outstanding after the host:

• receives a completion for that command;

• receives a successful completion with Immediate Abort Not Performed bit cleared to ‘0’ in Dword
0 of the completion queue entry for an Abort command specifying that outstanding command
(refer to section 5.1);

• receives a successful completion with the Commands Aborted field set to 1h for a Cancel
command with an Action Code of Single Command Cancel and specifying that outstanding
command (refer to section 7.TBD); <7.TBD referenced from TP4097a>

• reads a CSTS.RDY bit value that indicates a controller is not able to process commands except
for Fabrics commands (i.e., a value of ‘0’), if that outstanding command is not a Fabrics command
(refer to section 3.7.2);

• reads a CSTS.SHST field value that indicates that the controller shutdown is complete (i.e., a
value of 10b), if that outstanding command is not a Fabrics command (refer to section 3.6.1 for
memory-based transports and section 3.6.2 for message-based transports);

• if using a memory-based transport, receives a successful completion for a Delete I/O Submission
Queue command if that outstanding command was sent on the deleted I/O Submission Queue
(refer to section 3.3.1.3);

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

• if using a message-based transport:
o receives a successful completion for a Disconnect command if that outstanding

command was sent on the same I/O queue as the Disconnect command (refer to
section 3.3.2.4); or

o restores communication to the same controller after losing communication to that
controller (refer to section 3.9.5).

If an outstanding command ceases to be outstanding for one of these reasons, then further controller
processing of that command is no longer possible.

…

3.6 Shutdown Processing

3.6.1 Memory-based Transport Controller Shutdown

…

It is an implementation choice whether the host aborts all outstanding commands to the Admin Queue prior
to the controller shutdown. The only commands that should be outstanding to the Admin Queue when the
controller reports shutdown processing complete are Asynchronous Event Request commands.

If the host is no longer able to communicate with the controller before that host receives either:

• completions for all outstanding commands submitted to that controller (refer to section 3.4.TBD);
or

• a CSTS.SHST field value that indicates that the controller shutdown is complete,
then it is strongly recommended that the host take the steps described in section 9.TBD to avoid possible
data corruption caused by interaction between outstanding commands and subsequent commands
submitted by that host to another controller.

3.6.2 Message-based Transport Controller Shutdown

…

After the host initiates a controller shutdown, the host may either disconnect at the NVMe Transport level
or the host may choose to poll CSTS.SHST to determine when the controller shutdown is complete (i.e.,
the controller should not initiate a disconnect at the NVMe Transport level). It is an implementation choice
whether the host aborts all outstanding commands prior to initiating the shutdown.

If the host is no longer able to communicate with the controller before that host receives either:

• completions for all outstanding commands submitted to that controller (refer to section 3.4.TBD);
or

• a CSTS.SHST field value that indicates that the controller shutdown is complete,
then it is strongly recommended that the host take the steps described in section 9.TBD to avoid possible
data corruption caused by interaction between outstanding commands and subsequent commands
submitted by that host to another controller.

The CC.EN field is not used to shutdown the controller (i.e., it is used for Controller Reset).

…

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

3.7 Resets

3.7.2 Controller Level Reset

…

Note that all Controller Level Reset cases except a Controller Reset result in the controller immediately
losing communication with the host. In all these cases, the controller is unable to indicate any aborts or
update any completion queue entries.

If the host is no longer able to communicate with the controller before that host receives either:

• completions for all outstanding commands submitted to that controller (refer to section 3.4.TBD);
or

• a CSTS.RDY bit value cleared to ‘0’,
then it is strongly recommended that the host take the steps described in section 9.TBD to avoid possible
data corruption caused by interaction between outstanding commands and subsequent commands

submitted by that host to another controller.

3.9 Keep Alive

The Keep Alive capability uses the Keep Alive Timer on a controller as a watchdog timer intended to
detect communication failures (e.g., transport failure, host failure, or controller failure) between a host and
a controller. If the Keep Alive Timer feature is supported (i.e., the KAS field is set to a non-zero value
(refer to Figure 276)), the controller shall support the Keep Alive command.

The term Keep Alive Timeout Time (KATT) refers to the time indicated by the value of the Keep Alive
Timeout field on a controller (refer to Figure 342).

The NVMe Transport binding specification for the associated NVMe Transport defines:

…

3.9.2 Keep Alive Timer Activation

The Keep Alive Timer is active if:

• CC.EN is set to ‘1’;
• CSTS.RDY is set to ‘1’;
• CC.SHN is cleared to ‘00b’;
• CSTS.SHST is cleared to ‘00b’; and
• The Keep Alive Timer feature is enabled as a result of the KATO field being set to a non-zero
value (refer to section 3.9.1).

Otherwise, the Keep Alive Timer is inactive, and a Keep Alive Timeout as described in sections 3.9.3.1
and 3.9.4.1 shall not occur on the controller. Activating an inactive Keep Alive Timer (e.g., a Set Features
command successfully sets setting the Keep Alive Timeout value to a non-zero value from a value of 0h,
or the host enabling a controller that supports NVMe over Fabrics where the Connect command specified
a non-zero Keep Alive Timeout value (refer to Figure 381)) shall initialize the Keep Alive Timer to the
Keep Alive Timeout value.

…

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

3.9.3 Command Based Keep Alive

For Command Based Keep Alive, the Keep Alive command is sent periodically from the host to the
controller over on the Admin Queue. The completion of the Keep Alive command indicates that the host
and controller are able to communicate. For message-based transports, the Keep Alive Timeout is the
maximum time an association remains established without processing a Keep Alive command.

3.9.3.1 Command Based Keep Alive on the Controller

The controller is using Command Based Keep Alive if the controller supports the Keep Alive Timer feature
and the TBKAS bit is cleared to ‘0’ in the CTRATT Controller Attributes field in the Identify Controller data
structure (refer to Figure 276).

For Command Based Keep Alive:

• The controller shall start tThe Keep Alive Timer in the controller starts whenif the Keep Alive
Timer becomes active (refer to section 3.9.2).

• The controller shall restart tThe Keep Alive Timer in the controller restarts if the Keep Alive Timer
is active, and:

o a Keep Alive command completes successfully; or
o a Set Features command specifying the Keep Alive Timer feature and a non-zero KATO

field (refer to section 5.27.1.12) completes successfully.

• The controller shall expire tThe Keep Alive Timer in the controller expires if:
o the Keep Alive Timer is active on the controller; and
o time equal to the Keep Alive Timeout valueKATT has elapsed since the Keep Alive Timer

was most recently started or restarted.

If the Keep Alive Timer ion the controller expires then the controller may shall consider a Keep Alive
Timeout to have occurred. Upon the occurrence of a Keep Alive Timeout, the controller shall perform the
cleanup actions described in section 3.9.5.

3.9.3.2 Command Based Keep Alive on the Host

The host may use Command Based Keep Alive regardless of the Keep Alive mode used by the controller.
To prevent the controller from detecting a Keep Alive Timeout during the use of Command Based Keep
Alive on the host, the host should send Keep Alive commands at half of the time equal to the Keep Alive
Timeout valueKATT/2 to account for delays (e.g., transport round-trip times, transport delays, command
processing times, and the Keep Alive Timer granularity) while the Keep Alive Timer is active on the
controller. If the host receives a successful completion to a Set Features command for the Keep Alive
feature, then the host should adjust the time at which the host sends the next Keep Alive command because
the controller restarts the Keep Alive Timer.

If a host detects a Keep Alive Timeout and has outstanding commands for which that host has not received
completions (refer to section 3.4.TBD), then it is strongly recommended that the host take the steps
described in section 9.TBD to avoid possible data corruption caused by interaction between outstanding
commands and subsequent commands submitted by that host to another controller.

For an example host implementation of Command Based Keep Alive, the host maintains a Keep Alive
Send Timer for each controller to which the host is connected. The host uses the Keep Alive Send Timer
to track when the host sends a Keep Alive command to the corresponding controller. The host does not
know when the controller fetches the Keep Alive command. Conservatively, the host assumes the
controller fetches the Keep Alive command immediately upon the host sending the Keep Alive command.
The host tracks this time as the last expired timestamp of the Keep Alive Send Timer, for use when
starting or restarting the Keep Alive Send Timer. While the host does restart the Keep Alive Send Timer
after a successful Set Features command for the KATO feature, the host does not change the last
expired timestamp when sending that Set Features command because at that point in time the host does
not know the results of that command.

This example host implementation of Command Based Keep Alive behaves as follows:

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

• The host enables the Keep Alive Send Timer if the host requests activation of the Keep Alive
Timer on the controller (e.g., the host enables the controller (refer to section 3.9.2)). The host
records the current time as the last expired timestamp when the Keep Alive Send Timer becomes
enabled.

• The host disables the Keep Alive Send Timer if the host requests deactivation of the Keep Alive
Timer on the controller and the host receives a successful response from the controller (e.g., the
host disables the controller (refer to section 3.9.2)).

• The host starts a Keep Alive Send Timer if:
o the Keep Alive Send Timer becomes enabled; or
o a successful Keep Alive command completion is processed by the host.

• The host restarts a Keep Alive Send Timer if:
o the Keep Alive Send Timer is enabled;
o a Keep Alive command is not outstanding; and,
o a successful Set Features command completion is processed by the host where the

command specified the Keep Alive Timer feature (i.e., Feature Identifier 0Fh) and a non-
zero KATO field.

• If a Keep Alive Send Timer starts or restarts, the host sets the Keep Alive Send Timer to:
o KATT/2 minus the time elapsed since the last expired timestamp; or
o zero, if the time elapsed since the last expired timestamp is greater than KATT/2.

• The host stops a Keep Alive Send Timer if the Keep Alive Send Timer becomes disabled.

• If a Keep Alive Send Timer expires, (i.e., the Keep Alive Send Timer is still enabled and time has
elapsed equal to the value to which the Keep Alive Send Timer was set since the host most
recently started or restarted the Keep Alive Send Timer), then the host records the current time
as the last expired timestamp and sends a Keep Alive command.

• The host detects a Keep Alive Timeout if the host sends a Keep Alive command and does not
receive a completion for the Keep Alive command before KATT elapses from when the Keep
Alive command was sent.

For Command Based Keep Alive:

• The Keep Alive Timer in the host starts or restarts if:
o a Set Features command with Feature Identifier 0Fh and a non-zero Keep Alive Timeout

(KATO) field was submitted to the Admin submission queue; or
o a Keep Alive command was submitted to the Admin submission queue.

• The Keep Alive Timer in the host expires if:
o time equal to the Keep Alive Timeout value has elapsed since the Keep Alive Timer was

most recently started or restarted; and
o a completion of a Keep Alive command has not been received since the Keep Alive Timer

was most recently started or restarted.

If the Keep Alive Timer in the host expires, then the host may consider a Keep Alive Timeout to have
occurred. If a host detects a Keep Alive Timeout, the host should perform the actions described in section
3.9.5.

3.9.4 Traffic Based Keep Alive

Traffic Based Keep Alive allows the host and controller to avoid a Keep Alive Timeout in the presence of
Admin or I/O command processing without sending Keep Alive commands.

3.9.4.1 Traffic Based Keep Alive on the Controller
If the controller supports the Keep Alive Timer feature, thenController support for Traffic Based Keep
Alive is indicated by the TBKAS bit in the Controller Attributes field in the Identify Controller data structure
(refer to Figure 276). If the Controller does not support Traffic Based Keep Alive (i.e., the TBKAS bit is
cleared to ‘0’), then the operation of the Keep Alive Timer feature is described in section 3.9.3.

For Traffic Based Keep Alive:

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

• The controller shall start aA Keep Alive Timeout Interval on the controller starts whenif the Keep
Alive Timer becomes active (refer to section 3.9.2).

• The controller mayshall consider a Keep Alive Timeout to have occurred if:
o the Keep Alive Timer is active;
o time equal to the Keep Alive Timeout value KATT has elapsed since the start of the most

recent Keep Alive Timeout Interval; and
o no Admin command or I/O command was fetched by the controller in the Keep Alive

Timeout Interval.

• The controller shall end aA Keep Alive Timeout Interval on the controller ends and:
o not start a new Keep Alive Timeout Interval does not start if:

▪ a Keep Alive Timeout occurs; or
▪ the Keep Alive Timer becomes inactive (refer to section 3.9.2).

o start a new Keep Alive Timeout Interval starts if the Keep Alive Timer is active, and:
▪ a Keep Alive command completes successfully;
▪ a Set Features command specifying the Keep Alive Timer feature and a non-zero

KATO field (refer to section 5.27.1.12) completes successfully; or
▪ time equal to the Keep Alive Timeout valueKATT has elapsed since the start of the

Keep Alive Timeout Interval and a Keep Alive Timeout did not occur in the Keep Alive
Timeout Interval (e.g., an Admin command or an I/O command was fetched by the
controller during the Keep Alive Timeout Interval).

Upon the occurrence of a Keep Alive Timeout, the controller shall perform the cleanup actions described
in section 3.9.5.

A controller using Traffic Based Keep Alive may require up to 2 * KATT after the controller fetches the
most recent command to detect a Keep Alive Timeout as shown in Figure TBDto.

Figure TBDto: Detecting Timeout Takes up to 2 * KATT

Figure TBDto shows that periodic check 3, not periodic check 2, detects the Keep Alive Timeout.
Therefore, the time between fetching the most recent command and the check that detects the timeout
(i.e., periodic check 3 in Figure TBDto) is up to 2 * KATT.

3.9.4.2 Traffic Based Keep Alive on the Host

The host may is able to use Traffic Based Keep Alive only if the controller is also using Traffic Based Keep
Alive. The host should not use Traffic Based Keep Alive if the controller is not using Traffic Based Keep
Alive because a controller that uses Command Based Keep Alive detects a Keep Alive Timeout based on
the absence of Keep Alive commands, not the absence of all commands.

The host should check for a command completion queue entry for any Admin commands and I/O
commands at half of the time equal to the Keep Alive Timeout value to account for delays (e.g., transport
roundtrip times, transport delays, command processing times, and the Keep Alive Timer granularity). To

Periodic
check 1

KATT KATT

Periodic
check 3

Command
fetched since
last check, no

timeout

No command
fetched since last

check, timeout
detected

Most recent
fetched command

Periodic
check 2

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

prevent the controller from detecting a Keep Alive Timeout during the use of Traffic Based Keep Alive on
the host, if no Admin command and no I/O command is sent to the controller during half of the Keep Alive
Timeout Interval, the host should send a Keep Alive command.Traffic Based Keep Alive on the host is the
same as Command Based Keep Alive on the host (refer to section 3.9.3.2), with two exceptions:

• The host is not required to submit a Keep Alive command if the host submitted an Admin command
or I/O command and the host processed the completion for that command since the most recent
time the host checked whether sending a Keep Alive command was necessary.

• To prevent the controller from detecting a Keep Alive Timeout during the use of Traffic Based Keep
Alive on the host, the host should check for sending a Keep Alive command at a rate of KATT/4,
instead of sending a Keep Alive command at a rate of KATT/2, while the Keep Alive Timer is active
on the controller.

Like Command Based Keep Alive, if the host receives a successful completion to a Set Features command
for the Keep Alive feature, then the host should adjust the time at which the host checks for sending the
next Keep Alive command because the controller restarted the Keep Alive Timer.

If a host detects a Keep Alive Timeout and has outstanding commands for which that host has not received
completions (refer to section 3.4.TBD), then it is strongly recommended that the host take the steps
described in section 9.TBD to avoid possible data corruption caused by interaction between outstanding
commands and subsequent commands submitted by that host to another controller.

For an example host implementation of Traffic Based Keep Alive, the host maintains a Keep Alive Send
Timer for each controller to which that host is connected. The host uses the Keep Alive Send Timer to
track when the host checks for sending a Keep Alive command to the corresponding controller. The host
does not know when the controller fetches the Keep Alive command. Conservatively, the host assumes
the controller fetches the Keep Alive command immediately upon the host sending the Keep Alive
command. Whether or not the host sends a Keep Alive command after the Keep Alive Send Timer
expires, the host tracks this time as the last expired timestamp of the Keep Alive Send Timer, for use
when starting or restarting the Keep Alive Send Timer. While the host does restart the Keep Alive Send
Timer after a successful Set Features command for the KATO feature, the host does not change the last
expired timestamp when sending that Set Features command because at that point in time the host does
not know the results of that command.

This example host implementation of Traffic Based Keep Alive behaves as follows:

• The host enables the Keep Alive Send Timer if the host requests activation of the Keep Alive
Timer on the controller (e.g., the host enables the controller (refer to section 3.9.2)). The host
records the current time as the last expired timestamp when the Keep Alive Send Timer becomes
enabled.

• The host disables the Keep Alive Send Timer if the host requests deactivation of the Keep Alive
Timer on the controller and the host receives a successful response from the controller (e.g., the
host disables the controller (refer to section 3.9.2)).

• The host starts a Keep Alive Send Timer if:
o the Keep Alive Send Timer becomes enabled; or
o a successful Keep Alive command completion is processed by the host.

• The host restarts a Keep Alive Send Timer if:
o the Keep Alive Send Timer is enabled;
o a Keep Alive command is not outstanding; and
o a successful Set Features command completion is processed by the host where the

command specified the Keep Alive Timer feature (i.e., Feature Identifier 0Fh) and a non-
zero KATO field.

• If a Keep Alive Send Timer starts or restarts, the host sets the Keep Alive Send Timer to:
o KATT/4 minus the time elapsed since the last expired timestamp; or
o zero, if the time elapsed since the last expired timestamp is greater than KATT/4.

• The host stops a Keep Alive Send Timer if the Keep Alive Send Timer becomes disabled.

• If a Keep Alive Send Timer expires, (i.e., the Keep Alive Send Timer is still enabled and time has
elapsed equal to the value to which the Keep Alive Send Timer was set since the host most

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

recently started or restarted the Keep Alive Send Timer), then the host records the current time
as the last expired timestamp and the host either:

o starts a new Keep Alive Send Timer, if at least one Admin command or I/O command
was submitted to the controller and the completion of that command was processed by
the host since the last Keep Alive Send Timer started (not restarted); or

o sends a Keep Alive command.

• The host detects a Keep Alive Timeout if the host sends a Keep Alive command and does not
receive a completion for that Keep Alive command before KATT elapses from when the Keep Alive
command was submitted.

For Traffic Based Keep Alive:

• The Keep Alive Timer in the host starts or restarts if:
o a Set Features command with Feature Identifier 0Fh and a non-zero Keep Alive Timeout

(KATO) field was submitted to the Admin submission queue;
o a Keep Alive command was submitted to the Admin submission queue.; or
o time equal to the Keep Alive Timeout value has elapsed since the Keep Alive Timer was

most recently started or restarted, and a completion was received for an Admin command
or an I/O command since the Keep Alive Timer was most recently started or restarted.

• The Keep Alive Timer in the host expires if:
o time equal to the Keep Alive Timeout value has elapsed since the Keep Alive Timer was

most recently started or restarted; and
o the host did not receive a completion of any Admin command or any I/O command since

the Keep Alive Timer was most recently started or restarted.
If the Keep Alive Timer in the host expires, the host may consider a Keep Alive Timeout to have occurred.
If a host detects a Keep Alive Timeout, the host should perform the actions described in section 3.9.5.

3.9.5 Keep Alive Timeout Cleanup

If a controller detects a Keep Alive Timeout is detected:
a) by the controller, then the controller shall perform the following actions within the time specified by

the CQT field (refer to Figure 276):

• record an Error Information Log Entry with the status code Keep Alive Timeout Expired;

• stop processing commands;

• set the Controller Fatal Status (CSTS.CFS) bit to ‘1’; and

• for message-based NVMe Ttransports:
o terminate the NVMe Transport connections for this association; and
o break the host to controller association;.

and

b) by the host, the host assumes all outstanding commands are not completed and re-issues
commands as appropriate.

For message-based NVMe Ttransports, after completing these steps, a controller may accept a Connect
command (refer to section 6.3) for the Admin Queue from the same or another host in order to form a new
association.

If a host detects a Keep Alive Timeout and has outstanding commands for which that host has not
received completions (refer to section 3.4.TBD), then it is strongly recommended that the host takes steps
described in section 9.TBD to avoid possible data corruption caused by interaction between outstanding
commands and subsequent commands submitted by that host to another controller.

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

5 Admin Command Set

5.17 Identify command

5.17.2 Identify Data Structures

5.17.2.1 Identify Controller Data Structure (CNS 01h)

…

Figure 276: Identify – Identify Controller Data Structure, I/O Command Set Independent

Bytes I/O
1

 Admin
1
 Disc

1
 Description

…

Admin Command Set Attributes & Optional Controller Capabilities

…

385 Reserved

387:386 M M M

Command Quiesce Time (CQT): This field indicates the expected worst-case time in
1 millisecond units for the controller to quiesce all outstanding commands (i.e., the
controller shall satisfy all Immediate Abort requirements for those commands (refer to
section 5.1.TBD)) <5.1.TBD referenced from TP4097a> after a Keep Alive Timeout
(refer to section 3.9) or other communication loss (refer to section 9.TBD). If this field
is cleared to 0h, then a command quiesce time is not reported. If the controller does
not require any time to quiesce, the controller should set this field to 1h (i.e., 1
millisecond).

511:388
385

 Reserved

6 Fabric Command Set

6.4 Disconnect Command and Response

…

The completion queue entry for the Disconnect command shall be the last entry submitted to the I/O Queue
Completion queue by the controller (i.e., no completion queue entries shall be submitted to the I/O Queue
Completion Queue after the completion queue entry for the Disconnect command). The controller shall not
perform ensure that no further command processing is performed for any command on an I/O queue after
sending the completion queue entry for the Disconnect command.

…

9 Error Reporting and Recovery

9.TBD Communication Loss Handling

If the host loses communication with a controller, then the host is unable to receive a completion (CQE)
for any outstanding command that has been submitted to that controller (refer to section 3.4.TBD). If the
host is able to use another controller to access the same NVM subsystem or re-establish communication
with the original controller, then it is strongly recommended that any host use of that controller to recover
from communication loss follow the procedures and requirements in this section in order to avoid possible
corruption of user data and unintended changes to NVM subsystem state.

Host recovery from communication loss with a controller consists of three functional components:

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

• Host determination that communication with a controller has been lost is described in section
9.TBD.1.

• Host determination that no further processing of outstanding commands is possible on that
controller is described in section 9.TBD.2.

• Host retry, if any, of outstanding commands after communication loss is described in section
9.TBD.3.

These functional components interact with each other. Host detection of communication loss is
necessary before the host is able to determine when no further controller processing of outstanding
commands is possible. Host retries of outstanding commands that modify user data or NVM subsystem
state are able to corrupt user data or make unintended changes to NVM subsystem state unless the host
determines that no further controller processing of the original commands is possible as described in
section 9.TBD.2.

9.TBD.1 Host Communication Loss with a Controller

A host determines that communication has been lost with a controller if:

• the host detects a Keep Alive Timeout (refer to section 3.9);

• for message-based transports, the host or the controller terminates the NVMe Transport
connection on which the command was sent (refer to section 3.3.2.4); or

• the host detects a transport connection loss using methods outside the scope of this specification
(e.g., the transport notifies the host of a loss of communication either with the controller to which
the command was submitted or with the queue on which the command was sent).

A controller may detect a loss of communication at a different time (e.g., later) than the host detects that
loss of communication. As explained in section 9.TBD.2, additional time may be required for the controller
to stop processing commands after the controller detects a loss of communication.

9.TBD.2 End of Controller Processing of Outstanding Commands

This section describes how a host determines that no further controller processing of an outstanding
command is possible after a loss of communication happens. At the time when a host detects a
communication loss with a controller, the outstanding commands, if any, are commands for which the
host is unable to receive a CQE as a result of the communication loss (refer to section 3.4.TBD).

Some commands (e.g., Sanitize) initiate background operations. These background operations are able
to continue after a host loss of communication with the controller that started the background operation.
After such a loss of communication, additional measures (e.g., commands submitted to a different
controller) are necessary for the host to track progress and completion of such a background operation.

A host that is unable to communicate with a controller should perform the following steps in order to
determine that no further controller processing of outstanding commands is able to occur:

1. For message-based transports, terminate the association and the associated transport
connections. This step is skipped for memory-based transports.

2. Wait for sufficient time to ensure that the controller has detected a loss of communication using at
least one of the following:

a. If the controller uses Command Based Keep Alive (refer to section 3.9.3.1), wait at least
until 2 * KATT (refer to section 3.9) from the time the host submitted the most recent
Keep Alive Command to the controller;

b. If the controller uses Traffic Based Keep Alive (refer to section 3.9.4.1), wait at least until
3 * KATT from the time the host submitted the most recent command to the controller; or

c. Receive a transport-specific notification for determining that the controller has terminated
an NVMe Transport connection or detected a loss of communication (e.g., a fabric
notification or a PCIe surprise link down error notification for a PCIe link that directly
connects a host to an NVM subsystem (e.g., an SSD)).

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

3. Wait for additional sufficient time to ensure that the controller has stopped processing commands
using one of the following:

a. If the CQT field (refer to Figure 276) is non-zero, wait for the amount of time indicated in
the CQT field to elapse; or

b. If the CQT field is cleared to 0h, wait for an implementation specific amount of time (e.g.,
10 seconds). The host should allow this value to be administratively configured.

The specification of the times to wait to ensure that the controller has detected a Keep Alive Timeout
described in this section (i.e., 2 * KATT and 3 * KATT) assumes that the transport delays any command
by at most one KATT. Once the last command is fetched by the controller, the controller is required to
detect a Keep Alive Timeout after at most a further 1 * KATT for Command Based Keep Alive and at most
2 * KATT for Traffic Based Keep Alive (refer to Figure TBDto). The sum of the two delays (i.e., the
transport delay and the delay to detect the Keep Alive timeout) is 2 * KATT for Command Based Keep
Alive and 3 * KATT for Traffic Based Keep Alive.

9.TBD.3 Command Retry After Communication Loss

If the host loses communication with a controller, then the host is unable to receive a completion (CQE)
for any outstanding command (refer to section 3.4.TBD) that has been submitted to that controller. If the
host is able to use another controller to access the same NVM subsystem or re-establish communication
with the original controller, the host may be able to use that controller to recover from the communication
loss by retrying outstanding commands. It is strongly recommended that any host retry of any
outstanding commands after communication loss follow the procedures and requirements in this section
in order to avoid possible corruption of user data and unintended changes to NVM subsystem state (e.g.,
Reservation state (refer to section 8.19)).

For command retry purposes, every outstanding command falls into one of three command retry categories,
Unrestricted Retry, Delayed Retry, or State-Dependent Retry, based on whether the command is
idempotent (refer to section 9.TBD.3.1), and whether the command modifies user data or NVM subsystem
state. Section 9.TBD.3.2 defines these categories and describes requirements and restrictions on retrying
outstanding commands in each category.

9.TBD.3.1 Idempotent Commands

Controller processing of an idempotent command produces the same end state on the NVM
subsystem and returns the same results if that command is resubmitted one or more times with no
intervening commands. All commands tend to modify some ancillary state on the controller (e.g.,
tracking statistics); these ancillary changes to state do not prevent a command from being considered
idempotent. The results of the command include the status code (excluding transient status codes or
error conditions, e.g., due to a loss of communication), any data returned to the host and any NVM
subsystem changes to user data or state (e.g., reservation state, feature contents).

For example, a read command addressed to a specific location (e.g., LBA) in a namespace is an
idempotent command. The read command addressed to a valid location in a namespace returns the
same data with a successful completion status code if that command is submitted repeatedly.
Similarly, a write command addressed to a valid location in a namespace writes the same data to that
location if submitted repeatedly. This command is also an idempotent command.

On the other hand, a Namespace Management command (refer to section 5.23) that creates a
namespace is not idempotent (i.e., is a non-idempotent command), as repeating the Namespace
Management command creates additional namespaces with different namespace identifiers.
Similarly, a Reservation Register command that unregisters a host (refer to section 7.4) is also not
idempotent because repeating the command attempts to unregister a host that is no longer registered
and returns an error status code.

9.TBD.3.2 Command Retry Categories and Requirements

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

For command retry purposes, an outstanding command is in one of three categories:

• Unrestricted Retry: The outstanding command is an idempotent command (refer to section
9.TBD.3.1) that is able to be retried without restrictions because that outstanding command has no
effect on user data or NVM subsystem state (e.g., an NVM Command Set Read command). Refer
to section 9.TBD.3.2.1.

• Delayed Retry: The outstanding command is an idempotent command for which any retry and/or
reporting of the result of that retry is required to be delayed until no further controller processing is
possible of that outstanding command because the outstanding command modifies user data or
NVM subsystem state (e.g., an NVM Command Set Write command, except as described in section
9.TBD.3.2.2). Refer to section 9.TBD.3.2.2.

• State-Dependent Retry: The outstanding command is not an idempotent command (e.g., a
Namespace Management command that creates a namespace) or is an idempotent command that
is able to affect behavior of other hosts. The procedures for recovery from such an outstanding
command depend on the extent, if any, to which that outstanding command has been processed
by the controller. Refer to section 9.TBD.3.2.3.

Sections 9.TBD.3.2.1, 9.TBD.3.2.2, and 9.TBD.3.2.3 define each command retry category and describe
host requirements and restrictions that prevent retry of outstanding commands from corrupting user data
or making unintended changes to NVM subsystem state.

9.TBD.3.2.1 Unrestricted Retry Commands

An outstanding command is an Unrestricted Retry command if that command:

a) is an idempotent command (refer to section 9.TBD.3.1); and
b) does not change more than ancillary state in the NVM subsystem (e.g., statistics such as the

value of the Data Units Read field in the SMART / Health Information log page (refer to Figure
208)).

For an Unrestricted Retry command:

• the Controller Capability Change (CCC) bit;

• the Namespace Inventory Change (NIC) bit;

• the Namespace Capability Change (NCC) bit; and

• the Logical Block Content Change (LBCC) bit
are all cleared to ‘0’ in the Commands Supported and Effects data structure (refer to Figure 212) in the
Commands Supported and Effects log page (refer to section 5.16.1.6). If any of these four bits is set to
‘1’, then that command is not an Unrestricted Retry command.

A host may retry any outstanding command that is an Unrestricted Retry command immediately after
communication loss without determining whether further controller processing of that outstanding
command is possible.

For recovery purposes, a host may treat any outstanding command that is an Unrestricted Retry
command as if that command were a Delayed Retry command or a State-Dependent Retry command.

9.TBD.3.2.2 Delayed Retry Commands

An outstanding command is a Delayed Retry command if that command:

a) is an idempotent command (refer to section 9.TBD.3.1); and
b) changes user data or NVM subsystem state (e.g., Read Recovery Level (refer to section 8.17) or

Reservation state (refer to section 8.19)),
unless the changes to user data or NVM subsystem state are able to affect the behavior of any other host
(e.g., refer to the example in Annex B.TBD.4). As explained further in Annex B.TBD.4, use of individual
Delayed Retry commands (e.g., an NVM Command Set Write command) that are not part of a fused
operation to affect the behavior of other hosts is strongly discouraged.

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

A host should treat an outstanding command that is a Delayed Retry command as having command
ordering requirements with respect to other commands where those command ordering requirements are
enforced by higher-level software (refer to section 3.4.1). Hence, for any such command, a host should
not report completion or error status, including errors caused by communication loss, to higher-level
software (e.g., an associated application, filesystem or database) until the host has determined that no
further controller processing of that command and retries, if any, of that command is possible. If a host
violates this recommendation, corruption of user data and unintended changes to NVM subsystem state
are possible; refer to Annex B.TBD.1 for an example where user data is corrupted.

A host is able to comply with this “should not report” recommendation by delaying submission of a retry of
any outstanding command that is a Delayed Retry command until no further controller processing is
possible of the original outstanding command and any previously submitted retries of that command. This
avoids host delays in reporting completion of any command upon receiving the CQE for that command.

A host may treat any outstanding command that is a Delayed Retry command as if that command were a
State-Dependent Retry command.

A host that does not adhere to the recommendations in this section for handling outstanding commands
that are Delayed Retry commands risks causing corruption of user data. It is strongly recommended that
host NVMe implementations adhere to these recommendations to avoid data corruption.

9.TBD.3.2.3 State-Dependent Retry Commands

An outstanding command is a State-Dependent Retry command if the command changes user data or
NVM subsystem state, and the command:

a) is not an idempotent command (refer to section 9.TBD.3.1); or
b) changes user data or NVM subsystem state in a way that is able to affect the behavior of other

hosts.

A host should not retry an outstanding command that is a State-Dependent Retry command without first
determining that command retry is the appropriate recovery action. This is because retrying such a
command may have different results than the original command, duplicate the results of the original
command, or affect the behavior of other hosts in a different manner than the original command. In
general, determination of the appropriate recovery action is only able to be performed by higher-level
software (e.g., an associated application, filesystem or database) that is able to determine the extent, if
any, to which the outstanding command has been processed and enforce ordering requirements among
commands (refer to section 3.4.1).

A host should treat an outstanding command that is a State-Dependent Retry command as having
command ordering requirements enforced by higher-level software with respect to other commands (refer
to section 3.4.1). Hence, for any such command, a host should not report completion or error status,
including errors caused by communication loss, to higher-level software (e.g., an associated application,
a filesystem or database), until the host has determined that no further controller processing of the
outstanding command and retries, if any, of that command is possible. If a host violates this
recommendation, corruption of user data or unintended changes to NVM subsystem state are possible;
refer to Annex B.TBD.2 for an example where unintended changes occur to NVM subsystem state.

A host that does not adhere to the recommendations in this section for handling outstanding commands
that are State-Dependent Retry commands risks causing corruption of user data and unintended changes
to NVM subsystem state. It is strongly recommended that host NVMe implementations adhere to these
recommendations to avoid these outcomes.

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

Annex B. Host Considerations (Informative)

B.TBD Examples of Incorrect Command Retry Handling After Communication Loss

Section 9.TBD.3 describes requirements for host retry of outstanding commands after communication
loss. In this situation, the response of a command is unknown and hence the host has no information
about the extent, if any, to which the controller has processed that command. Many commands are not
safe to unconditionally retry if they have been processed in part or completely. This annex describes
examples of problematic situations caused by retrying an outstanding command without regard to the
consequences of that retry.

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

B.TBD.1 Write after Write

In the example shown in Figure TBDx1, the host loses communication with Controller 1 and does not
receive a response from Controller 1 for an idempotent command that changes user data at location X to
A (e.g., an NVM Command Set Write command). The following events occur:

• The host retries that command on Controller 2 (Retry: Write A at Location X), and the retry
succeeds quickly.

• The completion of that retry leads to the host subsequently submitting a command that changes
the user data at the same location to B (Write B at Location X).

• During this time, Controller 1 has been processing the original outstanding command (Write A at
Location X), and that command’s change of user data at location X to A finally takes effect after
the user data at location X has already been changed to B.

The final outcome is that the user data at location X is A, which is incorrect and an example of data
corruption.

For an idempotent command that changes user data or NVM subsystem state, this example shows why
the host should not report the results of that command, including any retry of that command, to higher-
level software until the host is able to determine that no further controller processing of that command and
any retry of that command is possible (refer to section 9.TBD.2).

 Figure TBDx1: Write after Write

Host detects a loss
of communication.

Host

Write A at Location X

Controller 1 Controller 2

Retry: Write A at Location X

Write B at Location X

Write A on Controller 1
takes effect.

Controller processing command.
Location X is A not B!

Success

Success

Unsafe report to
higher-level
software for

completion of
Write A.

Safe report to
higher-level
software for

completion of
Write A.

Host determines that Controller 1
has stopped processing that
command.

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

B.TBD.2 Non-Idempotent Command

In the example shown in Figure TBDx2, the host loses communication with Controller 1 and does not
receive a response from Controller 1 for a Namespace Management command that creates a namespace
(refer to section 5.23). The host ensures that no further controller processing of that command is possible
(refer to section 9.TBD.2), and then retries that command on Controller 2, which creates a second
namespace.

This example shows why higher-level software (e.g., an associated application, filesystem or database)
should take steps to determine that a retry of a non-idempotent command does not cause unintended
changes to NVM subsystem state (e.g., number of namespaces).

Figure TBDx2: Non-Idempotent Command

Host detects a loss
of communication.

Host

Namespace Management create

namespace

Controller 1 Controller 2

Retry: Namespace Management

create namespace

Two Namespaces are created!

Command takes effect.

Success

Controller processing command.

Host determines that Controller 1
has stopped processing the
command.

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

B.TBD.3 Retried Command Does Not Succeed

In the example shown in Figure TBDx3, the host loses communication with Controller 1 and does not
receive a response to a Reservation Register command that unregisters the host (refer to section 7.4).
The host ensures that no further controller processing of that command is possible (refer to section
9.TBD.2), and then retries that command on Controller 2. As a result of the original command
unregistering the host, the host is no longer a registrant, and for that reason, the controller returns a
status code of Reservation Conflict (refer to section 8.19.4).

Figure TBDx3: Retried Command Does Not Succeed

This example shows why an error status code is able to be returned if a non-idempotent command is
retried after the original command has been processed. An analogous example is possible for the
Compare and Write fused operation (refer to the Fused Operation section of the NVM Command Set
Specification) because that fused operation is not idempotent.

Host detects a loss
of communication.

Host

Reservation Register release registration

Controller 1 Controller 2

Retry: Reservation Register release

registration

Command does not complete successfully!

Command takes effect.

Reservation Conflict

Controller processing command

Host determines that Controller 1
has stopped processing the
command.

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

B.TBD.4 Retried Command Affects Another Host

In the example shown in Figure TBDx4, two hosts use Location X in a namespace for coordination.
Writing the value A to Location X indicates that step A in a processing sequence has been completed,
and writing the value B indicates that step B in the processing sequence has been completed, where
higher-level software requires that step B follow step A.

Host 1 indicates completion of step A by writing the value A to Location X, but loss of communication
prevents Host 1 from receiving the completion of that command. Host 2 observes that step A is complete,
quickly performs step B, and indicates completion of step B by writing the value B to Location X.

In the absence of receiving a completion for the original command, Host 1 retries writing the value A to
Location X, overwriting the completion of step B reported by Host 2. This example shows that retry of
commands that are able to affect the behavior of other hosts is problematic. In this example, higher-level
software needs a mechanism to indicate that the writes to Location X are not safe to retry after a delay.

Figure TBDx4: Retried Command Affects Another Host

This sort of higher-level software usage of ordinary NVMe commands (e.g., NVM Command Set Write
commands) for coordination and synchronization among multiple hosts is strongly discouraged because
retry of these commands after communication loss is problematic. Higher-level software should instead
use mechanisms intended for coordination among multiple hosts. Two examples of such mechanisms
are:

• Reservations (refer to section 8.19); and

• Compare and Write fused operations (refer to the Fused Operation section of the NVM Command
Set Specification).

In addition, command retries that modify NVM subsystem state (e.g., a Set Features command that
modifies a feature that has any scope that is visible to other hosts as described in Figure 317 <NOTE:
NVM Express Base Specification NEXT_2023_11_08 has a scope column (Figure 409) not present in
2.0d>) is able to affect the behavior of other hosts. Use of commands that modify NVM subsystem state
for coordination and synchronization among multiple hosts is likewise strongly discouraged.

Host 1 detects
a loss of

communication.

Host 1

Write A at Location X

Controller 1 Host 2

Retry: Write A at Location X

Write A on
Controller 1
takes effect.

Location X is A not B!

Success

Success

Controller 2

Read Location X, observe A

Controller 3

Controller processing
command

Host determines that
Controller 1 has stopped
processing the command.

Success

Write B at Location X

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

Description for Changes Document for NVM Express TCP Transport
Specification 1.0c

3 Transport Binding

3.5 Error Handling Model

3.5.1 Transport Error Handling

…

In response to a H2CTermReq PDU, the controller shall terminate the connection. If the controller
does not terminate the connection within 30 seconds, the host may terminate the connection. The
maximum H2CTermReq PDU data size shall not exceed 128 bytes. The controller shall ignore a
H2CTermReq PDU with a PDU length (PLEN) that exceeds 152 bytes (24-byte PDU Header plus
128-byte PDU data) and shall terminate the connection immediately. Additionally, the controller shall
ignore a H2CTermReq PDU with PLEN less than 24 bytes and shall terminate the connection
immediately. If the host is unable to send a H2CTermReq PDU, then the host shall reset the TCP
connection.

The host and controller may detect connection loss at different times (refer to the Communication Loss
Handling section in the NVM Express Base Specification). The host should not assume the controller has
detected connection loss if there is a loss of a TCP connection detected by the host (e.g., due to host-
side failures or an intermediary such as a firewall sending a TCP RST). The host should treat the
reception of a C2HTermReq PDU as an indication that the controller has initiated clean-up of the NVMe
Transport Connection.

…

Technical input submitted to the NVM Express® Workgroup is subject to the terms of
the NVM Express® Participant’s agreement. Copyright © 2008-2024 NVMe
Corporation.

Description for Changes Document for NVM Express RDMA Transport
Specification 1.0b

3 Transport Binding

3.5 Error Handling Model

3.5.1 RDMA Transport Errors

Errors detected by the RDMA Transport may result in the termination of any command capsule, response
capsule, or data transfer operations and may result in the tear down of the RDMA QP(s). The RDMA
Transport may detect errors that are not directly associated with a capsule or data transfer operation
(e.g., tear down of the RDMA QP due to connection loss, data corruption, or protection error). In the case
of a RDMA QP tear down, the RDMA Transport is responsible for terminating the RDMA QP, freeing up
any NVMe Transport resources, and then informing the NVMe layer about the termination and the
associated cause.

The host and controller may detect connection loss at different times (refer to the Communication Loss
Handling section in the NVM Express Base Specification). The host should not assume the controller has
detected connection loss if the RDMA Transport has terminated the RDMA QP (e.g., due to host-side
failures).

	NVM Express® Technical Proposal for New Feature
	Revision History
	Markup Conventions:
	Description for Changes Document for NVM Express Base Specification 2.0d
	1 Introduction
	1.5 Definitions
	1.5.TBD idempotent command

	3 NVM Express Architecture
	3.3 NVM Queue Models
	3.3.1 Memory-based Transport Queue Model
	3.3.1.3 Queue Abort

	3.3.2 Message-based Transport Queue Model
	3.3.2.4 I/O Queue Deletion

	3.4 Command Processing Architecture Submission and Completion Mechanism
	3.4.TBD Outstanding Commands
	3.6 Shutdown Processing
	3.6.1 Memory-based Transport Controller Shutdown
	3.6.2 Message-based Transport Controller Shutdown

	3.7 Resets
	3.7.2 Controller Level Reset

	3.9 Keep Alive
	3.9.2 Keep Alive Timer Activation
	3.9.3 Command Based Keep Alive
	3.9.3.1 Command Based Keep Alive on the Controller
	3.9.3.2 Command Based Keep Alive on the Host

	3.9.4 Traffic Based Keep Alive
	3.9.4.1 Traffic Based Keep Alive on the Controller
	3.9.4.2 Traffic Based Keep Alive on the Host

	3.9.5 Keep Alive Timeout Cleanup

	5 Admin Command Set
	5.17 Identify command
	5.17.2 Identify Data Structures
	5.17.2.1 Identify Controller Data Structure (CNS 01h)

	6 Fabric Command Set
	6.4 Disconnect Command and Response

	9 Error Reporting and Recovery
	9.TBD Communication Loss Handling
	9.TBD.1 Host Communication Loss with a Controller
	9.TBD.2 End of Controller Processing of Outstanding Commands
	9.TBD.3 Command Retry After Communication Loss
	9.TBD.3.1 Idempotent Commands
	9.TBD.3.2 Command Retry Categories and Requirements
	9.TBD.3.2.1 Unrestricted Retry Commands
	9.TBD.3.2.2 Delayed Retry Commands
	9.TBD.3.2.3 State-Dependent Retry Commands

	Annex B. Host Considerations (Informative)
	B.TBD Examples of Incorrect Command Retry Handling After Communication Loss
	B.TBD.1 Write after Write
	B.TBD.2 Non-Idempotent Command
	B.TBD.3 Retried Command Does Not Succeed
	B.TBD.4 Retried Command Affects Another Host

	Description for Changes Document for NVM Express TCP Transport Specification 1.0c
	3 Transport Binding
	3.5 Error Handling Model
	3.5.1 Transport Error Handling

	Description for Changes Document for NVM Express RDMA Transport Specification 1.0b
	3 Transport Binding
	3.5 Error Handling Model
	3.5.1 RDMA Transport Errors

