
Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-16 NVMe™ Corporation.

LEGAL NOTICE:

© Copyright 2007 - 2016 NVM Express, Inc. ALL RIGHTS RESERVED.
This erratum to the NVM Express revision 1.2 specification is proprietary to the NVM Express, Inc. (also referred to as

“Company”) and/or its successors and assigns.

NOTICE TO USERS WHO ARE NVM EXPRESS, INC. MEMBERS: Members of NVM Express, Inc. have the

right to use and implement this erratum to the NVM Express revision 1.2 specification subject, however, to the

Member’s continued compliance with the Company’s Intellectual Property Policy and Bylaws and the Member’s

Participation Agreement.

NOTICE TO NON-MEMBERS OF NVM EXPRESS, INC.: If you are not a Member of NVM Express, Inc. and you

have obtained a copy of this document, you only have a right to review this document or make reference to or cite this

document. Any such references or citations to this document must acknowledge NVM Express, Inc. copyright ownership

of this document. The proper copyright citation or reference is as follows: “© 2007 - 2016 NVM Express, Inc. ALL

RIGHTS RESERVED.” When making any such citations or references to this document you are not permitted to

revise, alter, modify, make any derivatives of, or otherwise amend the referenced portion of this document in any way

without the prior express written permission of NVM Express, Inc. Nothing contained in this document shall be deemed

as granting you any kind of license to implement or use this document or the specification described therein, or any of its

contents, either expressly or impliedly, or to any intellectual property owned or controlled by NVM Express, Inc.,

including, without limitation, any trademarks of NVM Express, Inc.

LEGAL DISCLAIMER:

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN “AS IS” BASIS. TO

THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, NVM EXPRESS, INC. (ALONG WITH THE

CONTRIBUTORS TO THIS DOCUMENT) HEREBY DISCLAIM ALL REPRESENTATIONS, WARRANTIES

AND/OR COVENANTS, EITHER EXPRESS OR IMPLIED, STATUTORY OR AT COMMON LAW, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE, VALIDITY, AND/OR NONINFRINGEMENT.

All product names, trademarks, registered trademarks, and/or servicemarks may be claimed as the property of their

respective owners.

NVM Express Workgroup

c/o Virtual, Inc.

401 Edgewater Place, Suite 600

Wakefield, MA 01880

info@nvmexpress.org

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-16 NVMe™ Corporation.

NVM Express™ Technical Errata

Errata ID 001

Revision Date 10/24/2016

Affected Spec Ver. NVMe over Fabrics 1.0

Corrected Spec Ver.

Errata Author(s)

Name Company

Judy Brock Samsung

David Black EMC

James Smart Broadcom

Fred Knight NetApp

Errata Overview

The erratum includes clarifications for NVMe over Fabrics 1.0, including:

 Clarifying that the Connect command creates the queue that it is “sent” on.

 Adding a theory of operation section that mirrors the section 4.1 for queues and doorbells
in the Base specification.

 Various editorial updates and clarifications.

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-16 NVMe™ Corporation.

Revision History

Revision Date Change Description

5/31/2016 Initial draft, including Connect updates proposed by Judy.

6/9/2016
Included theory of operation for queues in Fabrics proposed by Judy, Ken,
and David.

6/16/2016 Updates based on feedback in 6/9 meeting and email from Fred Knight.

6/24/2016 Simplify Submission Queue Entry lifetime text

7/5/2016 Keep Alive clarifications for enabled controllers

7/14/2016 Add RDMA discovery info, move 1.2.1 changes to separate ECN doc

7/19/2016 Removed items suggested for ECN 002 based on 7/14 meeting.

7/20/2016 Minor wording edit.

8/8/2016 Red-line accept of 7/20 version.

10/24/2016 Errata ratified.

Description of Specification Changes

Modify a portion of section 1.5.7 as shown below:

NVMe over Fabrics uses the Connect command to create controller Admin or I/O Queues. The creation of an
Admin Queue establishes an association between a host and the corresponding controller. NVMe over Fabrics
does not support the Admin Submission Queue Base Address (ASQ), Admin Completion Queue Base Address
(ACQ), and Admin Queue Attributes (AQA) properties as all information necessary to establish an Admin Queue
is contained in the Connect command. NVMe over Fabrics does not support the Admin commands associated
with I/O Queue creation and deletion (Create I/O Completion Queue, Create I/O Submission Queue, Delete I/O
Completion Queue, Delete I/O Submission Queue) defined in the NVMe Base specification.

An NVMe Transport connection is established between a host and an NVM subsystem prior to the transfer of
any capsules or data. The mechanism used to establish an NVMe Transport connection is NVMe Transport
specific and defined by the corresponding NVMe Transport binding specification. The NVMe Transport may
require a separate NVMe Transport connection for each Admin or I/O Queue or may utilize the same NVMe
Transport connection for all Admin and I/O Queues associated with a particular controller. An NVMe Transport
may also require that NVMe layer information be passed between the host and controller in the process of
establishing an NVMe Transport connection (e.g., exchange queue size to appropriately size send and receive
buffers).

The Connect command specifies the Queue ID and type (Admin or I/O), the size of the Submission and
Completion Queues, queue attributes, Host NQN, NVM Subsystem NQN, and Host Identifier. The Connect
command may specify a particular controller if the NVM subsystem supports a static controller model. The
Connect response indicates whether the connection was successfully established as well as whether NVMe in-
band authentication is required.

The Connect command is submitted to the same Admin Queue or I/O Queue that it creates. The underlying
NVMe Transport connection that is used for that queue is created first and the Connect command and response
capsules are sent over that NVMe Transport connection. The Connect command may only be sent once to a
queue.

When a Connect command successfully completes, the corresponding Submission and Completion Queues
are created. If NVMe in-band authentication is required as indicated in the Connect response, then NVMe in-
band authentication shall be performed before the queues may be used to perform other Fabrics, Admin, or I/O
commands. Once a Connect command for an Admin Queue has completed successfully (and NVMe in-band

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-16 NVMe™ Corporation.

authentication if required), only Fabrics commands may be submitted until the controller is ready (CSTS.RDY
= 1). Both Fabrics and Admin commands may be submitted to the Admin Queue while the controller is ready.
Once a Connect command for an I/O Queue has completed successfully (and NVMe in-band authentication if
required), I/O commands may be submitted to the queue.

The Connect response contains the controller ID allocated to the host. All subsequent Connect commands that
create an I/O Queue with that controller shall be from the same host, utilize the same NVMe Transport, and
have the same Host Identifier, Host NQN, and NVM Subsystem NQN; if any of these conditions do not hold
then the Connect command fails.

Modify Figure 14 as shown below:

Figure 14: Fabric Command Types

Command Type by Field
Combined
Command

Type
2

O/M

1
 I/O Queue

3
 Command

 (07) (06:02) (01:00)

Generic
Command Function

Data

Transfer
4

0b 000 00b 00b 00h M No Property Set

0b 000 00b 01b 01h M Yes Connect
5

0b 000 01b 00b 04h M No Property Get

0b 000 01b 01b 05h O Yes Authentication Send

0b 000 01b 10b 06h O Yes Authentication Receive

 Vendor Specific

1b na na C0h – FFh O Vendor specific

NOTES:
1. O/M definition: O = Optional, M = Mandatory.
2. Opcodes not listed are reserved.
3. All Fabrics commands may be submitted on the Admin Queue. The I/O Queue supports Fabrics commands as

specified in this column.
4. 00b = no data transfer; 01b = host to controller; 10b = controller to host; 11b = reserved
5. The Connect command is submitted and completed on the same queue that it creates. Refer to section 1.5.7.

Modify a portion of section 3.3 as shown below:

The host shall establish an association with a controller and enable the controller before establishing a
connection with an I/O Queue of the controller. If the host sends a Connect command specifying a Queue ID
for an I/O Queue before the controller has been enabled, then a status value of Connect Invalid Parameters is
returned. If the host sends a Connect command specifying a Queue ID for an Admin or I/O Queue which has
already been created, then a status value of Command Sequence Error is returned.

Modify a portion of section 4.3 as shown below:

When a Connect command successfully completes, the corresponding Admin Submission and Completion
Queue or I/O Submission and Completion Queues are created. If the host sends a Connect command
specifying the Queue ID of a queue which already exists, then a status value of Command Sequence Error is
returned.

The Authentication Requirements (AUTHREQ) field in the Connect response indicates if NVMe in-band
authentication is required. If AUTHREQ is cleared to zero, the created queue is ready for use after the
Connect command completes successfully. If AUTHREQ is set to a non-zero value, the created queue is
ready for use after NVMe in-band authentication has been performed successfully using the Authentication
Send and Authentication Receive Fabrics commands.

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-16 NVMe™ Corporation.

If a controller requires or is undergoing NVMe in-band authentication, a controller shall abort all commands
other than authentication commands with a status of Authentication Required. After the NVMe in-band
authentication has been performed successfully, a controller shall abort all authentication commands with a
status of Command Sequence Error.

When an Admin Queue is ready for use, the associated controller is disabled (i.e., CC.EN is initialized to ‘0’).
A disabled controller shall abort all commands other than the Property Get and Property Set commands on
the Admin Queue with a status of Command Sequence Error. After the controller is enabled, it should accept
all supported Admin commands in addition to the Fabrics commands Property Get and Property Set.

A created I/O queue shall abort all commands with a status of Command Sequence Error if the associated
controller is disabled.

Add section 1.4.14 as shown below:

1.4.14 command submission

A command is submitted when a host adds a capsule to a Submission Queue. The host increments the Tail
entry pointer associated with that Submission Queue as part of submitting a command.

Replace section 2.4 as shown below:

2.4 Queue Flow Control Mechanism
2.4 Submission Queue and Completion Queue Definition

NVMe over Fabrics Submission Queues and Completion Queues are message-based (refer to Figure 1) in
contrast to NVMe over PCIe memory-based queues (refer to section 4.1 in NVM Express 1.2.1), Doorbells are
not used by NVMe over Fabrics. For the remainder of this section, the terms Submission Queue, Completion
Queue and queue refer to NVMe over Fabrics queues unless explicitly stated otherwise.

For NVMe over Fabrics, a queue is a unidirectional communication channel that is used to send capsules
between a host and a controller. A host uses Submission Queues to send command capsules (refer to section
2.1) to a controller. A controller uses Completion Queues to send response capsules (refer to section 2.2) to a
host. Submission and Completion Queues are created in pairs using the Connect command (refer to section
1.5.7).

Each Submission Queue has a Head entry pointer and a Tail entry pointer that are used to manage the queue
and determine the number of outstanding capsules. The Head and Tail entry pointers are initialized to zero
when a queue is created. All arithmetic operations and comparisons on entry pointers are performed modulo
the queue size with queue wrap conditions taken into account. The host increments the Tail entry pointer when
it adds a capsule to a queue. The controller increments the Head entry pointer when it removes a capsule from
the queue.

The Submission Queue is empty when the Head entry pointer equals the Tail entry pointer. A capsule consumer

may continue to remove capsules from the queue as long as the empty queue condition is not met.

The Submission Queue is full when the Head entry pointer equals one more than the Tail entry pointer (i.e.,
incrementing the Tail entry pointer has caused it to wrap around to just behind the Head entry pointer). A full
Submission Queue contains one less capsule than the queue size. A host may continue to add capsules to a
Submission Queue as long as the queue is not full.

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-16 NVMe™ Corporation.

Submission Queue flow control is facilitated by the use of the SQHD field in the Completion Queue Entry. The
controller uses the SQHD field to communicate the availability of Submission Queue slots to the host.

Completion Queues do not use Head entry pointers or Tail entry pointers (refer to section 2.4.2).

The definition for the queue attributes of Queue Size, Queue Identifier and Queue Priority are defined in sections
4.1.3, 4.1.4 and 4.1.5 of NVM Express 1.2.1.

NVMe Transports are not required to provide any additional end-to-end flow control. Specific NVMe Transports
may require low level flow control for congestion avoidance and reliability; any such additional NVMe Transport
flow control which is outside the scope of this specification.

 Flow control differs for Submission Queues and Completion Queues (refer to sections 2.4.1 and 2.4.2).

2.4.1 Submission Queue Flow Control

An NVMe over Fabrics Submission Queue Tail entry pointer is local to the host and is not communicated to the
controller. The NVMe Transport is responsible for promptly delivering command capsules to the controller and
notifying the controller of capsule arrival in a transport-specific fashion.

The NVMe over Fabrics Submission Queue Head entry pointer is maintained by the controller and is
communicated to the host in the SQHD field of Completion Queue Entries. The host uses the received SQHD
values for Submission Queue management (e.g., to determine whether the Submission Queue is full).

Altering a command capsule between host submission to the Submission Queue and transport delivery of that
capsule to the controller results in undefined behavior.

If the controller detects that the host has submitted the host submits a command capsule to a full when no
Submission Queue, slots are available then the controller shall stop processing commands and set the
Controller Fatal Status (CSTS.CFS) bit to ‘1’ (refer to section 9.5 in the NVMe Base specification).

2.4.2 Completion Queue Flow Control Considerations

Completion Queue flow control is not used in NVMe over Fabrics. NVMe over Fabrics Completion Queues do
not use either Head entry pointers or Tail entry pointers.

The host should size each Completion Queue to support the maximum number of commands that it has could
have outstanding at one time for a particular Submission Queue queue. The Completion Queue size may be
larger than the size of the corresponding Submission Queue to accommodate responses for commands that
are being processed by the controller in addition to responses for commands are still in the Submission Queue.

If the size of a Completion Queue is too small for the number of outstanding commands and the controller
submits a response capsule to a full Completion Queue, then the results are undefined.

The Maximum Outstanding Commands (MAXCMD) value in the Identify Controller data structure indicates the
maximum number of commands that the controller processes at one time for a particular queue to achieve the
best performance. The host may use this value to size Completion Queues and optimize the number of
commands submitted at one time per queue to achieve the best performance.

Altering a response capsule between controller submission to the Completion Queue and transport delivery of
that capsule to the host results in undefined behavior.

Modify the definition of “fabric” in section 1.4.7 as shown below:

A network topology in which nodes pass data to each other through interconnecting switches.

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-16 NVMe™ Corporation.

Modify a portion of section 1.5.5 as shown below:

Properties are the NVMe over Fabrics analog of memory mapped NVMe controller registers defined for NVMe
over PCIe. Properties are used to configure a subset of low level controller attributes and obtain a subset of low
level status.

Modify a portion of section 1.5.7 as shown below:

When a Connect command successfully completes, the corresponding Submission and Completion Queues
are created. If NVMe in-band authentication is required as indicated in the Connect response, then NVMe in-
band authentication shall be performed before the queues may be used to perform other Fabrics, Admin, or I/O
commands. Once a Connect command for an Admin Queue has completed successfully (and NVMe in-band
authentication if required has succeeded), only Fabrics commands may be submitted until the controller is ready
(CSTS.RDY = 1). Both Fabrics and Admin commands may be submitted to the Admin Queue while the controller
is ready. A Connect command for an I/O Queue may only be submitted after the controller is ready. Once a
Connect command for an I/O Queue has completed successfully (and NVMe in-band authentication if required
has succeeded), I/O commands may be submitted to the queue.

Modify a portion of section 2.3.1 as shown below:

 the host shall not place more SGL Data Block or Keyed SGL Data Block descriptors (Keyed) Data Block
SGLs within a capsule than the maximum indicated in the Identify Controller data structure.

Modify a portion of Figure 15 as shown below:

39:24

SGL Descriptor 1 (SGL1): This field contains the first SGL descriptor for the command. If the

SGL descriptor is an SGL Data Block or Keyed SGL a (Keyed) Data Block descriptor, then it
describes the entire data transfer. If more than one SGL descriptor is needed to describe the
data transfer, then the first SGL descriptor is a Segment or Last Segment descriptor. Refer to
section 4.4 of the NVMe Base specification for the definition of SGL descriptors.

Modify a portion of Figure 17 as shown below:

39:24

SGL Descriptor 1 (SGL1): This field contains the first SGL descriptor for the command. If the

SGL descriptor is an SGL Data Block or Keyed SGL a (Keyed) Data Block descriptor, then it
describes the entire data transfer. If more than one SGL descriptor is needed to describe the
data transfer, then the first SGL descriptor is a Segment or Last Segment descriptor. Refer to
section 4.4 of the NVMe Base specification for the definition of SGL descriptors.

Modify a portion of Figure 19 as shown below:

39:24

SGL Descriptor 1 (SGL1): This field contains an SGL Data Block or Keyed a (Keyed) SGL

Data Block descriptor that describes the entire data transfer. Refer to section 4.4 of the NVMe
Base specification for the definition of SGL descriptors.

Modify a portion of Figure 28 as shown below:

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-16 NVMe™ Corporation.

1803 M

Maximum SGL Data Block Descriptors (MSDBD): This field indicates the

maximum number of (Keyed) SGL Data Block or Keyed SGL Data Block descriptors
that a host is allowed to place in a capsule. A value of 0h indicates no limit.

Modify a portion of section 7.3.2 as shown below:

Admin command data is transferred using host-resident data buffers specified in Keyed SGL Data Block
descriptor entries. I/O command data is transferred using host-resident data buffers specified in Keyed SGL
Data Block descriptor entries or within the capsule. The RDMA Transport supports the SGL Data Block, SGL
Last Segment, and Keyed SGL Data Block descriptors only. The RDMA Transport does not support SGLs in
host memory; all SGLs shall be contained in the command capsule. Fabrics and Admin commands have one
(Keyed) SGL Data Block or Keyed SGL Data Block descriptor (i.e., there are no SGL descriptors following the
Submission Queue Entry). I/O commands may have more than one SGL descriptor.

Modify a portion of Figure 28 as shown below:

1802 M

Fabrics Controller Attributes (FCATT CTRATTR): This field indicates attributes

of the controller that are specific to NVMe over Fabrics.

Bits 7:1 are reserved.

Bit 0 if cleared to ‘0’ then the NVM subsystem uses a dynamic controller model. Bit
0 if set to ‘1’ then the NVM subsystem uses a static controller model.

Modify section 4.3 as shown below:

When an Admin Queue is ready for use first created, the associated controller is disabled (i.e., CC.EN is
initialized to ‘0’). A disabled controller shall abort all commands other than the Property Get and Property Set
Fabrics commands on the Admin Queue with a status of Command Sequence Error. After the controller is
enabled, it should shall accept all supported Admin commands in addition to the Fabrics commands Property
Get and Property Set.

Modify a portion of section 7.1.1 as shown below:

An NVMe Transport may transmit an SQHD value in every response capsule. If an NVMe Transport does not
transmit an SQHD value in every response capsule, then an SQHD value should be transmitted periodically
(e.g., in at least one of every n response capsules on a CQ, where n is 10% of the size of the associated SQ)
or more often. An SQHD value should always be transmitted if 90% or more of the slots in the associated SQ
are occupied at the subsystem, or if the associated SQ is empty at the subsystem.

Modify a portion of Figure 28 as shown below:

767:512

Transport Address (TRADDR): Specifies the address of the NVM subsystem that may be used

for a Connect command as an ASCII string. The Address Family field describes the reference for
parsing this field. Refer to section 1.5 of the NVMe Base specification for ASCII string
requirements. For the definition of this field, refer to the appropriate NVMe Transport binding
specification.

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-16 NVMe™ Corporation.

Modify a portion of Figure 34 as shown below:

31:10 Reserved

63:32

Transport Service Identifier (TRSVCID): Specifies the NVMe Transport service identifier as an

ASCII string. The NVMe Transport service identifier is specified by the associated NVMe Transport
binding specification. Refer to http://nvmexpress.org/specifications for a registry that lists the valid
values of this identifier and the associated NVMe Transport binding specifications.

255:64 Reserved

http://nvmexpress.org/specifications

