A Survey of Form Factors for NVM Express®

Sponsored by NVM Express organization, the owner of NVMe® specifications
A short panel introduction

John “KIOXIA” Geldman (yours truly): Current Board Member of NVM Express and SNIA, Past Board Member of SD Card Association and CompactFlash Association, PCI-SIG® contributor, SNIA SFF TA contributor

Paul “HPE” Kaler: Responsible for researching and evaluating future storage and interconnect technologies and defining the server storage strategy for HPE ProLiant servers, active in SNIA SFF TA, PCI-SIG, OCP NIC and Storage

Bill “Nantero” Gervasi: So many JEDEC roles that we don’t have space

Michael “WDC” Lavrentiev: SD Card contributor, …

Dave “WDC” Landsman: Current Board Member of CompactFlash, NVM Express, SD Card Association, and SNIA, …
A Survey of Form Factors for NVM Express® Architecture

NVM Express® architecture is now ubiquitous across pretty much ‘all’ storage
Hyperscalars, Enterprise Servers, Desktops, Laptops, Digital Cameras, Cinema Cameras, Drones, Industrial, IOT Servers & EDSFF get a lot of attention
This panel will share about EDSFF and also, the rest
▪ (at least what I knew to invite…)
PCI-SIG® Defined Form Factors

John Geldman, KIOXIA
CEM Add In Card (AIC)

1-16 lanes
Published for PCIe® 5.0 specification, under development for PCIe 6.0 specification
Every other function option beyond NVM Express® technology…

Size Options:

- Standard Height (111.28 mm) or Low Profile (68.09 mm)
- Length (varies: up to 312 mm, 241.30 mm recommended)
- Single, Dual, or Triple Slot

Strengths:

- The leading edge and workhorse of PCIe FFs
- Backwards compatible to PCIe Rev 1.0
- Supports up to 600 W (Air Cooling stops at 300 W!)
- Supports up 1.5 KG!
CEM NVMe® Technology Examples
SFF 8639 Connector Module (U.2)

- 4 lanes
- Published for PCIe® 4.0 specification, under development for PCIe 5.0 specification
- Size Options: 69.85 mm x 100.45 mm x (5 to 19 mm)
- Mostly used for Enterprise and Data Center Storage
- Strengths:
 - Chassis compatible with SAS and SATA 2.5 inch HDDs
 - The go-to enterprise storage since 2012 (the Enterprise SSD Form Factor Forum)
- Weaknesses?
 - Will PCIe 5.0 architecture be the most we can pull out of this connector/pinout?
 - Can SFF-TA-1001 be supported at Gen 5 or higher speeds?
U.2 SSD Examples
M.2 (Mini Express)

- 2-4 lanes, published for PCIe® 4.0 specification, under development for PCIe 5.0 specification
- Size Options: Too Many
 - M.2 Cards (typically 22 mm wide for SSDs, lengths include 30, 42, 80, 110 mm)
 - Two families of BGA pinouts starting at 11.5x13 mm and 16x20 mm
 - LGA options
- Developed for mobile, but consumed in:
 - Hyperscalars, Enterprise Servers, Desktops, Laptops, Digital Cameras, Cinema Cameras, Drones, Industrial, IOT
- Strengths:
 - Low power at acceptable performance (e.g., 11 W, 8 W, 4 W)
 - Wide range of functions available
 - Wide range of sizes
- Weaknesses?
 - Will PCIe 5.0 architecture be the most we can pull out of this connector/pinout?
M.2 (Mini Express) Examples

Adapter Cards

BGAs

LGAs

TYPE 2280-S3

TYPE 3026

GENERAL TOLERANCE ±4 ±10 UNLESS OTHERWISE SPECIFIED

GENERAL TOLERANCE ±4 ±10 UNLESS OTHERWISE SPECIFIED

KIOXIA

XG8

Client

NVMe® SSD
SNIA SFF TA Defined Form Factors (and SNIA Object TWG)

Paul Kaler, HPE
EDSFF (Enterprise and Datacenter Standard Form Factor)
E3 Family

- Supports up to x4/x8/x16 lane width spec’d up to PCIe® 5.0 architecture
 - Future plans for PCIe 6.0 specification and beyond
- E3.S and E3.L support 7.5/16.8 “2T” (mm) thicknesses
- 7.5mm targets mainstream capacities and performance
- 2T (16.8mm) is for higher capacity (e.g. 60TB) and/or full Gen5 performance (>25W)
- Current defined protocols—NVM Express®, CXL, Native NVMe-oF™ technologies
 - Future OCP NIC 3.0 enablement
- Predominately used in Enterprise servers and storage
 - Future—use E3.S anywhere a 2.5” drive is used today
- Strengths: Works well for both 1U and 2U servers, 2 for 1 interchange (2x 1T↔2T), scalable thermals—full PCIe 5.0 architecture and beyond performance, x16 lane width enables performance headroom
E1.S

- Supports up to x4/x8 lane width spec’d up to PCIe® 5.0 specification
 - Future plans for PCIe 6.0 architecture and beyond
- Five thickness options 5.9/8.01/9.5/15/25 (mm)
- Current defined protocols—NVM Express®, CXL, Native NVMe-oF™ technologies
- Predominately used by Hyperscalers
- Strengths: Optimized for 1U servers, wide range of thickness options provide ability to tailor for varying thermal, density, and performance requirements
E1.L

- Supports up to x4/x8 lane width spec’d up to PCIe® 5.0 architecture
- Two thickness options 9.5/18 (mm)
- Current defined protocols—NVM Express®, CXL, Native NVMe-oF™ technologies
- Predominately used by Hyperscalers for “cooler” storage tiers (e.g. QLC)
- Strengths: Very optimized to achieve high capacity (~1PB) in 1U servers and JBOFs
SFF-TA-1001 (U.3)

- Supports up to x4 lane width spec’d up to PCIe® 4.0 architecture
- Based on PCI Express® SFF-8639 Module Spec Rev 4.0 with a new pinout that enable tri-mode host drive bays
- PCIe lanes are shared with SAS/SATA enabling tri-mode RAID controllers to support NVMe®/SAS/SATA technology with one to four ports
- Predominately used in Enterprise servers and storage
- Strengths: Sharing high speed lanes enables lower cost systems for mixing SAS/SATA/NVMe architectures and makes it easier for customers to transition from SATA/SAS to NVMe technology
Native NVMe-oF™ Drive

• Supports up to x2 lane width spec’d up to Ethernet 25G
 • Future plans under development for Ethernet 50G
• Spec supports several form factor options (2.5”, 3.5”, and EDSFF)
• Predominately targeting use cases where performance scaling per drive is important
• Strengths: Enables end-to-end Ethernet connectivity eliminating potential performance bottlenecks with Ethernet to PCIe® technology conversions.
JEDEC Defined Form Factors

Bill Gervasi, Nantero
XFM (JESD233)

- 1-2 lanes, published for PCIe® 4.0 architecture
- Card Size
 - 14 mm wide, 18 mm long, 1.4 mm thin
- Developed as replaceable storage (not removable)
- Strengths:
 - Embedded connectorized storage
 - A balance between a small form factor and support of SSD-class components (e.g., current and future 3D flash)
 - 2.5 V and 1.2 V power inputs
 - Four current classes for targeted performance and power
Embedded connectorized storage designed for:

- Easy replacement
- Minimal real-estate (3D)
- Heat transfer mechanisms optimizable for system target
Automotive BGA

JESD312
PCIe®
Shared Resource: Automotive SSD

Display SoC
PCIe Switch
Communications SoC

Entertainment SoC
Vehicle Control SoC

Variety of Control Systems
Target: Year End 2022

A New Standard SSD for automotive applications
Package and Pinout

PCI-SIG® 2828 BGA

Sufficient power delivery

Case exposed for cooling

Ref: PCI Express® M.2 Specification
To assist suppliers in offering well priced options without sacrificing compatibility:

1) End users design to 28x28, allow any part to drop in

2) Allows suppliers to use any of the footprint compatible options

 - 16 x 20 mm
 - 20 x 24 mm
 - 22 x 28 mm
 - 28 x 28 mm
Electrical Interface

32 GB/s peak throughput

PCIe® 4.0 x4

SMBus

JTAG

Automotive SSD

Ref: PCI Express Base Specification 4.0
Command Protocol

Required: PCIe® 4.0
Required: NVMe® 1.4c+
Encouraged: Single Root I/O Virtualization
Required: SMBus
Required: JTAG

Physical interface
Logical interface
Optional virtualization
System and power management
Testability

Ref: JTAG (IEEE 1149.1) Specification
Ref: System Management Bus (SMBus) Specification
Ref: NVM Express® (NVMe) protocol
Ref: PCI Express® Base Specification 4.0
Security

Requester

Secure Request

SPDM

Truth Boundary

Responder

Secure Response

Firmware
Resilience

Ref: Security Protocol and Data Model (SPDM)
Ref: Digital Signature Standard (DSS)
Ref: FIPS PUB 180-4 Secure Hash Standard (SHS)
Ref: NIST Platform Firmware Resiliency Guidelines 800-193
Ref: Component Measurement and Authentication (CMA)
Ref: Digital Signature Standard (DSS)
Ref: Security Protocol and Data Model (SPDM)

384-bit Minimum Security

Signature: TPM_ALG_ECDSA_ECC_NIST_P384
Hash: TPM_ALG_SHA_384
Storage Regions

Optional Feature:

High reliability system storage region

<table>
<thead>
<tr>
<th>Drive Capacity Class</th>
<th>Minimum System Region Capacity</th>
<th>Bulk Region Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>128 GB</td>
<td>0</td>
<td>128 GB</td>
</tr>
<tr>
<td>256 GB</td>
<td>0</td>
<td>256 GB</td>
</tr>
<tr>
<td>512 GB</td>
<td>32 GB</td>
<td>512 GB</td>
</tr>
<tr>
<td>1 TB</td>
<td>32 GB</td>
<td>1 TB</td>
</tr>
<tr>
<td>2 TB</td>
<td>64 GB</td>
<td>2 TB</td>
</tr>
<tr>
<td>4 TB</td>
<td>64 GB</td>
<td>4 TB</td>
</tr>
</tbody>
</table>

The system and bulk regions may have distinct parameters including temperature range, retention, etc.

E.g., Terabyte Write (TBW) for -40°C to +95°C supported for system and storage regions, -40°C to +105°C for system region only.
Defined by Market Segments

Personal Auto
344 days/year
3 hours/day
15 year life

Professional Auto
365 days/year
12 hours/day
8 year life

Professional Auto market, bulk storage region capacity 1 TB class from -40 to +95 °C = 200 TBW
DWPD = 200 TBW \[1 \text{ TB} \times 8 \text{ years} \times 365 \text{ days/year} \times (12 \div 24 \text{ hours}) \] = minimum 0.24 DWPD

Personal Auto market, system storage region capacity 64 GB from +95 to +105 °C = 12.8 TBW
DWPD = 12.8 TBW \[0.064 \text{ TB} \times 15 \text{ years} \times 344 \text{ days/year} \times (3 \div 24 \text{ hours}) \] = minimum 0.31 DWPD

Data usage model = Enterprise model

TBW = Terabytes written
DWPD = Drive writes per day

Ref: JESD218B-01 Solid State Drive (SSD) Requirements and Endurance Test Method
Ref: JESD219 Solid-State Drive (SSD) Endurance Workloads
SD Card Defined Form Factors

Michael Lavrentiev, WDC
SD Express Card - Basics

The fastest SD™ and microSD™ memory cards with backward compatibility

Supporting the following interfaces:

- NVMe® + PCIe® interface – up to PCIe 4.0 x2
- SD interface (UHS-I up to 105MB/s)
SD Express Card – Features

Initiate either directly from the PCIe®/NVMe® technology or SD

- Fully compatible to PCIe/NVMe standards. Identifies itself as a standard NVMe Memory

ESD protection up to 4KV on all pads (Same as legacy SD card requirements)

Hot Plug-In/Removal support

Boot, TCG and RPMB (SD9) may be supported by the SD interface as well

Working on New Speed Classes over NVMe technology⁽¹⁾

⁽¹⁾ Forward-looking statement: SDA undertakes no obligation to realize these forward-looking statements, which speak only as of the date hereof.
SD Express - Applications

- Multi Channel Video Capturing ➔ requires multi-stream high speed recording and captures large amount of data
- Gaming with 3D high-resolution graphics ➔ requires more memory and high-speed capability for real-time usage
- VR & AR video increasing in quality ➔ requires a high-speed real-time view of 360°
- 4K cameras are everywhere
 - Plus growing 8K, 12K and 8k360o VR cameras with huge data/speed requirements
 - (8K/24fps uncompressed requires 6GB per minute or 360GB per hour!)
 - Off-the-shelf bridge solutions allow full support of SD-UHS-II cards as well as SD Express enabling smooth transition
- Multi-sensor Data Collection
 - And/or Multimedia Apps running from cards
- Semi-embedded applications (IoT, Mobile-Compute etc)

SD and related marks and logos are trademarks of SD-3C LLC. © 2022 SD-3C LLC. All Rights Reserved.
CompactFlash Defined Form Factors

Dave Landsman, WDC
CompactFlash Association

Charter
Create a standards-based removable storage ecosystem for the professional/prosumer imaging, automotive/industrial markets.

History
Established 1995 by SanDisk and a group of Consumer Electronics manufacturers during infancy of digital photography to establish the CompactFlash into an industry standard
Standards evolved through CFA’s successful 27-year history from PCMCIA to PCIe®+NVMe® technology. Widely adopted by professional and prosumer digital cameras and camcorders

Membership
81 Corporate Members consisting of Host, Card, Peripheral and Tester manufactures
America = 25, Japan = 25, Asia = 20, Europe = 11

Addressable Markets

Professional Imaging
Renowned professional photo and video camera manufacturers have been loyal to CompactFlash since its inception for its performance, capacity, and reliability

Automotive and Industrial
Data acquisition, analysis, and storage is key to AI-based industrial and autonomous transportation applications
CFexpress

Value Proposition

Highest performance, highest capacity, and highest reliability removable storage solution for the market

<table>
<thead>
<tr>
<th>Form Factor</th>
<th>TYPE A</th>
<th>TYPE B</th>
<th>TYPE C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions width x length x thickness (mm)</td>
<td>20.0 x 28.0 x 2.8</td>
<td>38.5 x 29.6 x 3.8</td>
<td>54.0 x 74.0 x 4.8</td>
</tr>
<tr>
<td>PCIe Max Lanes on Card</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>CFexpress 1.0 = PCIe® Gen 3 and NVMe® 1.2</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>1 Lane</td>
<td>N/A</td>
<td>8Gbps</td>
<td>N/A</td>
</tr>
<tr>
<td>2 Lanes</td>
<td>N/A</td>
<td>16Gbps</td>
<td>N/A</td>
</tr>
<tr>
<td>4 Lanes</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>CFexpress 2.0 = PCIe® Gen 3 and NVMe® 1.3</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>1 Lane</td>
<td>8Gbps</td>
<td>8Gbps</td>
<td>8Gbps</td>
</tr>
<tr>
<td>2 Lanes</td>
<td>N/A</td>
<td>16Gbps</td>
<td>16Gbps</td>
</tr>
<tr>
<td>4 Lanes</td>
<td>N/A</td>
<td>N/A</td>
<td>32Gbps</td>
</tr>
<tr>
<td>Capacities in Market (as of July 15, 2022)</td>
<td><=160GB</td>
<td><= 4TB</td>
<td>N/A</td>
</tr>
</tbody>
</table>
CFexpress: Why NVMe®/PCIe®?

<table>
<thead>
<tr>
<th>NVMe</th>
<th>PCIe</th>
</tr>
</thead>
</table>
| **Solid foundation** | • Optimized for low latency NVM
• Exploits platform parallelism
• Efficient SW stack | • No HBA
• P2P transfers |
| **By ~2015, NVMe & PCIe had added various features applicable to mobile and removable cards** | • Host memory buffer (less/no DRAM in device)
• Enhanced Power Management
• Boot, Write Protect, RPMB | • L1.2 Sub-states (low power) |
| **Continued development** | • Data placement interfaces, driven by datacenter which optimize latency/QoS (ZNS, FDP, …) | • FW Attestation
• Link encryption |
| **Other advantages across NVMe/PCIe ecosystem** | • Hot plug infrastructure
• Better integration w/ internal storage | |

Why NVMe/PCIe?

Datacenter to Removable; Investment and Innovation
Full BIO Slides
John Geldman
Director, SSD Industry Standards at KIOXIA
Paul Kaler
Future Storage Architect at HPE

Brings over 20 years of experience to his current role where he is responsible for researching and evaluating future storage and interconnect technologies and defining the server storage strategy for ProLiant servers

Actively involved in multiple standards and industry organizations, and has been a key driver of standards including U.3, EDSFF E3, and the OCP Datacenter NVMe® SSD spec.

Previously led development of SSD storage arrays, been founder and co-founder of a couple of startups, and helped develop the first dual-screen smartphone.
Mr. Gervasi has over 40 years of experience in high speed memory subsystem definition, design, and product development. Career highlights include 19 years at Intel where he was systems hardware designer, software designer, and strategic accounts manager. Mr. Gervasi subsequently was with S3 where he was a graphics architecture specialist and at Transmeta as memory technology analyst. Most recently he held several key positions with companies such as Netlist, SimpleTech, and US Modular driving unique memory module configurations. He is now Principal Systems Architect for Nantero, developing non-volatile RAM-class memories.

Mr. Gervasi been involved in the definition of Double Data Rate SDRAM since its earliest inception. He has served on the JEDEC Board of Directors and chaired committees for DRAM parametrics and small form factor memory modules during the development of DDR1 through DDR5. He is currently the chairman of the JEDEC Alternative Memory committee.
Michael Lavrentiev
Technologist, Systems Engineering at Western Digital

Chair of SWG at SDA since 2018
Developing SD Express since Nov 2016
Contributor to SDA since 2012

Contributed for the development of new generations of market leading SD and microSD cards.
Handled product management and product requirements for various flash memory solutions.
Before joining Western Digital, worked at KLA-Tencor, RSIP, Gyrus-ACMI and Intel.

Earned M.Sc. in Electrical Engineering from the Technion – Israel Institute of Technology.
Dave Landsman
Sr. Director, Distinguished Engineer, Western Digital

Manages storage standards across Western Digital’s businesses.

Active in storage standards since 2008, representing SanDisk and then Western Digital.

Contributions to NVMe®, PCI-SIG, JEDEC, SATA-IO, T10, T13, SNIA, SFF, and others.

Currently WD’s board representative for NVMe, SNIA, CFA and DNA Data Storage Alliance.

Has stopped counting years in the industry. Had “first career” at Intel, “second career” in storage at msystems/SanDisk/WD, and a startup in between.

BA in computer science from the University of California, San Diego. Aside from UCSD Pascal, most coding in ancient asm (VAX/PDP-11/misc).
Questions?