An Overview of the Refactored NVMe Transport Specifications – PCIe®, RDMA, and TCP

Sponsored by NVM Express organization, the owner of NVMe® specifications
Speakers

John Geldman
Director, SSD Industry Standards
KIOXIA

Curtis Ballard
Distinguished Technologist
Hewlett Packard Enterprise

Sagi Grimberg
CTO
lightbits

Standards
Agenda

• Refactoring in NVMe® 2.0 Specifications
• PCIe Transport Specification
• RDMA Transport Specification
• TCP Transport Specification
Refactoring the transport specifications
How we started: A short NVM Express® story

• NVM Express 1.0 was released in 2011
 • The NVM Express specification defined a register level interface for host software to communicate with a non-volatile memory subsystem over PCI Express®

• NVM Express 1.2.1 and NVMe-oF™ 1.0 were released in 2016
 • NVMe 1.2.1 added NVMe over Fabrics as a new type of NVMe transport, with its own specification
 • Examples included: Ethernet, InfiniBand™, and Fibre Channel
 • Support requirements for features and functionality differed for PCI Express and Fabrics transports
Transport Spec Refactoring: The What and the Why

• In 2021, NVMe® 2.0 “Refactored” the NVM Express® Specifications

• Refactoring the transport specifications
 • Cleanly separate common NVM Express functionality from PCIe® specific
 • The NVM Express specification was initially PCIe technology only
 • PCIe specific terminology, references, etc. were spread throughout
 • Cleanly merge NVMe-oF common functionality into the base specification
 • Cleanly separate transport specific details into their own specifications
 • Result: Independent transport specifications able to remain stable or be updated without changing unrelated specifications
NVM Express® PCIe® Transport Specification
PCI Express®, the Original NVMe® Transport

In 2011, NVM Express was released with PCI Express as its backbone.

In 2022, PCIe® architecture is still a popular NVMe transport and has been amazingly efficient (compared to previous storage protocols).

- NVMe technology was developed with an eye for efficient, latency minimized interactions.
- NVMe technology’s multiple command/submission queue, doorbell, and MSI-X interrupt structures were built with efficiency in mind – this efficiency is still a focus.
NVM Express® technology is now relatively independent of PCI Express® versions

NVM Express has been working on removing PCI Express revision specific requirements (those are the domain of PCI-SIG®)

NVM Express has benefited from being able to ride the waves of performance and feature improvements from PCI-SIG

Requirements on the PCI Express interface for NVM Express architecture are focused in two specifications:

• The NVMe® over PCIe specification, initially developed in the refactoring, defines NVMe requirements and behaviors that are specific to the PCIe transport

• The NVMe Management Interface specification defines how the PCIe command set is used for an NVM Express Management Interface
NVMe® technology rides the PCI Express performance ramp

NVMe technology intersected PCI Express technology at Rev. 3.0. PCI Express has continued to evolve:

- Revision 3.0 @ up to 8 GT/s per lane in 2010
- Revision 4.0 @ up to 16 GT/s per lane in 2017
- Revision 5.0 @ up to 32 GT/s per lane in 2019
- Revision 6.0 @ up to 64 GT/s per lane in 2021
- PCI Express has announced the development of Revision 7.0 @ up to 128 GT/s per lane (targeting 2025)
NVMe® technology rides the feature improvements of PCI-SIG®

PCle 5.0 specification and beyond

- CMA: Content Measurement & Authentication
- IDE: Integrity and Data Encryption
- Combined Power: A reformed power budgeting mechanism (still co-exists with NVMe Power States)

PCle 6.0 specification and beyond

- FLITs: A new packet format (FLow control unIT), a 256 byte structure with Forward Error Correction
- L0p: a mechanism to bring up and down lane counts without stalling
NVMe® technology rides the feature improvements of PCI-SIG®

PCle® Technology Ongoing Initiatives (Join PCI-SIG to contribute or for more)

- Trusted Execution Environment (TEE): An environment to set up confidential workloads, isolated from hosting environment
- I3C Basic: (still in proposal) Developing a uniform implementation for PCIe ecosystem (voltages and relationship to SMBus)
NVM Express® RDMA Transport Specification
NVMe® RDMA Spec – Revealing the Simplicity

• NVM Express® RDMA Transport Specification 1.0a
 • 16 pages of simplicity!
• RDMA operations align closely with PCIe® architecture operations
• Pulling RDMA transport requirements into their own specification reveals how directly the NVMe technology model maps to RDMA
RDMA Specification Updates

• The RDMA Transport Specification 1.0a is functionally equivalent to the RDMA transport requirements in the NVMe® over Fabrics 1.1a specification

• Changes include:
 • Incorporates definitions from Infiniband specification for generic RDMA terms
 • Aligns terms used by NVMe technology with RDMA defined terminology
 • Documentation structure and introductory text clauses to support separating into a standalone document
NVM Express® TCP Transport Specification
NVMe®/TCP Spec – Queueing, messaging and specific features

• NVM Express® TCP Transport Specification 1.0b - 35 pages long
 ▪ Setup and Initialization
 ▪ Queueing model
 ▪ Data Transfer
 ▪ Wire format
 ▪ Error handling
 ▪ Data integrity and Security

• Future extensions will introduce new PDU formats
TCP Specification Updates

• Ratified:
 ▪ TLS 1.3 update
 ▪ Inband Authentication (with TLS)

• Related WIP Technical proposals:
 ▪ Authentication Verification Entity for DH-HMAC-CHAP (TP 8019)
 ▪ X.509 certificates for NVMe-oF endpoints and use with TLS (TP 8023)

• Related
 ▪ Automated Discovery of IP Discovery Controllers (TP 8009)
 ▪ NVMe-oF Centralized Discovery Controller (TP 8010)
 ▪ NVMe Boot specification
TCP ecosystem update

- **Linux support is maturing**
 - Various bug reports, new testers, new devices stepping forward
 - userspace toolchains expanding and natively support NVMe/TCP
 - New addition for Inband-auth (pending inclusion)
 - NVMe/TLS (Working PoC from Hannes) - joint work with NFS folks

- **Now supported in VMware!**
 - Native support introduced in 7.0U3
 - Since then a few patch releases, as well as (7.0U3e)
 - Two zero-day partners cooperated with VMware on NVMe/TCP
 - Already running in production!

- **External drivers for windows in the wild, maybe soon inbox?**
Questions?