Hyperscale Innovation: Flexible Data Placement Mode (FDP)

Sponsored by NVM Express organization, the owner of NVMe® specifications

Chris Sabol, Google
Ross Stenfort, Meta
Write Amplification Overview

❖ What is Write Amplification (WA)?
 ▪ When the host sends write data to the device it is additional data that is written to the media.
 ▪ Write Amplification Factor (WAF) = media written data/ host written data

❖ WAF = 2.5 Example
 ▪ Host writes 1 MB
 ▪ Device writes 2.5 MB to the media
 ▪ Thus Device
 ▪ Media Writes
 ▪ 1 MB Host Data
 ▪ 1.5 MB Garbage Collected Data
 ▪ Extra Media reads to enable host write
 ▪ 1.5+ MB
Why is Write Amplification Undesirable?

- Write Amplification results in additional:
 - Media Reads/ Writes affecting performance/ QOS
 - Flash media writes causing non-host induced media wear
 - Additional power needed to perform the additional reads/writes
Google Datacenter Infrastructure WA Impact

- Example with random 4KiB writes, 28% OP, and greedy GC algorithm, can expect a WAF ~2.5

<table>
<thead>
<tr>
<th>WAF Reduction from 2.5 to 1.25 Benefits</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce Over Provisioning (OP)/ Higher Usable Capacity</td>
<td>18% Capex Savings</td>
</tr>
<tr>
<td>Enable 2x drive size with the same application write density</td>
<td>7% Capex / 15% Opex Savings</td>
</tr>
<tr>
<td>Double effective drive lifetime</td>
<td>Up to 35% Capex Savings</td>
</tr>
<tr>
<td>Enable 2x application write rate</td>
<td>Performance</td>
</tr>
</tbody>
</table>

Write Amplification has very significant hyperscale TCO impact
Imagine a World of WAF = ~1

What would this mean?

- SSD overprovisioning would significantly decrease, and user capacities would increase
 - 28% OP Devices would go away in a WAF of 1 world
- Performance
 - Random and Sequential Write would have similar performance
 - No need to precondition
 - Improved QOS for read and write
- Media wear would be reduced
 - Devices last longer without NAND media changes
History of Write Amplification Improvements

Write Amplification Improvement Timeline:

~1991
NAND Based SSDs
Solution #1: Overprovisioning

~2007/2008
Host provides SSD LBA Hints
Solution #2 TRIM/Deallocate

2022
Coming Soon
Host provided data placement hints
Solution #3 Flexible Data Placement

❖ How did Flexible Data Placement come about?
 ▪ Google Write Amplification Investigation Result
 ▪ Data placement on media is key
 ▪ SMART FTL Proposal
 ▪ Meta Write Amplification Investigation Result
 ▪ Data placement on media is key
 ▪ Direct Placement Mode Proposal
 ▪ Google & Meta merged their independent learnings into Flexible Data Placement (FDP) merging the best features of each proposal to enable best industry solution
Flexible Direct Placement Overview

- High Level Goal
 - Host provides write hints for media placement
 - Device reads and other behaviors do not change

FDP is targeted for
 - Datacenter SSDs
 - Backwards compatible with legacy hosts

<table>
<thead>
<tr>
<th>Functionality</th>
<th>FDP Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Device Feature Enable/Disable</td>
<td>Yes</td>
</tr>
<tr>
<td>Host Enable Data / Media Alignment</td>
<td>Yes</td>
</tr>
<tr>
<td>Read Operations</td>
<td>No Changes</td>
</tr>
<tr>
<td>Enable Erase On Media Boundaries</td>
<td>Yes</td>
</tr>
<tr>
<td>LBA Placement Restrictions</td>
<td>No</td>
</tr>
<tr>
<td>Media XOR Support</td>
<td>Optional</td>
</tr>
<tr>
<td>Multiple Namespace Support</td>
<td>Optional</td>
</tr>
<tr>
<td>Backwards Compatible</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Flexible Direct Placement Use Case Challenge

❖ Multi-user/ Multi-workload/ Disaggregated Storage

❖ Today’s Challenges

- Application’s Data is Mixed
- Device performance is unstable
 - Never reaches “steady state” due to mixed workloads
- Overprovisioning is increased until WA is low enough and performance appears stable
- Workload changes causes process above to repeat
Flexible Direct Placement Solution

Today without FDP:
Data Distribution Across Media

Key
Application
Write
Data:
A
B
C
Invalid Data

Today’s Method:
All Media blocks must be garbage collected resulting in a WAF ~3.

Application A de-allocates all of it’s data

With FDP:
Data Distribution Across Media

GD Impact

Data Distribution Across Media

FDP Method:
Only single media block erased resulting in WAF = ~1

Key
Application
Write
Data:
A
B
C
Invalid Data

Today’s Method:
All Media blocks must be garbage collected resulting in a WAF ~3.

With FDP:
Data Distribution Across Media

Data Distribution Across Media

Results:
Flexible Direct Placement TP4146 Next Steps

• FDP is working through the NVM Express standardization process

Looking forward to a new world, where a WAF =~1 is commonplace.
Thank You