
NVM Express 1.3a

1

NVM Express

NVM Express
Revision 1.3a

October 24, 2017

Please send comments to info@nvmexpress.org

Incorporates ECNs 001 – 003.

NVM Express 1.3a

2

NVM Express revision 1.3a specification available for download at http://nvmexpress.org. NVM Express
revision 1.3 ratified on April 26, 2017. NVM Express revision 1.3a incorporates ECNs 001 – 003.

SPECIFICATION DISCLAIMER

LEGAL NOTICE:

© Copyright 2007 - 2017 NVM Express, Inc. ALL RIGHTS RESERVED.
This NVM Express revision 1.3a specification is proprietary to the NVM Express, Inc. (also referred to as
“Company”) and/or its successors and assigns.

NOTICE TO USERS WHO ARE NVM EXPRESS, INC. MEMBERS: Members of NVM Express, Inc. have
the right to use and implement this NVM Express revision 1.3a specification subject, however, to the
Member’s continued compliance with the Company’s Intellectual Property Policy and Bylaws and the
Member’s Participation Agreement.

NOTICE TO NON-MEMBERS OF NVM EXPRESS, INC.: If you are not a Member of NVM Express, Inc.
and you have obtained a copy of this document, you only have a right to review this document or make
reference to or cite this document. Any such references or citations to this document must acknowledge
NVM Express, Inc. copyright ownership of this document. The proper copyright citation or reference is as
follows: “© 2007 - 2017 NVM Express, Inc. ALL RIGHTS RESERVED.” When making any such
citations or references to this document you are not permitted to revise, alter, modify, make any
derivatives of, or otherwise amend the referenced portion of this document in any way without the prior
express written permission of NVM Express, Inc. Nothing contained in this document shall be deemed as
granting you any kind of license to implement or use this document or the specification described therein,
or any of its contents, either expressly or impliedly, or to any intellectual property owned or controlled by
NVM Express, Inc., including, without limitation, any trademarks of NVM Express, Inc.

LEGAL DISCLAIMER:

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN “AS IS”
BASIS. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, NVM EXPRESS, INC.
(ALONG WITH THE CONTRIBUTORS TO THIS DOCUMENT) HEREBY DISCLAIM ALL
REPRESENTATIONS, WARRANTIES AND/OR COVENANTS, EITHER EXPRESS OR IMPLIED,
STATUTORY OR AT COMMON LAW, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, VALIDITY,
AND/OR NONINFRINGEMENT.

All product names, trademarks, registered trademarks, and/or servicemarks may be claimed as the
property of their respective owners.

NVM Express Workgroup
c/o VTM, Inc.
3855 SW 153rd Drive
Beaverton, OR 97003
info@nvmexpress.org

http://nvmexpress.org/

NVM Express 1.3a

3

Table of Contents
1 INTRODUCTION ... 6

1.1 Overview ... 6
1.2 Scope .. 6
1.3 Outside of Scope .. 6
1.4 Theory of Operation .. 6
1.5 Conventions .. 12
1.6 Definitions ... 12
1.7 Keywords .. 16
1.8 Byte, word and Dword Relationships .. 17
1.9 References ... 18
1.10 References Under Development ... 18

2 SYSTEM BUS (PCI EXPRESS) REGISTERS ... 19
2.1 PCI Header ... 19
2.2 PCI Power Management Capabilities ... 23
2.3 Message Signaled Interrupt Capability (Optional) .. 24
2.4 MSI-X Capability (Optional) .. 26
2.5 PCI Express Capability ... 27
2.6 Advanced Error Reporting Capability (Optional) .. 33
2.7 Other Capability Pointers .. 37

3 CONTROLLER REGISTERS ... 38
3.1 Register Definition .. 39
3.2 Index/Data Pair registers (Optional) ... 50

4 DATA STRUCTURES ... 52
4.1 Submission Queue & Completion Queue Definition ... 52
4.2 Submission Queue Entry – Command Format ... 54
4.3 Physical Region Page Entry and List ... 57
4.4 Scatter Gather List (SGL) ... 59
4.5 Metadata Region (MR) ... 64
4.6 Completion Queue Entry .. 65
4.7 Controller Memory Buffer ... 71
4.8 Namespace List .. 72
4.9 Controller List .. 72
4.10 Fused Operations.. 73
4.11 Command Arbitration .. 73

5 ADMIN COMMAND SET ... 77
5.1 Abort command .. 78
5.2 Asynchronous Event Request command ... 80
5.3 Create I/O Completion Queue command ... 83
5.4 Create I/O Submission Queue command ... 85
5.5 Delete I/O Completion Queue command ... 87
5.6 Delete I/O Submission Queue command ... 87
5.7 Doorbell Buffer Config command ... 88
5.8 Device Self-test command .. 89
5.9 Directive Receive command ... 92
5.10 Directive Send command .. 93
5.11 Firmware Commit command ... 93
5.12 Firmware Image Download command .. 95
5.13 Get Features command .. 96

NVM Express 1.3a

4

5.14 Get Log Page command ... 98
5.15 Identify command .. 116
5.16 Keep Alive command .. 143
5.17 NVMe-MI Receive command .. 144
5.18 NVMe-MI Send command ... 144
5.19 Namespace Attachment command ... 144
5.20 Namespace Management command .. 145
5.21 Set Features command ... 147
5.22 Virtualization Management command .. 166
5.23 Format NVM command – NVM Command Set Specific ... 168
5.24 Sanitize command – NVM Command Set Specific... 170
5.25 Security Receive command – NVM Command Set Specific .. 172
5.26 Security Send command – NVM Command Set Specific ... 174

6 NVM COMMAND SET ... 175
6.1 Namespaces ... 176
6.2 Fused Operations ... 178
6.3 Command Ordering Requirements ... 178
6.4 Atomic Operations .. 180
6.5 End-to-end Protection Information .. 184
6.6 Compare command .. 184
6.7 Dataset Management command .. 186
6.8 Flush command .. 189
6.9 Read command .. 189
6.10 Reservation Acquire command ... 192
6.11 Reservation Register command .. 194
6.12 Reservation Release command .. 195
6.13 Reservation Report command .. 196
6.14 Write command ... 198
6.15 Write Uncorrectable command ... 201
6.16 Write Zeroes command ... 202

7 CONTROLLER ARCHITECTURE ... 204
7.1 Introduction ... 204
7.2 Command Submission and Completion Mechanism (Informative) .. 204
7.3 Resets ... 211
7.4 Queue Management ... 212
7.5 Interrupts ... 213
7.6 Controller Initialization and Shutdown Processing ... 216
7.7 Asynchronous Event Request Host Software Recommendations (Informative) 218
7.8 Feature Values ... 218
7.9 NVMe Qualified Names .. 219
7.10 Identifier Format and Layout (Informative) .. 220
7.11 Unique Identifier .. 222
7.12 Keep Alive ... 224
7.13 Updating Controller Doorbell Registers using a Shadow Doorbell Buffer 224

8 FEATURES .. 226
8.1 Firmware Update Process .. 226
8.2 Metadata Handling.. 227
8.3 End-to-end Data Protection (Optional) ... 228
8.4 Power Management.. 234
8.5 Virtualization Enhancements (Optional) ... 239
8.6 Doorbell Stride for Software Emulation .. 244
8.7 Standard Vendor Specific Command Format ... 244

NVM Express 1.3a

5

8.8 Reservations (Optional) .. 244
8.9 Host Memory Buffer (Optional) ... 251
8.10 Replay Protected Memory Block (Optional) .. 251
8.11 Device Self-test Operations (Optional) ... 263
8.12 Namespace Management (Optional) .. 265
8.13 Boot Partitions (Optional) .. 266
8.14 Telemetry (Optional) ... 269
8.15 Sanitize Operations (Optional) .. 272

9 DIRECTIVES.. 277
9.1 Directive Use in I/O Commands ... 277
9.2 Identify (Directive Type 00h) ... 278
9.3 Streams (Directive Type 01h, Optional) ... 280

10 ERROR REPORTING AND RECOVERY .. 286
10.1 Command and Queue Error Handling .. 286
10.2 Media and Data Error Handling .. 286
10.3 Memory Error Handling ... 286
10.4 Internal Controller Error Handling ... 286
10.5 Controller Fatal Status Condition .. 287

NVM Express 1.3a

6

1 Introduction
1.1 Overview
NVM Express (NVMe) is an interface that allows host software to communicate with a non-volatile memory
subsystem. This interface is optimized for Enterprise and Client solid state drives, typically attached as a
register level interface to the PCI Express interface.

Note: During development, this specification was referred to as Enterprise NVMHCI. However, the name
was modified to NVM Express prior to specification completion. This interface is targeted for use in both
Client and Enterprise systems.

For an overview of changes from revision 1.2.1 to revision 1.3, refer to http://nvmexpress.org/changes for
a document that describes the new features, including mandatory requirements for a controller to comply
with revision 1.3.

1.1.1 NVMe over PCIe and NVMe over Fabrics
NVM Express 1.3 and prior revisions define a register level interface for host software to communicate with
a non-volatile memory subsystem over PCI Express (NVMe over PCIe). The NVMe over Fabrics
specification defines a protocol interface and related extensions to NVMe that enable operation over other
interconnects (e.g., Ethernet, InfiniBand™, Fibre Channel). The NVMe over Fabrics specification has an
NVMe Transport binding for each NVMe Transport (either within that specification or by reference).

In this specification, a requirement/feature may be documented as specific to NVMe over Fabrics or to a
particular NVMe Transport binding. In addition, support requirements for features and functionality may
differ between NVMe over PCIe and NVMe over Fabrics.

1.2 Scope
The specification defines a register interface for communication with a non-volatile memory subsystem. It
also defines a standard command set for use with the NVM subsystem.

1.3 Outside of Scope
The register interface and command set are specified apart from any usage model for the NVM, but rather
only specifies the communication interface to the NVM subsystem. Thus, this specification does not specify
whether the non-volatile memory system is used as a solid state drive, a main memory, a cache memory, a
backup memory, a redundant memory, etc. Specific usage models are outside the scope, optional, and
not licensed.

This interface is specified above any non-volatile memory management, like wear leveling. Erases and
other management tasks for NVM technologies like NAND are abstracted.

This specification does not contain any information on caching algorithms or techniques.

The implementation or use of other published specifications referred to in this specification, even if required
for compliance with the specification, are outside the scope of this specification (for example, PCI, PCI
Express and PCI-X).

1.4 Theory of Operation
NVM Express is a scalable host controller interface designed to address the needs of Enterprise and Client
systems that utilize PCI Express based solid state drives. The interface provides optimized command
submission and completion paths. It includes support for parallel operation by supporting up to 65,535 I/O
Queues with up to 64K outstanding commands per I/O Queue. Additionally, support has been added for

http://nvmexpress.org/changes

NVM Express 1.3a

7

many Enterprise capabilities like end-to-end data protection (compatible with SCSI Protection Information,
commonly known as T10 DIF, and SNIA DIX standards), enhanced error reporting, and virtualization.

The interface has the following key attributes:

• Does not require uncacheable / MMIO register reads in the command submission or completion
path.

• A maximum of one MMIO register write is necessary in the command submission path.
• Support for up to 65,535 I/O queues, with each I/O queue supporting up to 64K outstanding

commands.
• Priority associated with each I/O queue with well-defined arbitration mechanism.
• All information to complete a 4KB read request is included in the 64B command itself, ensuring

efficient small I/O operation.
• Efficient and streamlined command set.
• Support for MSI/MSI-X and interrupt aggregation.
• Support for multiple namespaces.
• Efficient support for I/O virtualization architectures like SR-IOV.
• Robust error reporting and management capabilities.
• Support for multi-path I/O and namespace sharing.

This specification defines a streamlined set of registers whose functionality includes:

• Indication of controller capabilities
• Status for controller failures (command status is processed via CQ directly)
• Admin Queue configuration (I/O Queue configuration processed via Admin commands)
• Doorbell registers for scalable number of Submission and Completion Queues

An NVM Express controller is associated with a single PCI Function. The capabilities and settings that
apply to the entire controller are indicated in the Controller Capabilities (CAP) register and the Identify
Controller data structure.

A namespace is a quantity of non-volatile memory that may be formatted into logical blocks. An NVM
Express controller may support multiple namespaces that are referenced using a namespace ID.
Namespaces may be created and deleted using the Namespace Management and Namespace Attachment
commands. The Identify Namespace data structure indicates capabilities and settings that are specific to a
particular namespace. The capabilities and settings that are common to all namespaces are reported by
the Identify Namespace data structure for namespace ID FFFFFFFFh.

NVM Express is based on a paired Submission and Completion Queue mechanism. Commands are placed
by host software into a Submission Queue. Completions are placed into the associated Completion Queue
by the controller. Multiple Submission Queues may utilize the same Completion Queue. Submission and
Completion Queues are allocated in memory.

An Admin Submission and associated Completion Queue exist for the purpose of controller management
and control (e.g., creation and deletion of I/O Submission and Completion Queues, aborting commands,
etc.). Only commands that are part of the Admin Command Set may be submitted to the Admin Submission
Queue.

An I/O Command Set is used with an I/O queue pair. This specification defines one I/O Command Set,
named the NVM Command Set. The host selects one I/O Command Set that is used for all I/O queue
pairs.

Host software creates queues, up to the maximum supported by the controller. Typically the number of
command queues created is based on the system configuration and anticipated workload. For example,
on a four core processor based system, there may be a queue pair per core to avoid locking and ensure
data structures are created in the appropriate processor core’s cache. Figure 1 provides a graphical
representation of the queue pair mechanism, showing a 1:1 mapping between Submission Queues and
Completion Queues. Figure 2 shows an example where multiple I/O Submission Queues utilize the same

NVM Express 1.3a

8

I/O Completion Queue on Core B. Figure 1 and Figure 2 show that there is always a 1:1 mapping between
the Admin Submission Queue and Admin Completion Queue.

Figure 1: Queue Pair Example, 1:1 Mapping

Figure 2: Queue Pair Example, n:1 Mapping

A Submission Queue (SQ) is a circular buffer with a fixed slot size that the host software uses to submit
commands for execution by the controller. The host software updates the appropriate SQ Tail doorbell
register when there are one to n new commands to execute. The previous SQ Tail value is overwritten in
the controller when there is a new doorbell register write. The controller fetches SQ entries in order from
the Submission Queue, however, it may then execute those commands in any order.

Each Submission Queue entry is a command. Commands are 64 bytes in size. The physical memory
locations in memory to use for data transfers are specified using Physical Region Page (PRP) entries or
Scatter Gather Lists. Each command may include two PRP entries or one Scatter Gather List (SGL)
segment. If more than two PRP entries are necessary to describe the data buffer, then a pointer to a PRP
List that describes a list of PRP entries is provided. If more than one SGL segment is necessary to describe
the data buffer, then the SGL segment provides a pointer to the next SGL segment.

A Completion Queue (CQ) is a circular buffer with a fixed slot size used to post status for completed
commands. A completed command is uniquely identified by a combination of the associated SQ identifier

Host

Controller

Controller Mgmt Core 0 Core 1 Core N-1

Admin
Submission

Queue

Admin
Completion

Queue

I/O
Submission

Queue 1

I/O
Completion

Queue 1

I/O
Submission

Queue 2

I/O
Completion

Queue 2

I/O
Submission
Queue N

I/O
Completion
Queue N

Host

Controller

Core BCore A

I/O
Submission
Queue X

I/O
Completion
Queue W

I/O
Submission
Queue M

I/O
Completion
Queue N

I/O
Submission
Queue Y

I/O
Submission
Queue Z

Controller Mgmt

Admin
Submission

Queue

Admin
Completion

Queue

NVM Express 1.3a

9

and command identifier that is assigned by host software. Multiple Submission Queues may be associated
with a single Completion Queue. This feature may be used where a single worker thread processes all
command completions via one Completion Queue even when those commands originated from multiple
Submission Queues. The CQ Head pointer is updated by host software after it has processed completion
queue entries indicating the last free CQ slot. A Phase Tag (P) bit is defined in the completion queue entry
to indicate whether an entry has been newly posted without consulting a register. This enables host
software to determine whether the new entry was posted as part of the previous or current round of
completion notifications. Specifically, each round through the Completion Queue entries, the controller
inverts the Phase Tag bit.

1.4.1 Multi-Path I/O and Namespace Sharing
This section provides an overview of multi-path I/O and namespace sharing. Multi-path I/O refers to two or
more completely independent PCI Express paths between a single host and a namespace while
namespace sharing refers to the ability for two or more hosts to access a common shared namespace
using different NVM Express controllers. Both multi-path I/O and namespace sharing require that the NVM
subsystem contain two or more controllers. Concurrent access to a shared namespace by two or more
hosts requires some form of coordination between hosts. The procedure used to coordinate these hosts is
outside the scope of this specification.

Figure 3 shows an NVM subsystem that contains a single NVM Express controller and a single PCI Express
port. Since this is a single Function PCI Express device, the NVM Express controller shall be associated
with PCI Function 0. A controller may support multiple namespaces. The controller in Figure 3 supports two
namespaces labeled NS A and NS B. Associated with each controller namespace is a namespace ID,
labeled as NSID 1 and NSID 2, that is used by the controller to reference a specific namespace. The
namespace ID is distinct from the namespace itself and is the handle a host and controller use to specify a
particular namespace in a command. The selection of a controller’s namespace IDs is outside the scope of
this specification. In this example namespace ID 1 is associated with namespace A and namespace ID 2
is associated with namespace B. Both namespaces are private to the controller and this configuration
supports neither multi-path I/O nor namespace sharing.

Figure 3: NVM Express Controller with Two Namespaces

NSID 1 NSID 2

PCI Function 0
NVM Express Controller

PCIe Port

NS
A

NS
B

Figure 4 shows a multi-Function NVM Subsystem with a single PCI Express port containing two controllers,
one controller is associated with PCI Function 0 and the other controller is associated with PCI Function 1.
Each controller supports a single private namespace and access to shared namespace B. The namespace
ID shall be the same in all controllers that have access to a particular shared namespace. In this example
both controllers use namespace ID 2 to access shared namespace B.

NVM Express 1.3a

10

Figure 4: NVM Subsystem with Two Controllers and One Port

There is a unique Identify Controller data structure for each controller and a unique Identify Namespace
data structure for each namespace. Controllers with access to a shared namespace return the Identify
Namespace data structure associated with that shared namespace (i.e., the same data structure contents
are returned by all controllers with access to the same shared namespace). There is a globally unique
identifier associated with the namespace itself and may be used to determine when there are multiple paths
to the same shared namespace. Refer to section 7.10.

Controllers associated with a shared namespace may operate on the namespace concurrently. Operations
performed by individual controllers are atomic to the shared namespace at the write atomicity level of the
controller to which the command was submitted (refer to section 6.4). The write atomicity level is not
required to be the same across controllers that share a namespace. If there are any ordering requirements
between commands issued to different controllers that access a shared namespace, then host software or
an associated application, is required to enforce these ordering requirements.

Figure 5 illustrates an NVM Subsystem with two PCI Express ports, each with an associated controller.
Both controllers map to PCI Function 0 of the corresponding port. Each PCI Express port in this example
is completely independent and has its own PCI Express Fundamental Reset and reference clock input. A
reset of a port only affects the controller associated with that port and has no impact on the other controller,
shared namespace, or operations performed by the other controller on the shared namespace. The
functional behavior of this example is otherwise the same as that illustrated in Figure 4.

NSID 1 NSID 2

PCI Function 0
NVMe Controller

PCIe Port

NS
A

NS
B

NSID 3 NSID 2

PCI Function 1
NVMe Controller

NS
C

NVM Express 1.3a

11

Figure 5: NVM Subsystem with Two Controllers and Two Ports

NSID 1 NSID 2

PCI Function 0
NVMe Controller

NS
A

NS
B

NSID 3 NSID 2

PCI Function 0
NVMe Controller

NS
C

PCIe Port x PCIe Port y

The two ports shown in Figure 5 may be associated with the same Root Complex or with different Root
Complexes and may be used to implement both multi-path I/O and I/O sharing architectures. System-level
architectural aspects and use of multiple ports in a PCI Express fabric are beyond the scope of this
specification.

Figure 6 illustrates an NVM subsystem that supports Single Root I/O Virtualization (SR-IOV) and has one
Physical Function and four Virtual Functions. An NVM Express controller is associated with each Function
with each controller having a private namespace and access to a namespace shared by all controllers,
labeled NS F. The behavior of the controllers in this example parallels that of the other examples in this
section. Refer to section 8.5.4 for more information on SR-IOV.

Figure 6: PCI Express Device Supporting Single Root I/O Virtualization (SR-IOV)

Physical Function 0
NVMe Controller

Virtual Function (0,1)
NVMe Controller

Virtual Function (0,2)
NVMe Controller

Virtual Function (0,3)
NVMe Controller

Virtual Function (0,4)
NVMe Controller

NSID 1 NSID 2 NSID 3 NSID 2 NSID 4 NSID 2 NSID 5 NSID 2 NSID 6 NSID 2

NS
A

NS
B

NS
C

NS
D

NS
E

NS
F

PCIe Port

NVM Express 1.3a

12

Examples provided in this section are meant to illustrate concepts and are not intended to enumerate all
possible configurations. For example, an NVM subsystem may contain multiple PCI Express ports with
each port supporting SR-IOV.

1.5 Conventions
Hardware shall return ‘0’ for all bits and registers that are marked as reserved, and host software shall write
all reserved bits and registers with the value of ‘0’.

Inside the register section, the following abbreviations are used:
RO Read Only
RW Read Write

R/W Read Write. The value read may not be the last value written.
RWC Read/Write ‘1’ to clear
RWS Read/Write ‘1’ to set

Impl Spec Implementation Specific – the controller has the freedom to choose
its implementation.

HwInit The default state is dependent on NVM Express controller and
system configuration. The value is initialized at reset, for example by
an expansion ROM, or in the case of integrated devices, by a
platform BIOS.

For some register fields, it is implementation specific as to whether the field is RW, RWC, or RO; this is
typically shown as RW/RO or RWC/RO to indicate that if the functionality is not supported that the field is
read only.

When a register field is referred to in the document, the convention used is “Register Symbol.Field Symbol”.
For example, the PCI command register parity error response enable field is referred to by the name
CMD.PEE. If the register field is an array of bits, the field is referred to as “Register Symbol.Field Symbol
(array offset to element)”.A 0-based value is a numbering scheme for which the number 0h actually
corresponds to a value of 1h and thus produces the pattern of 0h = 1h, 1h = 2h, 2h = 3h, etc. In this
numbering scheme, there is not a method for specifying the value of 0h. Values in this specification are 1-
based (i.e., the number 1h corresponds to a value of 1h, 2h=2h, etc.) unless otherwise specified.

When a size is stated in the document as KB, the convention used is 1KB = 1024 bytes.

The ^ operator is used to denote the power to which that number, symbol, or expression is to be raised.

Some parameters are defined as an ASCII string. ASCII strings shall contain only code values 20h through
7Eh. For the string “Copyright”, the character “C” is the first byte, the character “o” is the second byte, etc.
The string is left justified and shall be padded with spaces (ASCII character 20h) to the right if necessary.
A hexadecimal ASCII string is an ASCII string that uses a subset of the code values: “0” to “9”, “A” to “F”
uppercase, and “a” to “f” lowercase.

1.6 Definitions
1.6.1 Admin Queue
The Admin Queue is the Submission Queue and Completion Queue with identifier 0. The Admin
Submission Queue and corresponding Admin Completion Queue are used to submit administrative
commands and receive completions for those administrative commands, respectively.

The Admin Submission Queue is uniquely associated with the Admin Completion Queue.

1.6.2 arbitration burst
The maximum number of commands that may be launched at one time from a Submission Queue that is
using round robin or weighted round robin with urgent priority class arbitration.

NVM Express 1.3a

13

1.6.3 arbitration mechanism
The method used to determine which Submission Queue is selected next to launch commands for
execution by the controller. Three arbitration mechanisms are defined including round robin, weighted round
robin with urgent priority class, and vendor specific. Refer to section 4.11.

1.6.4 cache
A data storage area used by the NVM subsystem, that is not accessible to a host, and that may contain a
subset of user data stored in the non-volatile media or may contain user data that is not committed to non-
volatile media.

1.6.5 candidate command
A candidate command is a submitted command which has been transferred into the controller and the
controller deems ready for processing.

1.6.6 command completion
A command is completed when the controller has completed processing the command, has updated status
information in the completion queue entry, and has posted the completion queue entry to the associated
Completion Queue.

1.6.7 command submission
For NVMe over PCIe, a command is submitted when a Submission Queue Tail Doorbell write has
completed that moves the Submission Queue Tail Pointer value past the Submission Queue slot in which
the command was placed.

For NVMe over Fabrics, refer to section 1.4.14 in the NVMe over Fabrics 1.0 specification.

1.6.8 controller
A PCI Express function that implements NVM Express.

1.6.9 directive
A method of host and NVM subsystem or controller information exchange. Information may be transmitted
using the Directive Send and Directive Receive commands. A subset of I/O commands may include a
Directive Type field and a Directive Specific field to communicate more information that is specific to the
associated I/O command. Refer to section 9.

1.6.10 emulated controller
An NVM Express controller that is defined in software. An emulated controller may or may not have an
underlying physical NVMe controller (e.g., physical PCIe function).

1.6.11 extended LBA
An extended LBA is a larger LBA that is created when metadata associated with the LBA is transferred
contiguously with the LBA data. Refer to Figure 255.

NVM Express 1.3a

14

1.6.12 firmware slot
A firmware slot is a location in the controller used to store a firmware image. The controller stores between
one and seven firmware images. When downloading new firmware to the controller, host software has the
option of specifying which image is replaced by indicating the firmware slot number.

1.6.13 I/O command
An I/O command is a command submitted to an I/O Submission Queue.

1.6.14 I/O Completion Queue
An I/O Completion Queue is a Completion Queue that is used to indicate command completions and is
associated with one or more I/O Submission Queues. I/O Completion Queue identifiers are from 1 to
65535.

1.6.15 I/O Submission Queue
An I/O Submission Queue is a Submission Queue that is used to submit I/O commands for execution by
the controller (e.g. Read, Write for the NVM command set). I/O Submission Queue identifiers are from 1
to 65535.

1.6.16 LBA range
A collection of contiguous logical blocks specified by a starting LBA and number of logical blocks.

1.6.17 logical block
The smallest addressable data unit for Read and Write commands.

1.6.18 logical block address (LBA)
The address of a logical block, referred to commonly as LBA.

1.6.19 metadata
Metadata is contextual information about a particular LBA of data. The host may include metadata to be
stored by the NVM subsystem if storage space is provided by the controller.

1.6.20 namespace
A quantity of non-volatile memory that may be formatted into logical blocks. When formatted, a namespace
of size n is a collection of logical blocks with logical block addresses from 0 to (n-1).

1.6.21 Namespace ID (NSID)
An identifier used by a controller to provide access to a namespace. Refer to section 6.1 for the definitions
of valid NSID, invalid NSID, active NSID, inactive NSID, allocated NSID, and unallocated NSID.

NVM Express 1.3a

15

1.6.22 NVM
NVM is an acronym for non-volatile memory.

1.6.23 NVM subsystem
An NVM subsystem includes one or more controllers, zero or more namespaces, one or more ports, a non-
volatile memory storage medium, and an interface between the controller(s) and non-volatile memory
storage medium.

1.6.24 primary controller
An NVM Express controller that supports the Virtualization Management command. An NVM subsystem
may contain multiple primary controllers. Secondary controller(s) in an NVM subsystem depend on a
primary controller for dynamic resource management (refer to section 8.5).

A PCI Express SR-IOV Physical Function that supports NVM Express and the Virtualization Enhancements
capability is an example of a primary controller (refer to section 8.5.4).

1.6.25 private namespace
A namespace that may only be attached to one controller at a time. A host may determine whether a
namespace is a private namespace or may be a shared namespace by the value of the Namespace Multi-
path I/O and Namespace Sharing Capabilities (NMIC) field in the Identify Namespace data structure.

1.6.26 privileged actions
An action (command, register write, etc.) that affects or has the potential to affect the state of the entire
NVM subsystem and not only the controller and/or namespace with which the action is associated. Admin
commands that are privileged include Namespace Management, Namespace Attachment, Virtualization
Management, Format NVM, and Sanitize. A privileged register action is NVM subsystem reset. Vendor
specific commands and registers may also be privileged.

1.6.27 Runtime D3 (Power Removed)
In Runtime D3 (RTD3) main power is removed from the controller. Auxiliary power may or may not be
provided.

1.6.28 sanitize operation
Process by which all user data in the NVM subsystem is altered such that recovery of the previous user
data from any cache or the non-volatile media is not possible.

1.6.29 secondary controller
An NVM Express controller that depends on a primary controller in an NVM subsystem for management of
some controller resources (refer to section 8.5).

A PCI Express SR-IOV Virtual Function that supports NVM Express and receives resources from a primary
controller is an example of a secondary controller (refer to section 8.5.4).

NVM Express 1.3a

16

1.6.30 shared namespace
A namespace that may be attached to two or more controllers in an NVM subsystem concurrently. A host
may determine whether a namespace is a private namespace or may be a shared namespace by the value
of the Namespace Multi-path I/O and Namespace Sharing Capabilities (NMIC) field in the Identify
Namespace data structure.

1.6.31 user data
Data that is composed of logical block data, metadata, and protection information.

1.7 Keywords
Several keywords are used to differentiate between different levels of requirements.

1.7.1 mandatory
A keyword indicating items to be implemented as defined by this specification.

1.7.2 may
A keyword that indicates flexibility of choice with no implied preference.

1.7.3 optional
A keyword that describes features that are not required by this specification. However, if any optional
feature defined by the specification is implemented, the feature shall be implemented in the way defined by
the specification.

1.7.4 R
“R” is used as an abbreviation for “reserved” when the figure or table does not provide sufficient space for
the full word “reserved”.

1.7.5 reserved
A keyword referring to bits, bytes, words, fields, and opcode values that are set-aside for future
standardization. Their use and interpretation may be specified by future extensions to this or other
specifications. A reserved bit, byte, word, field, or register shall be cleared to zero, or in accordance with a
future extension to this specification. The recipient is not required to check reserved bits, bytes, words, or
fields. Receipt of reserved coded values in defined fields in commands shall be reported as an error. Writing
a reserved coded value into a controller register field produces undefined results.

1.7.6 shall
A keyword indicating a mandatory requirement. Designers are required to implement all such mandatory
requirements to ensure interoperability with other products that conform to the specification.

NVM Express 1.3a

17

1.7.7 should
A keyword indicating flexibility of choice with a strongly preferred alternative. Equivalent to the phrase “it is
recommended”.

1.8 Byte, word and Dword Relationships
Figure 7 illustrates the relationship between bytes, words and Dwords. A Qword (quadruple word) is a unit
of data that is four times the size of a word; it is not illustrated due to space constraints. This specification
specifies data in a little endian format.

Figure 7: Byte, word and Dword Relationships

7

6

5

4

3

2

1

0

 byte

 1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

 word

 byte 1 byte 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

 Dword

word 1 word 0

byte 3 byte 2 byte 1 byte 0

NVM Express 1.3a

18

1.9 References
INCITS 501-2016, Information technology – Security Features for SCSI Commands (SFSC). Available
from http://webstore.ansi.org.

INCITS 514-2014, Information technology – SCSI Block Commands - 3 (SBC-3). Available from
http://webstore.ansi.org.

INCITS 522-2014, Information technology – ATA/ATAPI Command Set - 3 (ACS-3). Available from
http://webstore.ansi.org.

JEDEC JESD218B-01: Solid State Drive (SSD) Requirements and Endurance Test Method standard.
Available from http://www.jedec.org.

NVM Express over Fabrics Specification, Revision 1.0. Available from http://www.nvmexpress.org.

NVM Express Management Interface Specification, Revision 1.0. Available from
http://www.nvmexpress.org.

PCI specification, revision 3.0. Available from http://www.pcisig.com.

PCI Express specification, revision 2.1. Available from http://www.pcisig.com.

PCI Power Management specification. Available from http://www.pcisig.com.

PCI Single Root I/O Virtualization and Sharing Specification, revision 1.1. Available from
http://www.pcisig.com/specifications/iov/single_root/.

PCI Firmware 3.0 specification. Available from http://www.pcisig.com.

RFC 4301, Kent, S. and K. Seo, “Security Architecture for the Internet Protocol”, December 2005. Available
from https://www.ietf.org/rfc.html.

RFC 6234, Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms (SHA and SHA-based HMAC
and HKDF)", May 2011. Available from https://www.ietf.org/rfc.html.

UEFI 2.3.1 specification. Available from http://www.uefi.org.

Trusted Computing Group Storage Architecture Core specification, Version 2.01 Revision 1.00. Available
from http://www.trustedcomputinggroup.org.

Trusted Computing Group Storage Interface Interactions Specification (SIIS). Available from
http://www.trustedcomputinggroup.org.

1.10 References Under Development
ATA/ATAPI Command Set - 4 (ACS-4) [BSR INCITS 529]. Available from http://www.t13.org.

INCITS 506-201x, SCSI Block Commands - 4 (SBC-4)

http://webstore.ansi.org/
http://webstore.ansi.org/
http://webstore.ansi.org/
http://www.jedec.org/
http://www.nvmexpress.org/
http://www.nvmexpress.org/
http://www.pcisig.com/
http://www.pcisig.com/
http://www.pcisig.com/
http://www.pcisig.com/specifications/iov/single_root
http://www.pcisig.com/
https://www.ietf.org/rfc.html
https://www.ietf.org/rfc.html
http://www.uefi.org/
http://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/
http://www.t13.org/

NVM Express 1.3a

19

2 System Bus (PCI Express) Registers
This section describes the PCI Express register values when the PCI Express is the system bus used.
Other system buses may be used in an implementation. If a system bus is used that is not a derivative of
PCI, then this section is not applicable.

This section details how the PCI Header, PCI Capabilities, and PCI Express Extended Capabilities should
be constructed for an NVM Express controller. The fields shown are duplicated from the appropriate PCI
or PCI Express specifications. The PCI documents are the normative specifications for these registers and
this section details additional requirements for an NVM Express controller.

Start End Name Type
00h 3Fh PCI Header

PMCAP PMCAP+7h PCI Power Management Capability PCI Capability
MSICAP MSICAP+9h Message Signaled Interrupt Capability PCI Capability

MSIXCAP MSIXCAP+Bh MSI-X Capability PCI Capability
PXCAP PXCAP+29h PCI Express Capability PCI Capability

AERCAP AERCAP+47h Advanced Error Reporting Capability PCI Express Extended Capability

MSI-X is the recommended interrupt mechanism to use. However, some systems do not support MSI-X,
thus devices should support both the MSI Capability and the MSI-X Capability.

It is recommended that implementations support the Advanced Error Reporting Capability to enable more
robust error handling.

2.1 PCI Header
Start End Symbol Name
00h 03h ID Identifiers
04h 05h CMD Command Register
06h 07h STS Device Status
08h 08h RID Revision ID
09h 0Bh CC Class Codes
0Ch 0Ch CLS Cache Line Size
0Dh 0Dh MLT Master Latency Timer
0Eh 0Eh HTYPE Header Type
0Fh 0Fh BIST Built In Self Test (Optional)

10h 13h MLBAR
(BAR0) Memory Register Base Address, lower 32-bits <BAR0>

14h 17h MUBAR
(BAR1) Memory Register Base Address, upper 32-bits <BAR1>

18h 1Bh BAR2 Refer to section 2.1.12
1Ch 1Fh BAR3 Vendor Specific
20h 23h BAR4 Vendor Specific
24h 27h BAR5 Vendor Specific
28h 2Bh CCPTR CardBus CIS Pointer
2Ch 2Fh SS Subsystem Identifiers
30h 33h EROM Expansion ROM Base Address (Optional)
34h 34h CAP Capabilities Pointer
35h 3Bh R Reserved
3Ch 3Dh INTR Interrupt Information
3Eh 3Eh MGNT Minimum Grant (Optional)
3Fh 3Fh MLAT Maximum Latency (Optional)

NVM Express 1.3a

20

2.1.1 Offset 00h: ID - Identifiers
Bits Type Reset Description

31:16 RO Impl
Spec

Device ID (DID): Indicates the device number assigned by the vendor. Specific to each
implementation.

15:00 RO Impl
Spec Vendor ID (VID): Indicates the company vendor, assigned by the PCI SIG.

2.1.2 Offset 04h: CMD - Command
Bit Type Reset Description

15:11 RO 0 Reserved

10 RW 0 Interrupt Disable (ID): Disables the controller from generating pin-based INTx#
interrupts. This bit does not have any effect on MSI or MSI-X operation.

09 RO 0 Fast Back-to-Back Enable (FBE): Not supported by NVM Express.

08 RW /
RO 0 SERR# Enable (SEE): Controls error reporting.

07 RO 0 Hardwired to 0.

06 RW /
RO 0

Parity Error Response Enable (PEE): When set to ‘1’, the controller shall generate
PERR# when a data parity error is detected. If parity is not supported, then this field is
read-only ‘0’.

05 RO 0 VGA Palette Snooping Enable (VGA): Not supported by NVM Express.
04 RO 0 Memory Write and Invalidate Enable (MWIE): Not supported by NVM Express.
03 RO 0 Special Cycle Enable (SCE): Not supported by NVM Express.

02 RW 0
Bus Master Enable (BME): Enables the controller to act as a master for data transfers.
When set to ‘1’, bus master activity is allowed. When cleared to ‘0’, the controller is not
allowed to issue any Memory or I/O Requests.

01 RW 0 Memory Space Enable (MSE): Controls access to the controller’s register memory
space.

00 RW 0 I/O Space Enable (IOSE): Controls access to the controller’s target I/O space.

2.1.3 Offset 06h: STS - Device Status
Bit Type Reset Description

15 RWC 0 Detected Parity Error (DPE): Set to ‘1’ by hardware when the controller detects a
parity error on its interface.

14 RWC/RO 0 Signaled System Error (SSE): Refer to the PCI SIG specifications.

13 RWC 0 Received Master-Abort (RMA): Set to ‘1’ by hardware when the controller receives
a master abort to a cycle it generated.

12 RWC 0 Received Target Abort (RTA): Set to ‘1’ by hardware when the controller receives
a target abort to a cycle it generated.

11 RO 0 Signaled Target-Abort (STA): Not supported by NVM Express.

10:09 RO Impl
Spec

DEVSEL# Timing (DEVT): Controls the device select time for the controller’s PCI
interface. This field is not applicable to PCI Express implementations.

08 RWC 0
Master Data Pariy Error Detected (DPD): Set to ‘1’ by hardware when the controller,
as a master, either detects a parity error or sees the parity error line asserted, and the
parity error response bit (CMD.PEE) is set to ‘1’.

07 RO Impl
Spec

Fast Back-to-Back Capable (FBC): Indicates whether the controller accepts fast
back-to-back cycles. This field is not applicable to PCI Express implementations.

06 RO 0 Reserved

05 RO Impl
Spec

66 MHz Capable (C66): Indicates whether the controller may operate at 66 MHz.
This field is not applicable to PCI Express implementations.

04 RO 1 Capabilities List (CL): Indicates the presence of a capabilities list. The controller
shall support the PCI Power Management capability as a minimum.

03 RO 0 Interrupt Status (IS): Indicates the interrupt status of the device (‘1’ = asserted).
02:00 RO 0 Reserved

NVM Express 1.3a

21

2.1.4 Offset 08h: RID - Revision ID
Bits Type Reset Description

07:00 RO Impl
Spec Revision ID (RID): Indicates stepping of the controller hardware.

2.1.5 Offset 09h: CC - Class Code
Bits Type Reset Description

23:16 RO 01h Base Class Code (BCC): Indicates the base class code as a mass storage controller.

15:08 RO 08h Sub Class Code (SCC): Indicates the sub class code as a Non-Volatile Memory
controller.

07:00 RO 02h
Programming Interface (PI): This field specifies the programming interface of the
controller is NVM Express. (Note: The PCI SIG documentation refers to this as
Enterprise NVMHCI.)

2.1.6 Offset 0Ch: CLS – Cache Line Size
Bits Type Reset Description

07:00 RW 00h Cache Line Size (CLS): Cache Line Size register is set by the system firmware or
operating system to the system cache size.

2.1.7 Offset 0Dh: MLT – Master Latency Timer
Bits Type Reset Description

07:00 RO 00h
Master Latency Timer (MLT): Indicates the number of clocks the controller is allowed
to act as a master on PCI. For a PCI Express device, this register does not apply and
shall be hardwired to ‘0’.

2.1.8 Offset 0Eh: HTYPE – Header Type
Bits Type Reset Description

07 RO Impl
Spec

Multi-Function Device (MFD): Indicates whether the controller is part of a multi-function
device.

06:00 RO 00h Header Layout (HL): Indicates that the controller uses a target device layout.

2.1.9 Offset 0Fh: BIST – Built In Self Test (Optional)
The following register is optional, but if implemented, shall look as follows. When not implemented, it shall
be read-only 00h.

Bits Type Reset Description

07 RO Impl
Spec BIST Capable (BC): Indicates whether the controller has a BIST function.

06 RW 0 Start BIST (SB): Host software sets this bit to ‘1’ to invoke BIST. The controller clears
this bit to ‘0’ when BIST is complete.

05:04 RO 00 Reserved

03:00 RO 0h Completion Code (CC): Indicates the completion code status of BIST. A non-zero
value indicates a failure.

2.1.10 Offset 10h: MLBAR (BAR0) – Memory Register Base Address, lower 32-bits
This register allocates space for the memory registers defined in section 3.

NVM Express 1.3a

22

Bit Type Reset Description

31:14 RW 0

Base Address (BA): Base address of register memory space. For controllers that
support a larger number of doorbell registers or have vendor specific space following the
doorbell registers, more bits are allowed to be RO such that more memory space is
consumed.

13:04 RO 0 Reserved
03 RO 0 Prefetchable (PF): Indicates that this range is not pre-fetchable

02:01 RO Impl
Spec

Type (TP): Indicates where this range may be mapped. It is recommended to support
mapping anywhere in 64-bit address space.

00 RO 0 Resource Type Indicator (RTE): Indicates a request for register memory space.

2.1.11 Offset 14h: MUBAR (BAR1) – Memory Register Base Address, upper 32-bits
This register specifies the upper 32-bit address of the memory registers defined in section 3.

Bit Type Reset Description
31:00 RW 0 Base Address (BA): Upper 32-bits (bits 63:32) of the memory register base address.

NOTE: NVM Express implementations that reside behind PCI compliant bridges, such as PCI Express
Endpoints, are restricted to having 32-bit assigned base address registers due to limitations on the
maximum address that may be specified in the bridge for non-prefetchable memory. See the PCI Bridge
1.2 specification for more information on this restriction.

2.1.12 Offset 18h: BAR2 – Index/Data Pair Register Base Address or Vendor Specific (Optional)
If this register is configured as I/O space, then this register specifies the Index/Data Pair base address and
is configured as shown in the table below. These registers are used to access the memory registers defined
in section 3 using I/O based accesses.

Bit Type Reset Description
31:03 RW 0 Base Address (BA): Base address of Index/Data Pair registers that is 8 bytes in size.
02:01 RO 0 Reserved

00 RO 1 Resource Type Indicator (RTE): Indicates a request for register I/O space.

If this register is configured as memory space (Resource Type Indicator is cleared to ‘0’), then the BAR2
register is vendor specific. Vendor specific space may also be allocated at the end of the memory registers
defined in section 3.

2.1.13 Offset 1Ch – 20h: BAR3 – Vendor Specific
The BAR3 register is vendor specific. Vendor specific space may also be allocated at the end of the
memory registers defined in section 3.

2.1.14 Offset 20h – 23h: BAR4 – Vendor Specific
The BAR4 register is vendor specific. Vendor specific space may also be allocated at the end of the
memory registers defined in section 3.

2.1.15 Offset 24h – 27h: BAR5 – Vendor Specific
The BAR5 register is vendor specific. Vendor specific space may also be allocated at the end of the
memory registers defined in section 3.

NVM Express 1.3a

23

2.1.16 Offset 28h: CCPTR – CardBus CIS Pointer
Bit Type Reset Description

31:00 RO 0 Not supported by NVM Express.

2.1.17 Offset 2Ch: SS - Sub System Identifiers
Bits Type Reset Description

31:16 RO HwInit Subsystem ID (SSID): Indicates the sub-system identifier.
15:00 RO HwInit Subsystem Vendor ID (SSVID): Indicates the sub-system vendor identifier

2.1.18 Offset 30h: EROM – Expansion ROM (Optional)
If the register is not implemented, it shall be read-only 00h.

Bit Type Reset Description

31:00 RW Impl
Spec

ROM Base Address (RBA): Indicates the base address of the controller’s expansion
ROM. Not supported for integrated implementations.

2.1.19 Offset 34h: CAP – Capabilities Pointer
Bit Type Reset Description

7:0 RO Impl
Spec Capability Pointer (CP): Indicates the first capability pointer offset.

2.1.20 Offset 3Ch: INTR - Interrupt Information
Bits Type Reset Description

15:08 RO Impl
Spec Interrupt Pin (IPIN): This indicates the interrupt pin the controller uses.

07:00 RW 00h Interrupt Line (ILINE): Host software written value to indicate which interrupt line
(vector) the interrupt is connected to. No hardware action is taken on this register.

2.1.21 Offset 3Eh: MGNT – Minimum Grant
Bits Type Reset Description

07:00 RO 00h Grant (GNT): Not supported by NVM Express.

2.1.22 Offset 3Fh: MLAT – Maximum Latency
Bits Type Reset Description

07:00 RO 00h Latency (LAT): Not supported by NVM Express.

2.2 PCI Power Management Capabilities
See section 3.1.5 for requirements when the PCI power management state changes.

Start End Symbol Name

PMCAP PMCAP+1h PID PCI Power Management Capability ID
PMCAP+2h PMCAP+3h PC PCI Power Management Capabilities
PMCAP+4h PMCAP+5h PMCS PCI Power Management Control and Status

NVM Express 1.3a

24

2.2.1 Offset PMCAP: PID - PCI Power Management Capability ID
Bit Type Reset Description

15:08 RO Impl
Spec

Next Capability (NEXT): Indicates the location of the next capability item in the list.
This may be other capability pointers (such as Message Signaled Interrupts) or it
may be the last item in the list.

07:00 RO 01h Cap ID (CID): Indicates that this pointer is a PCI Power Management capability.

2.2.2 Offset PMCAP + 2h: PC – PCI Power Management Capabilities
Bit Type Reset Description

15:11 RO 0h PME_Support (PSUP): Not supported by NVM Express.

10 RO 0 D2_Support (D2S): Indicates support for the D2 power management state. Not
recommended for implementation.

09 RO 0 D1_Support (D1S): Indicates support for the D1 power management state. Not
recommended for implementation.

08:06 RO 000 Aux_Current (AUXC): Not supported by NVM Express.

05 RO Impl
Spec

Device Specific Initialization (DSI): Indicates whether device specific initialization is
required.

04 RO 0 Reserved
03 RO 0 PME Clock (PMEC): Indicates that PCI clock is not required to generate PME#.

02:00 RO Impl
Spec

Version (VS): Indicates support for revision 1.2 or higher revisions of the PCI Power
Management Specification.

2.2.3 Offset PMCAP + 4h: PMCS – PCI Power Management Control and Status
Bit Type Reset Description
15 RWC 0 PME Status (PMES): Refer to the PCI SIG specifications.

14:13 RO 0 Data Scale (DSC): Refer to the PCI SIG specifications.

12:09 RO /
RW 0 Data Select (DSE): If PME is not supported, then this field is read only ‘0’. Refer to the

PCI SIG specifications.

08 RO /
RW 0 PME Enable (PMEE): If PME is not supported, then this field is read only ‘0’. Refer to

the PCI SIG specifications.
07:04 RO 0 Reserved

03 RO 1 No Soft Reset (NSFRST): A value of ‘1’ indicates that the controller transitioning from
D3hot to D0 because of a power state command does not perform an internal reset.

02 RO 0 Reserved

01:00 R/W 00

Power State (PS): This field is used both to determine the current power state of the
controller and to set a new power state. The values are:

00 – D0 state
01 – D1 state
10 – D2 state
11 – D3HOT state

When in the D3HOT state, the controller’s configuration space is available, but the register
I/O and memory spaces are not. Additionally, interrupts are blocked.

2.3 Message Signaled Interrupt Capability (Optional)
Start End Symbol Name

MSICAP MSICAP+1h MID Message Signaled Interrupt Capability ID
MSICAP+2h MSICAP+3h MC Message Signaled Interrupt Message Control
MSICAP+4h MSICAP+7h MA Message Signaled Interrupt Message Address
MSICAP+8h MSICAP+Bh MUA Message Signaled Interrupt Upper Address
MSICAP+Ch MSICAP+Dh MD Message Signaled Interrupt Message Data
MSICAP+10h MSICAP+13h MMASK Message Signaled Interrupt Mask Bits (Optional)
MSICAP+14h MSICAP+17h MPEND Message Signaled Interrupt Pending Bits (Optional)

NVM Express 1.3a

25

2.3.1 Offset MSICAP: MID – Message Signaled Interrupt Identifiers
Bits Type Reset Description

15:08 RO Impl
Spec

Next Pointer (NEXT): Indicates the next item in the list. This may be other capability
pointers or it may be the last item in the list.

07:00 RO 05h Capability ID (CID): Capabilities ID indicates this is a Message Signaled Interrupt (MSI)
capability.

2.3.2 Offset MSICAP + 2h: MC – Message Signaled Interrupt Message Control
Bits Type Reset Description

15:09 RO 0 Reserved

08 RO Impl
Spec

Per-Vector Masking Capable (PVM): Specifies whether controller supports MSI per-
vector masking.

07 RO 1 64 Bit Address Capable (C64): Specifies whether the controller is capable of generating
64-bit messages. NVM Express controllers shall be 64-bit capable.

06:04 RW 000
Multiple Message Enable (MME): Indicates the number of messages the controller
should assert. Controllers that only support single message MSI may implement this
field as read-only.

03:01 RO Impl
Spec

Multiple Message Capable (MMC): Indicates the number of messages the controller
wants to assert.

00 RW 0 MSI Enable (MSIE): If set to ‘1’, MSI is enabled. If cleared to ‘0’, MSI operation is
disabled.

2.3.3 Offset MSICAP + 4h: MA – Message Signaled Interrupt Message Address
Bits Type Reset Description

31:02 RW 0 Address (ADDR): Lower 32 bits of the system specified message address, always
Dword aligned.

01:00 RO 00 Reserved

2.3.4 Offset MSICAP + 8h: MUA – Message Signaled Interrupt Upper Address
Bits Type Reset Description

31:00 RW 0 Upper Address (UADDR): Upper 32 bits of the system specified message address. This
register is required when the MSI Capability is supported by the controller.

2.3.5 Offset MSICAP + Ch: MD – Message Signaled Interrupt Message Data
Bits Type Reset Description

15:00 RW 0
Data (DATA): This 16-bit field is programmed by system software if MSI is enabled. Its
content is driven onto the lower word (PCI AD[15:0]) during the data phase of the MSI
memory write transaction.

2.3.6 Offset MSICAP + 10h: MMASK – Message Signaled Interrupt Mask Bits (Optional)
Bits Type Reset Description

31:00 RW 0 Mask Bits (MASK): For each Mask bit that is set to ‘1’, the function is prohibited from
sending the associated message.

NVM Express 1.3a

26

2.3.7 Offset MSICAP + 14h: MPEND – Message Signaled Interrupt Pending Bits (Optional)
Bits Type Reset Description

31:00 RW 0 Pending Bits (PEND): For each Pending bit that is set to ‘1’, the function has a pending
associated message.

2.4 MSI-X Capability (Optional)
Start End Symbol Name

MSIXCAP MSIXCAP+1h MXID MSI-X Capability ID
MSIXCAP+2h MSIXCAP+3h MXC MSI-X Message Control
MSIXCAP+4h MSIXCAP+7h MTAB MSI-X Table Offset and Table BIR
MSIXCAP+8h MSIXCAP+Bh MPBA MSI-X PBA Offset and PBA BIR

Note: It is recommended that the host allocate a unique MSI-X vector for each Completion Queue.

The Table BIR and PBA BIR data structures may be allocated in either BAR0-1 or BAR4-5 in
implementations. These tables should be 4KB aligned. The memory page(s) that comprise the Table BIR
and PBA BIR shall not include other registers/structures. It is recommended that these structures be
allocated in BAR0-1 following the Submission Queue and Completion Queue Doorbell registers. Refer to
the PCI reference for more information on allocation requirements for these data structures.

2.4.1 Offset MSIXCAP: MXID – MSI-X Identifiers

Bits Type Reset Description

15:08 RO Impl
Spec

Next Pointer (NEXT): Indicates the next item in the list. This may be other capability
pointers or it may be the last item in the list.

07:00 RO 11h Capability ID (CID): Capabilities ID indicates this is an MSI-X capability.

2.4.2 Offset MSIXCAP + 2h: MXC – MSI-X Message Control
Bits Type Reset Description

15 RW 0

MSI-X Enable (MXE): If set to ‘1’ and the MSI Enable bit in the MSI Message Control
register is cleared to ‘0’, the function is permitted to use MSI-X to request service and is
prohibited from using its INTx# pin (if implemented). If cleared to ‘0’, the function is
prohibited from using MSI-X to request service.

14 RW 0

Function Mask (FM): If set to ‘1’, all of the vectors associated with the function are
masked, regardless of their per vector Mask bit states. If cleared to ‘0’, each vector’s
Mask bit determines whether the vector is masked or not. Setting or clearing the MSI-X
Function Mask bit has no effect on the state of the per vector Mask bits.

13:11 RO 0h Reserved

10:00 RO Impl
Spec

Table Size (TS): This value indicates the size of the MSI-X Table as the value n, which
is encoded as n - 1. For example, a returned value of 3h corresponds to a table size of
4.

2.4.3 Offset MSIXCAP + 4h: MTAB – MSI-X Table Offset / Table BIR
Bits Type Reset Description

31:03 RO Impl
Spec

Table Offset (TO): Used as an offset from the address contained by one of the function’s
Base Address registers to point to the base of the MSI-X Table. The lower three Table
BIR bits are masked off (cleared to 000b) by system software to form a 32-bit Qword-
aligned offset.

02:00 RO Impl
Spec

Table BIR (TBIR): This field indicates which one of a function’s Base Address registers,
located beginning at 10h in Configuration Space, is used to map the function’s MSI-X
Table into system memory.

BIR Value BAR Offset
0 10h

NVM Express 1.3a

27

Bits Type Reset Description
1 na
2 na
3 Reserved
4 20h
5 24h
6 Reserved
7 Reserved

For a 64-bit Base Address register, the Table BIR indicates the lower Dword. With PCI-
to-PCI bridges, BIR values 2 through 5 are also reserved.

2.4.4 Offset MSIXCAP + 8h: MPBA – MSI-X PBA Offset / PBA BIR
Bits Type Reset Description

31:03 RO Impl
Spec

PBA Offset (PBAO): Used as an offset from the address contained by one of the
function’s Base Address registers to point to the base of the MSI-X PBA. The lower three
PBA BIR bits are masked off (cleared to 000b) by software to form a 32-bit Qword-aligned
offset.

02:00 RO Impl
Spec

PBA BIR (PBIR): This field indicates which one of a function’s Base Address registers,
located beginning at 10h in Configuration Space, is used to map the function’s MSI-X
PBA into system memory.

BIR Value BAR Offset
0 10h
1 na
2 na
3 Reserved
4 20h
5 24h
6 Reserved
7 Reserved

2.5 PCI Express Capability
The PCI Express Capability definitions below are based on the PCI Express 2.1 Base specification.
Implementations may choose to base the device on a specification beyond the PCI Express 2.1 Base
specification. In all cases, the PCI Express Base specification is the normative reference for the PCI
Express Capability registers.

Note: TLP poisoning is a mandatory capability for PCI Express implementations. There are optional
features of TLP poisoning, such as TLP poisoning for a transmitter. When an NVM Express controller has
an error on a transmission to the host (e.g., error for a Read command), the error should be indicated as
part of the NVM Express command status and not via TLP poisoning.

Start End Symbol Name

PXCAP PXCAP+1h PXID PCI Express Capability ID
PXCAP+2h PXCAP+3h PXCAP PCI Express Capabilities
PXCAP+4h PXCAP+7h PXDCAP PCI Express Device Capabilities
PXCAP+8h PXCAP+9h PXDC PCI Express Device Control
PXCAP+Ah PXCAP+Bh PXDS PCI Express Device Status
PXCAP+Ch PXCAP+Fh PXLCAP PCI Express Link Capabilities
PXCAP+10h PXCAP+11h PXLC PCI Express Link Control
PXCAP+12h PXCAP+13h PXLS PCI Express Link Status
PXCAP+24h PXCAP+27h PXDCAP2 PCI Express Device Capabilities 2
PXCAP+28h PXCAP+29h PXDC2 PCI Express Device Control 2

NVM Express 1.3a

28

2.5.1 Offset PXCAP: PXID – PCI Express Capability ID
Bits Type Reset Description

15:8 RO Impl
Spec

Next Pointer (NEXT): Indicates the next item in the list. This may be other capability
pointers or it may be the last item in the list.

7:0 RO 10h Capability ID (CID): Indicates that this capability structure is a PCI Express capability.

2.5.2 Offset PXCAP + 2h: PXCAP – PCI Express Capabilities
Bits Type Reset Description

15:14 RO 00b Reserved

13:9 RO Impl
Spec

Interrupt Message Number (IMN): This field indicates the MSI/MSI-X vector that is
used for the interrupt message generated in association with any of the status bits of
this Capability structure. There are no status bits that generate interrupts defined in
this capability within this specification, thus this field is not used.

8 RO 0h Slot Implemented (SI): Not applicable for PCIe Express Endpoint devices.

7:4 RO 0h Device/Port Type (DPT): Indicates the specific type of this PCI Express function. This
device shall be indicated as a PCI Express Endpoint.

3:0 RO 2h Capability Version (VER): Indicates that this capability structure is a PCI Express
capability structure.

2.5.3 Offset PXCAP + 4h: PXDCAP – PCI Express Device Capabilities
Bits Type Reset Description

31:29 RO 000b Reserved

28 RO 1b
Function Level Reset Capability (FLRC): A value of ‘1’ indicates the Function
supports the optional Function Level Reset mechanism. NVM Express controllers shall
support Function Level Reset.

27:26 RO 00b Captured Slot Power Limit Scale (CSPLS): Specifies the scale used for the Slot
Power Limit Value.

25:18 RO 0h

Captured Slot Power Limit Value (CSPLV): In combination with the Slot Power Limit
Scale value, specifies the upper limit on power supplied by the slot. Power limit (in
Watts) is calculated by multiplying the value in this field by the value in the Slot Power
Limit Scale field.

17:16 RO 00b Reserved

15 RO 1b Role-based Error Reporting (RER): When set to ‘1’, indicates that the Function
implements role-based error reporting. This functionality is required.

14:12 RO 000b Reserved

11:9 RO Impl
Spec

Endpoint L1 Acceptable Latency (L1L): This field indicates the acceptable latency
that the Endpoint is able to withstand due to a transition from the L1 state to the L0
state.

08:06 RO Impl
Spec

Endpoint L0s Acceptable Latency (L0SL): This field indicates the acceptable total
latency that the Endpoint is able to withstand due to the transition from L0s state to the
L0 state.

05 RO Impl
Spec

Extended Tag Field Supported (ETFS): This field indicates the maximum supported
size of the Tag field as a Requester.

04:03 RO Impl
Spec

Phantom Functions Supported (PFS): This field indicates the support for use of
unclaimed Function Numbers to extend the number of outstanding transactions
allowed by logically combining unclaimed Function Numbers with the Tag identifier.

02:00 RO Impl
Spec

Max_Payload_Size Supported (MPS): This field indicates the maximum payload size
that the function may support for TLPs.

2.5.4 Offset PXCAP + 8h: PXDC – PCI Express Device Control
Bits Type Reset Description

15 R/W 0b Initiate Function Level Reset – A write of ‘1’ initiates Function Level Reset to the
Function. The value read by software from this bit shall always ‘0’.

NVM Express 1.3a

29

Bits Type Reset Description

14:12 RW/
RO

Impl
Spec

Max_Read_Request_Size (MRRS): This field sets the maximum Read Request size
for the Function as a Requester. The Function shall not generate Read Requests with
size exceeding the set value.

11 RW/
RO 0

Enable No Snoop (ENS): If this field is set to ‘1’, the Function is permitted to set the
No Snoop bit in the Requestor Attributes of transactions it initiates that do not require
hardware enforced cache coherency. This field may be hardwired to ‘0’ if a Function
would never set the No Snoop attribute in transactions it initiates.

10 RW/
RO 0

AUX Power PM Enable (APPME): If this field is set to ‘1’, enables a Function to draw
AUX power independent of PME AUX power. Functions that do not implement this
capability hardware this bit to 0b.

09 RW/
RO 0

Phantom Functions Enable (PFE): If this field is set to ‘1’, enables a Function to use
unclaimed Functions as Phantom Functions to extend the number of outstanding
transaction identifiers. If this field is cleared to ‘0’, the Function is not allowed to use
Phantom Functions.

08 RW/
RO 0

Extended Tag Enable (ETE): If this field is set to ‘1’, enables a Function to use an 8-
bit Tag field as a Requester. If this field is cleared to ‘0’, the Function is restricted to a
5-bit Tag field.

07:05 RW/
RO 000b

Max_Payload_Size (MPS): This field sets the maximum TLP payload size for the
Function. As a receiver, the Function shall handle TLPs as large as the set value. As
a transmitter, the Function shall not generate TLPs exceeding the set value. Functions
that support only the 128 byte max payload size are permitted to hardwire this field to
0h.

04 RW/
RO

Impl
Spec

Enable Relaxed Ordering (ERO): If this field is set to ‘1’, the Function is permitted to
set the Relaxed Ordering bit in the Attributes field of transactions it initiates that do not
require strong write ordering.

03 RW 0 Unsupported Request Reporting Enable (URRE): This bit, in conjunction with other
bits, controls the signaling of Unsupported Requests by sending error messages.

02 RW 0 Fatal Error Reporting Enable (FERE): This bit, in conjunction with other bits, controls
the signaling of Unsupported Requests by sending ERR_FATAL messages.

01 RW 0
Non-Fatal Error Reporting Enable (NFERE): This bit, in conjunction with other bits,
controls the signaling of Unsupported Requests by sending ERR_NONFATAL
messages.

00 RW 0 Correctable Error Reporting Enable (CERE): This bit, in conjunction with other bits,
controls the signaling of Unsupported Requests by sending ERR_COR messages.

NVM Express 1.3a

30

2.5.5 Offset PXCAP + Ah: PXDS – PCI Express Device Status
Bits Type Reset Description

15:06 RO 0h Reserved

05 RO 0

Transactions Pending (TP): When set to ‘1’ this bit indicates that the Function has
issued non-posted requests that have not been completed. This bit is cleared to ‘0’
only when all outstanding non-posted requests have completed or have been
terminated by the completion timeout mechanism. This bit shall also be cleared to ‘0’
upon completion of a Function Level Reset.

04 RO Impl
Spec

AUX Power Detected (APD): Functions that require AUX power report this field as set
to ‘1’ if AUX power is detected by the Function.

03 RWC 0
Unsupported Request Detected (URD): When set to ‘1’ this bit indicates that the
function received an Unsupported Request. Errors are logged in this register
regardless of whether error reporting is enabled in the Device Control register.

02 RWC 0
Fatal Error Detected (FED): When set to ‘1’ this bit indicates that the status of fatal
errors detected. Errors are logged in this register regardless of whether error reporting
is enabled in the Device Control register.

01 RWC 0
Non-Fatal Error Detected (NFED): When set to ‘1’ this bit indicates that the status of
non-fatal errors detected. Errors are logged in this register regardless of whether error
reporting is enabled in the Device Control register.

00 RWC 0
Correctable Error Detected (CED): When set to ‘1’ this bit indicates status of
correctable errors detected. Errors are logged in this register regardless of whether
error reporting is enabled in the Device Control register.

2.5.6 Offset PXCAP + Ch: PXLCAP – PCI Express Link Capabilities
Bits Type Reset Description

31:24 RO HwInit Port Number (PN): This field specifies the PCI Express port number for this device.
23 RO 0h Reserved

22 RO HwInit ASPM Optionality Compliance (AOC): This field specifies Active State Power
Management (ASPM) support

21 RO 0 Link Bandwidth Notification Capability (LBNC): Not applicable to Endpoints.

20 RO 0 Data Link Layer Link Active Reporting Capable (DLLLA): Not applicable to
Endpoints.

19 RO 0 Surprise Down Error Reporting Capable (SDERC): Not applicable to Endpoints.

18 RO Impl
Spec

Clock Power Management (CPM): If this field is set to ‘1’, the component tolerates
the removal of any reference clock(s) via the “clock request” (CLKREQ#) mechanism
when the Link is in the L1 and L2/L3 Ready Link states. If this field is cleared to ‘0’,
the component does not have this capability and that reference clock(s) shall not be
removed in these Link states.

17:15 RO Impl
Spec

L1 Exit Latency (L1EL): This field indicates the L1 exit latency for the given PCI
Express Link. The value reported indicates the length of time this port requires to
complete transition from L1 to L0.

14:12 RO Impl
Spec

L0s Exit Latency (L0SEL): This field indicates the L0s exit latency for the given PCI
Express Link. The value reported indicates the length of time this port requires to
complete transition from L0s to L0.

11:10 RO Impl
Spec

Active State Power Management Support (ASPMS): This field indicates the level of
ASPM supported on the given PCI Express Link.

09:04 RO Impl
Spec

Maximum Link Width (MLW): This field indicates the maximum Link width (xn –
corresponding to n lanes) implemented by the component.

03:00 RO Impl
Spec

Supported Link Speeds (SLS): This field indicates the supported Link speed(s) of the
associated port.

NVM Express 1.3a

31

2.5.7 Offset PXCAP + 10h: PXLC – PCI Express Link Control
Bits Type Reset Description

15:10 RO 0h Reserved

09 RW/
RO 0h

Hardware Autonomous Width Disable (HAWD): When set to ‘1’, disables hardware
from changing the Link width for reasons other than attempting to correct unreliable Link
operation by reducing Link width. Components that do not implement the ability
autonomously to change Link width are permitted to hardwire this bit to ‘0’.

08 RW 0

Enable Clock Power Management (ECPM): When cleared to ‘0’, clock power
management is disabled and the device shall hold the CLKREQ# signal low. When set
to ‘1’, the device is permitted to use the CLKREQ# signal to power manage the Link clock
according to the protocol defined for mini PCI Express.

07 RW 0

Extended Synch (ES): When set to ‘1’, this bit forces the transmission of additional
Ordered Sets when exiting the L0s state and when in the Recovery state. This mode
provides external devices (e.g. logic analyzers) monitoring the Link time to achieve bit
and symbol lock before the Link enters the L0 state and resumes communication.

06 RW 0

Common Clock Configuration (CCC): When set to ‘1’, this bit indicates that this
component and the component at the opposite end of this Link are operating with a
distributed common reference clock. When cleared to ‘0’ this component and the
component at the opposite end of this Link are operating with asynchronous reference
clocks.

05:04 RO 0h Reserved: These bits are reserved on Endpoints.
03 RW 0 Read Completion Boundary (RCB): Indicate the RCB value of the root port.
02 RO 0 Reserved

01:00 RW 0h Active State Power Management Control (ASPMC): This field controls the level of
ASPM executed on the PCI Express Link.

2.5.8 Offset PXCAP + 12h: PXLS – PCI Express Link Status
Bits Type Reset Description

15:13 RO 0h Reserved

12 RO Impl
Spec

Slot Clock Configuration: If this bit is set to ‘1’, it indicates that the component uses
the same physical reference clock that the platform provides on the connector. If the
device uses an independent clock irrespective of a reference on the connector, this bit
shall be cleared to ‘0’.

11:10 RO 0h Reserved

09:04 RO na Negotiated Link Width (NLW): This field indicates the negotiated Link width. This field
is undefined when the Link is not up.

03:00 RO na Current Link Speed (CLS): This field indicates the negotiated Link speed. This field
is undefined when the Link is not up.

NVM Express 1.3a

32

2.5.9 Offset PXCAP + 24h: PXDCAP2 – PCI Express Device Capabilities 2
Bits Type Reset Description

31:24 RO 0h Reserved

23:22 RO Impl
Spec

Max End-End TLP Prefixes (MEETP): Indicates the maximum number of End-End
TLP Prefixes supported by this Function. TLPs received by this Function that contain
more End-End TLP Prefixes than are supported shall be handled as Malformed TLPs.

21 RO Impl
Spec

End-End TLP Prefix Supported (EETPS): Indicates whether End-End TLP Prefix
support is offered by a Function. If cleared to ‘0’, there is no support. If set to ‘1’, the
Function supports receiving TLPs containing End-End TLP Prefixes.

20 RO Impl
Spec

Extended Fmt Field Supported (EFFS): If set to ‘1’, the Function supports the 3-bit
definition of the Fmt field. If cleared to ‘0’, the Function supports a 2-bit definition of
the Fmt field.

19:18 RO Impl
Spec OBFF Supported (OBFFS): This field indicates the level of support for OBFF.

17:14 RO 0h Reserved

13:12 RO Impl
Spec

TPH Completer Supported (TPHCS): Defined encodings are listed in the following
table.

Value Definition
00b TPH and Extended TPH Completer not supported

01b TPH Completer supported; Extended TPH Completer not
supported

10b Reserved
11b Both TPH and Extended TPH Completer supported

11 RO Impl
Spec

Latency Tolerance Reporting Supported (LTRS): If set to ‘1’, then the latency
tolerance reporting mechanism is supported.

10 RO 0 No RO-enabled PR-PR Passing (NPRPR): Not applicable to NVM Express.

09 RO Impl
Spec

128-bit CAS Completer Supported (128CCS): This bit shall be set to ‘1’ if the
Function supports this optional capability.

08 RO Impl
Spec

64-bit AtomicOp Completer Supported (64AOCS): Includes FetchAdd, Swap, and
CAS AtomicOps. This bit shall be set to ‘1’ if the Function supports this optional
capability.

07 RO Impl
Spec

32-bit AtomicOp Completer Supported (32AOCS): Includes FetchAdd, Swap, and
CAS AtomicOps. This bit shall be set to ‘1’ if the Function supports this optional
capability.

06 RO 0 AtomicOp Routing Supported (AORS): Not applicable to NVM Express.
05 RO 0 ARI Forwarding Supported (ARIFS): Not applicable for NVM Express.

04 RO 1
Completion Timeout Disable Supported (CTDS): A value of ‘1’ indicates support
for the Completion Timeout Disable mechanism. The Completion Timeout Disable
mechanism is required for Endpoints that issue requests on their own behalf.

03:00 RO Impl
Spec

Completion Timeout Ranges Supported (CTRS): This field indicates device
function support for the optional Completion Timeout programmability mechanism.

2.5.10 Offset PXCAP + 28h: PXDC2 – PCI Express Device Control 2
Bits Type Reset Description

31:15 RO 0h Reserved

14:13 RW Impl
Spec OBFF Enable (OBFFE): This field controls the capabilities enabled for OBFF.

12:11 RO 00b Reserved

10 RW 0 Latency Tolerance Reporting Mechanism Enable (LTRME): When set to ‘1’,
enables the LTR mechanism. When cleared to ‘0’, the LTR mechanism is disabled.

09:05 RO 0h Reserved

04 RW 0 Completion Timeout Disable (CTD): When set to ‘1’, this bit disables the
Completion Timeout mechanism.

03:00 RW/RO Impl
Spec

Completion Timeout Value: Specifies the completion timeout value. If this feature
is not supported in PXDCAP2, then this field is read only 0h.

NVM Express 1.3a

33

2.6 Advanced Error Reporting Capability (Optional)
The Advanced Error Reporting definitions below are based on the PCI Express 2.1 Base specification.
Implementations may choose to base the device on a specification beyond the PCI Express 2.1 Base
specification. In all cases, the PCI Express Base specification is the normative reference for the Advanced
Error Reporting registers.

Start End Symbol Name

AERCAP AERCAP+3h AERID AER Capability ID
AERCAP+4h AERCAP+7h AERUCES AER Uncorrectable Error Status Register
AERCAP+8h AERCAP+Bh AERUCEM AER Uncorrectable Error Mask Register
AERCAP+Ch AERCAP+Fh AERUCESEV AER Uncorrectable Error Severity Register
AERCAP+10h AERCAP+13h AERCES AER Correctable Error Status Register
AERCAP+14h AERCAP+17h AERCEM AER Correctable Error Mask Register
AERCAP+18h AERCAP+1Bh AERCC AER Advanced Error Capabilities and Control Reg.
AERCAP+1Ch AERCAP+2Bh AERHL AER Header Log Register
AERCAP+38h AERCAP+47h AERTLP AER TLP Prefix Log Register (Optional)

2.6.1 Offset AERCAP: AERID – AER Capability ID
Bits Type Reset Description

31:20 RO Impl
Spec

Next Pointer (NEXT): Indicates the next item in the list. This may be other capability
pointers or it may be the last item in the list.

19:16 RO Impl
Spec

Capability Version (CVER): Indicates the version of the capability structure. Reset
value may be 1h or 2h.

15:0 RO 0001h Capability ID (CID): Indicates that this capability structure is an Advanced Error
Reporting capability.

2.6.2 Offset AERCAP + 4: AERUCES – AER Uncorrectable Error Status Register
This register indicates the error detection status of the individual errors on the controller. These bits are
sticky – they are neither initialized nor modified during a hot reset or Function Level Reset (FLR).

Bits Type Reset Description

31:26 RO 0 Reserved
25 RWC/RO 0 TLP Prefix Blocked Error Status (TPBES) (Optional)
24 RWC/RO 0 AtomicOp Egress Blocked Status (AOEBS) (Optional)
23 RWC/RO 0 MC Blocked TLP Status (MCBTS) (Optional)
22 RWC/RO 0 Uncorrectable Internal Error Status (UIES) (Optional)
21 RWC/RO 0 ACS Violation Status (ACSVS) (Optional)
20 RWC 0 Unsupported Request Error Status (URES)
19 RWC/RO 0 ECRC Error Status (ECRCES) (Optional)
18 RWC 0 Malformed TLP Status (MTS)
17 RWC/RO 0 Receiver Overflow Status (ROS) (Optional)
16 RWC 0 Unexpected Completion Status (UCS)
15 RWC/RO 0 Completer Abort Status (CAS) (Optional)
14 RWC 0 Completion Timeout Status (CTS)
13 RWC/RO 0 Flow Control Protocol Error Status (FCPES) (Optional)
12 RWC 0 Poisoned TLP Status (PTS)

11:05 RO 0 Reserved
04 RWC 0 Data Link Protocol Error Status (DLPES)

03:00 RO 0 Reserved

NVM Express 1.3a

34

2.6.3 Offset AERCAP + 8: AERUCEM – AER Uncorrectable Error Mask Register
This register controls the reporting of the individual errors by the controller. A masked error is not reported
in the Header Log register (AERHL), does not updated the First Error Pointer (AERCC.FEP), and is not
reported to the host. These bits are sticky – they are neither initialized nor modified during a hot reset or
FLR.

Bits Type Reset Description

31:26 RO 0 Reserved
25 RW/RO 0 TLP Prefix Blocked Error Mask (TPBEM) (Optional)
24 RW/RO 0 AtomicOp Egress Blocked Mask (AOEBM) (Optional)
23 RW/RO 0 MC Blocked TLP Mask (MCBTM) (Optional)
22 RW/RO 1 Uncorrectable Internal Error Mask (UIEM) (Optional)
21 RW/RO 0 ACS Violation Mask (ACSVM) (Optional)
20 RW 0 Unsupported Request Error Mask (UREM)
19 RW/RO 0 ECRC Error Mask (ECRCEM) (Optional)
18 RW 0 Malformed TLP Mask (MTM)
17 RW/RO 0 Receiver Overflow Mask (ROM) (Optional)
16 RW 0 Unexpected Completion Mask (UCM)
15 RW/RO 0 Completer Abort Mask (CAM) (Optional)
14 RW 0 Completion Timeout Mask (CTM)
13 RW/RO 0 Flow Control Protocol Error Mask (FCPEM) (Optional)
12 RW 0 Poisoned TLP Mask (PTM)

11:05 RO 0 Reserved
04 RW 0 Data Link Protocol Error Mask (DLPEM)

03:00 RO 0 Reserved

2.6.4 Offset AERCAP + Ch: AERUCESEV – AER Uncorrectable Error Severity Register
This register controls whether an individual error is reported as a non-fatal or a fatal error. An error is
reported as fatal when the corresponding error bit in the severity register is set (‘1’). If the bit is cleared (‘0’),
the corresponding error is considered non-fatal. These bits are sticky – they are neither initialized nor
modified during a hot reset or FLR.

Bits Type Reset Description

31:26 RO 0 Reserved
25 RW/RO 0 TLP Prefix Blocked Error Severity (TPBESEV) (Optional)
24 RW/RO 0 AtomicOp Egress Blocked Severity (AOEBSEV) (Optional)
23 RW/RO 0 MC Blocked TLP Severity (MCBTSEV) (Optional)
22 RW/RO 1 Uncorrectable Internal Error Severity (UIESEV) (Optional)
21 RW/RO 0 ACS Violation Severity (ACSVSEV) (Optional)
20 RW 0 Unsupported Request Error Severity (URESEV)
19 RW/RO 0 ECRC Error Severity (ECRCESEV) (Optional)
18 RW 1 Malformed TLP Severity (MTSEV)
17 RW/RO 1 Receiver Overflow Severity (ROSEV) (Optional)
16 RW 0 Unexpected Completion Severity (UCSEV)
15 RW/RO 0 Completer Abort Severity (CASEV) (Optional)
14 RW 0 Completion Timeout Severity (CTSEV)
13 RW/RO 1 Flow Control Protocol Error Severity (FCPESEV) (Optional)
12 RW 0 Poisoned TLP Severity (PTSEV)

11:05 RO 0 Reserved
04 RW 1 Data Link Protocol Error Severity (DLPESEV)

03:00 RO 0 Reserved

NVM Express 1.3a

35

2.6.5 Offset AERCAP + 10h: AERCS – AER Correctable Error Status Register
This register reports error status of individual correctable error sources from the controller. These bits are
sticky – they are neither initialized nor modified during a hot reset or FLR.

Bits Type Reset Description

31:16 RO 0 Reserved
15 RWC/RO 0 Header Log Overflow Status (HLOS) (Optional)
14 RWC/RO 0 Corrected Internal Error Status (CIES) (Optional)
13 RWC 0 Advisory Non-Fatal Error Status (ANFES)
12 RWC 0 Replay Timer Timeout Status (RTS)

11:09 RO 0 Reserved
08 RWC 0 REPLAY_NUM Rollover Status (RRS)
07 RWC 0 Bad DLLP Status (BDS)
06 RWC 0 Bad TLP Status (BTS)

05:01 RO 0 Reserved
00 RWC 0 Receiver Error Status (RES)

2.6.6 Offset AERCAP + 14h: AERCEM – AER Correctable Error Mask Register
This register controls the reporting of the individual correctable errors by the controller. A masked error is
not reported to the host. These bits are sticky – they are neither initialized nor modified during a hot reset
or FLR.

Bits Type Reset Description

31:16 RO 0 Reserved
15 RW/RO 0 Header Log Overflow Mask (HLOM) (Optional)
14 RW/RO 0 Corrected Internal Error Mask (CIEM) (Optional)
13 RW 0 Advisory Non-Fatal Error Mask (ANFEM)
12 RW 0 Replay Timer Timeout Mask (RTM)

11:09 RO 0 Reserved
08 RW 0 REPLAY_NUM Rollover Mask (RRM)
07 RW 0 Bad DLLP Mask (BDM)
06 RW 0 Bad TLP Mask (BTM)

05:01 RO 0 Reserved
00 RW 0 Receiver Error Mask (REM)

NVM Express 1.3a

36

2.6.7 Offset AERCAP + 18h: AERCC – AER Capabilities and Control Register
Bits Type Reset Description

31:12 RO 0 Reserved

11 RO 0
TLP Prefix Log Present (TPLP) : If set to ‘1’ and FEP is valid, this indicates that the
TLP Prefix Log register contains valid information. This field is sticky – it is neither
initialized nor modified during a hot reset or FLR.

10 RW/RO 0

Multiple Header Recording Enable (MHRE): If this field is set to ‘1’, this enables
the controller to generate more than one error header. This field is sticky – it is neither
initialized nor modified during a hot reset or FLR. If the controller does not implement
the associated mechanism, then this field is cleared to ‘0’.

09 RW/RO Impl
Spec

Multiple Header Recording Capable (MHRC): If this field is set to ‘1’, indicates that
the controller is capable of generating more than one error header.

08 RW/RO 0

ECRC Check Enable (ECE): If this field is set to ‘1’, indicates that the ECRC
checking is enabled. This field is sticky – it is neither initialized nor modified during a
hot reset or FLR. If the controller does not implement the associated mechanism,
then this field is cleared to ‘0’.

07 RO Impl
Spec

ECRC Check Capable (ECC): If this field is set to ‘1’, indicates that the controller is
capable of checking ECRC.

06 RW/RO 0

ECRC Generation Enable (EGE): If this field is set to ‘1’, indicates that the ECRC
generation is enabled. This field is sticky – it is neither initialized nor modified during
a hot reset or FLR. If the controller does not implement the associated mechanism,
then this field is cleared to ‘0’.

05 RO Impl
Spec

ECRC Generation Capable (EGC): If this field is set to ‘1’, indicates that the
controller is capable of generating ECRC.

04:00 RO 0
First Error Pointer (FEP): This field identifies the bit position of the first error reported
in the AERUCES register. This field is sticky – it is neither initialized nor modified
during a hot reset or FLR.

2.6.8 Offset AERCAP + 1Ch: AERHL – AER Header Log Register
This register contains the header for the TLP corresponding to a detected error. This register is sticky – it
is neither initialized nor modified during a hot reset or FLR.

Byte Type Reset Description

0 RO 0 Header Byte 3 (HB3)
1 RO 0 Header Byte 2 (HB2)
2 RO 0 Header Byte 1 (HB1)
3 RO 0 Header Byte 0 (HB0)
4 RO 0 Header Byte 7 (HB7)
5 RO 0 Header Byte 6 (HB6)
6 RO 0 Header Byte 5 (HB5)
7 RO 0 Header Byte 4 (HB4)
8 RO 0 Header Byte 11 (HB11)
9 RO 0 Header Byte 10 (HB10)
10 RO 0 Header Byte 9 (HB9)
11 RO 0 Header Byte 8 (HB8)
12 RO 0 Header Byte 15 (HB15)
13 RO 0 Header Byte 14 (HB14)
14 RO 0 Header Byte 13 (HB13)
15 RO 0 Header Byte 12 (HB12)

NVM Express 1.3a

37

2.6.9 Offset AERCAP + 38h: AERTLP – AER TLP Prefix Log Register (Optional)
This register contains the End-End TLP prefix(es) for the TLP corresponding to a detected error. This
register is sticky – it is neither initialized nor modified during a hot reset or FLR.

Byte Type Reset Description

0 RO 0 First TLP Prefix Log Byte 3 (TPL1B3)
1 RO 0 First TLP Prefix Log Byte 2 (TPL1B2)
2 RO 0 First TLP Prefix Log Byte 1 (TPL1B1)
3 RO 0 First TLP Prefix Log Byte 0 (TPL1B0)
4 RO 0 Second TLP Prefix Log Byte 3 (TPL2B3)
5 RO 0 Second TLP Prefix Log Byte 2 (TPL2B2)
6 RO 0 Second TLP Prefix Log Byte 1 (TPL2B1)
7 RO 0 Second TLP Prefix Log Byte 0 (TPL2B0)
8 RO 0 Third TLP Prefix Log Byte 3 (TPL3B3)
9 RO 0 Third TLP Prefix Log Byte 2 (TPL3B2)
10 RO 0 Third TLP Prefix Log Byte 1 (TPL3B1)
11 RO 0 Third TLP Prefix Log Byte 0 (TPL3B0)
12 RO 0 Fourth TLP Prefix Log Byte 3 (TPL4B3)
13 RO 0 Fourth TLP Prefix Log Byte 2 (TPL4B2)
14 RO 0 Fourth TLP Prefix Log Byte 1 (TPL4B1)
15 RO 0 Fourth TLP Prefix Log Byte 0 (TPL4B0)

2.7 Other Capability Pointers
Though not mentioned in this specification, other capability pointers may be necessary, depending upon
the implementation. Examples would be the PCI-X capability for PCI-X implementations, and potentially
the vendor specific capability pointer.

These capabilities are beyond the scope of this specification.

NVM Express 1.3a

38

3 Controller Registers
Controller registers are located in the MLBAR/MUBAR registers (PCI BAR0 and BAR1) that shall be
mapped to a memory space that supports in-order access and variable access widths. For many computer
architectures, specifying the memory space as uncacheable produces this behavior. The host shall not
issue locked accesses. The host shall access registers in their native width or aligned 32-bit accesses.
Violation of either of these host requirements results in undefined behavior.

Accesses that target any portion of two or more registers are not supported.

All reserved registers and all reserved bits within registers are read-only and return 0h when read. Software
shall not rely on 0h being returned.

NVM Express 1.3a

39

3.1 Register Definition
The following table describes the register map for the controller.

The Vendor Specific address range starts after the last doorbell supported by the controller and continues
to the end of the BAR0/1 supported range. The start of the Vendor Specific address range starts at the
same location and is not dependent on the number of allocated doorbells.

Start End Symbol Description
00h 07h CAP Controller Capabilities
08h 0Bh VS Version
0Ch 0Fh INTMS Interrupt Mask Set
10h 13h INTMC Interrupt Mask Clear
14h 17h CC Controller Configuration
18h 1Bh Reserved Reserved
1Ch 1Fh CSTS Controller Status
20h 23h NSSR NVM Subsystem Reset (Optional)
24h 27h AQA Admin Queue Attributes
28h 2Fh ASQ Admin Submission Queue Base Address
30h 37h ACQ Admin Completion Queue Base Address
38h 3Bh CMBLOC Controller Memory Buffer Location (Optional)
3Ch 3Fh CMBSZ Controller Memory Buffer Size (Optional)
40h 43h BPINFO Boot Partition Information (Optional)
44h 47h BPRSEL Boot Partition Read Select (Optional)

48h 4Fh BPMBL Boot Partition Memory Buffer Location
(Optional)

50h EFFh Reserved Reserved
F00h FFFh Reserved Command Set Specific
1000h 1003h SQ0TDBL Submission Queue 0 Tail Doorbell (Admin)

1000h + (1 *
 (4 << CAP.DSTRD))

1003h + (1 *
 (4 << CAP.DSTRD)) CQ0HDBL Completion Queue 0 Head Doorbell (Admin)

1000h + (2 *
 (4 << CAP.DSTRD))

1003h + (2 *
 (4 << CAP.DSTRD)) SQ1TDBL Submission Queue 1 Tail Doorbell

1000h + (3 *
 (4 << CAP.DSTRD))

1003h + (3 *
 (4 << CAP.DSTRD)) CQ1HDBL Completion Queue 1 Head Doorbell

1000h + (4 *
 (4 << CAP.DSTRD))

1003h + (4 *
 (4 << CAP.DSTRD)) SQ2TDBL Submission Queue 2 Tail Doorbell

1000h + (5 *
 (4 << CAP.DSTRD))

1003h + (5 *
 (4 << CAP.DSTRD)) CQ2HDBL Completion Queue 2 Head Doorbell

… … … …
1000h+ (2y * (4 <<

CAP.DSTRD))
1003h + (2y * (4 <<

CAP.DSTRD)) SQyTDBL Submission Queue y Tail Doorbell

1000h +
((2y + 1) * (4 <<
CAP.DSTRD))

1003h +
((2y + 1) * (4 <<
CAP.DSTRD))

CQyHDBL Completion Queue y Head Doorbell

 Vendor Specific (Optional)

NVM Express 1.3a

40

3.1.1 Offset 00h: CAP – Controller Capabilities
This register indicates basic capabilities of the controller to host software.

Bit Type Reset Description
63:56 RO 0h Reserved

55:52 RO Impl
Spec

Memory Page Size Maximum (MPSMAX): This field indicates the maximum
host memory page size that the controller supports. The maximum memory page
size is (2 ^ (12 + MPSMAX)). The host shall not configure a memory page size
in CC.MPS that is larger than this value.

51:48 RO Impl
Spec

Memory Page Size Minimum (MPSMIN): This field indicates the minimum host
memory page size that the controller supports. The minimum memory page size
is (2 ^ (12 + MPSMIN)). The host shall not configure a memory page size in
CC.MPS that is smaller than this value.

47:46 RO 0h Reserved

45 RO Impl
Spec

Boot Partition Support (BPS): This field indicates whether the controller
supports Boot Partitions. If this field is set to '1‘, the controller supports Boot
Partitions. If this field is cleared to ‘0‘, the controller does not support Boot
Partitions. Refer to section 8.13.

44:37 RO Impl
Spec

Command Sets Supported (CSS): This field indicates the I/O Command Set(s)
that the controller supports. A minimum of one command set shall be supported.
The field is bit significant. If a bit is set to ‘1’, then the corresponding I/O
Command Set is supported. If a bit is cleared to ‘0’, then the corresponding I/O
Command Set is not supported.

Bit Definition
37 NVM command set
38 Reserved
39 Reserved
40 Reserved
41 Reserved
42 Reserved
43 Reserved
44 Reserved

36 RO Impl
Spec

NVM Subsystem Reset Supported (NSSRS): This field indicates whether the
controller supports the NVM Subsystem Reset feature defined in section 7.3.1.
This field is set to '1' if the controller supports the NVM Subsystem Reset feature.
This field is cleared to ‘0' if the controller does not support the NVM Subsystem
Reset feature.

35:32 RO Impl
Spec

Doorbell Stride (DSTRD): Each Submission Queue and Completion Queue
Doorbell register is 32-bits in size. This register indicates the stride between
doorbell registers. The stride is specified as (2 ^ (2 + DSTRD)) in bytes. A value
of 0h indicates a stride of 4 bytes, where the doorbell registers are packed without
reserved space between each register. Refer to section 8.6.

31:24 RO Impl
Spec

Timeout (TO): This is the worst case time that host software shall wait for
CSTS.RDY to transition from:

a) ‘0’ to ‘1’ after CC.EN transitions from ‘0’ to ‘1’; or
b) ‘1’ to ‘0’ after CC.EN transitions from ‘1’ to ‘0’.

This worst case time may be experienced after events such as an abrupt
shutdown or activation of a new firmware image; typical times are expected to be
much shorter. This field is in 500 millisecond units.

23:19 RO 0h Reserved

NVM Express 1.3a

41

Bit Type Reset Description

18:17 RO Impl
Spec

Arbitration Mechanism Supported (AMS): This field is bit significant and
indicates the optional arbitration mechanisms supported by the controller. If a bit
is set to ‘1’, then the corresponding arbitration mechanism is supported by the
controller. Refer to section 4.11 for arbitration details.

Bit Definition

17 Weighted Round Robin with
Urgent Priority Class

18 Vendor Specific

The round robin arbitration mechanism is not listed since all controllers shall
support this arbitration mechanism.

16 RO Impl
Spec

Contiguous Queues Required (CQR): This field is set to ‘1’ if the controller
requires that I/O Submission Queues and I/O Completion Queues are required
to be physically contiguous. This field is cleared to ‘0’ if the controller supports
I/O Submission Queues and I/O Completion Queues that are not physically
contiguous. If this field is set to ‘1’, then the Physically Contiguous bit
(CDW11.PC) in the Create I/O Submission Queue and Create I/O Completion
Queue commands shall be set to ‘1’.

15:00 RO Impl
Spec

Maximum Queue Entries Supported (MQES): This field indicates the
maximum individual queue size that the controller supports. For NVMe over PCIe
implementations, this value applies to the I/O Submission Queues and I/O
Completion Queues that the host creates. For NVMe over Fabrics
implementations, this value applies to only the I/O Submission Queues that the
host creates. This is a 0’s based value. The minimum value is 1h, indicating two
entries.

3.1.2 Offset 08h: VS – Version
This register indicates the major, minor, and tertiary version of the NVM Express specification that the
controller implementation supports. Valid versions of the specification are: 1.0, 1.1, 1.2, 1.2.1, and 1.3.

3.1.2.1 VS Value for 1.0 Compliant Controllers
Bit Type Reset Description

31:16 RO 0001h Major Version Number (MJR): Indicates the major version is “1”
15:08 RO 00h Minor Version Number (MNR): Indicates the minor version is “0”.
07:00 RO 00h Reserved

3.1.2.2 VS Value for 1.1 Compliant Controllers
Bit Type Reset Description

31:16 RO 0001h Major Version Number (MJR): Indicates the major version is “1”
15:08 RO 01h Minor Version Number (MNR): Indicates the minor version is “1”.
07:00 RO 00h Reserved

3.1.2.3 VS Value for 1.2 Compliant Controllers
Bit Type Reset Description

31:16 RO 0001h Major Version Number (MJR): Indicates the major version is “1”
15:08 RO 02h Minor Version Number (MNR): Indicates the minor version is “2”.
07:00 RO 00h Reserved

3.1.2.4 VS Value for 1.2.1 Compliant Controllers
Bit Type Reset Description

31:16 RO 0001h Major Version Number (MJR): Indicates the major version is “1”

NVM Express 1.3a

42

Bit Type Reset Description
15:08 RO 02h Minor Version Number (MNR): Indicates the minor version is “2”.
07:00 RO 01h Tertiary Version Number (TER): Indicates the tertiary version is “1”.

3.1.2.5 VS Value for 1.3 Compliant Controllers
Bit Type Reset Description

31:16 RO 0001h Major Version Number (MJR): Indicates the major version is “1”
15:08 RO 03h Minor Version Number (MNR): Indicates the minor version is “3”.
07:00 RO 00h Tertiary Version Number (TER): Indicates the tertiary version is “0”.

3.1.3 Offset 0Ch: INTMS – Interrupt Mask Set
This register is used to mask interrupts when using pin-based interrupts, single message MSI, or multiple
message MSI. When using MSI-X, the interrupt mask table defined as part of MSI-X should be used to
mask interrupts. Host software shall not access this register when configured for MSI-X; any accesses
when configured for MSI-X is undefined. For interrupt behavior requirements, refer to section 7.5.

Bit Type Reset Description

31:00 RW1S 0h

Interrupt Vector Mask Set (IVMS): This field is bit significant. If a ‘1’ is written to a
bit, then the corresponding interrupt vector is masked from generating an interrupt
or reporting a pending interrupt in the MSI Capability Structure. Writing a ‘0’ to a bit
has no effect. When read, this field returns the current interrupt mask value within
the controller (not the value of this register). If a bit has a value of a ‘1’, then the
corresponding interrupt vector is masked. If a bit has a value of ‘0’, then the
corresponding interrupt vector is not masked.

3.1.4 Offset 10h: INTMC – Interrupt Mask Clear
This register is used to unmask interrupts when using pin-based interrupts, single message MSI, or multiple
message MSI. When using MSI-X, the interrupt mask table defined as part of MSI-X should be used to
unmask interrupts. Host software shall not access this register when configured for MSI-X; any accesses
when configured for MSI-X is undefined. For interrupt behavior requirements, refer to section 7.5.

Bit Type Reset Description

31:00 RW1C 0h

Interrupt Vector Mask Clear (IVMC): This field is bit significant. If a ‘1’ is written to
a bit, then the corresponding interrupt vector is unmasked. Writing a ‘0’ to a bit has
no effect. When read, this field returns the current interrupt mask value within the
controller (not the value of this register). If a bit has a value of a ‘1’, then the
corresponding interrupt vector is masked, If a bit has a value of ‘0’, then the
corresponding interrupt vector is not masked.

3.1.5 Offset 14h: CC – Controller Configuration
This register modifies settings for the controller. Host software shall set the Arbitration Mechanism
(CC.AMS), the Memory Page Size (CC.MPS), and the Command Set (CC.CSS) to valid values prior to
enabling the controller by setting CC.EN to ‘1’. Attempting to create an I/O queue before initializing the I/O
Completion Queue Entry Size (CC.IOCQES) and I/O Submission Queue Entry Size (CC.IOSQES) should
cause a controller to abort Create I/O Completion Queue or Create I/O Submission Queue commands with
a status code of Invalid Queue Size.

Bit Type Reset Description

31:24 RO 0 Reserved

NVM Express 1.3a

43

Bit Type Reset Description

23:20 RW 0

I/O Completion Queue Entry Size (IOCQES): This field defines the I/O
Completion Queue entry size that is used for the selected I/O Command Set.
The required and maximum values for this field are specified in the Identify
Controller data structure in Figure 109 for each I/O Command Set. The value
is in bytes and is specified as a power of two (2^n).

19:16 RW 0

I/O Submission Queue Entry Size (IOSQES): This field defines the I/O
Submission Queue entry size that is used for the selected I/O Command Set.
The required and maximum values for this field are specified in the Identify
Controller data structure in Figure 109 for each I/O Command Set. The value
is in bytes and is specified as a power of two (2^n).

15:14 RW 0h

Shutdown Notification (SHN): This field is used to initiate shutdown
processing when a shutdown is occurring, (i.e., a power down condition is
expected.) For a normal shutdown notification, it is expected that the controller
is given time to process the shutdown notification. For an abrupt shutdown
notification, the host may not wait for shutdown processing to complete before
power is lost.

The shutdown notification values are defined as:

Value Definition
00b No notification; no effect
01b Normal shutdown notification
10b Abrupt shutdown notification
11b Reserved

This field should be written by host software prior to any power down condition
and prior to any change of the PCI power management state. It is
recommended that this field also be written prior to a warm reboot. To
determine when shutdown processing is complete, refer to CSTS.SHST. Refer
to section 7.6.2 for additional shutdown processing details.

Other fields in the CC register (including the EN bit) may be modified as part of
updating this field to 01b or 10b.

13:11 RW 0h

Arbitration Mechanism Selected (AMS): This field selects the arbitration
mechanism to be used. This value shall only be changed when EN is cleared
to ‘0’. Host software shall only set this field to supported arbitration mechanisms
indicated in CAP.AMS. If this field is set to an unsupported value, the behavior
is undefined.

Value Definition
000b Round Robin

001b Weighted Round Robin with
Urgent Priority Class

010b – 110b Reserved
111b Vendor Specific

10:07 RW 0h

Memory Page Size (MPS): This field indicates the host memory page size.
The memory page size is (2 ^ (12 + MPS)). Thus, the minimum host memory
page size is 4KB and the maximum host memory page size is 128MB. The
value set by host software shall be a supported value as indicated by the
CAP.MPSMAX and CAP.MPSMIN fields. This field describes the value used
for PRP entry size. This field shall only be modified when EN is cleared to ‘0’.

06:04 RW 0h

I/O Command Set Selected (CSS): This field specifies the I/O Command Set
that is selected for use for the I/O Submission Queues. Host software shall only
select a supported I/O Command Set, as indicated in CAP.CSS. This field shall
only be changed when the controller is disabled (CC.EN is cleared to ‘0’). The
I/O Command Set selected shall be used for all I/O Submission Queues.

Value Definition
000b NVM Command Set

001b – 111b Reserved

NVM Express 1.3a

44

Bit Type Reset Description
03:01 RO 0 Reserved

00 RW 0

Enable (EN): When set to ‘1’, then the controller shall process commands
based on Submission Queue Tail doorbell writes. When cleared to ‘0’, then the
controller shall not process commands nor post completion queue entries to
Completion Queues. When this field transitions from ‘1’ to ‘0’, the controller is
reset (referred to as a Controller Reset). The reset deletes all I/O Submission
Queues and I/O Completion Queues, resets the Admin Submission Queue and
Completion Queue, and brings the hardware to an idle state. The reset does
not affect PCI Express registers (including MMIO MSI-X registers), nor the
Admin Queue registers (AQA, ASQ, or ACQ). All other controller registers
defined in this section and internal controller state (e.g., Feature values defined
in section 5.21.1 that are not persistent across power states) are reset to their
default values. The controller shall ensure that there is no data loss for
commands that have had corresponding completion queue entries posted to an
I/O Completion Queue prior to the reset operation. Refer to section 7.3 for reset
details.

When this field is cleared to ‘0’, the CSTS.RDY bit is cleared to ‘0’ by the
controller once the controller is ready to be re-enabled. When this field is set to
‘1’, the controller sets CSTS.RDY to ‘1’ when it is ready to process commands.
CSTS.RDY may be set to ‘1’ before namespace(s) are ready to be accessed.

Setting this field from a ‘0’ to a ‘1’ when CSTS.RDY is a ‘1,’ or setting this field
from a '1' to a '0' when CSTS.RDY is a '0,' has undefined results. The Admin
Queue registers (AQA, ASQ, and ACQ) shall only be modified when EN is
cleared to ‘0’.

NVM Express 1.3a

45

3.1.6 Offset 1Ch: CSTS – Controller Status
Bit Type Reset Description

31:06 RO 0 Reserved

05 RO 0

Processing Paused (PP): This bit indicates whether the controller is processing
commands. If this bit is cleared to ‘0’, then the controller is processing commands
normally. If this bit is set to ‘1’, then the controller has temporarily stopped processing
commands in order to handle an event (e.g., firmware activation). This bit is only valid
when CC.EN = ‘1’.

04 RW1C HwInit

NVM Subsystem Reset Occurred (NSSRO): The initial value of this field is '1' if the
last occurance of an NVM Subsystem Reset occured while power was applied to the
NVM subsystem. The initial value of this field is '0' following an NVM Subsystem Reset
due to application of power to the NVM subsystem. This field is only valid if the
controller supports the NVM Subsystem Reset feature defined in section 7.3.1 as
indicated by CAP.NSSRS set to ‘1’.

The reset value of this field is '0' if an NVM Subsystem Reset causes activation of a
new firmware image.

03:02 RO 0

Shutdown Status (SHST): This field indicates the status of shutdown processing that
is initiated by the host setting the CC.SHN field.

The shutdown status values are defined as:

Value Definition
00b Normal operation (no shutdown has been requested)
01b Shutdown processing occurring
10b Shutdown processing complete
11b Reserved

To start executing commands on the controller after a shutdown operation
(CSTS.SHST set to 10b), a Controller Reset (CC.EN cleared to ‘0’) is required. If host
software submits commands to the controller without issuing a reset, the behavior is
undefined.

01 RO HwInit

Controller Fatal Status (CFS): This field is set to ’1’ when a fatal controller error
occurred that could not be communicated in the appropriate Completion Queue. This
field is cleared to ‘0’ when a fatal controller error has not occurred. Refer to section
10.5.

The reset value of this field is '1' when a fatal controller error is detected during
controller initialization.

00 RO 0

Ready (RDY): This field is set to ‘1’ when the controller is ready to accept Submission
Queue Tail doorbell writes after CC.EN is set to ‘1’. This field shall be cleared to ‘0’
when CC.EN is cleared to ‘0’. Commands shall not be submitted to the controller until
this field is set to ‘1’ after the CC.EN bit is set to ‘1’. Failure to follow this requirement
produces undefined results. Host software shall wait a minimum of CAP.TO seconds
for this field to be set to ‘1’ after setting CC.EN to ‘1’ from a previous value of ‘0’.

NVM Express 1.3a

46

3.1.7 Offset 20h: NSSR – NVM Subsystem Reset
This optional register provides host software with the capability to initiate an NVM Subsystem Reset.
Support for this register is indicated by the state of the NVM Subsystem Reset Supported (CAP.NSSRS)
field. If the register is not supported, then the address range occupied by the register is reserved. Refer
to section 7.3.1.

Bit Type Reset Description

31:00 RW 0h

NVM Subsystem Reset Control (NSSRC): A write of the value 4E564D65h ("NVMe")
to this field initiates an NVM Subsystem Reset. A write of any other value has no
functional effect on the operation of the NVM subsystem. This field shall return the
value 0h when read.

3.1.8 Offset 24h: AQA – Admin Queue Attributes
This register defines the attributes for the Admin Submission Queue and Admin Completion Queue. The
Queue Identifier for the Admin Submission Queue and Admin Completion Queue is 0h. The Admin
Submission Queue’s priority is determined by the arbitration mechanism selected, refer to section 4.11.
The Admin Submission Queue and Admin Completion Queue are required to be in physically contiguous
memory.

Note: It is recommended that UEFI be used during boot operations. In low memory environments (like
Option ROMs in legacy BIOS environments) there may not be sufficient available memory to allocate the
necessary Submission and Completion Queues. In these types of conditions, low memory operation of the
controller is vendor specific.

Bit Type Reset Description
31:28 RO 0h Reserved

27:16 RW 0h

Admin Completion Queue Size (ACQS): Defines the size of the Admin Completion
Queue in entries. Refer to section 4.1.3. Enabling a controller while this field is cleared
to 00h produces undefined results. The minimum size of the Admin Completion Queue
is two entries. The maximum size of the Admin Completion Queue is 4096 entries. This
is a 0’s based value.

15:12 RO 0h Reserved

11:00 RW 0h

Admin Submission Queue Size (ASQS): Defines the size of the Admin Submission
Queue in entries. Refer to section 4.1.3. Enabling a controller while this field is cleared
to 00h produces undefined results. The minimum size of the Admin Submission Queue
is two entries. The maximum size of the Admin Submission Queue is 4096 entries. This
is a 0’s based value.

3.1.9 Offset 28h: ASQ – Admin Submission Queue Base Address
This register defines the base memory address of the Admin Submission Queue.

Bit Type Reset Description

63:12 RW Impl
Spec

Admin Submission Queue Base (ASQB): Indicates the 64-bit physical address for the
Admin Submission Queue. This address shall be memory page aligned (based on the
value in CC.MPS). All Admin commands, including creation of I/O Submission Queues
and I/O Completions Queues shall be submitted to this queue. For the definition of
Submission Queues, refer to section 4.1.

11:00 RO 0h Reserved

NVM Express 1.3a

47

3.1.10 Offset 30h: ACQ – Admin Completion Queue Base Address
This register defines the base memory address of the Admin Completion Queue.

Bit Type Reset Description

63:12 RW Impl
Spec

Admin Completion Queue Base (ACQB): Indicates the 64-bit physical address for the
Admin Completion Queue. This address shall be memory page aligned (based on the
value in CC.MPS). All completion queue entries for the commands submitted to the
Admin Submission Queue shall be posted to this Completion Queue. This queue is
always associated with interrupt vector 0. For the definition of Completion Queues, refer
to section 4.1.

11:00 RO 0h Reserved

3.1.11 Offset 38h: CMBLOC – Controller Memory Buffer Location
This optional register defines the location of the Controller Memory Buffer (refer to section 4.7). If CMBSZ
is 0, this register is reserved.

Bit Type Reset Description

31:12 RO Impl
Spec

Offset (OFST): Indicates the offset of the Controller Memory Buffer in multiples of the
Size Unit specified in CMBSZ. This value shall be 4KB aligned.

11:03 RO 0h Reserved

02:00 RO Impl
Spec

Base Indicator Register (BIR): Indicates the Base Address Register (BAR) that
contains the Controller Memory Buffer. For a 64-bit BAR, the BAR for the lower 32-bits
of the address is specified. Values 0h, 2h, 3h, 4h, and 5h are valid.

3.1.12 Offset 3Ch: CMBSZ – Controller Memory Buffer Size
This optional register defines the size of the Controller Memory Buffer (refer to section 4.7). If the controller
does not support the Controller Memory Buffer feature then this register shall be cleared to 0h.

Bit Type Reset Description

31:12 RO Impl
Spec

Size (SZ): Indicates the size of the Controller Memory Buffer available for use by the
host. The size is in multiples of the Size Unit. If the Offset + Size exceeds the length of
the indicated BAR, the size available to the host is limited by the length of the BAR.

11:08 RO Impl
Spec

Size Units (SZU): Indicates the granularity of the Size field.
Value Granularity

0h 4 KB
1h 64 KB
2h 1 MB
3h 16 MB
4h 256 MB
5h 4 GB
6h 64 GB

7h – Fh Reserved

07:05 RO 0h Reserved

04 RO Impl
Spec

Write Data Support (WDS): If this bit is set to ‘1’, then the controller supports data and
metadata in the Controller Memory Buffer for commands that transfer data from the host
to the controller (e.g., Write). If this bit is cleared to ‘0’, then all data and metadata for
commands that transfer data from the host to the controller shall be transferred from host
memory.

NVM Express 1.3a

48

Bit Type Reset Description

03 RO Impl
Spec

Read Data Support (RDS): If this bit is set to ‘1’, then the controller supports data and
metadata in the Controller Memory Buffer for commands that transfer data from the
controller to the host (e.g., Read). If this bit is cleared to ‘0’, then all data and metadata
for commands that transfer data from the controller to the host shall be transferred to
host memory.

02 RO Impl
Spec

PRP SGL List Support (LISTS): If this bit is set to ‘1’, then the controller supports PRP
Lists in the Controller Memory Buffer. If this bit is set to ‘1’ and SGLs are supported by
the controller, then the controller supports Scatter Gather Lists in the Controller Memory
Buffer. If this bit is set to ‘1’, then the Submission Queue Support bit shall be set to ‘1’. If
this bit is cleared to ‘0’, then all PRP Lists and SGLs shall be placed in host memory.

01 RO Impl
Spec

Completion Queue Support (CQS): If this bit is set to ‘1’, then the controller supports
Admin and I/O Completion Queues in the Controller Memory Buffer. If this bit is cleared
to ‘0’, then all Completion Queues shall be placed in host memory.

00 RO Impl
Spec

Submission Queue Support (SQS): If this bit is set to ‘1’, then the controller supports
Admin and I/O Submission Queues in the Controller Memory Buffer. If this bit is cleared
to ‘0’, then all Submission Queues shall be placed in host memory.

3.1.13 Offset 40h: BPINFO – Boot Partition Information
This optional register defines the characteristics of Boot Partitions (refer to section 8.13). If the controller
does not support the Boot Partitions feature then this register shall be cleared to 0h.

Bit Type Reset Description

31 RO Impl
Spec

Active Boot Partition ID (ABPID): This field indicates the identifier of the active
Boot Partition.

30:26 RO 0h Reserved

25:24 RO 0h

Boot Read Status (BRS): This field indicates the status of Boot Partition read
operations initiated by the host writing to the BPRSEL.BPID field. Refer to section
8.13.

The boot read status values are defined as:

Value Definition
00b No Boot Partition read operation requested
01b Boot Partition read in progress
10b Boot Partition read completed successfully
11b Error completing Boot Partition read

If host software writes the BPRSEL.BPID field, this field transitions to 01b. After
successfully completing a Boot Partition read operation (i.e., transferring the
contents to the boot memory buffer), the controller sets this field to 10b. If there is
an error completing a Boot Partition read operation, this field is set to 11b, and the
contents of the boot memory buffer are undefined.

23:15 RO 0h Reserved

14:00 RO Impl
Spec

Boot Partition Size (BPSZ): This field defines the size of each Boot Partition in
multiples of 128KB. Both Boot Partitions are the same size.

3.1.14 Offset 44h: BPRSEL – Boot Partition Read Select
This optional register is used to initiate the transfer of a data in the Boot Partition (refer to section 8.13) from
the controller to the host. If the controller does not support the Boot Partitions feature then this register
shall be cleared to 0h.

If the host attempts to read beyond the end of a Boot Partition (i.e., the Boot Partition Read Offset plus Boot
Partition Read Size, is greater than the Boot Partition Size in bytes), the controller shall not transfer data
and report an error in the BPINFO.BRS field.

NVM Express 1.3a

49

Bit Type Reset Description

31 RW 0h Boot Partition Identifier (BPID): This field specifies the Boot Partition identifier for
the Boot Read operation.

30 RO 0h Reserved

29:10 RW 0h
Boot Partition Read Offset (BPROF): This field selects the offset into the Boot
Partition, in 4KB units, that the controller copies into the Boot Partition Memory
Buffer.

09:00 RW 0h Boot Partition Read Size (BPRSZ): This field selects the read size in multiples of
4KB to copy into the Boot Partition Memory Buffer.

3.1.15 Offset 48h: BPMBL – Boot Partition Memory Buffer Location (Optional)
This optional register specifies the memory buffer that is used as the destination for data when a Boot
Partition is read (refer to section 8.13). If the controller does not support the Boot Partitions feature then
this register shall be cleared to 0h.

Bit Type Reset Description

63:12 RW 0h
Boot Partition Memory Buffer Base Address (BMBBA): Specifies the 64-bit physical
address for the Boot Partition Memory Buffer. This address shall be 4KB aligned. Note
that this field contains the 52 most significant bits of the 64 bit address.

11:00 RO 0h Reserved

3.1.16 Offset (1000h + ((2y) * (4 << CAP.DSTRD))): SQyTDBL – Submission Queue y Tail Doorbell
This register defines the doorbell register that updates the Tail entry pointer for Submission Queue y. The
value of y is equivalent to the Queue Identifier. This indicates to the controller that new commands have
been submitted for processing.

The host should not read the doorbell registers. If a doorbell register is read, the value returned is vendor
specific. Writing to a non-existent Submission Queue Tail Doorbell has undefined results.

Bit Type Reset Description
31:16 RO 0 Reserved

15:00 RW 0h

Submission Queue Tail (SQT): Indicates the new value of the Submission Queue Tail
entry pointer. This value shall overwrite any previous Submission Queue Tail entry
pointer value provided. The difference between the last SQT write and the current SQT
write indicates the number of commands added to the Submission Queue.

Note: Submission Queue rollover needs to be accounted for.

3.1.17 Offset (1000h + ((2y + 1) * (4 << CAP.DSTRD))): CQyHDBL – Completion Queue y Head
Doorbell

This register defines the doorbell register that updates the Head entry pointer for Completion Queue y. The
value of y is equivalent to the Queue Identifier. This indicates Completion Queue entries that have been
processed by host software.

The host should not read the doorbell registers. If a doorbell register is read, the value returned is vendor
specific. Writing to a non-existent Completion Queue Head Doorbell has undefined results.

Host software should ensure it continues to process completion queue entries within Completion Queues
regardless of whether there are entries available in a particular or any Submission Queue.

NVM Express 1.3a

50

Bit Type Reset Description
31:16 RO 0 Reserved

15:00 RW 0h

Completion Queue Head (CQH): Indicates the new value of the Completion Queue
Head entry pointer. This value shall overwrite any previous Completion Queue Head
value provided. The difference between the last CQH write and the current CQH entry
pointer write indicates the number of entries that are now available for re-use by the
controller in the Completion Queue.

Note: Completion Queue rollover needs to be accounted for.

3.2 Index/Data Pair registers (Optional)
Index/Data Pair registers provide host software with a mechanism to access the NVM Express memory
mapped registers using I/O space based registers. If supported, these registers are located in BAR2. On
PC based platforms, host software (BIOS, Option ROMs, OSes) written to operate in ‘real-mode’ (8086
mode) are unable to access registers in a PCI Express function’s address space, if the address space is
memory mapped and mapped above 1MB.

The Index/Data Pair mechanism allows host software to access all of the memory mapped NVM Express
registers using indirect I/O addressing in lieu of direct memory mapped access.

Note: UEFI drivers do not encounter the 1MB limitation, and thus when using EFI there is not a need for
the Index/Data Pair mechanism. Thus, this feature is optional for the controller to support and may be
obsoleted as UEFI becomes pervasive.

3.2.1 Restrictions
Host software shall not alternate between Index/Data Pair based access and direct memory mapped access
methods. After using direct memory mapped access to the controller registers, the Index/Data Pair
mechanism shall not be used.

3.2.2 Register Definition
The following registers describe the registers necessary to implement Index/Data Pair.

Start End Symbol Description
00h 03h IDX Index register
04h 07h DAT Data register

3.2.3 Offset 00h: IDX – Index Register
Bit Type Reset Description

31:02 RW 0h

Index (IDX): This register selects the Dword offset of the memory mapped NVM Express
register to be accessed within the MLBAR/MUBAR registers (PCI BAR0 and BAR1).
Host software shall not set this to a value beyond the maximum register offset
implemented.

01:00 RO 0h Reserved

NVM Express 1.3a

51

3.2.4 Offset 04h: DAT – Data Register
Bit Type Reset Description

31:00 RW na

Data (DAT): This register is a “window” through which data is read or written to the
memory mapped register pointed to by the Index register. A physical register is not
implemented as the data is actually stored in the memory mapped registers. Since this
is not a physical register, the reset value is the same as the reset value of the register
that the Index register is currently pointing to.

NVM Express 1.3a

52

4 Data Structures
This section describes data structures used by NVM Express.

4.1 Submission Queue & Completion Queue Definition
Sections 4.1, 4.1.1 and 4.1.2 apply to NVMe over PCIe only. For NVMe over Fabrics, refer to sections
2.4, 2.4.1 and 2.4.2 in the NVMe over Fabrics 1.0 specification.

The submitter of entries to a queue uses the current Tail entry pointer to identify the next open queue slot.
The submitter increments the Tail entry pointer after placing the new entry to the open queue slot. If the
Tail entry pointer increment exceeds the queue size, the Tail entry shall roll to zero. The submitter may
continue to place entries in free queue slots as long as the Full queue condition is not met (refer to section
4.1.2).

Note: The submitter shall take queue wrap conditions into account.

The consumer of entries on a queue uses the current Head entry pointer to identify the slot containing the
next entry to be consumed. The consumer increments the Head entry pointer after consuming the next
entry from the queue. If the Head entry pointer increment exceeds the queue size, the Head entry pointer
shall roll to zero. The consumer may continue to consume entries from the queue as long as the Empty
queue condition is not met (refer to section 4.1.1).

Note: The consumer shall take queue wrap conditions into account.

Creation and deletion of Submission Queue and associated Completion Queues need to be ordered
correctly by host software. Host software shall create the Completion Queue before creating any
associated Submission Queue. Submission Queues may be created at any time after the associated
Completion Queue is created. Host software shall delete all associated Submission Queues prior to
deleting a Completion Queue. To abort all commands submitted to the Submission Queue host software
should issue a Delete I/O Submission Queue Command for that queue (refer to section 7.4.3).

Host software writes the Submission Queue Tail Doorbell (refer to section 3.1.16) and the Completion
Queue Head Doorbell (refer to section 3.1.17) to communicate new values of the corresponding entry
pointers to the controller. If host software writes an invalid value to the Submission Queue Tail Doorbell or
Completion Queue Head Doorbell register and an Asynchronous Event Request command is outstanding,
then an asynchronous event is posted to the Admin Completion Queue with a status code of Invalid Doorbell
Write Value. The associated queue should be deleted and recreated by host software. For a Submission
Queue that experiences this error, the controller may complete previously consumed commands; no
additional commands are consumed. This condition may be caused by host software attempting to add an
entry to a full Submission Queue or remove an entry from an empty Completion Queue.

Host software checks Completion Queue entry Phase Tag (P) bits in memory to determine whether new
Completion Queue entries have been posted. The Completion Queue Tail pointer is only used internally
by the controller and is not visible to the host. The controller uses the SQ Head Pointer (SQHD) field in
Completion Queue entries to communicate new values of the Submission Queue Head Pointer to the host.
A new SQHD value indicates that Submission Queue entries have been consumed, but does not indicate
either execution or completion of any command. Refer to section 4.6.

A Submission Queue entry is submitted to the controller when the host writes the associated Submission
Queue Tail Doorbell with a new value that indicates that the Submission Queue Tail Pointer has moved to
or past the slot in which that Submission Queue entry was placed. A Submission Queue Tail Doorbell write
may indicate that one or more Submission Queue entries have been submitted.

A Submission Queue entry has been consumed by the controller when a Completion Queue entry is posted
that indicates that the Submission Queue Head Pointer has moved past the slot in which that Submission
Queue entry was placed. A Completion Queue entry may indicate that one or more Submission Queue
entries have been consumed.

NVM Express 1.3a

53

A Completion Queue entry is posted to the Completion Queue when the controller write of that Completion
Queue entry to the next free Completion Queue slot inverts the Phase Tag (P) bit from its previous value
in memory. The controller may generate an interrupt to the host to indicate that one or more Completion
Queue entries have been posted.

A Completion Queue entry has been consumed by the host when the host writes the associated Completion
Queue Head Doorbell with a new value that indicates that the Completion Queue Head Pointer has moved
past the slot in which that Completion Queue entry was placed. A Completion Queue Head Doorbell write
may indicate that one or more Completion Queue entries have been consumed.

Once a Submission Queue or Completion Queue entry has been consumed, the slot in which it was placed
is free and available for reuse. Altering a Submission Queue entry after that entry has been submitted but
before that entry has been consumed results in undefined behavior. Altering a Completion Queue entry
after that entry has been posted but before that entry has been consumed results in undefined behavior.

If there are no free slots in a Completion Queue, then the controller shall not post status to that Completion
Queue until slots become available. In this case, the controller may stop processing additional Submission
Queue entries associated with the affected Completion Queue until slots become available. The controller
shall continue processing for other queues.

4.1.1 Empty Queue
The queue is Empty when the Head entry pointer equals the Tail entry pointer. Figure 8 defines the Empty
Queue condition.

Figure 8: Empty Queue Definition

4.1.2 Full Queue
The queue is Full when the Head equals one more than the Tail. The number of entries in a queue when
full is one less than the queue size. Figure 9 defines the Full Queue condition.

Note: Queue wrap conditions shall be taken into account when determining whether a queue is Full.

emptyempty

emptyempty

Queue Base Address

Head (Consumer) Tail (Producer)
emptyempty

emptyempty

emptyempty

……

emptyempty

emptyempty

emptyempty

emptyempty

emptyempty

Queue Base Address

Head (Consumer) Tail (Producer)
emptyempty

emptyempty

emptyempty

……

emptyempty

emptyempty

emptyempty

NVM Express 1.3a

54

Figure 9: Full Queue Definition

4.1.3 Queue Size
The Queue Size is indicated in a 16-bit 0’s based field that indicates the number of slots in the queue. The
minimum size for a queue is two slots. The maximum size for either an I/O Submission Queue or an I/O
Completion Queue is defined as 64K slots, limited by the maximum queue size supported by the controller
that is reported in the CAP.MQES field. The maximum size for the Admin Submission and Admin
Completion Queue is defined as 4K slots. One slot in each queue is not available for use due to Head and
Tail entry pointer definition.

4.1.4 Queue Identifier
Each queue is identified through a 16-bit ID value that is assigned to the queue when it is created.

4.1.5 Queue Priority
If the weighted round robin with urgent priority class arbitration mechanism is supported, then host software
may assign a queue priority service class of Urgent, High, Medium or Low. If the weighted round robin with
urgent priority class arbitration mechanism is not supported, then the priority setting is not used and is
ignored by the controller.

4.2 Submission Queue Entry – Command Format
Each command is 64 bytes in size.

Command Dword 0, Namespace Identifier, Metadata Pointer, PRP Entry 1, PRP Entry 2, SGL Entry 1, and
Metadata SGL Segment Pointer have common definitions for all Admin commands and NVM commands.
Metadata Pointer, PRP Entry 1, PRP Entry 2, and Metadata SGL Segment Pointer are not used by all
commands. Command Dword 0 is defined in Figure 10 .

Figure 10: Command Dword 0
Bit Description

31:16 Command Identifier (CID): This field specifies a unique identifier for the command when combined with the
Submission Queue identifier.

occupiedoccupied

occupiedoccupied

Queue Base Address

Head (Consumer)

Tail (Producer)

emptyempty

occupiedoccupied

occupiedoccupied

……

occupiedoccupied

occupiedoccupied

occupiedoccupied

occupiedoccupied

occupiedoccupied

Queue Base Address

Head (Consumer)

Tail (Producer)

emptyempty

occupiedoccupied

occupiedoccupied

……

occupiedoccupied

occupiedoccupied

occupiedoccupied

NVM Express 1.3a

55

Bit Description

15:14

PRP or SGL for Data Transfer (PSDT): This field specifies whether PRPs or SGLs are used for any data
transfer associated with the command. PRPs shall be used for all Admin commands for NVMe over PCIe.
SGLs shall be used for all Admin and I/O commands for NVMe over Fabrics. This field shall be set to 01b for
NVMe over Fabrics 1.0 implementations. The definition is described in the table below.

Value Definition
00b PRPs are used for this transfer.

01b
SGLs are used for this transfer. If used, Metadata Pointer
(MPTR) contains an address of a single contiguous physical
buffer that is byte aligned.

10b
SGLs are used for this transfer. If used, Metadata Pointer
(MPTR) contains an address of an SGL segment containing
exactly one SGL Descriptor that is Qword aligned.

11b Reserved

If there is metadata that is not interleaved with the logical block data, as specified in the Format NVM
command, then the Metadata Pointer (MPTR) field is used to point to the metadata. The definition of the
Metadata Pointer field is dependent on the setting in this field. Refer to Figure 11.

13:10 Reserved

09:08

Fused Operation (FUSE): In a fused operation, a complex command is created by “fusing” together two
simpler commands. Refer to section 4.10. This field specifies whether this command is part of a fused
operation and if so, which command it is in the sequence.

Value Definition
00b Normal operation
01b Fused operation, first command
10b Fused operation, second command
11b Reserved

07:00 Opcode (OPC): This field specifies the opcode of the command to be executed.

The 64 byte command format for the Admin Command Set and NVM Command Set is defined in Figure
11. Any additional I/O Command Set defined in the future may use an alternate command size or format.

SGLs shall not be used for Admin commands in NVMe over PCIe.

NVM Express 1.3a

56

Figure 11: Command Format – Admin and NVM Command Set
Bytes Description
03:00 Command Dword 0 (CDW0): This field is common to all commands and is defined in Figure 10.

07:04

Namespace Identifier (NSID): This field specifies the namespace that this command applies to. If the
namespace is not used for the command, then this field shall be cleared to 0h. Setting this value to FFFFFFFFh
causes the command to be applied to all namespaces attached to this controller, unless otherwise specified.

Specifying an inactive namespace ID in a command that uses the namespace ID shall cause the controller to
abort the command with status Invalid Field in Command, unless otherwise specified. Specifying an invalid
namespace ID in a command that uses the namespace ID shall cause the controller to abort the command
with status Invalid Namespace or Format, unless otherwise specified.

15:08 Reserved

23:16

Metadata Pointer (MPTR): This field is valid only if the command has metadata that is not interleaved with
the logical block data, as specified in the Format NVM command. This is a reserved field in NVMe over
Fabrics.

If CDW0.PSDT is set to 00b, then this field shall contain the address of a contiguous physical buffer of
metadata and shall be Dword aligned.

If CDW0.PSDT is set to 01b, then this field shall contain the address of a contiguous physical buffer of
metadata and shall be byte aligned.

If CDW0.PSDT is set to 10b, then this field shall contain the address of an SGL segment containing exactly
one SGL Descriptor and shall be Qword aligned. If the SGL segment is a Data Block descriptor, then it
describes the entire data transfer. Refer to section 4.4.

39:24

Data Pointer (DPTR): This field specifies the data used in the command.

If CDW0.PSDT is set to 00b, then the definition of this field is:

39:32

PRP Entry 2 (PRP2): This field:
a) is reserved if the data transfer does not cross a memory page boundary.
b) specifies the Page Base Address of the second memory page if the data

transfer crosses exactly one memory page boundary. E.g.,:
i. the command data transfer length is equal in size to one memory

page and the offset portion of the PBAO field of PRP1 is non-zero or
ii. the Offset portion of the PBAO field of PRP1 is equal to zero and

the command data transfer length is greater than one memory page
and less than or equal to two memory pages in size.

c) is a PRP List pointer if the data transfer crosses more than one memory page
boundary. E.g.,:

i. the command data transfer length is greater than or equal to two
memory pages in size but the offset portion of the PBAO field of
PRP1 is non-zero or

ii. the command data transfer length is equal in size to more than two
memory pages and the Offset portion of the PBAO field of PRP1 is
equal to zero.

31:24 PRP Entry 1 (PRP1): This field contains the first PRP entry for the command or a
PRP List pointer depending on the command.

If CDW0.PSDT is set to 01b or 10b, then the definition of this field is:

39:24

SGL Entry 1 (SGL1): This field contains the first SGL segment for the command.
If the SGL segment is an SGL Data Block or Keyed SGL Data Block descriptor,
then it describes the entire data transfer. If more than one SGL segment is needed
to describe the data transfer, then the first SGL segment is a Segment, or Last
Segment descriptor. Refer to section 4.4 for the definition of SGL segments and
descriptor types.

The NVMe Transport may support a subset of SGL Descriptor types and features
as defined in the NVMe Transport binding specification.

NVM Express 1.3a

57

Bytes Description
43:40 Command Dword 10 (CDW10): This field is command specific Dword 10.
47:44 Command Dword 11 (CDW11): This field is command specific Dword 11.
51:48 Command Dword 12 (CDW12): This field is command specific Dword 12.
55:52 Command Dword 13 (CDW13): This field is command specific Dword 13.
59:56 Command Dword 14 (CDW14): This field is command specific Dword 14.
63:60 Command Dword 15 (CDW15): This field is command specific Dword 15.

In addition to the fields commonly defined for all Admin and NVM commands, Admin and NVM Vendor
Specific commands may support the Number of Dwords in Data Transfer and Number of Dwords in
Metadata Transfer fields. If supported, the command format for the Admin Vendor Specific Command and
NVM Vendor Specific Commands are defined in Figure 12. For more details, refer to section 8.7.

Figure 12: Command Format – Admin and NVM Vendor Specific Commands (Optional)
Bytes Description
03:00 Command Dword 0 (CDW0): This field is common to all commands and is defined in Figure 10.

07:04

Namespace Identifier (NSID): This field indicates the namespace ID that this command applies
to. If the namespace ID is not used for the command, then this field shall be cleared to 0h. Setting
this value to FFFFFFFFh causes the command to be applied to all namespaces attached to this
controller, unless otherwise specified.

The behavior of a controller in response to an inactive namespace ID for a vendor specific
command is vendor specific. Specifying an invalid namespace ID in a command that uses the
namespace ID shall cause the controller to abort the command with status Invalid Namespace or
Format, unless otherwise specified.

15:08 Reserved
39:16 Refer to Figure 11 for the definition of these fields.

43:40 Number of Dwords in Data Transfer (NDT): This field indicates the number of Dwords in the
data transfer.

47:44 Number of Dwords in Metadata Transfer (NDM): This field indicates the number of Dwords in
the metadata transfer.

51:48 Command Dword 12 (CDW12): This field is command specific Dword 12.
55:52 Command Dword 13 (CDW13): This field is command specific Dword 13.
59:56 Command Dword 14 (CDW14): This field is command specific Dword 14.
63:60 Command Dword 15 (CDW15): This field is command specific Dword 15.

4.3 Physical Region Page Entry and List
A physical region page (PRP) entry is a pointer to a physical memory page. PRPs are used as a
scatter/gather mechanism for data transfers between the controller and memory. To enable efficient out of
order data transfers between the controller and the host, PRP entries are a fixed size.

The size of the physical memory page is configured by host software in CC.MPS. Figure 13 shows the
layout of a PRP entry that consists of a Page Base Address and an Offset. The size of the Offset field is
determined by the physical memory page size configured in CC.MPS.

Figure 13: PRP Entry Layout

63 n+1 n 0

Page Base Address Offset

NVM Express 1.3a

58

The definition of a PRP entry is described in Figure 14.

Figure 14: PRP Entry – Page Base Address and Offset
Bit Description

63:00

Page Base Address and Offset (PBAO): This field indicates the 64-bit physical memory page
address. The lower bits (n:0) of this field indicate the offset within the memory page. If the memory
page size is 4KB, then bits 11:00 form the Offset; if the memory page size is 8KB, then bits 12:00
form the Offset, etc. If this entry is not the first PRP entry in the command or a PRP List pointer
in a command, then the Offset portion of this field shall be cleared to 0h. The Offset shall be Dword
aligned, indicated by bits 1:0 being cleared to 00b.

NOTE: The controller is not required to check that bits 1:0 are cleared to 00b. The controller may
report an error of PRP Offset Invalid if bits 1:0 are not cleared to 00b. If the controller does not
report an error of PRP Offset Invalid, then the controller shall operate as if bits 1:0 are cleared to
00b.

A physical region page list (PRP List) is a set of PRP entries in a single page of contiguous memory. A
PRP List describes additional PRP entries that could not be described within the command itself. Any PRP
entries described within the command are not duplicated in a PRP List. If the amount of data to transfer
requires multiple PRP List memory pages, then the last PRP entry before the end of the memory page shall
be a pointer to the next PRP List, indicating the next segment of the PRP List. Figure 15 shows the layout
of a PRP List.

Figure 15: PRP List Layout

Dependent on the command definition, the first PRP entry contained within the command may have a non-
zero offset within the memory page. The first PRP List entry (i.e. the first pointer to a memory page
containing additional PRP entries) that if present is typically contained in the PRP Entry 2 location within
the command, shall be Qword aligned and may also have a non-zero offset within the memory page.

PRP entries contained within a PRP List shall have a memory page offset of 0h. If a second PRP entry is
present within a command, it shall have a memory page offset of 0h. In both cases, the entries are memory
page aligned based on the value in CC.MPS. If the controller receives a non-zero offset for these PRP
entries the controller should return an error of PRP Offset Invalid.

PRP Lists shall be minimally sized with packed entries starting with entry 0. If more PRP List pages are
required, then the last entry of the PRP List contains the Page Base Address of the next PRP List page.
The next PRP List page shall be memory page aligned. The total number of PRP entries required by a
command is implied by the command parameters and memory page size.

Page Base Address k

63 0n

0hPage Base Address k+1

…

0hPage Base Address k+m

0hPage Base Address k+m+1

0h

n+1

NVM Express 1.3a

59

4.4 Scatter Gather List (SGL)
A Scatter Gather List (SGL) is a data structure in memory address space used to describe a data buffer.
The controller indicates the SGL types that it supports in the Identify Controller data structure. A data buffer
is either a source buffer or a destination buffer. An SGL contains one or more SGL segments. The total
length of the Data Block and Bit Bucket descriptors in an SGL shall be equal to or exceed the amount of
data required by the number of logical blocks transferred.

An SGL segment is a Qword aligned data structure in a contiguous region of physical memory describing
all, part of, or none of a data buffer and the next SGL segment, if any. An SGL segment consists of an
array of one or more SGL descriptors. Only the last descriptor in an SGL segment may be an SGL Segment
descriptor or an SGL Last Segment descriptor.

A last SGL segment is an SGL segment that does not contain an SGL Segment descriptor, or an SGL Last
Segment descriptor.

A controller may support byte or Dword alignment and granularity of Data Blocks. If a controller supports
only Dword alignment and granularity as indicated in the SGL Support field of the Identify Controller data
structure, then the values in the Address and Length fields of all Data Block descriptors shall have their
lower two bits cleared to 00b. This requirement applies to Data Block descriptors that indicate data and/or
metadata memory regions.

A Keyed SGL Data Block descriptor is a Data Block descriptor that includes a key that is used as part of
the host memory access. The maximum length that may be specified in a Keyed SGL Data Block descriptor
is (16 MB – 1).

The SGL Identifier Descriptor Sub Type field may indicate additional information about a descriptor. As an
example, the Sub Type may indicate that the Address field is an offset rather than an absolute address.
The Sub Type may also indicate NVMe Transport specific information.

The controller shall abort a command if:
• an SGL segment contains an SGL Segment descriptor or an SGL Last Segment descriptor in

other than the last descriptor in the segment;
• a last SGL segment contains an SGL Segment descriptor, or an SGL Last Segment descriptor;
• an SGL descriptor has an unsupported format; or
• an SGL Data Block descriptor contains Address or Length fields with either of the two lower bits

set to 1b and the controller supports only Dword alignment and granularity as indicated in the
SGL Support field of the Identify Controller data structure.

Figure 16 defines the SGL segment.

Figure 16: SGL Segment
Bytes Description
15:00 SGL Descriptor 0
31:16 SGL Descriptor 1

… …
((n*16)+15):

(n*16) SGL Descriptor n

An SGL segment contains one or more SGL descriptors. Figure 17 defines the generic SGL descriptor
format.

Figure 17: Generic SGL Descriptor Format
Bytes Description
14:00 Descriptor Type Specific

NVM Express 1.3a

60

Bytes Description

15

SGL Identifier: The definition of this field is described in the table below.

Bits Description
03:00 SGL Descriptor Sub Type (refer to Figure 19)
07:04 SGL Descriptor Type (refer to Figure 18)

The SGL Descriptor Type field defined in Figure 18 specifies the SGL descriptor type. If the SGL Descriptor
Type field is set to a reserved or unsupported value, then the SGL descriptor shall be processed as having
an error. If the SGL Descriptor Sub Type field is set to an unsupported value, then the descriptor shall be
processed as having an SGL Descriptor Type error.

An SGL descriptor set to all zeros is an SGL Data Block descriptor with the Address field set to
00000000_00000000h and the Length field set to 00000000h may be used as a NULL descriptor.

Figure 18: SGL Descriptor Type
Code Descriptor

0h SGL Data Block descriptor
1h SGL Bit Bucket descriptor
2h SGL Segment descriptor
3h SGL Last Segment descriptor
4h Keyed SGL Data Block descriptor

5h – Eh Reserved
Fh Vendor specific

Figure 19 defines the SGL Descriptor Sub Type Values. For each Sub Type Value defined, the Descriptor
Types that it applies to are indicated.

Figure 19: SGL Descriptor Sub Type Values
Descriptor Types Sub Type Value Sub Type Description

0h, 2h, 3h, 4h 0h Address: The Address field specifies the starting 64-bit memory byte address
of the Data Block, Segment, or Last Segment descriptor

0h, 2h, 3h 1h

Offset: The Address field contains an offset from the beginning of the location
where data may be transferred. For NVMe over PCIe implementations, this
Sub Type is reserved. For NVMe over Fabrics implementations, refer to the
NVMe over Fabrics specification for details on the location from which the
offset is specified.

All Ah – Fh NVMe Transport Specific: The definitions for this range of Sub Types are
defined by the binding section for the associated NVMe Transport.

The SGL Data Block descriptor, defined in Figure 20, describes a data block.

NVM Express 1.3a

61

Figure 20: SGL Data Block descriptor
Bytes Description

7:0

Address: If the SGL Identifier Descriptor Sub Type field is set to 0h then the Address field specifies
the starting 64-bit memory byte address of the data block. If the SGL Identifier Descriptor Sub
Type field is set to 1h then the Address field contains an offset from the beginning of the location
where data may be transferred. If the controller requires Dword alignment and granularity as
specified in the SGL Support field of Identify Controller then the lower two bits shall be cleared to
00b.

11:8

Length: The Length field specifies the length in bytes of the data block. A Length field set to
00000000h specifies that no data is transferred. An SGL Data Block descriptor specifying that no
data is transferred is a valid SGL Data Block descriptor. If the controller requires Dword alignment
and granularity as specified in the SGL Support field of Identify Controller then the lower two bits
shall be cleared to 00b.

If the value in the Address field plus the value in the Length field is greater than
1_00000000_00000000h then the SGL Data Block descriptor shall be processed as having a Data
SGL Length Invalid or Metadata SGL Length Invalid error.

14:12 Reserved

15

SGL Identifier: The definition of this field is described in the table below.

Bits Description

03:00 SGL Descriptor Sub Type field. Valid values are specified in
Figure 19.

07:04 SGL Descriptor Type: 0h as specified in Figure 18.

The SGL Bit Bucket descriptor, defined in Figure 21, is used to ignore parts of source data.

Figure 21: SGL Bit Bucket descriptor
Bytes Description

7:0 Reserved

11:8

Length: The Length field specifies the amount of source data that is discarded. An SGL Bit Bucket
descriptor specifying that no source data be discarded (i.e., the length field set to 00000000h) is
a valid SGL Bit Bucket descriptor.

If the SGL Bit Bucket Descriptor describes a destination data buffer (e.g., a read from the controller
to memory), then the Length field specifies the number of bytes of the source data which the
controller shall discard (i.e., not transfer to the destination data buffer).

If the SGL Bit Bucket Descriptor describes a source data buffer (e.g., a write from memory to the
controller), then the Bit Bucket Descriptor shall be treated as if the Length field were set to
00000000h (i.e., the Bit Bucket Descriptor has no effect).

If SGL Bit Bucket descriptors are supported, their length in a destination data buffer shall be
included in the Number of Logical Blocks (NLB) parameter specified in NVM Command Set data
transfer commands. Their length in a source data buffer is not included in the NLB parameter.

14:12 Reserved

15

SGL Identifier: The definition of this field is described in the table below.

Bits Description

03:00 SGL Descriptor Sub Type field. Valid values are specified in
Figure 19.

07:04 SGL Descriptor Type: 1h as specified in Figure 18.

The SGL Segment descriptor, defined in Figure 22, describes the next SGL segment, which is not the last
SGL segment.

NVM Express 1.3a

62

Figure 22: SGL Segment descriptor
Bytes Description

7:0

Address: If the SGL Identifier Descriptor Sub Type field is set to 0h then the Address field specifies
the starting 64-bit memory byte address of the next SGL segment, which is a SGL segment. If the
SGL Identifier Descriptor Sub Type field is set to 1h then the Address field contains an offset from
the beginning of the location where data may be transferred.

11:8

Length: The Length field specifies the length in bytes of the next SGL segment. The Length field
shall be a non-zero value and a multiple of 16.

If the value in the Address field plus the value in the Length field is greater than
1_00000000_00000000h, then the SGL Segment descriptor shall be processed as having a Data
SGL Length Invalid or Metadata SGL Length Invalid error.

14:12 Reserved

15

SGL Identifier: The definition of this field is described in the table below.

Bits Description

03:00 SGL Descriptor Sub Type field. Valid values are specified in
Figure 19.

07:04 SGL Descriptor Type: 2h as specified in Figure 18.

The SGL Last Segment descriptor, defined in Figure 23, describes the next and last SGL segment. A last
SGL segment that contains an SGL Segment descriptor or an SGL Last Segment descriptor is processed
as an error.

Figure 23: SGL Last Segment descriptor
Bytes Description

7:0

Address: If the SGL Identifier Descriptor Sub Type field is set to 0h then the Address field specifies
the starting 64-bit memory byte address of the next and last SGL segment, which is a SGL
segment. If the SGL Identifier Descriptor Sub Type field is set to 1h then the Address field contains
an offset from the beginning of the location where data may be transferred.

11:8

Length: The Length field specifies the length in bytes of the next and last SGL segment. The
Length field shall be a non-zero value and a multiple of 16.

If the value in the Address field plus the value in the Length field is greater than
1_00000000_00000000h, then the SGL Last Segment descriptor shall be processed as having a
Data SGL Length Invalid or Metadata SGL Length Invalid error.

14:12 Reserved

15

SGL Identifier: The definition of this field is described in the table below.

Bits Description

03:00 SGL Descriptor Sub Type field. Valid values are specified in
Figure 19.

07:04 SGL Descriptor Type: 3h as specified in Figure 18.

The Keyed SGL Data Block descriptor, defined in Figure 24, describes a keyed data block.

NVM Express 1.3a

63

Figure 24: Keyed SGL Data Block descriptor
Bytes Description

7:0 Address: The Address field specifies the starting 64-bit memory byte address of the data block.

10:8

Length: The Length field specifies the length in bytes of the data block. A Length field set to
000000h specifies that no data is transferred. An SGL Data Block descriptor specifying that no
data is transferred is a valid SGL Data Block descriptor.

If the value in the Address field plus the value in the Length field is greater than
1_00000000_00000000h then the SGL Data Block descriptor shall be processed as having a Data
SGL Length Invalid or Metadata SGL Length Invalid error.

14:11 Key: Specifies a 32-bit key that is associated with the data block.

15

SGL Identifier: The definition of this field is described in the table below.

Bits Description

03:00 SGL Descriptor Sub Type field. Valid values are specified in
Figure 19.

07:04 SGL Descriptor Type: 4h as specified in Figure 18.

4.4.1 SGL Example
Figure 25 shows an example of a data read request using SGLs. In the example, the logical block size is
512B. The total length of the logical blocks accessed is 13KB, of which only 11KB is transferred to the
host. The Number of Logical Blocks (NLB) field in the command shall specify 26, indicating the total length
of the logical blocks accessed on the controller is 13KB. There are three SGL segments describing the
locations in memory where the logical block data is transferred.

The three SGL segments contain a total of three Data Block descriptors with lengths of 3 KB, 4 KB and 4
KB respectively. Segment 1 of the Destination SGL contains a Bit Bucket descriptor with a length of 2 KB
that specifies to not transfer (i.e., ignore) 2 KB of logical block data from the NVM. Segment 1 of the
destination SGL also contains a Last Segment descriptor specifying that the segment pointed to by the
descriptor is the last SGL segment.

NVM Express 1.3a

64

Figure 25: SGL Read Example

4.5 Metadata Region (MR)
Metadata may be supported for a namespace as either part of the logical block (creating an extended logical
block which is a larger logical block that is exposed to the application) or it may be transferred as a separate
buffer of data. The metadata shall not be split between the logical block and a separate metadata buffer.
For writes, the metadata shall be written atomically with its associated logical block. Refer to section 8.2.

Host DRAM

Data Block A Data Block BData Block C

Destination SGL Segment 0

Address = A
0 Length = 3KB
Address = Segment 1
2 Length = 48

3KB 4KB 4KB2KB

Destination SGL Segment 1

Address = B
0 Length = 4KB

1 Length = 2KB
Address = Segment 2
3 Length = 16

Destination SGL Segment 2
Address = C

0 Length = 4KB

SGL Data Block descriptor
specifies to transfer 3KB

Segment descriptor
points to the next memory

location of the SGL

Data Block descriptor
specifies to transfer 4KB

Bit Bucket descriptor
specifies to not transfer the

next 2KB of logical block data

Last Segment descriptor
points to the last memory

location of the SGL

Data Block descriptor
specifies to transfer 4KB

Bit Bucket data
not transfered

NVMe Logical BlocksLBA x LBA x+26

NVM Express 1.3a

65

In the case where the namespace is formatted to transfer the metadata as a separate buffer of data, then
the Metadata Region is used. In this case, the location of the Metadata Region is indicated by the Metadata
Pointer within the command. The Metadata Pointer within the command shall be Dword aligned.

The controller may support several physical formats of logical block size and associated metadata size.
There may be performance differences between different physical formats. This is indicated as part of the
Identify Namespace data structure.

If the namespace is formatted to use end-to-end data protection, then the first eight bytes or last eight bytes
of the metadata is used for protection information (specified as part of the NVM Format operation).

4.6 Completion Queue Entry
An entry in the Completion Queue is at least 16 bytes in size. Figure 26 describes the layout of the first 16
bytes of the Completion Queue Entry data structure. The contents of Dword 0 are command specific. If a
command uses Dword 0, then the definition of this Dword is contained within the associated command
definition. If a command does not use Dword 0, then the field is reserved. Dword 1 is reserved. Dword 2
is defined in Figure 27 and Dword 3 is defined in Figure 28. Any additional I/O Command Set defined in
the future may use an alternate Completion Queue entry size or format.

If a Completion Queue Entry is constructed via multiple writes, the Phase Tag bit shall be updated in the
last write of that Completion Queue Entry.

Figure 26: Completion Queue Entry Layout – Admin and NVM Command Set

Figure 27: Completion Queue Entry: DW 2
Bit Description

31:16

SQ Identifier (SQID): Indicates the Submission Queue to which the associated command was
issued. This field is used by host software when more than one Submission Queue shares a
single Completion Queue to uniquely determine the command completed in combination with the
Command Identifier (CID).

This is a reserved field in NVMe over Fabrics.

15:00

SQ Head Pointer (SQHD): Indicates the current Submission Queue Head pointer for the
Submission Queue indicated in the SQ Identifier field. This is used to indicate to the host the
Submission Queue entries that have been consumed and may be re-used for new entries.

Note: The value returned is the value of the SQ Head pointer when the completion queue entry
was created. By the time host software consumes the completion queue entry, the controller may
have an SQ Head pointer that has advanced beyond the value indicated.

1531 023 7

SQ Identifier

Reserved

Command SpecificDW0

DW3

DW2

DW1

SQ Head Pointer

Command IdentifierStatus Field P

NVM Express 1.3a

66

Figure 28: Completion Queue Entry: DW 3
Bit Description

31:17 Status Field (SF): Indicates status for the command that is being completed. Refer to section
4.6.1.

16

Phase Tag (P): Identifies whether a Completion Queue entry is new. The Phase Tag values for
all Completion Queue entries shall be initialized to ‘0’ by host software prior to setting CC.EN to
‘1’. When the controller places an entry in the Completion Queue, it shall invert the Phase Tag to
enable host software to discriminate a new entry. Specifically, for the first set of completion queue
entries after CC.EN is set to ‘1’ all Phase Tags are set to ‘1’ when they are posted. For the second
set of completion queue entries, when the controller has wrapped around to the top of the
Completion Queue, all Phase Tags are cleared to ‘0’ when they are posted. The value of the
Phase Tag is inverted each pass through the Completion Queue.

This is a reserved bit in NVMe over Fabrics.

15:00

Command Identifier (CID): Indicates the identifier of the command that is being completed. This
identifier is assigned by host software when the command is submitted to the Submission Queue.
The combination of the SQ Identifier and Command Identifier uniquely identifies the command that
is being completed. The maximum number of requests outstanding at one time is 64K.

4.6.1 Status Field Definition
The Status Field defines the status for the command indicated in the completion queue entry, defined in
Figure 29.

A value of 0h for the Status Field indicates a successful command completion, with no fatal or non-fatal
error conditions. Unless otherwise noted, if a command fails to complete successfully for multiple reasons,
then the particular status code returned is chosen by the vendor.

Figure 29: Completion Queue Entry: Status Field
Bit Description

31

Do Not Retry (DNR): If set to ‘1’, indicates that if the same command is re-submitted it is expected
to fail. If cleared to ‘0’, indicates that the same command may succeed if retried. If a command
is aborted due to time limited error recovery (refer to section 5.21.1.5), this field should be cleared
to ‘0’. If the SCT and SC fields are cleared to 0h then this field should be cleared to ‘0’.

30
More (M): If set to ‘1’, there is more status information for this command as part of the Error
Information log that may be retrieved with the Get Log Page command. If cleared to ‘0’, there is
no additional status information for this command. Refer to section 5.14.1.1.

29:28 Reserved

27:25 Status Code Type (SCT): Indicates the status code type of the completion queue entry. This
indicates the type of status the controller is returning.

24:17 Status Code (SC): Indicates a status code identifying any error or status information for the
command indicated.

4.6.1.1 Status Code Type (SCT)
Completion queue entries indicate a status code type for the type of completion being reported. Figure 30
specifies the status code type values and descriptions.

NVM Express 1.3a

67

Figure 30: Status Code – Status Code Type Values
Value Description

0h

Generic Command Status: Indicates that the command specified by the Command and
Submission Queue identifiers in the completion queue entry has completed. These status
values are generic across all command types, and include such conditions as success, opcode
not supported, and invalid field.

1h
Command Specific Status: Indicates a status value that is specific to a particular command
opcode. These values may indicate additional processing is required. Status values such as
invalid firmware image or exceeded maximum number of queues is reported with this type.

2h Media and Data Integrity Errors: Any media specific errors that occur in the NVM or data
integrity type errors shall be of this type.

3h – 6h Reserved
7h Vendor Specific

4.6.1.2 Status Code (SC)
The Status Code (SC) field in the completion queue entry indicates more detailed status information about
the completion being reported.

Each Status Code set of values is split into three ranges:

• 00h – 7Fh: Applicable to Admin Command Set, or across multiple command sets.
• 80h – BFh: I/O Command Set Specific status codes.
• C0h – FFh: Vendor Specific status codes.

Unless otherwise specified, if multiple status codes apply, then the controller selects the status code that is
returned.

4.6.1.2.1 Generic Command Status Definition
Completion queue entries with a Status Code type of Generic Command Status indicate a status value
associated with the command that is generic across many different types of commands.

Figure 31: Status Code – Generic Command Status Values
Value Description
00h Successful Completion: The command completed successfully.
01h Invalid Command Opcode: The associated command opcode field is not valid.
02h Invalid Field in Command: A reserved coded value or an unsupported value in a defined field

(other than the opcode field). This status code should be used unless another status code is
explicitly specified for a particular condition. The field may be in the command parameters as part
of the Submission Queue Entry or in data structures pointed to by the command parameters.

03h Command ID Conflict: The command identifier is already in use. Note: It is implementation
specific how many commands are searched for a conflict.

04h Data Transfer Error: Transferring the data or metadata associated with a command had an error.
05h Commands Aborted due to Power Loss Notification: Indicates that the command was aborted

due to a power loss notification.
06h Internal Error: The command was not completed successfully due to an internal error. Details on

the internal device error are returned as an asynchronous event. Refer to section 5.2.
07h Command Abort Requested: The command was aborted due to a Command Abort command

being received that specified the Submission Queue Identifier and Command Identifier of this
command.

NVM Express 1.3a

68

Value Description
08h Command Aborted due to SQ Deletion: The command was aborted due to a Delete I/O

Submission Queue request received for the Submission Queue to which the command was
submitted.

09h Command Aborted due to Failed Fused Command: The command was aborted due to the other
command in a fused operation failing.

0Ah Command Aborted due to Missing Fused Command: The Submission Queue does not contain
the first command followed by the second command for a Fused Operation (refer to Figure 10).

0Bh Invalid Namespace or Format: The namespace or the format of that namespace is invalid.
0Ch Command Sequence Error: The command was aborted due to a protocol violation in a multi-

command sequence (e.g. a violation of the Security Send and Security Receive sequencing rules
in the TCG Storage Synchronous Interface Communications protocol).

0Dh Invalid SGL Segment Descriptor: The command includes an invalid SGL Last Segment or SGL
Segment descriptor. This may occur when the SGL segment pointed to by an SGL Last Segment
descriptor contains an SGL Segment descriptor or an SGL Last Segment descriptor or an SGL
Segment descriptor. This may occur when an SGL Last Segment descriptor contains an invalid
length (i.e., a length of zero or one that is not a multiple of 16).

0Eh Invalid Number of SGL Descriptors: There is an SGL Last Segment descriptor or an SGL
Segment descriptor in a location other than the last descriptor of a segment based on the length
indicated.

0Fh Data SGL Length Invalid: This may occur if the length of a Data SGL is too short. This may occur
if the length of a Data SGL is too long and the controller does not support SGL transfers longer than
the amount of data to be transferred as indicated in the SGL Support field of the Identify Controller
data structure.

10h Metadata SGL Length Invalid: This may occur if the length of a Metadata SGL is too short. This
may occur if the length of a Metadata SGL is too long and the controller does not support SGL
transfers longer than the amount of data to be transferred as indicated in the SGL Support field of
the Identify Controller data structure.

11h SGL Descriptor Type Invalid: The type of an SGL Descriptor is a type that is not supported by
the controller.

12h Invalid Use of Controller Memory Buffer: The attempted use of the Controller Memory Buffer is
not supported by the controller. Refer to section 4.7.

13h PRP Offset Invalid: The Offset field for a PRP entry is invalid. This may occur when there is a
PRP entry with a non-zero offset after the first entry or when the Offset field in any PRP entry is not
Dword aligned (i.e., bits 1:0 are not cleared to 00b).

14h Atomic Write Unit Exceeded: The length specified exceeds the atomic write unit size.
15h Operation Denied: The command was denied due to lack of access rights. Refer to the appropriate

security specification (e.g., TCG SIIS). For media access commands, the Access Denied status
code should be used instead.

16h SGL Offset Invalid: The offset specified in a descriptor is invalid. This may occur when using
capsules for data transfers in NVMe over Fabrics and an invalid offset in the capsule is specified.

17h Reserved
18h Host Identifier Inconsistent Format: The NVM subsystem detected the simultaneous use of 64-

bit and 128-bit Host Identifier values on different controllers.
19h Keep Alive Timeout Expired: The Keep Alive Timeout expired.
1Ah Keep Alive Timeout Invalid: The Keep Alive Timeout value specified is invalid. This may be due

to an attempt to specify a value of 0h on a transport that requires Keep Alive to be enabled. This
may be due to the value specified being too large for the associated NVMe Transport as defined in
the NVMe Transport binding specification.

1Bh Command Aborted due to Preempt and Abort: The command was aborted due to a Reservation
Acquire command with the Reservation Acquire Action (RACQA) set to 010b (Preempt and Abort).

1Ch Sanitize Failed: The most recent sanitize operation failed and no recovery action has been
successfully completed.

1Dh Sanitize In Progress: The requested function (e.g., command) is prohibited while a sanitize
operation is in progress. Refer to section 8.15.1.

NVM Express 1.3a

69

Value Description
1Eh SGL Data Block Granularity Invalid: The Address alignment or Length granularity for an SGL

Data Block descriptor is invalid. This may occur when a controller supports Dword granularity only
and the lower two bits of the Address or Length are not cleared to 00b.

NOTE: An implementation compliant to revision 1.2.1 or earlier may use the status code value of
15h to indicate SGL Data Block Granularity Invalid.

1Fh Command Not Supported for Queue in CMB: The implementation does not support submission
of the command to a Submission Queue in the Controller Memory Buffer or command completion
to a Completion Queue in the Controller Memory Buffer.

NOTE: Revision 1.3 uses this status code only for Sanitize commands.

20h – 7Fh Reserved
80h – BFh I/O Command Set Specific
C0h – FFh Vendor Specific

Figure 32: Status Code – Generic Command Status Values, NVM Command Set
Value Description
80h LBA Out of Range: The command references an LBA that exceeds the size of the namespace.
81h Capacity Exceeded: Execution of the command has caused the capacity of the namespace to be

exceeded. This error occurs when the Namespace Utilization exceeds the Namespace Capacity,
as reported in Figure 114.

82h Namespace Not Ready: The namespace is not ready to be accessed. The Do Not Retry bit
indicates whether re-issuing the command at a later time may succeed.

83h Reservation Conflict: The command was aborted due to a conflict with a reservation held on the
accessed namespace. Refer to section 8.8.

84h Format In Progress: A Format NVM command is in progress on the namespace. The Do Not
Retry bit shall be cleared to ‘0’ to indicate that the command may succeed if it is resubmitted.

85h – BFh Reserved

4.6.1.2.2 Command Specific Errors Definition
Completion queue entries with a Status Code Type of Command Specific Errors indicate an error that is
specific to a particular command opcode. Status codes of 0h to 7Fh are for Admin command errors. Status
codes of 80h – BFh are specific to the selected I/O command set.

NVM Express 1.3a

70

Figure 33: Status Code – Command Specific Status Values
Value Description Commands Affected
00h Completion Queue Invalid Create I/O Submission Queue
01h Invalid Queue Identifier Create I/O Submission Queue, Create I/O

Completion Queue, Delete I/O Completion
Queue, Delete I/O Submission Queue

02h Invalid Queue Size Create I/O Submission Queue, Create I/O
Completion Queue

03h Abort Command Limit Exceeded Abort
04h Reserved
05h Asynchronous Event Request Limit Exceeded Asynchronous Event Request
06h Invalid Firmware Slot Firmware Commit
07h Invalid Firmware Image Firmware Commit
08h Invalid Interrupt Vector Create I/O Completion Queue
09h Invalid Log Page Get Log Page
0Ah Invalid Format Format NVM, Namespace Management
0Bh Firmware Activation Requires Conventional Reset Firmware Commit
0Ch Invalid Queue Deletion Delete I/O Completion Queue
0Dh Feature Identifier Not Saveable Set Features
0Eh Feature Not Changeable Set Features
0Fh Feature Not Namespace Specific Set Features
10h Firmware Activation Requires NVM Subsystem Reset Firmware Commit, Sanitize
11h Firmware Activation Requires Reset Firmware Commit
12h Firmware Activation Requires Maximum Time Violation Firmware Commit
13h Firmware Activation Prohibited Firmware Commit

14h Overlapping Range Firmware Commit, Firmware Image Download,
Set Features

15h Namespace Insufficient Capacity Namespace Management
16h Namespace Identifier Unavailable Namespace Management
17h Reserved
18h Namespace Already Attached Namespace Attachment
19h Namespace Is Private Namespace Attachment
1Ah Namespace Not Attached Namespace Attachment
1Bh Thin Provisioning Not Supported Namespace Management
1Ch Controller List Invalid Namespace Attachment
1Dh Device Self-test In Progress Device Self-test
1Eh Boot Partition Write Prohibited Firmware Commit
1Fh Invalid Controller Identifier Virtualization Management
20h Invalid Secondary Controller State Virtualization Management
21h Invalid Number of Controller Resources Virtualization Management
22h Invalid Resource Identifier Virtualization Management

23h – 6Fh Reserved
70h – 7Fh Directive Specific NOTE 1
80h – BFh I/O Command Set Specific NOTE 2
C0h – FFh Vendor Specific
NOTES:
1. The Directives Specific range defines Directives specific status values. Refer to section 9.
2. The I/O Command Set Specific range in NVMe over Fabrics defines Fabrics command specific status values.

NVM Express 1.3a

71

Figure 34: Status Code – Command Specific Status Values, NVM Command Set
Value Description Commands Affected
80h Conflicting Attributes Dataset Management, Read, Write
81h Invalid Protection Information Compare, Read, Write, Write Zeroes
82h Attempted Write to Read Only Range Dataset Management, Write, Write

Uncorrectable, Write Zeroes
83h - BFh Reserved

4.6.1.2.3 Media and Data Integrity Errors Definition
Completion queue entries with a Status Code Type of Media and Data Integrity Errors indicate an error
associated with the command that is due to an error associated with the NVM media or a data integrity type
error.

Figure 35: Status Code – Media and Data Integrity Error Values
Value Description

00h – 7Fh Reserved
80h – BFh I/O Command Set Specific
C0h – FFh Vendor Specific

Figure 36: Status Code – Media and Data Integrity Error Values, NVM Command Set
Value Description
80h Write Fault: The write data could not be committed to the media.
81h Unrecovered Read Error: The read data could not be recovered from the media.
82h End-to-end Guard Check Error: The command was aborted due to an end-to-end guard check

failure.
83h End-to-end Application Tag Check Error: The command was aborted due to an end-to-end

application tag check failure.
84h End-to-end Reference Tag Check Error: The command was aborted due to an end-to-end

reference tag check failure.
85h Compare Failure: The command failed due to a miscompare during a Compare command.
86h Access Denied: Access to the namespace and/or LBA range is denied due to lack of access rights.

Refer to the appropriate security specification (e.g., TCG SIIS).
87h Deallocated or Unwritten Logical Block: The command failed due to an attempt to read from an

LBA range containing a deallocated or unwritten logical block.
88h – BFh Reserved

4.7 Controller Memory Buffer
The Controller Memory Buffer (CMB) is a region of general purpose read/write memory on the controller
that may be used for a variety of purposes. The controller indicates which purposes the memory may be
used for by setting support flags in the CMBSZ register.

Submission Queues in host memory require the controller to perform a PCI Express read from host memory
in order to fetch the queue entries. Submission Queues in controller memory enable host software to directly
write the entire Submission Queue Entry to the controller's internal memory space, avoiding one read from
the controller to the host. This approach reduces latency in command execution and improves efficiency in
a PCI Express fabric topology that may include multiple switches. Similarly, PRP Lists or SGLs require
separate fetches across the PCI Express fabric, which may be avoided by writing the PRP or SGL to the
Controller Memory Buffer. Completion Queues in the Controller Memory Buffer may be used for peer to
peer or other applications. For writes of small amounts of data, it may be advantageous to have the host

NVM Express 1.3a

72

write the data and/or metadata to the Controller Memory Buffer rather than have the controller fetch it from
host memory.

The contents of the Controller Memory Buffer are initially undefined. Host software should initialize any
memory before it is referenced (e.g., a Completion Queue shall be initialized by host software in order for
the Phase Tag to be used correctly).

A controller memory based queue is used in the same manner as a host memory based queue – the
difference is the memory address used is located within the controller’s own memory rather than in the host
memory. The Admin or I/O Queues may be placed in the Controller Memory Buffer. For a particular queue,
all memory associated with it shall reside in either the Controller Memory Buffer or host memory. For all
queues in the Controller Memory Buffer, the queue shall be physically contiguous.

The controller may support PRPs and SGLs in the Controller Memory Buffer. For a particular PRP List or
SGL associated with a single command, all memory associated with the PRP List or SGLs shall reside in
either the Controller Memory Buffer or host memory. The PRPs and SGLs for a command may only be
placed in the Controller Memory Buffer if the associated command is present in a Submission Queue in the
Controller Memory Buffer.

The controller may support data and metadata in the Controller Memory Buffer. All data and metadata, if
any, associated with a particular command shall be located in either the Controller Memory Buffer or host
memory.

If the requirements for the Controller Memory Buffer use are violated by the host, the controller shall fail the
associated command with Invalid Use of Controller Memory Buffer status.

The address region allocated for the CMB shall be 4 KB aligned. It is recommended that a controller allocate
the CMB on an 8 KB boundary. The controller shall support burst transactions up to the maximum payload
size, support byte enables, and arbitrary byte alignment. The host shall ensure that all writes to the CMB
that are needed for a command have been sent before updating the SQ Tail doorbell register. The Memory
Write Request to the SQ Tail doorbell register shall not have the Relaxed Ordering bit set, to ensure that it
arrives at the controller after all writes to the CMB.

4.8 Namespace List
A Namespace List, defined in Figure 37, is an ordered list of namespace IDs. Unused entries are zero
filled.

Figure 37: Namespace List Format

Bytes Description
3:0 Identifier 0: This field contains the lowest namespace ID in the list or 0h if the list is empty.
7:4 Identifier 1: This field contains the second lowest namespace ID in the list or 0h if the list

contains less than two entries.
… …

(N*4+3):
(N*4)

Identifier N: This field contains the N+1 lowest namespace ID in the list or 0h if the list
contains fewer than N entries.

4.9 Controller List
A Controller List, defined in Figure 38, is an ordered list of ascending controller IDs. The controller identifier
is defined in bytes 79:78 of the Identify data structure in Figure 109. Unused entries are zero-filled.

NVM Express 1.3a

73

Figure 38: Controller List Format

Bytes Description
1:0 Number of Identifiers: This field contains the number of controller entries in the list.

There may be up to 2047 identifiers in the list. A value of 0 indicates there are no
controllers in the list.

3:2 Identifier 0: This field contains the NVM subsystem unique controller identifier for the first
controller in the list, if present.

5:4 Identifier 1: This field contains the NVM subsystem unique controller identifier for the
second controller in the list, if present.

… …
(N*2+3):
(N*2+2)

Identifier N: This field contains the NVM subsystem unique controller identifier for the
N+1 controller in the list, if present.

4.10 Fused Operations
Fused operations enable a more complex command by “fusing” together two simpler commands. This
feature is optional; support for this feature is indicated in the Identify Controller data structure in Figure 109.
In a fused operation, the requirements are:

• The commands shall be executed in sequence as an atomic unit. The controller shall behave as if
no other operations have been executed between these two commands.

• The operation ends at the point an error is encountered in either command. If the first command
in the sequence failed, then the second command shall be aborted. If the second command in the
sequence failed, then the completion status of the first command is sequence specific.

• The LBA range, if used, shall be the same for the two commands. If the LBA ranges do not match,
the commands should be aborted with status of Invalid Field in Command.

• The commands shall be inserted next to each other in the same Submission Queue. If the first
command is in the last slot in the Submission Queue, then the second command shall be the first
slot in the Submission Queue as part of wrapping around. The Submission Queue Tail doorbell
pointer update shall indicate both commands as part of one doorbell update.

• If the host desires to abort the fused operation, the host shall submit an Abort command separately
for each of the commands.

• A completion queue entry is posted by the controller for each of the commands.

Whether a command is part of a fused operation is indicated in the Fused Operation field of Command
Dword 0 in Figure 10. The Fused Operation field also indicates whether this is the first or second command
in the operation.

4.11 Command Arbitration
For NVMe over PCIe, a command is submitted to the controller when a Submission Queue Tail Doorbell
write by the host moves the Submission Queue Tail Pointer past the slot containing the corresponding
Submission Queue entry. For NVMe over Fabrics, refer to section 1.4.14 in the NVMe over Fabrics 1.0
specification for the definition of command submission. The controller transfers submitted commands into
the controller for subsequent processing using a vendor specific algorithm.

A command is being processed when the controller and/or namespace state is being accessed or modified
by the command (e.g., a Feature setting is being accessed or modified or a logical block is being accessed
or modified).

A command is completed when a Completion Queue entry for the command has been posted to the
corresponding Completion Queue. Upon completion, all controller state and/or namespace state
modifications made by that command are globally visible to all subsequently submitted commands.

NVM Express 1.3a

74

A candidate command is a submitted command which has been transferred into the controller that the
controller deems ready for processing. The controller selects command(s) for processing from the pool of
submitted commands for each Submission Queue. The commands that comprise a fused operation shall
be processed together and in order by the controller. The controller may select candidate commands for
processing in any order. The order in which commands are selected for processing does not imply the
order in which commands are completed.

Arbitration is the method used to determine the Submission Queue from which the controller starts
processing the next candidate command(s). Once a Submission Queue is selected using arbitration, the
Arbitration Burst setting determines the maximum number of commands that the controller may start
processing from that Submission Queue before arbitration shall again take place. A fused operation may
be considered as one or two commands by the controller.

All controllers shall support the round robin command arbitration mechanism. A controller may optionally
implement weighted round robin with urgent priority class and/or a vendor specific arbitration mechanism.
The Arbitration Mechanism Supported field in the Controller Capabilities register (CC.AMS) indicates
optional arbitration mechanisms supported by the controller.

In order to make efficient use of the non-volatile memory, it is often advantageous to execute multiple
commands from a Submission Queue in parallel. For Submission Queues that are using weighted round
robin with urgent priority class or round robin arbitration, host software may configure an Arbitration Burst
setting. The Arbitration Burst setting indicates the maximum number of commands that the controller may
launch at one time from a particular Submission Queue. It is recommended that host software configure
the Arbitration Burst setting as close to the recommended value by the controller as possible (specified in
the Recommended Arbitration Burst field of the Identify Controller data structure in Figure 109), taking into
consideration any latency requirements. Refer to section 5.21.1.1.

4.11.1 Round Robin Arbitration
If the round robin arbitration mechanism is selected, the controller shall implement round robin command
arbitration amongst all Submission Queues, including the Admin Submission Queue. In this case, all
Submission Queues are treated with equal priority. The controller may select multiple candidate commands
for processing from each Submission Queue per round based on the Arbitration Burst setting.

Figure 39: Round Robin Arbitration

4.11.2 Weighted Round Robin with Urgent Priority Class Arbitration
In this arbitration mechanism, there are three strict priority classes and three weighted round robin priority
levels. If Submission Queue A is of higher strict priority than Submission Queue B, then all candidate
commands in Submission Queue A shall start processing before candidate commands from Submission
Queue B start processing.

ASQ

SQ

SQ

SQ

RR

NVM Express 1.3a

75

The highest strict priority class is the Admin class that includes any command submitted to the Admin
Submission Queue. This class has the highest strict priority above commands submitted to any other
Submission Queue.

The next highest strict priority class is the Urgent class. Any I/O Submission Queue assigned to the Urgent
priority class is serviced next after commands submitted to the Admin Submission Queue, and before any
commands submitted to a weighted round robin priority level. Host software should use care in assigning
any Submission Queue to the Urgent priority class since there is the potential to starve I/O Submission
Queues in the weighted round robin priority levels as there is no fairness protocol between Urgent and non
Urgent I/O Submission Queues.

The lowest strict priority class is the Weighted Round Robin class. This class consists of the three weighted
round robin priority levels (High, Medium, and Low) that share the remaining bandwidth using weighted
round robin arbitration. Host software controls the weights for the High, Medium, and Low service classes
via Set Features. Round robin is used to arbitrate within multiple Submission Queues assigned to the same
weighted round robin level. The number of candidate commands that may start processing from each
Submission Queue per round is either the Arbitration Burst setting or the remaining weighted round robin
credits, whichever is smaller.

Figure 40: Weighted Round Robin with Urgent Priority Class Arbitration

In Figure 40, the Priority decision point selects the highest priority candidate command selected next to
start processing.

ASQ

SQ

SQ

SQ

RR

SQ

SQ

SQ

RR

SQ

SQ

SQ

RR

WRR

Priority

Weight(High)

Admin

High
Priority

Medium
Priority

Low
Priority

Weight(Medium)

Weight(Low)

Strict
Priority 2

SQ

SQ
RRUrgent

Strict
Priority 3

Strict
Priority 1

NVM Express 1.3a

76

4.11.3 Vendor Specific Arbitration
A vendor may choose to implement a vendor specific arbitration mechanism. The mechanism(s) are
outside the scope of this specification.

NVM Express 1.3a

77

5 Admin Command Set
The Admin Command Set defines the commands that may be submitted to the Admin Submission Queue.

The Submission Queue Entry (SQE) structure and the fields that are common to all Admin commands are
defined in section 4.2. The Completion Queue Entry (CQE) structure and the fields that are common to all
Admin commands are defined in section 4.6. The command specific fields in the SQE and CQE structures
(i.e., SQE Command Dwords 10-15 and CQE Dword 0) for the Admin Command Set are defined in this
section.

For all Admin commands, Dword 14 and 15 are I/O Command Set specific.

Admin commands should not be impacted by the state of I/O queues (e.g., a full I/O completion queue
should not delay or stall the Delete I/O Submission Queue command).

Figure 41: Opcodes for Admin Commands
Opcode by Field

Combined
Opcode2 O/M1

Namespace
Identifier

Used3
Command

 (07) (06:02) (01:00)
Generic

Command Function
Data

Transfer4
0b 000 00b 00b 00h M No Delete I/O Submission Queue

0b 000 00b 01b 01h M No Create I/O Submission Queue

0b 000 00b 10b 02h M Yes Get Log Page

0b 000 01b 00b 04h M No Delete I/O Completion Queue

0b 000 01b 01b 05h M No Create I/O Completion Queue

0b 000 01b 10b 06h M Yes Identify

0b 000 10b 00b 08h M No Abort

0b 000 10b 01b 09h M Yes Set Features

0b 000 10b 10b 0Ah M Yes Get Features

0b 000 11b 00b 0Ch M No Asynchronous Event Request

0b 000 11b 01b 0Dh O Yes Namespace Management
0b 001 00b 00b 10h O No Firmware Commit

0b 001 00b 01b 11h O No Firmware Image Download

0b 001 01b 00b 14h O Yes Device Self-test
0b 001 01b 01b 15h O Yes Namespace Attachment
0b 001 10b 00b 18h NOTE 5 No Keep Alive
0b 001 10b 01b 19h O Yes Directive Send
0b 001 10b 10b 1Ah O Yes Directive Receive
0b 001 11b 00b 1Ch O No Virtualization Management
0b 001 11b 01b 1Dh O No NVMe-MI Send
0b 001 11b 10b 1Eh O No NVMe-MI Receive
0b 111 11b 00b 7Ch O No Doorbell Buffer Config
0b 111 11b 11b 7Fh O Refer to the NVMe over Fabrics specification.

 I/O Command Set Specific
1b na NOTE 4 80h – BFh O I/O Command Set specific

NVM Express 1.3a

78

Opcode by Field
Combined
Opcode2 O/M1

Namespace
Identifier

Used3
Command

 (07) (06:02) (01:00)
Generic

Command Function
Data

Transfer4
 Vendor Specific

1b na NOTE 4 C0h – FFh O Vendor specific
NOTES:
1. O/M definition: O = Optional, M = Mandatory.
2. Opcodes not listed are reserved.
3. A subset of commands uses the Namespace Identifier field (CDW1.NSID). When not used, the field shall be

cleared to 0h.
4. Indicates the data transfer direction of the command. All options to the command shall transfer data as specified or

transfer no data. All commands, including vendor specific commands, shall follow this convention: 00b = no data
transfer; 01b = host to controller; 10b = controller to host; 11b = bidirectional.

5. For NVMe over PCIe implementations, the Keep Alive command is optional. For NVMe over Fabrics
implementations, the associated NVMe Transport binding defines whether the Keep Alive command is optional or
mandatory.

Figure 42 defines Admin commands that are specific to the NVM Command Set.

Figure 42: Opcodes for Admin Commands – NVM Command Set Specific
Opcode

(07)
Opcode
(06:02)

Opcode
(01:00)

Opcode2 O/M1
Namespace

Identifier
Used3

Command Generic
Command Function

Data
Transfer4

1b 000 00b 00b 80h O Yes Format NVM
1b 000 00b 01b 81h O NOTE 5 Security Send
1b 000 00b 10b 82h O NOTE 5 Security Receive
1b 000 01b 00b 84h O No Sanitize

NOTES:
1. O/M definition: O = Optional, M = Mandatory.
2. Opcodes not listed are reserved.
3. A subset of commands uses the Namespace Identifier field (CDW1.NSID). When not used, the field shall be

cleared to 0h.
4. Indicates the data transfer direction of the command. All options to the command shall transfer data as specified or

transfer no data. All commands, including vendor specific commands, shall follow this convention: 00b = no data
transfer; 01b = host to controller; 10b = controller to host; 11b = bidirectional.

5. The use of the Namespace Identifier is Security Protocol specific.

5.1 Abort command
The Abort command is used to abort a specific command previously submitted to the Admin Submission
Queue or an I/O Submission Queue. An Abort command is a best effort command; the command to abort
may have already completed, currently be in execution, or may be deeply queued.

To abort a large number of commands (e.g., a larger number of commands than the limit listed in the ACL
field), the host should follow the procedures described in section 7.3.3 to delete the I/O Submission Queue
and recreate the I/O Submission Queue.

The Abort command uses the Command Dword 10 field. All other command specific fields are reserved.

The Abort Command Limit field in Identify Controller indicates the controller limit on concurrent execution
of Abort commands. A host should not allow the number of outstanding Abort commands to exceed this
value. The controller may complete any excess Abort commands with Abort Command Limit Exceeded
status.

NVM Express 1.3a

79

Figure 43: Abort – Command Dword 10
Bit Description

31:16 Command Identifier (CID): This field specifies the command identifier of the command to be
aborted, that was specified in the CDW0.CID field within the command itself.

15:00 Submission Queue Identifier (SQID): This field specifies the identifier of the Submission Queue
that the command to be aborted is associated with.

5.1.1 Command Completion
Upon completion of the Abort command, the controller posts a completion queue entry to the Admin
Completion Queue indicating the status for the Abort command and indicating whether the command to
abort was aborted. Dword 0 of the completion queue entry indicates whether the command to abort was
aborted.

If the command to abort was successfully aborted, then a completion queue entry for the aborted command
shall be posted to the appropriate Admin or I/O Completion Queue with a status of Command Abort
Requested before the completion queue entry for the Abort command is posted to the Admin Completion
Queue, and bit 0 of Dword 0 shall be cleared to ‘0’ in the completion queue entry for the Abort command.
If the command to abort was not aborted for any reason, then bit 0 of Dword 0 shall be set to ‘1’ in the
completion queue entry for the Abort command.

Command specific status values associated with the Abort command are defined in Figure 44.

Figure 44: Abort – Command Specific Status Values
Value Description

3h Abort Command Limit Exceeded: The number of concurrently outstanding Abort commands has
exceeded the limit indicated in the Identify Controller data structure.

NVM Express 1.3a

80

5.2 Asynchronous Event Request command
Asynchronous events are used to notify host software of status, error, and health information as these
events occur. To enable asynchronous events to be reported by the controller, host software needs to
submit one or more Asynchronous Event Request commands to the controller. The controller specifies an
event to the host by completing an Asynchronous Event Request command. Host software should expect
that the controller may not execute the command immediately; the command should be completed when
there is an event to be reported.

The Asynchronous Event Request command is submitted by host software to enable the reporting of
asynchronous events from the controller. This command has no timeout. The controller posts a completion
queue entry for this command when there is an asynchronous event to report to the host. If Asynchronous
Event Request commands are outstanding when the controller is reset, the commands are aborted.

All command specific fields are reserved.

Host software may submit multiple Asynchronous Event Request commands to reduce event reporting
latency. The total number of simultaneously outstanding Asynchronous Event Request commands is
limited by the Asynchronous Event Request Limit specified in the Identify Controller data structure in Figure
109.

Asynchronous events are grouped into event types. The event type information is indicated in Dword 0 of
the completion queue entry for the Asynchronous Event Request command. When the controller posts a
completion queue entry for an outstanding Asynchronous Event Request command and thus reports an
asynchronous event, subsequent events of that event type are automatically masked by the controller until
the host clears that event. An event is cleared by reading the log page associated with that event using the
Get Log Page command (see section 5.14).

The following event types are defined:
• Error event: Indicates a general error that is not associated with a specific command. To clear this

event, host software reads the Error Information log (refer to section 5.14.1.1) using the Get Log
Page command with the Retain Asynchronous Event field cleared to ‘0’.

• SMART / Health Status event: Indicates a SMART or health status event. To clear this event, host
software reads the SMART / Health Information log (refer to section 5.14.1.2) using Get Log Page
with the Retain Asynchronous Event field cleared to ‘0’. The SMART / Health conditions that trigger
asynchronous events may be configured in the Asynchronous Event Configuration feature using
the Set Features command (see section 5.21).

• I/O Command Set events: Events that are defined by an I/O command set.
o NVM Command Set Events:

 Reservation Log Page Available event: Indicates that one or more Reservation
Notification log pages (refer to section 5.14.1.9.1) are available. To clear this
event, host software reads the Reservation Notification log page using the Get Log
Page command with the Retain Asynchronous Event field cleared to ‘0’.

 Sanitize Operation Completed event: Indicates that a sanitize operation has
completed and status is available in the Sanitize Status log page (refer to section
5.14.1.9.2). To clear this event, host software reads the Sanitize Status log page
using the Get Log Page command with the Retain Asynchronous Event field
cleared to ‘0’.

NVM Express 1.3a

81

• Vendor Specific event: Indicates a vendor specific event. To clear this event, host software reads
the indicated vendor specific log page using Get Log Page command with the Retain Asynchronous
Event field cleared to ‘0’.

Asynchronous events are reported due to a new entry being added to a log page (e.g., Error Information
log) or a status update (e.g., status in the SMART / Health log). A status change may be permanent (e.g.,
the media has become read only) or transient (e.g., the temperature exceeded a threshold for a period of
time). Host software should modify the event threshold or mask the event for transient and permanent
status changes before issuing another Asynchronous Event Request command to avoid repeated reporting
of asynchronous events.

If the controller needs to report an event and there are no outstanding Asynchronous Event Request
commands, the controller should send a single notification of that Asynchronous Event Type when an
Asynchronous Event Request command is received. If a Get Log Page command clears the event prior to
receiving the Asynchronous Event Request command or if a power off condition occurs, then a notification
is not sent.

5.2.1 Command Completion
A completion queue entry is posted to the Admin Completion Queue if there is an asynchronous event to
report to the host. Command specific status values associated with Asynchronous Event Request are
defined in Figure 45.

Figure 45: Status Code – Command Specific Status Values
Value Description

5h Asynchronous Event Request Limit Exceeded: The number of concurrently outstanding
Asynchronous Event Request commands has been exceeded.

Dword 0 of the completion queue entry contains information about the asynchronous event. The definition
of Dword 0 of the completion queue entry is in Figure 46.

Figure 46: Asynchronous Event Request – Completion Queue Entry Dword 0
Bit Description

31:24 Reserved

23:16 Log Page Identifier: Indicates the log page associated with the asynchronous event. This log
page needs to be read by the host to clear the event.

15:08 Asynchronous Event Information: Refer to Figure 47, Figure 48, Figure 49, and Figure 50 for
detailed information regarding the asynchronous event.

07:03 Reserved

02:00

Asynchronous Event Type: Indicates the type of the asynchronous event. More specific
information on the event is provided in the Asynchronous Event Information field.

Value Definition
0h Error status
1h SMART / Health status
2h Notice

3h – 5h Reserved
6h I/O Command Set specific status
7h Vendor specific

The information in either Figure 47, Figure 48, or Figure 50 is returned in the Asynchronous Event
Information field, depending on the Asynchronous Event Type.

NVM Express 1.3a

82

Figure 47: Asynchronous Event Information – Error Status
Value Description

0h Write to Invalid Doorbell Register: Host software wrote the doorbell of a queue that was not
created.

1h Invalid Doorbell Write Value: Host software attempted to write an invalid doorbell value. Some
possible causes of this error are:

• the value written was out of range of the corresponding queue’s base address and size,
• the value written is the same as the previously written doorbell value,
• the number of commands that would be added as part of a doorbell write would exceed

the number of available entries,
• host software attempts to add a command to a full Submission Queue, and
• host software attempts to remove a completion queue entry from an empty Completion

Queue.
2h Diagnostic Failure: A diagnostic failure was detected. This may include a self test operation.
3h Persistent Internal Error: A failure occurred that is persistent and the controller is unable to isolate

to a specific set of commands. If this error is indicated, then the CSTS.CFS bit may be set to ‘1’
and the host should perform a reset as described in section 7.3.

4h Transient Internal Error: A transient error occurred that is specific to a particular set of commands;
controller operation may continue without a reset.

5h Firmware Image Load Error: The firmware image could not be loaded. The controller reverted to
the previously active firmware image or a baseline read-only firmware image.

6h - FFh Reserved

Figure 48: Asynchronous Event Information – SMART / Health Status
Value Description

0h NVM subsystem Reliability: NVM subsystem reliability has been compromised. This may be due
to significant media errors, an internal error, the media being placed in read only mode, or a volatile
memory backup device failing.

1h Temperature Threshold: A temperature is above an over temperature threshold or below an under
temperature threshold (refer to section 5.21.1.4).

2h Spare Below Threshold: Available spare capacity has fallen below the threshold.
3h - FFh Reserved

NVM Express 1.3a

83

Figure 49: Asynchronous Event Information - Notice
Value Description

0h

Namespace Attribute Changed: The Identify Namespace data structure for one or more
namespaces, as well as the Namespace List returned when the Identify command is issued with
the CNS field set to 02h, have changed. Host software may use this event as an indication that
it should read the Identify Namespace data structures for each namespace to determine what
has changed.

Alternatively, host software may request the Changed Namespace List (Log Identifier 04h) to
determine which namespaces in this controller have changed Identify Namespace information
since the last time the log page was read.

A controller shall not send this event when Namespace Utilization has changed, as this is a
frequent event that does not require action by the host. A controller shall only send this event for
changes to the Format Progress Indicator field when bits 6:0 of that field transition from a non-
zero value to zero, or from a zero value to a non-zero value.

1h

Firmware Activation Starting: The controller is starting a firmware activation process during
which command processing is paused. Host software may use CSTS.PP to determine when
command processing has resumed. To clear this event, host software reads the Firmware Slot
Information log page.

2h

Telemetry Log Changed: The controller has saved the controller internal state in the Telemetry
Controller-Initiated log page and set the Telemetry Controller-Initiated Data Available field to 1h
in that log page. To clear this event, the host issues a Get Log Page with Retain Asynchronous
Event cleared to ‘0’ for the Telemetry Controller-Initiated Log.

3h – FFh Reserved

Figure 50: Asynchronous Event Information – NVM Command Set Specific Status
Value Description

0h Reservation Log Page Available: Indicates that one or more Reservation Notification log pages
(refer to section 5.14.1.9.1) have been added to the Reservation Notification log.

1h Sanitize Operation Completed: Indicates that a sanitize operation has completed and status is
available in the Sanitize Status log page (refer to section 5.14.1.9.2).

2h - FFh Reserved

5.3 Create I/O Completion Queue command
The Create I/O Completion Queue command is used to create all I/O Completion Queues with the exception
of the Admin Completion Queue. The Admin Completion Queue is created by specifying its base address
in the ACQ register. If a PRP List is provided to describe the CQ, then the PRP List shall be maintained by
host software at the same location in host physical memory and the values in the PRP List shall not be
modified until the corresponding Delete I/O Completion Queue command for this CQ is completed
successfully or the controller is reset. If the PRP List values are modified, the behavior is undefined.

The Create I/O Completion Queue command uses the PRP Entry 1, Command Dword 10, and Command
Dword 11 fields. All other command specific fields are reserved.

NVM Express 1.3a

84

Figure 51: Create I/O Completion Queue – PRP Entry 1
Bit Description

63:00

PRP Entry 1 (PRP1): If CDW11.PC is set to ‘1’, then this field specifies a 64-bit base memory
address pointer of the Completion Queue that is physically contiguous and is memory page
aligned (based on the value in CC.MPS). If CDW11.PC is cleared to ‘0’, then this field specifies a
PRP List pointer that describes the list of pages that constitute the Completion Queue and is
memory page aligned (based on the value in CC.MPS). In both cases the PRP Entry shall have
an offset of 0h. In a non-contiguous Completion Queue, each PRP Entry in the PRP List shall
have an offset of 0h. If there is a PRP Entry with a non-zero offset, then the controller should
return an error of PRP Offset Invalid.

Figure 52: Create I/O Completion Queue – Command Dword 10
Bit Description

31:16
Queue Size (QSIZE): This field indicates the size of the Completion Queue to be created. If the
size is 0h or larger than the controller supports, the controller should return an error of Invalid
Queue Size. Refer to section 4.1.3. This is a 0’s based value.

15:00

Queue Identifier (QID): This field indicates the identifier to assign to the Completion Queue to be
created. This identifier corresponds to the Completion Queue Head Doorbell used for this
command (i.e., the value y in section 3.1.17). This value shall not exceed the value reported in
the Number of Queues feature (see section 5.21.1.7) for I/O Completion Queues. If the value
specified is 0h, exceeds the Number of Queues reported, or corresponds to an identifier already
in use, the controller should return an error of Invalid Queue Identifier.

Figure 53: Create I/O Completion Queue – Command Dword 11
Bit Description

31:16

Interrupt Vector (IV): This field indicates interrupt vector to use for this Completion Queue. This
corresponds to the MSI-X or multiple message MSI vector to use. If using single message MSI or
pin-based interrupts, then this field shall be cleared to 0h. In MSI-X, a maximum of 2K vectors are
used. This value shall not be set to a value greater than the number of messages the controller
supports (refer to MSICAP.MC.MME or MSIXCAP.MXC.TS). If the value is greater than the
number of messages the controller supports, the controller should return an error of Invalid
Interrupt Vector.

15:02 Reserved

01 Interrupts Enabled (IEN): If set to ‘1’, then interrupts are enabled for this Completion Queue. If
cleared to ‘0’, then interrupts are disabled for this Completion Queue.

00

Physically Contiguous (PC): If set to ‘1’, then the Completion Queue is physically contiguous
and PRP Entry 1 (PRP1) is the address of a contiguous physical buffer. If cleared to ‘0’, then the
Completion Queue is not physically contiguous and PRP Entry 1 (PRP1) is a PRP List pointer.

If the queue is located in the Controller Memory Buffer and PC is cleared to ‘0’, the controller shall
fail the command with Invalid Use of Controller Memory Buffer status.

5.3.1 Command Completion
If the command is completed, then the controller shall post a completion queue entry to the Admin
Completion Queue indicating the status for the command.

Create I/O Completion Queue command specific status values are defined in Figure 54.

NVM Express 1.3a

85

Figure 54: Create I/O Completion Queue – Command Specific Status Values
Value Description

1h Invalid Queue Identifier: The creation of the I/O Completion Queue failed due to an invalid queue
identifier specified as part of the command. An invalid queue identifier is one that is currently in use
or one that is outside the range supported by the controller.

2h Invalid Queue Size: The host attempted to create an I/O Completion Queue with an invalid number
of entries (e.g., a value of zero or a value which exceeds the maximum supported by the controller,
specified in CAP.MQES).

8h Invalid Interrupt Vector: The creation of the I/O Completion Queue failed due to an invalid interrupt
vector specified as part of the command.

5.4 Create I/O Submission Queue command
The Create I/O Submission Queue command is used to create I/O Submission Queues. The Admin
Submission Queue is created by specifying its base address in the ASQ register. If a PRP List is provided
to describe the SQ, then the PRP List shall be maintained by host software at the same location in host
physical memory and the values in the PRP List shall not be modified until the corresponding Delete I/O
Submission Queue command for this SQ is completed or the controller is reset. If the PRP List values are
modified, the behavior is undefined.

The Create I/O Submission Queue command uses the PRP Entry 1, Command Dword 10, and Command
Dword 11 fields. All other command specific fields are reserved.

Figure 55: Create I/O Submission Queue – PRP Entry 1
Bit Description

63:00

PRP Entry 1 (PRP1): If CDW11.PC is set to ‘1’, then this field specifies a 64-bit base memory
address pointer of the Submission Queue that is physically contiguous and is memory page
aligned (based on the value in CC.MPS). If CDW11.PC is cleared to ‘0’, then this field specifies a
PRP List pointer that describes the list of pages that constitute the Submission Queue and is
memory page aligned (based on the value in CC.MPS). In both cases, the PRP Entry shall have
an offset of 0h. In a non-contiguous Submission Queue, each PRP Entry in the PRP List shall
have an offset of 0h. If there is a PRP Entry with a non-zero offset, then the controller should
return an error of PRP Offset Invalid.

Figure 56: Create I/O Submission Queue – Command Dword 10
Bit Description

31:16
Queue Size (QSIZE): This field indicates the size of the Submission Queue to be created. If the
size is 0h or larger than the controller supports, the controller should return an error of Invalid
Queue Size. Refer to section 4.1.3. This is a 0’s based value.

15:00

Queue Identifier (QID): This field indicates the identifier to assign to the Submission Queue to be
created. This identifier corresponds to the Submission Queue Tail Doorbell used for this command
(i.e., the value y in section 3.1.16). This value shall not exceed the value reported in the Number
of Queues feature (see section 5.21.1.7) for I/O Submission Queues. If the value specified is 0h,
exceeds the Number of Queues reported, or corresponds to an identifier already in use, the
controller should return an error of Invalid Queue Identifier.

NVM Express 1.3a

86

Figure 57: Create I/O Submission Queue – Command Dword 11
Bit Description

31:16

Completion Queue Identifier (CQID): This field indicates the identifier of the Completion Queue
to utilize for any command completions entries associated with this Submission Queue. The value
of 0h (Admin Completion Queue) shall not be specified. If the value specified is 0h or does not
correspond to a valid I/O Completion Queue, the controller should return an error of Invalid Queue
Identifier.

15:03 Reserved

02:01

Queue Priority (QPRIO): This field indicates the priority class to use for commands within this
Submission Queue. This field is only used when the weighted round robin with urgent priority
class is the arbitration mechanism selected, the field is ignored if weighted round robin with urgent
priority class is not used. Refer to section 4.11.

Value Definition
00b Urgent
01b High
10b Medium
11b Low

00

Physically Contiguous (PC): If set to ‘1’, then the Submission Queue is physically contiguous
and PRP Entry 1 (PRP1) is the address of a contiguous physical buffer. If cleared to ‘0’, then the
Submission Queue is not physically contiguous and PRP Entry 1 (PRP1) is a PRP List pointer. If
this bit is cleared to ‘0’ and CAP.CQR is set to ‘1’, the controller should return an error of Invalid
Field in Command.

If the queue is located in the Controller Memory Buffer and PC is cleared to ‘0’, the controller shall
fail the command with Invalid Use of Controller Memory Buffer status.

5.4.1 Command Completion
When the command is completed, the controller posts a completion queue entry to the Admin Completion
Queue indicating the status for the command.

Create I/O Submission Queue command specific status values are defined in Figure 58.

Figure 58: Create I/O Submission Queue – Command Specific Status Values
Value Description

0h Completion Queue Invalid: The Completion Queue identifier specified in the command does not
exist.

1h Invalid Queue Identifier: The creation of the I/O Submission Queue failed due an invalid queue
identifier specified as part of the command. An invalid queue identifier is one that is currently in use
or one that is outside the range supported by the controller.

2h Invalid Queue Size: The host attempted to create an I/O Completion Queue with an invalid number
of entries (e.g., a value of zero or a value which exceeds the maximum supported by the controller,
specified in CAP.MQES).

NVM Express 1.3a

87

5.5 Delete I/O Completion Queue command
The Delete I/O Completion Queue command is used to delete an I/O Completion Queue. The Delete I/O
Completion Queue command uses the Command Dword 10 field. All other command specific fields are
reserved. After this command has completed, the PRP List that describes the Completion Queue may be
deallocated by host software.

Host software shall ensure that any associated I/O Submission Queue is deleted prior to deleting a
Completion Queue. If there are any associated I/O Submission Queues present, then the Delete I/O
Completion Queue command shall fail with a status value of Invalid Queue Deletion.

Note: It is not possible to delete the Admin Completion Queue.

Figure 59: Delete I/O Completion Queue – Command Dword 10
Bit Description

31:16 Reserved

15:00 Queue Identifier (QID): This field indicates the identifier of the Completion Queue to be deleted.
The value of 0h (Admin Completion Queue) shall not be specified.

5.5.1 Command Completion
A completion queue entry is posted to the Admin Completion Queue when the indicated I/O Completion
Queue has been deleted. Delete I/O Completion Queue command specific status values are defined in
Figure 60.

Figure 60: Delete I/O Completion Queue – Command Specific Status Values
Value Description

1h Invalid Queue Identifier: The Queue Identifier specified in the command is invalid. This error is
also indicated if the Admin Completion Queue identifier is specified.

0Ch
Invalid Queue Deletion: This error indicates that it is invalid to delete the I/O Completion Queue
specified. The typical reason for this error condition is that there is an associated I/O Submission
Queue that has not been deleted.

5.6 Delete I/O Submission Queue command
The Delete I/O Submission Queue command is used to delete an I/O Submission Queue. The Delete I/O
Submission Queue command uses the Command Dword 10 field. All other command specific fields are
reserved. After this command has completed, the PRP List that describes the Submission Queue may be
deallocated by host software.

Upon successful completion of the Delete I/O Submission Queue command, all I/O commands previously
submitted to the indicated Submission Queue shall be either explicitly completed or implicitly completed.
Prior to returning a completion queue entry for the Delete I/O Submission Queue command, other
commands previously submitted to the I/O Submission Queue to be deleted may be completed with
appropriate status (e.g., Successful Completion, Command Aborted due to SQ Deletion). After successful
completion of the Delete I/O Submission Queue command, the controller shall not post completion status
for any I/O commands that were submitted to the deleted I/O Submission Queue. The successful
completion of the Delete I/O Submission Queue command indicates an implicit completion status of
Command Aborted due to SQ Deletion for any previously submitted I/O commands that did not have a
completion queue entry posted by the controller.

Note: It is not possible to delete the Admin Submission Queue.

NVM Express 1.3a

88

Figure 61: Delete I/O Submission Queue – Command Dword 10
Bit Description

31:16 Reserved

15:00 Queue Identifier (QID): This field indicates the identifier of the Submission Queue to be deleted.
The value of 0h (Admin Submission Queue) shall not be specified.

5.6.1 Command Completion
After all commands submitted to the indicated I/O Submission Queue are either completed or aborted, a
completion queue entry is posted to the Admin Completion Queue when the queue has been deleted.
Delete I/O Submission Queue command specific status values are defined in Figure 62.

Figure 62: Delete I/O Submission Queue – Command Specific Status Values
Value Description

1h Invalid Queue Identifier: The Queue Identifier specified in the command is invalid. This error is
also indicated if the Admin Submission Queue identifier is specified.

5.7 Doorbell Buffer Config command
The Doorbell Buffer Config command is used to provide two separate memory buffers that mirror the
controller's doorbell registers defined in section 3. This command is intended for emulated controllers and
is not typically supported by a physical NVMe controller. The two buffers are known as “Shadow Doorbell”
and “EventIdx”, respectively. Refer to section 7.13 for an example of how these buffers may be used.

The Doorbell Buffer Config command uses the PRP Entry 1 and PRP Entry 2 fields. All other command
specific fields are reserved. The command is not namespace specific, does not support metadata, and does
not support SGLs. The settings are not retained across a Controller Level Reset.

Each buffer supplied with the Doorbell Buffer Config command shall be a single physical memory page as
defined by the CC.MPS field. The controller shall ensure that the following condition is satisfied:

 (4 << CAP.DSTRD) * (max(NSQA,NCQA)+1) <= (2^(12+CC.MPS))

Figure 63: Doorbell Buffer Config – Shadow Doorbell and EventIdx
Start

(Offset in Buffer)
End

(Offset in Buffer) Description

00h 03h Submission Queue 0 Tail Doorbell or EventIdx (Admin)
00h + (1 *

(4 << CAP.DSTRD))
03h + (1 *

(4 << CAP.DSTRD)) Completion Queue 0 Head Doorbell or EventIdx (Admin)

00h + (2 *
(4 << CAP.DSTRD))

03h + (2 *
(4 << CAP.DSTRD)) Submission Queue 1 Tail Doorbell or EventIdx

00h + (3 *
(4 << CAP.DSTRD))

03h + (3 *
(4 << CAP.DSTRD)) Completion Queue 1 Head Doorbell or EventIdx

… … ...
00h + (2y *

(4 << CAP.DSTRD))
03h + (2y *

(4 << CAP.DSTRD)) Submission Queue y Tail Doorbell or EventIdx

00h + ((2y + 1) *
(4 << CAP.DSTRD))

03h + ((2y + 1) *
(4 << CAP.DSTRD)) Completion Queue y Head Doorbell or EventIdx

NVM Express 1.3a

89

Start
(Offset in Buffer)

End
(Offset in Buffer) Description

NOTES:
1. The offsets in Start and End are referenced to the value provided in PRP1 for the doorbell buffer and to the

value provided in PRP2 for the EventIdx buffer.
2. The value of y is equal to max(NSQA, NCQA).

Figure 64: Doorbell Buffer Config – PRP Entry 1
Bit Description

63:00
PRP Entry 1 (PRP1): This field specifies a 64-bit base memory address pointer to the Shadow
Doorbell buffer with the definition specified in Figure 63. The Shadow Doorbell buffer is updated
by the host. This buffer shall be memory page aligned.

Figure 65: Doorbell Buffer Config – PRP Entry 2
Bit Description

63:00
PRP Entry 2 (PRP2): This field specifies a 64-bit base memory address pointer to the EventIdx
buffer with the definition specified in Figure 63. The EventIdx buffer is updated by the para-
virtualized controller. This buffer shall be memory page aligned.

5.7.1 Command Completion
When the command is completed, the controller posts a completion queue entry to the Admin Completion
Queue indicating the status for the command. If the Shadow Doorbell buffer or EventIdx buffer memory
addresses are invalid, then a status code of Invalid Field in Command shall be returned.

5.8 Device Self-test command
The Device Self-test command is used to start a device self-test operation or abort a device self-test
operation (refer to section 8.11). The Device Self-test command is used specifically to:

a) start a short device self-test operation,
b) start an extended device self-test operation,
c) start a vendor specific device self-test operation, or
d) abort a device self-test operation already in process.

The device self-test operation is performed by the controller that the Device Self-test command was
submitted to. The Namespace Identifier field controls which namespaces are included in the device self-
test operation as specified in Figure 66.

Figure 66: Device Self-test Namespace Test Action
Value Description

00000000h Specifies that the device self-test operation shall not include any namespaces, and only the
controller is included as part of the device self-test operation.

00000001h –
FFFFFFFEh

Specifies that the device self-test operation shall include the namespace specified by this
field. If this field specifies an invalid namespace ID, then the controller shall abort the
command with status of Invalid Namespace or Format. If this field specifies an inactive
namespace ID, then the controller shall abort the command with status of Invalid Field in
Command.

FFFFFFFFh Specifies that the device self-test operation shall include all active namespaces accessible
through the controller at the time the device self-test operation is started.

The Device Self-test command uses the Command Dword 10 field. All other command specific fields are
reserved.

NVM Express 1.3a

90

Figure 67: Device Self-test – Command Dword 10
Bit Description

31:04 Reserved

03:00

Self-test Code (STC): This field specifies the action taken by the Device Self-test command.

Value Definition
0h Reserved
1h Start a short device self-test operation
2h Start an extended device self-test operation

3h-Dh Reserved
Eh Vendor specific
Fh Abort device self-test operation

The processing of a Device Self-test command and interactions with a device self-test operation already in
progress is defined in Figure 68.

NVM Express 1.3a

91

Figure 68: Device Self-test – Command Processing
Self-test in
Progress1

Self-test Code value in new
Drive Self-test command Controller Action

Yes

1h – Short device self-test Abort Device Self-test command with status Device Self-
test in Progress. 2h – Extended device self-test

Eh – Vendor specific Vendor specific

Fh – Abort device self-test

If bit 0 is in the Device Self-test Options (DSTO) of the
Identify Controller data structure is:

a) cleared to ‘0’, or
b) set to ‘1’ and the new Device Self-test command

was received on the same controller that that the
self-test operation is already in progress on,

then, the controller takes the following actions in order:
1. Abort device self-test operation in progress.
2. Create log entry in the Newest Self-test Result

Data Structure in the Device Self-test Log.
3. Set the Current Device Self-test Status field in

the Device Self-test Log to 0h.
4. Completes command successfully.

No

1h – Short device self-test

The controller takes the following actions in order:
1. Validate the command parameters.
2. Set the Current Device Self-test Status field in

the Device Self-test Log to 1h.
3. Start a device self-test operation.
4. Completes command successfully.

2h – Extended device self-test

The controller takes the following actions in order:
1. Validate the command parameters.
2. Set the Current Device Self-test Status field in

the Device Self-test Log to 2h.
3. Start a device self-test operation.
4. Completes command successfully.

Eh – Vendor specific Vendor specific

Fh – Abort device self-test Completes command successfully. The Device Self-test
Log is not modified.

NOTES:
1. If bit 0 is cleared to ‘0’ in the Device Self-test Options (DSTO) of the Identify Controller data structure, then the

Self-test in Progress column represents that a device self-test operation is in progress on the controller that
the new Device Self-test command was received on. If bit 0 is set to ‘1’ in the Device Self-test Options
(DSTO) of the Identify Controller data structure, then the Self-test in Progress column represents that a device
self-test operation is in progress on the NVM subsystem.

5.8.1 Command Completion
A completion queue entry is posted to the Admin Completion Queue after the appropriate actions are taken
as specified in Figure 68. Device Self-test command specific status values are defined in Figure 69.

Figure 69: Device Self-test – Command Specific Status Values
Value Description
1Dh Device Self-test in Progress: The controller or NVM subsystem already has a device self-test

operation in process.

NVM Express 1.3a

92

5.9 Directive Receive command
The Directive Receive command returns a data buffer that is dependent on the Directive Type. Refer to
section 9.

The Directive Receive command uses the Data Pointer, Command Dword 10, and Command Dword 11
fields. Command Dword 12 and Dword 13 may be used based on the Directive Type field and the Directive
Operation field. All other command specific fields are reserved.

If the Number of Dwords (NUMD) field corresponds to a length that is less than the size of the data structure
to be returned, then only that specified portion of the data structure is transferred. If the NUMD field
corresponds to a length that is greater than the size of the associated data structure, then the entire contents
of the data structure are transferred and no additional data is transferred.

Figure 70: Directive Receive – Data Pointer
Bit Description

127:00 Data Pointer (DPTR): This field specifies the start of the data buffer. Refer to Figure 11 for the
definition of this field.

Figure 71: Directive Receive – Command Dword 10

Bit Description

31:00 Number of Dwords (NUMD): This field specifies the number of Dwords to transfer. This is a 0’s
based value.

Figure 72: Directive Receive – Command Dword 11
Bit Description

31:16 Directive Specific (DSPEC): The interpretation of this field is Directive Type dependent. Refer to
section 9.

15:08 Directive Type (DTYPE): This field specifies the Directive Type. Refer to Figure 288 for the list of
Directive Types.

07:00 Directive Operation (DOPER): This field specifies the Directive Operation to perform. The
interpretation of this field is Directive Type dependent. Refer to section 9.

5.9.1 Command Completion
When the command is completed, the controller posts a completion queue entry to the Admin Completion
Queue indicating the status for the command. Command specific status values that may be returned are
dependent on the Directive Type, refer to section 9.

NVM Express 1.3a

93

5.10 Directive Send command
The Directive Send command transfers a data buffer that is dependent on the Directive Type to the
controller. Refer to section 9.

The Directive Send command uses the Data Pointer, Command Dword 10, and Command Dword 11 fields.
Command Dword 12 and Command Dword 13 may be used based on the Directive Type field and the
Directive Operation field. All other command specific fields are reserved.

Figure 73: Directive Send – Data Pointer
Bit Description

127:00 Data Pointer (DPTR): This field specifies the start of the data buffer. Refer to Figure 11 for the
definition of this field.

Figure 74: Directive Send – Command Dword 10
Bit Description

31:00 Number of Dwords (NUMD): This field specifies the number of Dwords to transfer. This is a 0’s
based value.

Figure 75: Directive Send – Command Dword 11

Bit Description

31:16 Directive Specific (DSPEC): The interpretation of this field is Directive Type dependent. Refer to
section 9.

15:08 Directive Type (DTYPE): This field specifies the Directive Type. Refer to Figure 288 for the list of
Directive Types.

07:00 Directive Operation (DOPER): This field specifies the Directive Operation to perform. The
interpretation of this field is Directive Type dependent. Refer to section 9.

5.10.1 Command Completion
When the command is completed, the controller posts a completion queue entry to the Admin Completion
Queue indicating the status for the command. Command specific status values that may be returned are
dependent on the Directive Type, refer to section 9.

5.11 Firmware Commit command
NOTE: This command was known in NVM Express revision 1.0 and 1.1 as “Firmware Activate.”

The Firmware Commit command is used to modify the firmware image or Boot Partitions.

When modifying a firmware image, the Firmware Commit command verifies that a valid firmware image
has been downloaded and commits that revision to a specific firmware slot. The host may select the
firmware image to activate on the next Controller Level Reset as part of this command. The currently
executing firmware revision may be determined from the Firmware Revision field of the Identify Controller
data structure in Figure 109 or as indicated in the Firmware Slot Information log page. All controllers in the
NVM subsystem share firmware image slots and the same firmware is applied to all controllers.

When modifying Boot Partitions, the host may select the Boot Partition to mark as active or replace. A Boot
Partition may only be written when it is unlocked (refer to 8.13).

The Firmware Commit command uses the Command Dword 10 field. All other command specific fields are
reserved.

NVM Express 1.3a

94

Figure 76: Firmware Commit – Command Dword 10
Bit Description

31
Boot Partition ID (BPID): Specifies the Boot Partition that shall be used for the Commit Action, if
applicable.

30:06 Reserved

05:03

Commit Action (CA): This field specifies the action that is taken on the image downloaded with
the Firmware Image Download command or on a previously downloaded and placed image. The
actions are indicated in the following table.

Value Definition

000b Downloaded image replaces the existing image, if any, in the specified
Firmware Slot. The newly placed image is not activated.

001b Downloaded image replaces the existing image, if any, in the specified
Firmware Slot. The newly placed image is activated at the next reset.

010b The existing image in the specified Firmware Slot is activated at the next
reset.

011b

Downloaded image replaces the existing image, if any, in the specified
Firmware Slot and is then activated immediately. If there is not a newly
downloaded image, then the existing image in the specified firmware
slot is activated immediately.

100-101b Reserved

110b Downloaded image replaces the Boot Partition specified by the Boot
Partition ID field.

111b Mark the Boot Partition specified in the BPID field as active and update
BPINFO.ABPID.

02:00
Firmware Slot (FS): Specifies the firmware slot that shall be used for the Commit Action, if
applicable. If the value specified is 0h, then the controller shall choose the firmware slot (slot 1 –
7) to use for the operation.

5.11.1 Command Completion
When the command is completed, the controller posts a completion queue entry to the Admin Completion
Queue indicating the status for the command.

Requests that specify activation of a new firmware image at the next reset and return with status code value
of 00h, any Controller Level Reset defined in section 7.3.2 activates the specified firmware.

Firmware Commit command specific status values are defined in Figure 77.

NVM Express 1.3a

95

Figure 77: Firmware Commit – Command Specific Status Values
Value Description
06h Invalid Firmware Slot: The firmware slot indicated is invalid or read only. This error is indicated

if the firmware slot exceeds the number supported.
07h Invalid Firmware Image: The firmware image specified for activation is invalid and not loaded by

the controller.
0Bh Firmware Activation Requires Conventional Reset: The firmware commit was successful,

however, activation of the firmware image requires a conventional reset. If an FLR or controller
reset occurs prior to a conventional reset, the controller shall continue operation with the currently
executing firmware image.

10h
Firmware Activation Requires NVM Subsystem Reset: The firmware commit was successful,
however, activation of the firmware image requires an NVM Subsystem Reset. If any other type of
reset occurs prior to an NVM Subsystem Reset, the controller shall continue operation with the
currently executing firmware image.

11h
Firmware Activation Requires Reset: The firmware commit was successful; however, the image
specified does not support being activated without a reset. The image shall be activated at the next
reset.

12h
Firmware Activation Requires Maximum Time Violation: The image specified if activated
immediately would exceed the Maximum Time for Firmware Activation (MTFA) value reported in
Identify Controller. To activate the firmware, the Firmware Commit command needs to be re-issued
and the image activated using a reset.

13h
Firmware Activation Prohibited: The image specified is being prohibited from activation by the
controller for vendor specific reasons (e.g., controller does not support down revision firmware).

14h Overlapping Range: This error is indicated if the firmware image has overlapping ranges.

1Eh Boot Partition Write Prohibited: This error is indicated if a command attempts to modify a Boot
Partition while it is locked (refer to section 8.13.3).

5.12 Firmware Image Download command
The Firmware Image Download command is used to download all or a portion of an image for a future
update to the controller. The Firmware Image Download command may be submitted while other
commands on the Admin Submission Queue or I/O Submission Queues are outstanding. The Firmware
Image Download command downloads a new image (in whole or in part) to the controller.

The image may be constructed of multiple pieces that are individually downloaded with separate Firmware
Image Download commands. Each Firmware Image Download command includes a Dword Offset and
Number of Dwords that specify a Dword range. The host software should ensure that image pieces do not
have Dword ranges that overlap. Firmware portions may be submitted out of order to the controller. Host
software shall submit image portions in order when updating a Boot Partition. If ranges overlap, the
controller may return an error of Overlapping Range.

The new firmware image is not activated as part of the Firmware Image Download command. Refer to
section 8.1 for details on the firmware update process. The firmware update process does not modify the
contents of Boot Partitions. Refer to 8.13.2 for details on the Boot Partition update process.

Host software should not update Boot Partitions and firmware images simultaneously. After downloading
an image, host software issues a Firmware Commit command before downloading another image.
Processing of the first Firmware Image Download command after completion of a Firmware Commit
command shall cause the controller to discard all remaining portion(s), if any, of downloaded images. If a
reset occurs between a firmware download and completion of the Firmware Commit command, then the
controller shall discard all portion(s), if any, of downloaded images.

NVM Express 1.3a

96

The Firmware Image Download command uses the Data Pointer, Command Dword 10, and Command
Dword 11 fields. All other command specific fields are reserved.

Figure 78: Firmware Image Download – Data Pointer
Bit Description

127:00 Data Pointer (DPTR): This field specifies the location where data should be transferred from.
Refer to Figure 11 for the definition of this field.

Figure 79: Firmware Image Download – Command Dword 10
Bit Description

31:00 Number of Dwords (NUMD): This field specifies the number of Dwords to transfer for this portion
of the firmware. This is a 0’s based value.

Figure 80: Firmware Image Download – Command Dword 11
Bit Description

31:00

Offset (OFST): This field specifies the number of Dwords offset from the start of the firmware
image being downloaded to the controller. The offset is used to construct the complete firmware
image when the firmware is downloaded in multiple pieces. The piece corresponding to the start
of the firmware image shall have an Offset of 0h.

5.12.1 Command Completion
A completion queue entry is posted to the Admin Completion Queue if this portion of the firmware image
has been received by the controller. Firmware Image Download command specific status values are
defined in Figure 81.

Figure 81: Firmware Image Download – Command Specific Status Values
Value Description

14h

Overlapping Range: This error is indicated if the firmware image has overlapping
ranges. This error is indicated if the granularity or alignment of the firmware image
downloaded does not conform to the Firmware Update Granularity field indicated
in the Identify Controller data structure.

5.13 Get Features command
The Get Features command retrieves the attributes of the Feature specified.

The Get Features command uses the Data Pointer, Command Dword 10, and Command Dword 11 fields.
All other command specific fields are reserved.

Figure 82: Get Features – Data Pointer
Bit Description

127:00
Data Pointer (DPTR): This field specifies the start of the data buffer. Refer to Figure 11 for the
definition of this field. If no data structure is used as part of this specified feature, then this field is
ignored.

NVM Express 1.3a

97

Figure 83: Get Features – Command Dword 10
Bit Description

31:11 Reserved

10:08

Select (SEL): This field specifies which value of the attributes to return in the provided data:

Select Description
000b Current
001b Default
010b Saved
011b Supported capabilities

100b – 111b Reserved

Refer to section 5.13.1 for details on the value returned in each case.

The controller indicates in bit 4 of the Optional NVM Command Support field of the Identify
Controller data structure in Figure 109 whether this field is supported.

If a Get Features command is received with the Select field set to 010b (i.e., saved) and the
controller does not support the Feature Identifier being saved or does not currently have any saved
values, then the controller shall treat the Select field as though it was set to 001b (i.e., default.)

07:00 Feature Identifier (FID): This field specifies the identifier of the Feature for which to provide data.

Figure 84 describes the Feature Identifiers whose attributes may be retrieved using Get Features. The
definition of the attributes returned and associated format is specified in the section indicated.

Figure 84: Get Features – Feature Identifiers

Description Section Defining Format
of Attributes Returned

Arbitration Section 5.21.1.1
Power Management Section 5.21.1.2
LBA Range Type Section 5.21.1.3
Temperature Threshold Section 5.21.1.4
Error Recovery Section 5.21.1.5
Volatile Write Cache Section 5.21.1.6
Number of Queues Section 5.21.1.7
Interrupt Coalescing Section 5.21.1.8
Interrupt Vector Configuration Section 5.21.1.9
Write Atomicity Section 5.21.1.10
Asynchronous Event Configuration Section 5.21.1.11
Autonomous Power State Transition Section 5.21.1.12
Host Memory Buffer Section 5.21.1.13
Timestamp Section 5.21.1.14
Keep Alive Timer Section 5.21.1.15
Host Controlled Thermal Management Section 5.21.1.16
Non-Operational Power State Config Section 5.21.1.17

NVM Command Set Specific
Software Progress Marker Section 5.21.1.18
Host Identifier Section 5.21.1.19
Reservation Notification Mask Section 5.21.1.20
Reservation Persistence Section 5.21.1.21

NVM Express 1.3a

98

5.13.1 Select field
A Select field set to 000b (i.e., current) returns the current operating attribute value for the Feature Identifier
specified.

A Select field set to 001b (i.e., default) returns the default attribute value for the Feature Identifier specified.

A Select field set to 010b (i.e., saved) returns the last saved attribute value for the Feature Identifier
specified (i.e., the last Set Features command completed without error, with the Save bit set to ‘1’ for the
Feature Identifier specified.)

A Select field set to 011b (i.e., supported capabilities) returns the capabilities supported for this Feature
Identifier. The capabilities supported are returned in Dword 0 of the completion entry of the Get Features
command.

• If Dword 0 bit 0 of the completion entry of the Get Features command is set to ‘1’, then the
Feature Identifier is saveable. If Dword 0 bit 0 of the completion entry of the Get Features
command is cleared to ‘0’, then the Feature Identifier is not saveable.

• If Dword 0 bit 1 of the completion entry of the Get Features command is set to ‘1’, then the
Feature Identifier is namespace specific and settings are applied to individual namespaces. If
Dword 0 bit 1 of the completion entry of the Get Features command is cleared to ‘0’, then the
Feature Identifier is not namespace specific and its settings apply to the entire controller.

• If Dword 0 bit 2 of the completion entry of the Get Features command is set to ‘1’, then the
Feature Identifier is changeable. If Dword 0 bit 2 of the completion entry of the Get Features
command is cleared to ‘0’, then the Feature Identifier is not changeable.

5.13.2 Command Completion
A completion queue entry is posted to the Admin Completion Queue if the controller has completed
returning any attributes associated with the Feature. Depending on the Feature Identifier, Dword 0 of the
completion queue entry may contain feature information (refer to section 5.21.1).

5.14 Get Log Page command
The Get Log Page command returns a data buffer containing the log page requested.

The Get Log Page command uses the Data Pointer, Command Dword 10, Command Dword 11, Command
Dword 12, and Command Dword 13 fields. All other command specific fields are reserved.

There are mandatory and optional Log Identifiers defined in Figure 90 and Figure 91. If a Get Log Page
command is processed that specifies a Log Identifier that is not supported, then the controller should abort
the command with status Invalid Field in Command.

The controller indicates if it supports the Log Page Offset and extended Number of Dwords (32 bits rather
than 12 bits) in the Log Page Attributes field of the Identify Controller data structure. If extended data is not
supported, then bits 27:16 of the Number of Dwords Lower field specify the Number of Dwords to transfer.

Figure 85: Get Log Page – Data Pointer
Bit Description

127:00 Data Pointer (DPTR): This field specifies the start of the data buffer. Refer to Figure 11 for the
definition of this field.

NVM Express 1.3a

99

Figure 86: Get Log Page – Command Dword 10
Bit Description

31:16

Number of Dwords Lower (NUMDL): This field specifies the lower 16 bits of the number of
Dwords to return. If host software specifies a size larger than the log page requested, the controller
returns the complete log page with undefined results for Dwords beyond the end of the log page.
The combined NUMDL and NUMDU fields form a 0’s based value.

15

Retain Asynchronous Event (RAE): This field specifies when to retain or clear an Asynchronous
Event. If this bit is cleared to ‘0’, the corresponding Asynchronous Event is cleared after the
command completes successfully. If this bit is set to ‘1,’ the corresponding Asynchronous Event
is retained (i.e., not cleared) after the command completes successfully.

Host software should clear this field to ‘0’ for log pages that are not used with Asynchronous
Events. Refer to section 5.2.

14:12 Reserved

11:08 Log Specific Field (LSP): If not defined for the log specified by the Log Page Identifier field, this
field is reserved.

07:00 Log Page Identifier (LID): This field specifies the identifier of the log page to retrieve.

Figure 87: Get Log Page – Command Dword 11
Bit Description

31:16 Reserved

15:00 Number of Dwords (NUMDU): This field specifies the upper 16 bits of the number of Dwords to
return.

Figure 88: Get Log Page – Command Dword 12
Bit Description

31:00
Log Page Offset Lower (LPOL): The log page offset specifies the location within a log page to
start returning data from. This field specifies the lower 32 bits of the log page offset. This field is
Dword aligned such that the lower two bits shall be cleared to 00b.

Figure 89: Get Log Page – Command Dword 13
Bit Description

31:00 Log Page Offset Upper (LPOU): This field specifies the upper 32 bits of the log page offset. Refer
to the Log Page Offset Lower definition.

NVM Express 1.3a

100

5.14.1 Log Specific Information
Figure 90 and Figure 91 define the Log pages that may be retrieved with the Get Log Page command.

Figure 90: Get Log Page – Log Page Identifiers
Log Identifier O/M Description Reference Section

00h Reserved
01h M Error Information 5.14.1.1
02h M SMART / Health Information 5.14.1.2
03h M Firmware Slot Information 5.14.1.3
04h O Changed Namespace List 5.14.1.4
05h O Commands Supported and Effects 5.14.1.5
06h O Device Self-test 5.14.1.6
07h O Telemetry Host-Initiated 5.14.1.7
08h O Telemetry Controller-Initiated 5.14.1.8

09h – 6Fh Reserved
70h Discovery (refer to the NVMe over Fabrics specification)

71h – 7Fh Reserved for NVMe over Fabrics
80h – BFh I/O Command Set Specific
C0h – FFh Vendor specific

O/M: O = Optional, M = Mandatory

Figure 91: Get Log Page – Log Page Identifiers, NVM Command Set Specific
Log Identifier O/M Description Reference Section

80h O Reservation Notification 5.14.1.9.1
81h O Sanitize Status 5.14.1.9.2

82h – BFh Reserved

O/M: O = Optional, M = Mandatory

5.14.1.1 Error Information (Log Identifier 01h)
This log page is used to describe extended error information for a command that completed with error or
report an error that is not specific to a particular command. Extended error information is provided when
the More (M) bit is set to ‘1’ in the Status Field for the completion queue entry associated with the command
that completed with error or as part of an asynchronous event with an Error status type. This log page is
global to the controller.

This error log may return the last n errors. If host software specifies a data transfer of the size of n error
logs, then the error logs for the most recent n errors are returned. The ordering of the entries is based on
the time when the error occurred, with the most recent error being returned as the first log entry.

Each entry in the log page returned is defined in Figure 92. The log page is a set of 64-byte entries; the
maximum number of entries supported is indicated in the Identify Controller data structure in Figure 109. If
the log page is full when a new entry is generated, the controller should insert the new entry into the log
and discard the oldest entry.

The controller should clear this log page by removing all entries on power cycle and reset.

NVM Express 1.3a

101

Figure 92: Get Log Page – Error Information Log Entry (Log Identifier 01h)
Bytes Description

07:00

Error Count: This is a 64-bit incrementing error count, indicating a unique identifier for this error.
The error count starts at 1h, is incremented for each unique error log entry, and is retained across
power off conditions. A value of 0h indicates an invalid entry; this value is used when there are
lost entries or when there are fewer errors than the maximum number of entries the controller
supports.

09:08
Submission Queue ID: This field indicates the Submission Queue Identifier of the command that
the error information is associated with. If the error is not specific to a particular command then
this field shall be set to FFFFh.

11:10
Command ID: This field indicates the Command Identifier of the command that the error is
assocated with. If the error is not specific to a particular command then this field shall be set to
FFFFh.

13:12

Status Field: This field indicates the Status Field for the command that completed. The Status
Field is located in bits 15:01, bit 00 corresponds to the Phase Tag posted for the command. If the
error is not specific to a particular command then this field reports the most applicable status
value.

15:14

Parameter Error Location: This field indicates the byte and bit of the command parameter that
the error is associated with, if applicable. If the parameter spans multiple bytes or bits, then the
location indicates the first byte and bit of the parameter.

Bits Description
15:11 Reserved

10:8 Bit in command that contained the error. Valid values
are 0 to 7.

7:0 Byte in command that contained the error. Valid values
are 0 to 63.

If the error is not specific to a particular command then this field shall be set to FFFFh.

23:16 LBA: This field indicates the first LBA that experienced the error condition, if applicable.
27:24 Namespace: This field indicates the namespace that the error is associated with, if applicable.

28
Vendor Specific Information Available: If there is additional vendor specific error information
available, this field provides the log page identifier associated with that page. A value of 00h
indicates that no additional information is available. Valid values are in the range of 80h to FFh.

31:29 Reserved

39:32 Command Specific Information: This field contains command specific information. If used, the
command definition specifies the information returned.

63:40 Reserved

NVM Express 1.3a

102

5.14.1.2 SMART / Health Information (Log Identifier 02h)
This log page is used to provide SMART and general health information. The information provided is over
the life of the controller and is retained across power cycles. The log page shall be supported on a global
basis. To request the global log page, the namespace specified is FFFFFFFFh. The log page may also
be supported on a per namespace basis, as indicated in the Identify Controller data structure in Figure 109.
If the log page is not supported on a per namespace basis, specifying any namespace other than
FFFFFFFFh should abort the command with status Invalid Field in Command. There is not namespace
specific information defined in the SMART / Health log page in this revision, thus the global log page and
namespaces specific log page contain identical information.

Critical warnings regarding the health of the NVM subsystem may be indicated via an asynchronous event
notification to the host. The warnings that results in an asynchronous event notification to the host are
configured using the Set Features command; refer to section 5.21.1.11.

Performance may be calculated using parameters returned as part of the SMART / Health Information log.
Specifically, the number of Read or Write commands, the amount of data read or written, and the amount
of controller busy time enables both I/Os per second and bandwidth to be calculated.

The log page returned is defined in Figure 93.

NVM Express 1.3a

103

Figure 93: Get Log Page – SMART / Health Information Log
Bytes Description

0

Critical Warning: This field indicates critical warnings for the state of the controller. Each bit
corresponds to a critical warning type; multiple bits may be set. If a bit is cleared to ‘0’, then
that critical warning does not apply. Critical warnings may result in an asynchronous event
notification to the host. Bits in this field represent the current associated state and are not
persistent.

Bit Definition

0 If set to ‘1’, then the available spare capacity has fallen
below the threshold.

1
If set to ‘1’, then a temperature is above an over
temperature threshold or below an under temperature
threshold (refer to section 5.21.1.4).

2
If set to ‘1’, then the NVM subsystem reliability has been
degraded due to significant media related errors or any
internal error that degrades NVM subsystem reliability.

3 If set to ‘1’, then the media has been placed in read only
mode.

4
If set to ‘1’, then the volatile memory backup device has
failed. This field is only valid if the controller has a volatile
memory backup solution.

7:5 Reserved

2:1

Composite Temperature: Contains a value corresponding to a temperature in degrees
Kelvin that represents the current composite temperature of the controller and namespace(s)
associated with that controller. The manner in which this value is computed is implementation
specific and may not represent the actual temperature of any physical point in the NVM
subsystem. The value of this field may be used to trigger an asynchronous event (refer to
section 5.21.1.4).

Warning and critical overheating composite temperature threshold values are reported by the
WCTEMP and CCTEMP fields in the Identify Controller data structure in Figure 109.

3 Available Spare: Contains a normalized percentage (0 to 100%) of the remaining spare
capacity available.

4
Available Spare Threshold: When the Available Spare falls below the threshold indicated in
this field, an asynchronous event completion may occur. The value is indicated as a
normalized percentage (0 to 100%).

5

Percentage Used: Contains a vendor specific estimate of the percentage of NVM subsystem
life used based on the actual usage and the manufacturer’s prediction of NVM life. A value of
100 indicates that the estimated endurance of the NVM in the NVM subsystem has been
consumed, but may not indicate an NVM subsystem failure. The value is allowed to exceed
100. Percentages greater than 254 shall be represented as 255. This value shall be updated
once per power-on hour (when the controller is not in a sleep state).

Refer to the JEDEC JESD218A standard for SSD device life and endurance measurement
techniques.

31:6 Reserved

NVM Express 1.3a

104

Bytes Description

47:32

Data Units Read: Contains the number of 512 byte data units the host has read from the
controller; this value does not include metadata. This value is reported in thousands (i.e., a
value of 1 corresponds to 1000 units of 512 bytes read) and is rounded up. When the LBA
size is a value other than 512 bytes, the controller shall convert the amount of data read to
512 byte units.

For the NVM command set, logical blocks read as part of Compare and Read operations shall
be included in this value.

63:48

Data Units Written: Contains the number of 512 byte data units the host has written to the
controller; this value does not include metadata. This value is reported in thousands (i.e., a
value of 1 corresponds to 1000 units of 512 bytes written) and is rounded up. When the LBA
size is a value other than 512 bytes, the controller shall convert the amount of data written to
512 byte units.

For the NVM command set, logical blocks written as part of Write operations shall be included
in this value. Write Uncorrectable commands shall not impact this value.

79:64
Host Read Commands: Contains the number of read commands completed by the controller.

For the NVM command set, this is the number of Compare and Read commands.

95:80

Host Write Commands: Contains the number of write commands completed by the
controller.

For the NVM command set, this is the number of Write commands.

111:96

Controller Busy Time: Contains the amount of time the controller is busy with I/O commands.
The controller is busy when there is a command outstanding to an I/O Queue (specifically, a
command was issued via an I/O Submission Queue Tail doorbell write and the corresponding
completion queue entry has not been posted yet to the associated I/O Completion Queue).
This value is reported in minutes.

127:112 Power Cycles: Contains the number of power cycles.

143:128 Power On Hours: Contains the number of power-on hours. This may not include time that
the controller was powered and in a non-operational power state.

159:144 Unsafe Shutdowns: Contains the number of unsafe shutdowns. This count is incremented
when a shutdown notification (CC.SHN) is not received prior to loss of power.

175:160
Media and Data Integrity Errors: Contains the number of occurrences where the controller
detected an unrecovered data integrity error. Errors such as uncorrectable ECC, CRC
checksum failure, or LBA tag mismatch are included in this field.

191:176 Number of Error Information Log Entries: Contains the number of Error Information log
entries over the life of the controller.

195:192

Warning Composite Temperature Time: Contains the amount of time in minutes that the
controller is operational and the Composite Temperature is greater than or equal to the
Warning Composite Temperature Threshold (WCTEMP) field and less than the Critical
Composite Temperature Threshold (CCTEMP) field in the Identify Controller data structure in
Figure 109.

If the value of the WCTEMP or CCTEMP field is 0h, then this field is always cleared to 0h
regardless of the Composite Temperature value.

199:196

Critical Composite Temperature Time: Contains the amount of time in minutes that the
controller is operational and the Composite Temperature is greater than or equal to the Critical
Composite Temperature Threshold (CCTEMP) field in the Identify Controller data structure in
Figure 109.

If the value of the CCTEMP field is 0h, then this field is always cleared to 0h regardless of the
Composite Temperature value.

201:200 Temperature Sensor 1: Contains the current temperature reported by temperature sensor 1.
This field is defined by Figure 94.

203:202 Temperature Sensor 2: Contains the current temperature reported by temperature sensor 2.
This field is defined by Figure 94.

205:204 Temperature Sensor 3: Contains the current temperature reported by temperature sensor 3.
This field is defined by Figure 94.

NVM Express 1.3a

105

Bytes Description

207:206 Temperature Sensor 4: Contains the current temperature reported by temperature sensor 4.
This field is defined by Figure 94.

209:208 Temperature Sensor 5: Contains the current temperature reported by temperature sensor 5.
This field is defined by Figure 94.

211:210 Temperature Sensor 6: Contains the current temperature reported by temperature sensor 6.
This field is defined by Figure 94.

213:212 Temperature Sensor 7: Contains the current temperature reported by temperature sensor 7.
This field is defined by Figure 94.

215:214 Temperature Sensor 8: Contains the current temperature reported by temperature sensor 8.
This field is defined by Figure 94.

219:216

Thermal Management Temperature 1 Transition Count: Contains the number of times the
controller transitioned to lower power active power states or performed vendor specific thermal
management actions while minimizing the impact on performance in order to attempt to
reduce the Composite Temperature because of the host controlled thermal management
feature (refer to section 8.4.5) (i.e., the Composite Temperature rose above the Thermal
Management Temperature 1.) This counter shall not wrap once it reaches its maximum value.
A value of zero, indicates that this transition has never occurred or this field is not
implemented.

223:220

Thermal Management Temperature 2 Transition Count: Contains the number of times the
controller transitioned to lower power active power states or performed vendor specific thermal
management actions regardless of the impact on performance (e.g., heavy throttling) in order
to attempt to reduce the Composite Temperature because of the host controlled thermal
management feature (refer to section 8.4.5) (i.e., the Composite Temperature rose above the
Thermal Management Temperature 2.) This counter shall not wrap once it reaches its
maximum value. A value of zero, indicates that this transition has never occurred or this field
is not implemented.

227:224

Total Time For Thermal Management Temperature 1: Contains the number of seconds
that the controller had transitioned to lower power active power states or performed vendor
specific thermal management actions while minimizing the impact on performance in order to
attempt to reduce the Composite Temperature because of the host controlled thermal
management feature (refer to section 8.4.5). This counter shall not wrap once it reaches its
maximum value. A value of zero, indicates that this transition has never occurred or this field
is not implemented.

231:228

Total Time For Thermal Management Temperature 2: Contains the number of seconds that
the controller had transitioned to lower power active power states or performed vendor specific
thermal management actions regardless of the impact on performance (e.g., heavy throttling)
in order to attempt to reduce the Composite Temperature because of the host controlled
thermal management feature (refer to section 8.4.5). This counter shall not wrap once it
reaches its maximum value. A value of zero, indicates that this transition has never occurred
or this field is not implemented.

511:232 Reserved

Figure 94: Get Log Page – Temperature Sensor Data Structure
Bits Description

15:00

Temperature Sensor Temperature (TST): Contains the current temperature in degrees Kelvin
reported by the temperature sensor.

The physical point in the NVM subsystem whose temperature is reported by the temperature
sensor and the temperature accuracy is implementation specific. An implementation that does
not implement the temperature sensor reports a temperature of zero degrees Kelvin. The
temperature reported by a temperature sensor may be used to trigger an asynchronous event
(refer to section 5.21.1.4).

NVM Express 1.3a

106

5.14.1.3 Firmware Slot Information (Log Identifier 03h)
This log page is used to describe the firmware revision stored in each firmware slot supported. The firmware
revision is indicated as an ASCII string. The log page also indicates the active slot number. The log page
returned is defined in Figure 95. This log page is global to the controller.

Figure 95: Get Log Page – Firmware Slot Information Log
Bytes Description

00

Active Firmware Info (AFI): Specifies information about the active firmware revision.

Bit 7 is reserved.

Bits 6:4 indicates the firmware slot that is going to be activated at the next controller reset. If this
field is 0h, then the controller does not indicate the firmware slot that is going to be activated at
the next controller reset.

Bit 3 is reserved.

Bits 2:0 indicates the firmware slot from which the actively running firmware revision was loaded.

07:01 Reserved

15:08
Firmware Revision for Slot 1 (FRS1): Contains the revision of the firmware downloaded to
firmware slot 1. If no valid firmware revision is present or if this slot is unsupported, this field shall
be cleared to 0h.

23:16
Firmware Revision for Slot 2 (FRS2): Contains the revision of the firmware downloaded to
firmware slot 2. If no valid firmware revision is present or if this slot is unsupported, this field shall
be cleared to 0h.

31:24
Firmware Revision for Slot 3 (FRS3): Contains the revision of the firmware downloaded to
firmware slot 3. If no valid firmware revision is present or if this slot is unsupported, this field shall
be cleared to 0h.

39:32
Firmware Revision for Slot 4 (FRS4): Contains the revision of the firmware downloaded to
firmware slot 4. If no valid firmware revision is present or if this slot is unsupported, this field shall
be cleared to 0h.

47:40
Firmware Revision for Slot 5 (FRS5): Contains the revision of the firmware downloaded to
firmware slot 5. If no valid firmware revision is present or if this slot is unsupported, this field shall
be cleared to 0h.

55:48
Firmware Revision for Slot 6 (FRS6): Contains the revision of the firmware downloaded to
firmware slot 6. If no valid firmware revision is present or if this slot is unsupported, this field shall
be cleared to 0h.

63:56
Firmware Revision for Slot 7 (FRS7): Contains the revision of the firmware downloaded to
firmware slot 7. If no valid firmware revision is present or if this slot is unsupported, this field shall
be cleared to 0h.

511:64 Reserved

5.14.1.4 Changed Namespace List (Log Identifier 04h)
This log page is used to describe namespaces in this controller that have changed Identify Namespace
information since the last time the log page was read. The log page is a Namespace List with up to 1024
entries in it. If more than 1024 namespaces have changed attributes since the last time the log page was
read, the first entry in the log page shall be set to FFFFFFFFh and the remainder of the list shall be zero-
filled.

5.14.1.5 Commands Supported and Effects (Log Identifier 05h)
This log page is used to describe the commands that the controller supports and the effects of those
commands on the state of the NVM subsystem. The log page is 4096 bytes in size. There is one

NVM Express 1.3a

107

Commands Supported and Effects data structure per Admin command and one Commands Supported and
Effects data structure per I/O command (based on the I/O Command Set selected in CC.CSS).

Figure 96: Get Log Page – Commands Supported and Effects Log
Bytes Description

03:00 Admin Command Supported 0 (ACS0): Contains the Commands Supported and Effects data
structure (refer to Figure 97) for the Admin command with an opcode value of 0h.

07:04 Admin Command Supported 1 (ACS1): Contains the Commands Supported and Effects data
structure (refer to Figure 97) for the Admin command with an opcode value of 1h.

… …
1019:
1016

Admin Command Supported 254 (ACS254): Contains the Commands Supported and Effects
data structure (refer to Figure 97) for the Admin command with an opcode value of 254.

1023:
1020

Admin Command Supported 255 (ACS255): Contains the Commands Supported and Effects
data structure (refer to Figure 97) for the Admin command with an opcode value of 255.

1027:
1024

I/O Command Supported 0 (IOCS0): Contains the Commands Supported and Effects data
structure (refer to Figure 97) for the I/O command with an opcode value of 0h.

1031:
1028

I/O Command Supported 1 (IOCS1): Contains the Commands Supported and Effects data
structure (refer to Figure 97) for the I/O command with an opcode value of 1h.

… …
2043:
2040

I/O Command Supported 254 (IOCS254): Contains the Commands Supported and Effects data
structure (refer to Figure 97) for the I/O command with an opcode value of 254.

2047:
2044

I/O Command Supported 255 (IOCS255): Contains the Commands Supported and Effects data
structure (refer to Figure 97) for the I/O command with an opcode value of 255.

4095:
2048 Reserved

The Commands Supported and Effects data structure describes the overall possible effect of a command,
including any optional features of the command.

Host software may take command effects into account when determining how to submit commands and
actions to take after the command is complete. It is recommended that if a command may change a
particular capability that host software re-enumerate and/or re-initialize the associated capability after the
command is complete. For example, if a namespace capability change may occur, then host software is
recommended to pause the use of the associated namespace, submit the command that may cause a
namespace capability change and wait for its completion, and then re-issue the Identify command.

If the namespace is attached to multiple controllers, the host(s) associated with those controllers should
coordinate their commands to meet the Command Submission and Execution requirements (refer to Figure
97). The details of this coordination are outside the scope of this specification.

NVM Express 1.3a

108

Figure 97: Get Log Page – Commands Supported and Effects Data Structure
Bits Description

31:19 Reserved

18:16

Command Submission and Execution (CSE): This field defines the command submission and
execution recommendations for the associated command.

Value Definition
000b No command submission or execution restriction

001b

The command associated with this structure may be submitted
when there is no other outstanding command to the same
namespace and another command should not be submitted to
the same namespace until this command is complete

010b

The command associated with this structure may be submitted
when there is no other outstanding command to any namespace
and another command should not be submitted to any
namespace until this command is complete

011b – 111b Reserved

15:05 Reserved

04

Controller Capability Change (CCC): If this bit is set to ‘1’, then this command may change
controller capabilities. If this bit is cleared to ‘0’, then this command does not modify controller
capabilities. Controller capability changes include a firmware update that changes the capabilities
reported in the CAP register.

03

Namespace Inventory Change (NIC): If this bit is set to ‘1’, then this command may change the
number of namespaces or capabilities for multiple namespaces. If this bit is cleared to ‘0’, then
this command does not modify the number of namespaces or capabilities for multiple
namespaces. Namespace inventory changes include adding or removing namespaces.

02

Namespace Capability Change (NCC): If this bit is set to ‘1’, then this command may change
the capabilities of a single namespace. If this bit is cleared to ‘0’, then this command does not
modify any namespace capabilities for the specified namespace. Namespace capability changes
include a logical format change.

01

Logical Block Content Change (LBCC): If this bit is set to ‘1’, then this command may modify
logical block content in one or more namespaces. If this bit is cleared to ‘0’, then this command
does not modify logical block content in any namespace. Logical block content changes include
a write to a logical block.

00
Command Supported (CSUPP): If this bit is set to ‘1’, then this command is supported by the
controller. If this bit is cleared to ‘0’, then this command is not supported by the controller and all
other fields in this structure shall be cleared to 0h.

5.14.1.6 Device Self-test (Log Identifier 06h)
This log page is used to indicate:

a) the status of any device self-test operation in progress and the percentage complete of that
operation; and
b) the results of the last 20 device self-test operations.

The Self-test Result Data Structure contained in the Newest Self-test Result Data Structure field is always
the result of the last completed or aborted self-test operation. The next Self-test Result Data Structure field
in the Device Self-test Log contains the results of the second newest self-test operation and so on. If fewer
than 20 self-test operations have completed or been aborted, then the Device Self-test Status field shall be
set to Fh in the unused Self-test Result Data Structure fields and all other fields in that Self-test Result Data
Structure are ignored.

NVM Express 1.3a

109

Figure 98: Get Log Page – Device Self-test Log
Bytes Description

0

Current Device Self-Test Operation: This field defines the current device self-test operation.

Bits 7:4 are reserved.

Bits 3:0 indicates the status of the current device self-test operation as defined in the following
table. If a device self-test operation is in process (i.e., this field is set to 1h or 2h), then the
controller shall not set this field to 0h until a new Self-test Result Data Structure is created (i.e.,
if a device self-test operation completes or is aborted, then the controller shall create a Self-
test Result Data Structure prior to setting this field to 0h.)

Value Definition
0h No device self-test operation in progress
1h Short device self-test operation in progress
2h Extended device self-test operation in progress

3h – Dh Reserved
Eh Vendor specific
Fh Reserved

1

Current Device Self-Test Completion: This field defines the completion status of the current
device self-test.

Bit 7 is reserved.

Bits 6:0 indicates the percentage of the device self-test operation that is complete (e.g., a value
of 25 indicates that 25% of the device self-test operation is complete and 75% remains to be
tested). If bits 3:0 in the Current Device Self-Test Operation field are set to 0h (indicating there
is no device-self test operation in progress), then this field is ignored.

3:2 Reserved
31:4 Newest Self-test Result Data Structure (refer to Figure 99)

59:32 2nd newest Self-test Result Data Structure (refer to Figure 99)
… …

535:508 19th newest Self-test Result Data Structure (refer to Figure 99)
563:536 20th newest Self-test Result Data Structure (refer to Figure 99)

NVM Express 1.3a

110

Figure 99: Get Log Page - Self-test Result Data Structure
Bytes Description

0

Device Self-test Status: This field indicates the device self-test code and the status of the
operation.

Bits 7:4 indicates the Self-test Code value that was specified in the Device Self-test command
that started the device self-test operation that this Self-test Result Data Structure describes.

Value Definition
0h Reserved
1h Short device self-test operation
2h Extended device self-test operation

3h – Dh Reserved
Eh Vendor specific
Fh Reserved

Bits 3:0 indicates the result of the device self-test operation that this Self-test Result Data
Structure describes.

Value Definition
0h Operation completed without error
1h Operation was aborted by a Device Self-test command
2h Operation was aborted by a Controller Level Reset

3h Operation was aborted due to a removal of a namespace
from the namespace inventory

4h Operation was aborted due to the processing of a Format
NVM command

5h
A fatal error or unknown test error occurred while the
controller was executing the device self-test operation and
the operation did not complete

6h Operation completed with a segment that failed and the
segment that failed is not known

7h
Operation completed with one or more failed segments
and the first segment that failed is indicated in the Segment
Number field

8h Operation was aborted for unknown reason
9h – Eh Reserved

Fh Entry not used (does not contain a test result)

1 Segment Number: This field indicates which segment the first self-test failure occurred. The
field is ignored if the Device Self-test Status field is not set to 7h.

2

Valid Diagnostic Information: This field indicates the diagnostic failure information that is
reported.

Bits 7:4 are reserved.

Bit 3 defines the SC_Valid bit. If set to ‘1’, then the contents of Status Code field is valid. If
cleared to ‘0’, then the contents of Status Code field is invalid.

Bit 2 defines the SCT_Valid bit. If set to ‘1’, then the contents of Status Code Type field is valid.
If cleared to ‘0’, then the contents of Status Code Type field is invalid.

Bit 1 defines the FLBA_Valid bit. If set to ‘1’, then the contents of Failing LBA field is valid. If
cleared to ‘0’, then the contents of Failing LBA field is invalid.

Bit 0 defines the NSID_Valid bit. If set to ‘1’, then the contents of Namespace Identifier field is
valid. If cleared to ‘0’, then the contents of Namespace Identifier field is invalid.

3 Reserved

NVM Express 1.3a

111

Bytes Description

11:4
Power On Hours (POH): This field indicates the number of power-on hours at the time the
device self-test operation was completed or aborted. This does not include time that the
controller was powered and in a low power state condition.

15:12 Namespace Identifier (NSID): This field indicates the namespace that the Failing LBA
occurred on. The contents of this field are valid only when the NSID_Valid bit is set to ‘1’.

23:16

Failing LBA: This field indicates the LBA of the logical block that caused the test to fail. If the
device encountered more than one failed logical block during the test, then this field only
indicates one of those failed logical blocks. The contents of this field are valid only when the
FLBA_Valid bit is set to ‘1’.

24

Status Code Type: This field may contain additional information related to errors or conditions.

Bits 7:3 are reserved.

Bits 2:0 may contain additional information relating to errors or conditions that occurred during
the device self-test operation represented in the same format used in the Status Code Type field
of the Completion Queue Entry (refer to section 4.6.1.1) The contents of this field are valid only
when the SCT_Valid bit is set to ‘1’.

25

Status Code: This field may contain additional information relating to errors or conditions that
occurred during the device self-test operation represented in the same format used in the Status
Code field of the Completion Queue Entry (refer to section 4.6.1.2) The contents of this field are
valid only when the SC_Valid bit is set to ‘1’.

27:26 Vendor Specific

5.14.1.7 Telemetry Host-Initiated (Log Identifier 07h)
This log consists of a header describing the log and zero or more Telemetry Data Blocks (refer to section
8.14). All Telemetry Data Blocks are 512 bytes in size. The controller shall initiate a capture of the
controller’s internal controller state to this log when the controller processes a Get Log Page for this log
with the Create Telemetry Host-Initiated Data bit set to ‘1’ in the Log Specific Field. If the host specifies a
Log Page Offset Lower value that is not a multiple of 512 bytes in the Get Log Page command for this log,
then the controller shall return an error of Invalid Field in Command. This log page is global to the controller.

Figure 100: Command Dword 10 – Log Specific Field
Bit Description

11:09 Reserved

08

Create Telemetry Host-Initiated Data: If set to ‘1’ then the controller shall capture the Telemetry
Host-Initiated Data representing the internal state of the controller at the time the associated Get
Log Page command is processed. If cleared to ‘0’ then the controller shall not update the
Telemetry Host Initiated Data. The Host-Initiated Data shall not change until the controller
processes a subsequent Telemetry Host-Initiated Log with this bit set to ‘1’, a Firmware Commit
command, or a power on reset.

The Telemetry Host-Initiated Data consists of three areas: Telemetry Host-Initiated Data Area 1, Telemetry
Host-Initiated Data Area 2, and Telemetry Host-Initiated Data Area 3. All three areas start at Telemetry
Host-Initiated Data Area Block 1. The last block of each area is indicated in Telemetry Host-Initiated Data
Area y Last Block, respectively. The telemetry data captured and its size is implementation dependent. The
size of the log page is variable and may be calculated using the Telemetry Host-Initiated Data Area 3 Last
Block field.

The controller shall return data for all blocks requested. The data beyond the last block in Telemetry Host-
Initiated Data Area 3 Last Block is undefined. If the host requests a data transfer that is not a multiple of
512 bytes then the controller shall return an error of Invalid Field in Command.

NVM Express 1.3a

112

Figure 101: Get Log Page – Telemetry Host-Initiated Log (Log Identifier 07h)
Bytes Description

00 Log Identifier: This field shall be set to 07h.
04:01 Reserved

07:05

IEEE OUI Identifier (IEEE): Contains the Organization Unique Identifier (OUI) for the controller
vendor that is able to interpret the data. If set to 0h, no IEEE OUI Identifier is present. The OUI
shall be a valid IEEE/RAC assigned identifier that is registered at
http://standards.ieee.org/develop/regauth/oui/public.html.

09:08

Telemetry Host-Initiated Data Area 1 Last Block: Contains the value of the last block of
Telemetry Host-Initiated Data Area 1. If the Telemetry Host-Initiated Data Area 1 does not
contain data, then this field shall be cleared to 0h.
If this field is not 0h then Telemetry Host-Initiated Data Area 1 begins at block 1h and ends at
the block indicated in this field.

11:10

Telemetry Host-Initiated Data Area 2 Last Block: Contains the value of the last block of
Telemetry Host-Initiated Data Area 2. This value shall be greater than or equal to the value in
the Telemetry Host-Initiated Data Area 1 Last Block field.
If this field is not 0h then Telemetry Host-Initiated Data Area 2 begins at block 1h and ends at
the block indicated in this field.

13:12

Telemetry Host-Initiated Data Area 3 Last Block: Contains the value of the last block of
Telemetry Host-Initiated Data Area 3. This value shall be greater than or equal to the value in
the Telemetry Host-Initiated Data Area 2 Last Block field.
If this field is not 0h then Telemetry Host-Initiated Data Area 3 begins at block 1h and ends at
the block contained in this field.

381:14 Reserved

382 Telemetry Controller-Initiated Data Available: Contains the value of Telemetry Controller-
Initiated Data Available field in the Telemetry Controller-Initiated Log (refer to Figure 102).

383
Telemetry Controller-Initiated Data Generation Number: Contains the value of the Telemetry
Controller-Initiated Data Generation Number field in the Telemetry Controller-Initiated Log (refer
to Figure 102).

511:384
Reason Identifier: Contains a vendor specific identifier that describes the operating conditions
of the controller at the time of capture. The Reason Identifier field should provide an
identification of unique operating conditions of the controller.

1023:512 Telemetry Host-Initiated Data Block 1: Contains Telemetry Data Block 1 for the Telemetry
Host-Initiated Log.

1535:1024 Telemetry Host-Initiated Data Block 2: Contains Telemetry Data Block 2 for the Telemetry
Host-Initiated Log.

… …
(n*512)+511

:(n*512)
Telemetry Host-Initiated Data Block n: Contains Telemetry Data Block n for the Telemetry
Host-Initiated Log.

5.14.1.8 Telemetry Controller-Initiated (Log Identifier 08h)
This log consists of a header describing the log and zero or more Telemetry Data Blocks (refer to section
8.14). All Telemetry Data Blocks are 512 bytes in size. This log is a controller initiated capture of the
controller’s internal state. The Telemetry Controller-Initiated Data shall persist across all resets. If the host
specifies a Log Page Offset Lower value that is not a multiple of 512 bytes in the Get Log Page command
for this log, then the controller shall return an error of Invalid Field in Command. This log page is global to
the controller.

The Telemetry Controller-Initiated Data consists of three areas: Telemetry Controller-Initiated Data Area 1,
Telemetry Controller-Initiated Data Area 2, and Telemetry Controller-Initiated Data Area 3. All three areas
start at Telemetry Controller-Initiated Data Area Block 1. The last block of each area is indicated in the
Telemetry Controller-Initiated Data Area y Last Block, respectively. The telemetry data captured and its

http://standards.ieee.org/develop/regauth/oui/public.html

NVM Express 1.3a

113

size is implementation dependent. The size of the log page is variable and may be calculated using the
Telemetry Controller-Initiated Data Area 3 Last Block field.

The controller shall return data for all blocks requested. The data beyond the last block in Telemetry
Controller-Initiated Data Area 3 Last Block is undefined. If the host requests a data transfer that is not a
multiple of 512 bytes then the controller shall return an error of Invalid Field in Command.

Figure 102: Get Log Page – Telemetry Controller-Initiated Log (Log Identifier 08h)
Bytes Description

00 Log Identifier: This field shall be set to 08h.
04:01 Reserved
07:05 IEEE OUI Identifier (IEEE): Contains the Organization Unique Identifier (OUI) for the controller

vendor that is able to interpret the data. If set to 0h, no IEEE OUI Identifier is present. The OUI
shall be a valid IEEE/RAC assigned identifier that is registered at
http://standards.ieee.org/develop/regauth/oui/public.html.

09:08 Telemetry Controller-Initiated Data Area 1 Last Block: Contains the value of the last block of
Telemetry Controller-Initiated Data Area 1. If the Telemetry Controller-Initiated Data Area 1
does not contain data, then this field shall be cleared to 0h.
If this field is not 0h then Telemetry Controller-Initiated Data Area 1 begins at block 1 and ends
at the block indicated in this field.

11:10 Telemetry Controller-Initiated Data Area 2 Last Block: Contains the value of the last block of
Telemetry Controller-Initiated Data Area 2. This value shall be greater than or equal to the value
in the Telemetry Controller-Initiated Data Area 1 Last Block field.
If this field is not 0h then Telemetry Controller-Initiated Data Area 2 begins at block 1h and ends
at the block indicated in this field.

13:12 Telemetry Controller-Initiated Data Area 3 Last Block: Contains the value of the last block of
Telemetry Controller-Initiated Data Area 3. This value shall be greater than or equal to the value
in the Telemetry Controller-Initiated Data Area 2 Last Block field.
If this field is not 0h then Telemetry Controller-Initiated Data Area 3 begins at block 1h and ends
at the block indicated in this field.

381:14 Reserved
382 Telemetry Controller-Initiated Data Available: If this field is cleared to 0h, the log does not

contain saved internal controller state. If this field is set to 1h, the log contains saved internal
controller state. If this field is set to 1h, it shall not be cleared to 0h until a Get Log Page with
Retain Asynchronous Event cleared to ‘0’ for the Telemetry Controller-Initiated Log completes
successfully. This value is persistent across power states and reset.
Other values are reserved.

383 Telemetry Controller-Initiated Data Generation Number: Contains a value that is
incremented each time the controller initiates a capture of its internal controller state into the
Telemetry Controller-Initiated Data Blocks. This field is persistent across power on.

511:384 Reason Identifier: Contains a vendor specific identifier that describes the operating conditions
of the controller at the time of capture. The Controller-Initiated Reason Identifier field should
provide an identification of unique operating conditions of the controller.

1023:512 Telemetry Controller-Initiated Data Block 1: Contains Telemetry Data Block 1 for the
Telemetry Controller -Initiated Log captured at a vendor specific time.

1535:1024 Telemetry Controller-Initiated Data Block 2: Contains Telemetry Data Block 2 for the
Telemetry Controller -Initiated Log captured at a vendor specific time.

… …
(n*512)+51
1:(n*512)

Telemetry Controller-Initiated Data Block n: Contains Telemetry Data Block n for the
Telemetry Controller-Initiated Log captured at a vendor specific time.

http://standards.ieee.org/develop/regauth/oui/public.html

NVM Express 1.3a

114

5.14.1.9 NVM Command Set Specific Log Page Identifiers
This section describes NVM Command Set Specific log pages.

5.14.1.9.1 Reservation Notification (Log Identifier 80h)
The Reservation Notification log page reports one log page from a time ordered queue of reservation
notification log pages, if available. A new Reservation Notification log page is created and added to the end
of the queue of reservation notifications whenever an unmasked reservation notification occurs on any
namespace that is attached to the controller. The Get Log Page command:

• returns a data buffer containing a log page corresponding to the oldest log page in the reservation
notification queue (i.e., the log page containing the lowest Log Page Count field; accounting for
wrapping); and

• removes that Reservation Notification log page from the queue.

If there are no available Reservation Notification log page entries when a Get Log command is issued, then
an empty log page (i.e., all fields in the log page set to zero) shall be returned.

If the controller is unable to store a reservation notification in the Reservation Notification log due to the
size of the queue, that reservation notification is lost. If a reservation notification is lost, then the controller
shall increment the Log Page Count field of the last reservation notification in the queue (i.e., the Log Page
Count field in the last reservation notification in the queue shall contain the value associated with the most
recent reservation notification that has been lost).

The format of the log page is defined in Figure 103. This log page is global to the controller.

Figure 103: Get Log Page – Reservation Notification Log
Bytes Description

07:00

Log Page Count: This is a 64-bit incrementing Reservation Notification log page count, indicating
a unique identifier (modulo 64 bit) for this notification. The count starts at 0h following a controller
reset, is incremented for every event that causes a reservation notification regardless of whether
that notification is added to the queue, and rolls over to one when the maximum count is reached
and a new log page is created. If there are no Reservation Notification log pages to return (i.e., the
queue of reservation log pages is empty), then this field shall return the value 0h. Subsequent
reservation notifications continue incrementing this unique identifier from the last non-zero value
(i.e., the value that identified the previous Reservation Notification log page). A value of 0h indicates
the log page is empty.

08

Reservation Notification Log Page Type: This field indicates the Reservation Notification type
described by this log page.

Value Definition
0

Empty Log Page: Get Log Page command was
processed when no unread Reservation Notification
log pages were available. All the fields of an empty
log page shall have a value of zero.

1 Registration Preempted
2 Reservation Released
3 Reservation Preempted

255:4 Reserved

09

Number of Available Log Pages: This field indicates the number of additional available
Reservation Notification log pages (i.e., the number of unread log pages not counting this one). If
there are more than 255 additional available log pages, then a value of 255 is returned. A value of
zero indicates that there are no additional available log pages.

11:10 Reserved

NVM Express 1.3a

115

Bytes Description

15:12 Namespace ID: This field indicates the namespace ID of the namespace associated with the
Reservation Notification described by this log page.

63:16 Reserved

5.14.1.9.2 Sanitize Status (Log Identifier 81h)
The Sanitize Status log page is used to report sanitize operation time estimates and information about the
most recent sanitize operation (refer to section 8.15). The Get Log Page command returns a data buffer
containing a log page formatted as defined in Figure 104. This log page is global to the NVM subsystem
and shall be retained across power cycles and resets. This log page shall contain valid data whenever
CSTS.RDY is set to ‘1’.

If the Sanitize Capabilities field in Identify Controller is not cleared to zero (i.e., the Sanitize command is
supported), then this log page shall be supported. If the Sanitize Capabilities field in Identify Controller is
cleared to zero, then this log page is reserved.

Figure 104: Get Log Page – Sanitize Status Log

Bytes Description

01:00
Sanitize Progress (SPROG): This field indicates the fraction complete of the sanitize
operation. The value is a numerator of the fraction complete that has 65,536 (10000h) as its
denominator. This value shall be set to FFFFh if the SSTAT field is not set to 010b.

03:02

Sanitize Status (SSTAT): This field indicates the status associated with the most recent
sanitize operation.

Bits 15:9 are reserved.

Bit 8 (Global Data Erased) if set to ‘1’ then non-volatile storage in the NVM subsystem has
not been written to:

a) since being manufactured and the NVM subsystem has never been sanitized; or
b) since the most recent successful sanitize operation.

If cleared to ‘0’, then non-volatile storage in the NVM subsystem has been written to:
a) since being manufactured and the NVM subsystem has never been sanitized; or
b) since the most recent successful sanitize operation of the NVM subsystem.

Bits 7:3 contains the number of completed passes if the most recent sanitize operation was
an Overwrite. This field shall be cleared to 00000b if the most recent sanitize operation was
not an Overwrite.

Bits 2:0 contains the status of the most recent sanitize operation as shown below.

Value Definition
000b The NVM subsystem has never been sanitized.
001b The most recent sanitize operation completed successfully.
010b A sanitize operation is currently in progress.
011b The most recent sanitize operation failed.

100b-111b Reserved

07:04
Sanitize Command Dword 10 Information (SCDW10): This field contains the value of the
Command Dword 10 field of the Sanitize command that started the sanitize operation
whose status is reported in the SSTAT field. Refer to Figure 178.

11:08 Estimated Time For Overwrite: This field indicates the number of seconds required to
complete an Overwrite sanitize operation with 16 passes in the background (refer to section
5.24). A value of 0h indicates that the sanitize operation is expected to be completed in the
background when the Sanitize command that started that operation is completed. A value of
FFFFFFFFh indicates that no time period is reported.

NVM Express 1.3a

116

Bytes Description
15:12 Estimated Time For Block Erase: This field indicates the number of seconds required to

complete a Block Erase sanitize operation in the background (refer to section 5.24). A value
of 0h indicates that the sanitize operation is expected to be completed in the background
when the Sanitize command that started that operation is completed. A value of FFFFFFFFh
indicates that no time period is reported.

19:16 Estimated Time For Crypto Erase: This field indicates the number of seconds required to
complete a Crypto Erase sanitize operation in the background (refer to section 5.24). A value
of 0h indicates that the sanitize operation is expected to be completed in the background
when the Sanitize command that started that operation is completed. A value of FFFFFFFFh
indicates that no time period is reported.

511:20 Reserved

5.14.2 Command Completion
A completion queue entry is posted to the Admin Completion Queue if the log has been transferred to the
memory buffer indicated in PRP Entry 1. Get Log Page command specific status values are defined in
Figure 105.

Figure 105: Get Log Page – Command Specific Status Values
Value Description

9h
Invalid Log Page: The log page indicated is invalid or not supported. This error condition is also
returned if a reserved log page is requested. Controllers compliant with versions 1.3 and earlier of
the specification may return Invalid Field in Command for this condition.

5.15 Identify command
The Identify command returns a data buffer that describes information about the NVM subsystem, the
controller or the namespace(s). The data structure is 4096 bytes in size.

The data structure returned, defined in Figure 106, is based on the Controller or Namespace Structure
(CNS) field. If there are fewer entries to return for the data structure indicated based on CNS value, then
the unused portion of the list is zero filled. If a controller does not support a CNS value then it shall abort
the command with a status of Invalid Field in Command.

NOTE: The CNS field was specified as a one bit field in revision 1.0 and as a two bit field in revision 1.1.
Host software should only issue CNS values defined in revision 1.0 to controllers compliant with revision
1.0. Host software should only issue CNS values defined in revision 1.1 to controllers compliant with
revision 1.1. The results of issuing other CNS values to controllers compliant with revision 1.0 or 1.1,
respectively, are indeterminate.

The Identify Controller data structure and Identify Namespace data structure include several identifiers. The
format and layout of these identifiers is described in section 7.10.

NVM Express 1.3a

117

Figure 106: Identify – Data Structure Returned
CNS Value O/M Definition

00h M

The Identify Namespace data structure is returned to the host for the namespace specified
in the Namespace Identifier (CDW1.NSID) field if it is an active NSID. If the specified
namespace is not an active NSID, then the controller returns a zero filled data structure.

If the controller supports Namespace Management and CDW1.NSID is set to FFFFFFFFh,
the controller returns an Identify Namespace data structure that specifies capabilities that are
common across namespaces for this controller. If the controller does not support Namespace
Management and CDW1.NSID is set to FFFFFFFFh, the controller shall fail the command
with a status code of Invalid Namespace or Format.

01h M The Identify Controller data structure is returned to the host for this controller.

02h M

A list of 1024 namespace IDs is returned containing active NSIDs in increasing order that are
greater than the value specified in the Namespace Identifier (CDW1.NSID) field of the
command. The controller should abort the command with status code Invalid Namespace or
Format if CDW1.NSID is set to FFFFFFFEh or FFFFFFFFh. Note that CDW1.NSID may be
cleared to 0h to retrieve a Namespace List including the namespace starting with NSID of 1h.
The data structure returned is a Namespace List (refer to section 4.8).

03h M

A list of Namespace Identification Descriptor structures (refer to Figure 116) is returned to
the host for the namespace specified in the Namespace Identifier (CDW1.NSID) field if it is
an active NSID.

The controller may return any number of variable length Namespace Identification Descriptor
structures that fit into the 4096 byte Identify payload. All remaining bytes after the namespace
identification descriptor structures should be cleared to 0h, and the host shall interpret a
Namespace Identifier Descriptor Length (NIDL) value of 0h as the end of the list. If, while
processing these descriptors, the host detects a descriptor type that it does not recognize,
then it should skip the unrecognized descriptor type and continue parsing the structure.

A controller shall not return multiple descriptors with the same Namespace Identification
Descriptor Type (NIDT). A controller shall return at least one descriptor identifying the
namespace.

04h – 0Fh Reserved

NVM Express 1.3a

118

CNS Value O/M Definition
Controller and Namespace Management

10h NOTE 1

A list of up to 1024 namespace IDs is returned to the host containing allocated NSIDs with a
namespace identifier greater than the value specified in the Namespace Identifier
(CDW1.NSID) field.

The controller should abort the command with status code Invalid Namespace or Format if
CDW1.NSID is set to FFFFFFFEh or FFFFFFFFh. Note that CDW1.NSID may be cleared to
0h to retrieve a Namespace List including the namespace starting with NSID of 1h.

11h NOTE 1

The Identify Namespace data structure is returned to the host for the namespace specified
in the Namespace Identifier (CDW1.NSID) field if it is an allocated NSID. If the specified
namespace is an unallocated NSID then the controller returns a zero filled data structure. If
the specified namespace is an invalid NSID then the controller shall fail the command with a
status code of Invalid Namespace or Format. If CDW1.NSID is set to FFFFFFFFh then the
controller should fail the command with a status code of Invalid Namespace or Format.

12h NOTE 1

A Controller List of up to 2047 controller identifiers is returned containing a controller identifier
greater than or equal to the value specified in the Controller Identifier (CDW10.CNTID) field.
The list contains controller identifiers that are attached to the namespace specified in the
Namespace Identifier (CDW1.NSID) field.

13h NOTE 1

A Controller List of up to 2047 controller identifiers is returned containing a controller identifier
greater than or equal to the value specified in the Controller Identifier (CDW10.CNTID) field.
The list contains controller identifiers in the NVM subsystem that may or may not be attached
to namespace(s).

14h NOTE 2 The Primary Controller Capabilities Structure (refer to Figure 110) is returned to the host for
the primary controller specified.

15h NOTE 2

A Secondary Controller List (refer to Figure 111) is returned to the host for up to 127
secondary controllers associated with the primary controller issuing this command. The list
contains entries for controller identifiers greater than or equal to the value specified in the
Controller Identifier (CDW10.CNTID) field.

16h – 1Fh Reserved
Future Definition

20h – FFh Reserved
NOTES:
1. Mandatory for controllers that support Namespace Management.
2. Mandatory for controllers that support Virtualization Enhancements.

The Identify command uses the Data Pointer and Command Dword 10 fields. All other command specific
fields are reserved.

Figure 107: Identify – Data Pointer
Bit Description

127:00
Data Pointer (DPTR): This field specifies the start of the data buffer. Refer to Figure 11 for the
definition of this field. If using PRPs, this field shall not be a pointer to a PRP List as the data buffer
may not cross more than one page boundary.

NVM Express 1.3a

119

Figure 108: Identify – Command Dword 10
Bit Description

31:16

Controller Identifier (CNTID): This field specifies the controller identifier used as part of some
Identify operations. If the field is not used as part of the Identify operation, then host software shall
clear this field to 0h for backwards compatibility (0h is a valid controller identifier).

Controllers that support Namespace Management shall support this field. This field is used for
Identify operations with a CNS value of 12h or 13h. This field should be cleared to 0h for Identify
operations with a CNS value of 00h, 01h, 02h, 10h, and 11h.

15:08 Reserved

07:00 Controller or Namespace Structure (CNS): This field specifies the information to be returned to
the host. Refer to Figure 106.

Figure 109: Identify – Identify Controller Data Structure
Bytes O/M Description

Controller Capabilities and Features

01:00 M PCI Vendor ID (VID): Contains the company vendor identifier that is assigned by
the PCI SIG. This is the same value as reported in the ID register in section 2.1.1.

03:02 M
PCI Subsystem Vendor ID (SSVID): Contains the company vendor identifier that
is assigned by the PCI SIG for the subsystem. This is the same value as reported
in the SS register in section 2.1.17.

23:04 M
Serial Number (SN): Contains the serial number for the NVM subsystem that is
assigned by the vendor as an ASCII string. Refer to section 7.10 for unique identifier
requirements. Refer to section 1.5 for ASCII string requirements.

63:24 M
Model Number (MN): Contains the model number for the NVM subsystem that is
assigned by the vendor as an ASCII string. Refer to section 7.10 for unique identifier
requirements. Refer to section 1.5 for ASCII string requirements.

71:64 M

Firmware Revision (FR): Contains the currently active firmware revision for the
NVM subsystem. This is the same revision information that may be retrieved with
the Get Log Page command, refer to section 5.14.1.3. Refer to section 1.5 for ASCII
string requirements.

72 M
Recommended Arbitration Burst (RAB): This is the recommended Arbitration
Burst size. The value is in commands and is reported as a power of two (2^n). This
is the same units as the Arbitration Burst size. Refer to section 4.11.

75:73 M
IEEE OUI Identifier (IEEE): Contains the Organization Unique Identifier (OUI) for
the controller vendor. The OUI shall be a valid IEEE/RAC assigned identifier that
may be registered at http://standards.ieee.org/develop/regauth/oui/public.html.

76 O

Controller Multi-Path I/O and Namespace Sharing Capabilities (CMIC): This
field specifies multi-path I/O and namespace sharing capabilities of the controller
and NVM subsystem.

Bits 7:3 are reserved

Bit 2: If set to ‘1’ then the controller is associated with an SR-IOV Virtual Function. If
cleared to ‘0’ then the controller is associated with a PCI Function or a Fabrics
connection.

Bit 1: If set to ‘1’ then the NVM subsystem may contain two or more controllers. If
cleared to ‘0’ then the NVM subsystem contains only a single controller. As
described in section 1.4.1, an NVM subsystem that contains multiple controllers may
be used by multiple hosts, or may provide multiple paths for a single host.

Bit 0: If set to ‘1’ then the NVM subsystem may contain more than one NVM
subsystem port. If cleared to ‘0’ then the NVM subsystem contains only a single
NVM subsystem port.

http://standards.ieee.org/develop/regauth/oui/public.html

NVM Express 1.3a

120

Bytes O/M Description

77 M

Maximum Data Transfer Size (MDTS): This field indicates the maximum data
transfer size between the host and the controller. The host should not submit a
command that exceeds this transfer size. If a command is submitted that exceeds
the transfer size, then the command is aborted with a status of Invalid Field in
Command. The value is in units of the minimum memory page size (CAP.MPSMIN)
and is reported as a power of two (2^n). A value of 0h indicates no restrictions on
transfer size. The restriction includes metadata if it is interleaved with the logical
block data. The restriction does not apply to commands that do not transfer data
between the host and the controller (e.g., Write Uncorrectable command or Write
Zeroes command).

If SGL Bit Bucket descriptors are supported, their lengths shall be included in
determining if a command exceeds the Maximum Data Transfer Size for destination
data buffers. Their length in a source data buffer is not included for a Maximum
Data Transfer Size calculation.

79:78 M
Controller ID (CNTLID): Contains the NVM subsystem unique controller identifier
associated with the controller. Refer to section 7.10 for unique identifier
requirements.

83:80 M
Version (VER): This field contains the value reported in the Version register defined
in section 3.1.2. Implementations compliant to revision 1.2 or later of this
specification shall report a non-zero value in this field.

87:84 M
RTD3 Resume Latency (RTD3R): This field indicates the typical latency in
microseconds resuming from Runtime D3 (RTD3). Refer to section 8.4.4 for test
conditions. A value of 0h indicates RTD3 Resume Latency is not reported.

91:88 M
RTD3 Entry Latency (RTD3E): This field indicates the typical latency in
microseconds to enter Runtime D3 (RTD3). Refer to section 8.4.4 for test conditions.
A value of 0h indicates RTD3 Entry Latency is not reported.

95:92 M

Optional Asynchronous Events Supported (OAES): This field indicates the
optional asynchronous events supported by the controller. A controller shall not send
optional asynchronous events before they are enabled by host software.

Bits 31:10 are reserved.

Bit 9 is set to ‘1’ if the controller supports sending Firmware Activation Notices. If
cleared to ‘0’ then the controller does not support the Firmware Activation Notices
event.

Bit 8 is set to ‘1’ if the controller supports sending Namespace Attribute Notices and
the associated Changed Namespace List log page. If cleared to ‘0’ then the
controller does not support the Namespace Attribute Notices event nor the
associated Changed Namespace List log page.

Bits 7:0 are reserved.

99:96 M

Controller Attributes (CTRATT): This field indicates attributes of the controller.

Bits 31:2 are reserved.

Bit 1 (Non-Operational Power State Permissive Mode): If set to ‘1’ then the controller
supports host control of whether the controller may temporarily exceed the power of
a non-operational power state for the purpose of executing controller initiated
background operations in a non-operational power state (i.e., Non-Operational
Power State Permissive Mode supported). If cleared to ‘0’ then the controller does
not support host control of whether the controller may exceed the power of a non-
operational state for the purpose of executing controller initiated background
operations in a non-operational state (i.e., Non-Operational Power State Permissive
Mode not supported). Refer to section 5.21.1.17.

Bit 0 if set to ‘1’ then the controller supports a 128-bit Host Identifier. Bit 0 if cleared
to ‘0’ then the controller does not support a 128-bit Host Identifier.

111:100 Reserved

NVM Express 1.3a

121

Bytes O/M Description

127:112 O

FRU Globally Unique Identifier (FGUID): This field contains a 128-bit value that is
globally unique for a given Field Replaceable Unit (FRU). Refer to the NVM Express
Management Interface (NVMe-MI) specification for the definition of a FRU. This field
remains fixed throughout the life of the FRU. This field shall contain the same value
for each controller associated with a given FRU.

This field uses the EUI-64 based 16-byte designator format. Bytes 122:120 contain
the 24-bit Organizationally Unique Identifier (OUI) value assigned by the IEEE
Registration Authority. Bytes 127:123 contain an extension identifier assigned by the
corresponding organization. Bytes 119:112 contain the vendor specific extension
identifier assigned by the corresponding organization. See the IEEE EUI-64
guidelines for more information. This field is big endian (refer to section 7.10).

When not implemented, this field contains a value of 0h.

239:128 Reserved
255:240 Refer to the NVMe Management Interface Specification for definition.

Admin Command Set Attributes & Optional Controller Capabilities

257:256 M

Optional Admin Command Support (OACS): This field indicates the optional
Admin commands and features supported by the controller. Refer to section 5.

Bits 15:9 are reserved.

Bit 8 if set to '1' then the controller supports the Doorbell Buffer Config command. If
cleared to '0' then the controller does not support the Doorbell Buffer Config
command.

Bit 7 if set to ‘1’ then the controller supports the Virtualization Management
command. If cleared to ‘0’ then the controller does not support the Virtualization
Management command.

Bit 6 if set to ‘1’ then the controller supports the NVMe-MI Send and NVMe-MI
Receive commands. If cleared to ‘0’ then the controller does not support the NVMe-
MI Send and NVMe-MI Receive commands.

Bit 5 if set to ‘1’ then the controller supports Directives. If cleared to ‘0’ then the
controller does not support Directives. A controller that supports Directives shall
support the Directive Send and Directive Receive commands. Refer to section 9.

Bit 4 if set to ‘1’ then the controller supports the Device Self-test command. If cleared
to ‘0’ then the controller does not support the Device Self-test command.

Bit 3 if set to ‘1’ then the controller supports the Namespace Management and
Namespace Attachment commands. If cleared to ‘0’ then the controller does not
support the Namespace Management and Namespace Attachment commands.

Bit 2 if set to ‘1’ then the controller supports the Firmware Commit and Firmware
Image Download commands. If cleared to ‘0’ then the controller does not support
the Firmware Commit and Firmware Image Download commands.

Bit 1 if set to ‘1’ then the controller supports the Format NVM command. If cleared
to ‘0’ then the controller does not support the Format NVM command.

Bit 0 if set to ‘1’ then the controller supports the Security Send and Security Receive
commands. If cleared to ‘0’ then the controller does not support the Security Send
and Security Receive commands.

258 M

Abort Command Limit (ACL): This field is used to convey the maximum number
of concurrently executing Abort commands supported by the controller (refer to
section 5.1). This is a 0’s based value. It is recommended that implementations
support concurrent execution of a minimum of four Abort commands.

NVM Express 1.3a

122

Bytes O/M Description

259 M

Asynchronous Event Request Limit (AERL): This field is used to convey the
maximum number of concurrently outstanding Asynchronous Event Request
commands supported by the controller (see section 5.2). This is a 0’s based value.
It is recommended that implementations support a minimum of four Asynchronous
Event Request Limit commands outstanding simultaneously.

260 M

Firmware Updates (FRMW): This field indicates capabilities regarding firmware
updates. Refer to section 8.1 for more information on the firmware update process.

Bits 7:5 are reserved.

Bit 4 if set to ‘1’ indicates that the controller supports firmware activation without a
reset. If cleared to ‘0’ then the controller requires a reset for firmware to be activated.

Bits 3:1 indicate the number of firmware slots that the controller supports. This field
shall specify a value between one and seven, indicating that at least one firmware
slot is supported and up to seven maximum. This corresponds to firmware slots 1
through 7.

Bit 0 if set to ‘1’ indicates that the first firmware slot (slot 1) is read only. If cleared
to ‘0’ then the first firmware slot (slot 1) is read/write. Implementations may choose
to have a baseline read only firmware image.

261 M

Log Page Attributes (LPA): This field indicates optional attributes for log pages
that are accessed via the Get Log Page command.

Bits 7:4 are reserved.

Bit 3 if set to ‘1’ then the controller supports the Telemetry Host-Initiated and
Telemetry Controller-Initiated log pages and sending Telemetry Log Notices. If
cleared to ’0’ then the controller does not support the Telemetry Host-Initiated and
Telemetry Controller-Initiated log pages and Telemetry Log Notice events.

Bit 2 if set to ‘1’ then the controller supports extended data for Get Log Page
(including extended Number of Dwords and Log Page Offset fields). Bit 2 if cleared
to ‘0’ then the controller does not support extended data for Get Log Page.

Bit 1 if set to ‘1’ then the controller supports the Commands Supported and Effects
log page. Bit 1 if cleared to ‘0’ then the controller does not support the Commands
Supported and Effects log page.

Bit 0 if set to ‘1’ then the controller supports the SMART / Health information log
page on a per namespace basis. If cleared to ‘0’ then the controller does not support
the SMART / Health information log page on a per namespace basis.

262 M
Error Log Page Entries (ELPE): This field indicates the maximum number of Error
Information log entries that are stored by the controller. This field is a 0’s based
value.

263 M

Number of Power States Support (NPSS): This field indicates the number of NVM
Express power states supported by the controller. This is a 0’s based value. Refer
to section 8.4.

Power states are numbered sequentially starting at power state 0. A controller shall
support at least one power state (i.e., power state 0) and may support up to 31
additional power states (i.e., up to 32 total).

264 M

Admin Vendor Specific Command Configuration (AVSCC): This field indicates
the configuration settings for Admin Vendor Specific command handling. Refer to
section 8.7.

Bits 7:1 are reserved.

Bit 0 if set to ‘1’ indicates that all Admin Vendor Specific Commands use the format
defined in Figure 12. If cleared to ‘0’ indicates that the format of all Admin Vendor
Specific Commands are vendor specific.

NVM Express 1.3a

123

Bytes O/M Description

265 O

Autonomous Power State Transition Attributes (APSTA): This field indicates the
attributes of the autonomous power state transition feature. Refer to section 8.4.2.

Bits 7:1 are reserved.

Bit 0 if set to ‘1’ then the controller supports autonomous power state transitions. If
cleared to ‘0’ then the controller does not support autonomous power state
transitions.

267:266 M

Warning Composite Temperature Threshold (WCTEMP): This field indicates the
minimum Composite Temperature field value (reported in the SMART / Health
Information log in Figure 93) that indicates an overheating condition during which
controller operation continues. Immediate remediation is recommended (e.g.,
additional cooling or workload reduction). The platfom should strive to maintain a
composite temperature below this value.

A value of 0h in this field indicates that no warning temperature threshold value is
reported by the controller. Implementations compliant to revision 1.2 or later of this
specification shall report a non-zero value in this field.

It is recommended that implementations report a value of 0157h in this field.

269:268 M

Critical Composite Temperature Threshold (CCTEMP): This field indicates the
minimum Composite Temperature field value (reported in the SMART / Health
Information log in Figure 93) that indicates a critical overheating condition (e.g., may
prevent continued normal operation, possibility of data loss, automatic device
shutdown, extreme peformance throttling, or permanent damage).

A value of 0h in this field indicates that no critical temperature threshold value is
reported by the controller. Implementations compliant to revision 1.2 or later of this
specification shall report a non-zero value in this field.

271:270 O

Maximum Time for Firmware Activation (MTFA): Indicates the maximum time the
controller temporarily stops processing commands to activate the firmware image.
This field shall be valid if the controller supports firmware activation without a reset.
This field is specified in 100 millisecond units. A value of 0h indicates that the
maximum time is undefined.

275:272 O

Host Memory Buffer Preferred Size (HMPRE): This field indicates the preferred
size that the host is requested to allocate for the Host Memory Buffer feature in 4KB
units. This value shall be larger than or equal to the Host Memory Buffer Minimum
Size. If this field is non-zero, then the Host Memory Buffer feature is supported. If
this field is cleared to 0h, then the Host Memory Buffer feature is not supported.

279:276 O

Host Memory Buffer Minimum Size (HMMIN): This field indicates the minimum
size that the host is requested to allocate for the Host Memory Buffer feature in 4KB
units. If this field is cleared to 0h, then the host is requested to allocate any amount
of host memory possible up to the HMPRE value.

295:280 O
Total NVM Capacity (TNVMCAP): This field indicates the total NVM capacity in the
NVM subsystem. The value is in bytes. This field shall be supported if Namespace
Management and Namespace Attachment commands are supported.

311:296 O
Unallocated NVM Capacity (UNVMCAP): This field indicates the unallocated NVM
capacity in the NVM subsystem. The value is in bytes. This field shall be supported
if Namespace Management and Namespace Attachment commands are supported.

NVM Express 1.3a

124

Bytes O/M Description

315:312 O

Replay Protected Memory Block Support (RPMBS): This field indicates if the
controller supports one or more Replay Protected Memory Blocks (RPMBs) and the
capabilities. Refer to section 8.10.

Bits Description

31:24

Access Size: This field indicates the size that may be read or written per
RPMB access by Security Send or Security Receive commands for this
controller in 512B units. This is a 0’s based value. A value of 0h indicates
a size of 512B.

23:16
Total Size: This field indicates the size of each RPMB supported in the
controller in 128KB units. This is a 0’s based value. A value of 0h
indicates a size of 128KB.

15:06 Reserved

05:03

Authentication Method: This field indicates the authentication method
used to access all RPMBs in the controller. The values for this field are:

Value Definition
000b HMAC SHA-256

001b-111b Reserved

02:00

Number of RPMB Units: This field indicates the number of RPMB
targets the controller supports. All RPMB targets supported shall have
the same capabilities as defined in the RPMBS field. A value of 0h
indicates the controller does not support Replay Protected Memory
Blocks. If this value is non-zero, then the controller shall support the
Security Send and Security Receive commands.

317:316 O

Extended Device Self-test Time (EDSTT): If the Device Self-test command is
supported, then this field indicates the nominal amount of time in one minute units
that the controller takes to complete an extended device self-test operation when in
power state 0. If the Device Self-test command is not supported, then this field is
reserved.

318 O

Device Self-test Options (DSTO): This field indicates the optional Device Self-test
command or operation behaviors supported by the controller or NVM subsystem.

Bit 0 if set to ‘1’ then the NVM subsystem supports only one device self-test
operation in progress at a time. If cleared to ‘0’ then the NVM subsystem supports
one device self-test operation per controller at a time.

319 M

Firmware Update Granularity (FWUG): This field indicates the minimum
granularity and alignment of the data provided in the Firmware Image Download
command. If the data in the Firmware Image Download command does not conform
to these granularity and alignment requirements, the firmware update may fail. For
the broadest interoperability with software, it is recommended that the controller set
this value to the lowest value possible.

The value is reported in 4KB units (1h corresponds to 4KB, 2h corresponds to 8KB,
etc.). A value of 0h indicates that no information on granularity is provided. A value
of FFh indicates there is no restriction (i.e., any granularity and alignment in Dwords
is allowed).

321:320 M

Keep Alive Support (KAS): This field indicates the granularity of the Keep Alive
Timer in 100 ms units (refer to section 7.12). If this field is cleared to 0h then Keep
Alive is not supported. Keep Alive shall be supported for NVMe over Fabrics
implementations.

NVM Express 1.3a

125

Bytes O/M Description

323:322 O

Host Controlled Thermal Management Attributes (HCTMA): This field indicates
the attributes of the host controlled thermal management feature. Refer to section
8.4.5.

Bits 15:1 are reserved.

Bit 0 if set to ‘1’ then the controller supports host controlled thermal management. If
cleared to ‘0’ then the controller does not support host controlled thermal
management. If this bit is set to ‘1’ then, the controller shall support the Set Features
command and Get Features command with the Feature Identifier field set to 10h.

325:324 O

Minimum Thermal Management Temperature (MNTMT): This field indicates the
minimum temperature, in degrees Kelvin, that the host may request in the Thermal
Management Temperature 1 field and Thermal Management Temperature 2 field of
a Set Features command with the Feature Identifier field set to 10h. A value of 0000h
indicates that the controller does not report this field or the host controlled thermal
management feature (refer to section 8.4.5) is not supported.

327:326 O

Maximum Thermal Management Temperature (MXTMT): This field indicates the
maximum temperature, in degrees Kelvin, that the host may request in the Thermal
Management Temperature 1 field and Thermal Management Temperature 2 field of
the Set Features command with the Feature Identifier set to 10h. A value of 0000h
indicates that the controller does not report this field or the host controlled thermal
management feature is not supported.

331:328 O

Sanitize Capabilities (SANICAP): This field indicates attributes for sanitize
operations. If the Sanitize command is supported then this field shall be non-zero.
If the Sanitize command is not supported, then this field is reserved. Refer to
section 8.15.

Bits 31:3 are reserved.

Bit 2 if set to ‘1’ then the controller supports the Overwrite sanitize operation. If
cleared to ‘0’ then the controller does not support the Overwrite sanitize operation.

Bit 1 if set to ‘1’ then the controller supports the Block Erase sanitize operation. If
cleared to ‘0’ then the controller does not support the Block Erase sanitize
operation.

Bit 0 if set to ‘1’ then the controller supports the Crypto Erase sanitize operation. If
cleared to ‘0’ then the controller does not support the Crypto Erase sanitize
operation.

511:332 Reserved
NVM Command Set Attributes

512 M

Submission Queue Entry Size (SQES): This field defines the required and
maximum Submission Queue entry size when using the NVM Command Set.

Bits 7:4 define the maximum Submission Queue entry size when using the NVM
Command Set. This value is larger than or equal to the required SQ entry size. The
value is in bytes and is reported as a power of two (2^n). The recommended value
is 6, corresponding to a standard NVM Command Set SQ entry size of 64 bytes.
Controllers that implement proprietary extensions may support a larger value.

Bits 3:0 define the required Submission Queue Entry size when using the NVM
Command Set. This is the minimum entry size that may be used. The value is in
bytes and is reported as a power of two (2^n). The required value shall be 6,
corresponding to 64.

NVM Express 1.3a

126

Bytes O/M Description

513 M

Completion Queue Entry Size (CQES): This field defines the required and
maximum Completion Queue entry size when using the NVM Command Set.

Bits 7:4 define the maximum Completion Queue entry size when using the NVM
Command Set. This value is larger than or equal to the required CQ entry size. The
value is in bytes and is reported as a power of two (2^n). The recommended value
is 4, corresponding to a standard NVM Command Set CQ entry size of 16 bytes.
Controllers that implement proprietary extensions may support a larger value.

Bits 3:0 define the required Completion Queue entry size when using the NVM
Command Set. This is the minimum entry size that may be used. The value is in
bytes and is reported as a power of two (2^n). The required value shall be 4,
corresponding to 16.

515:514 M

Maximum Outstanding Commands (MAXCMD): Indicates the maximum number
of commands that the controller processes at one time for a particular queue (which
may be larger than the size of the corresponding Submission Queue). The host may
use this value to size Completion Queues and optimize the number of commands
submitted at one time to a particular I/O Queue. This field is mandatory for NVMe
over Fabrics and optional for NVMe over PCIe implementations. If the field is not
used, it shall be cleared to 0h.

519:516 M
Number of Namespaces (NN): This field defines the maximum number of
namespaces supported by the controller. This field also represents the maximum
value of a valid NSID for the controller.

521:520 M

Optional NVM Command Support (ONCS): This field indicates the optional NVM
commands and features supported by the controller. Refer to section 6.

Bits 15:7 are reserved.

Bit 6 if set to ‘1’ then the controller supports the Timestamp feature. If cleared to ‘0’,
then the controller does not support the Timestamp feature. Refer to section
5.21.1.14.

Bit 5 if set to ‘1’ then the controller supports reservations. If cleared to ‘0’ then the
controller does not support reservations. If the controller supports reservations, then
it shall support the following commands associated with reservations: Reservation
Report, Reservation Register, Reservation Acquire, and Reservation Release. Refer
to section 8.8 for additional requirements.

Bit 4 if set to ‘1’ then the controller supports the Save field set to a non-zero value in
the Set Features command and the Select field set to a non-zero value in the Get
Features command. If cleared to ‘0’ then the controller does not support the Save
field set to a non-zero value in the Set Features command and the Select field set
to a non-zero value in the Get Features command.

Bit 3 if set to ‘1’ then the controller supports the Write Zeroes command. If cleared
to ‘0’ then the controller does not support the Write Zeroes command.

Bit 2 if set to ‘1’ then the controller supports the Dataset Management command. If
cleared to ‘0’ then the controller does not support the Dataset Management
command.

Bit 1 if set to ‘1’ then the controller supports the Write Uncorrectable command. If
cleared to ‘0’ then the controller does not support the Write Uncorrectable command.

Bit 0 if set to ‘1’ then the controller supports the Compare command. If cleared to
‘0’ then the controller does not support the Compare command.

NVM Express 1.3a

127

Bytes O/M Description

523:522 M

Fused Operation Support (FUSES): This field indicates the fused operations that
the controller supports. Refer to section 6.2.

Bits 15:1 are reserved.

Bit 0 if set to ‘1’ then the controller supports the Compare and Write fused operation.
If cleared to ‘0’ then the controller does not support the Compare and Write fused
operation. Compare shall be the first command in the sequence.

524 M

Format NVM Attributes (FNA): This field indicates attributes for the Format NVM
command.

Bits 7:3 are reserved.

Bit 2 indicates whether cryptographic erase is supported as part of the secure erase
functionality. If set to ‘1’, then cryptographic erase is supported. If cleared to ‘0’,
then cryptographic erase is not supported.

Bit 1 indicates whether secure erase functionality applies to all namespaces in an
NVM subsystem or is specific to a particular namespace. If set to ’1’, then any
secure erase performed as part of a format operation results in a secure erase of all
namespaces in the NVM subsystem. If cleared to ‘0’, then any secure erase
performed as part of a format results in a secure erase of the particular namespace
specified.

Bit 0 indicates whether the format operation (excluding secure erase) applies to all
namespaces in an NVM subsystem or is specific to a particular namespace. If set to
‘1’, then all namespaces in an NVM subsystem shall be configured with the same
attributes and a format (excluding secure erase) of any namespace results in a
format of all namespaces in an NVM subsystem. If cleared to ‘0’, then the controller
supports format on a per namespace basis.

525 M

Volatile Write Cache (VWC): This field indicates attributes related to the presence
of a volatile write cache in the implementation.

Bits 7:1 are reserved.

Bit 0 if set to ‘1’ indicates that a volatile write cache is present. If cleared to ‘0’, a
volatile write cache is not present. If a volatile write cache is present, then the host
may issue Flush commands and control whether the volatile write cache is enabled
with Set Features specifying the Volatile Write Cache feature identifier. If a volatile
write cache is not present, Flush commands complete successfully and have no
effect, Set Features with the Volatile Write Cache identifier field set shall fail with
Invalid Field status, and Get Features with the Volatile Write Cache identifier field
set should fail with Invalid Field status.

NVM Express 1.3a

128

Bytes O/M Description

527:526 M

Atomic Write Unit Normal (AWUN): This field indicates the size of the write
operation guaranteed to be written atomically to the NVM across all namespaces
with any supported namespace format during normal operation. This field is
specified in logical blocks and is a 0’s based value.

If a specific namespace guarantees a larger size than is reported in this field, then
this namespace specific size is reported in the NAWUN field in the Identify
Namespace data structure. Refer to section 6.4.

If a write command is submitted with size less than or equal to the AWUN value, the
host is guaranteed that the write command is atomic to the NVM with respect to
other read or write commands. If a write command is submitted with size greater
than the AWUN value, then there is no guarantee of command atomicity. AWUN
does not have any applicability to write errors caused by power failure (refer to
Atomic Write Unit Power Fail).

A value of FFFFh indicates all commands are atomic as this is the largest command
size. It is recommended that implementations support a minimum of 128KB
(appropriately scaled based on LBA size).

529:528 M

Atomic Write Unit Power Fail (AWUPF): This field indicates the size of the write
operation guaranteed to be written atomically to the NVM across all namespaces
with any supported namespace format during a power fail or error condition.

If a specific namespace guarantees a larger size than is reported in this field, then
this namespace specific size is reported in the NAWUPF field in the Identify
Namespace data structure. Refer to section 6.4.

This field is specified in logical blocks and is a 0’s based value. The AWUPF value
shall be less than or equal to the AWUN value.

If a write command is submitted with size less than or equal to the AWUPF value,
the host is guaranteed that the write is atomic to the NVM with respect to other read
or write commands. If a write command is submitted that is greater than this size,
there is no guarantee of command atomicity. If the write size is less than or equal
to the AWUPF value and the write command fails, then subsequent read commands
for the associated logical blocks shall return data from the previous successful write
command. If a write command is submitted with size greater than the AWUPF value,
then there is no guarantee of data returned on subsequent reads of the associated
logical blocks.

530 M

NVM Vendor Specific Command Configuration (NVSCC): This field indicates the
configuration settings for NVM Vendor Specific command handling. Refer to section
8.7.

Bits 7:1 are reserved.

Bit 0 if set to ‘1’ indicates that all NVM Vendor Specific Commands use the format
defined in Figure 12. If cleared to ‘0’ indicates that the format of all NVM Vendor
Specific Commands are vendor specific.

531 M Reserved

NVM Express 1.3a

129

Bytes O/M Description

533:532 O

Atomic Compare & Write Unit (ACWU): This field indicates the size of the write
operation guaranteed to be written atomically to the NVM across all namespaces
with any supported namespace format for a Compare and Write fused operation.

If a specific namespace guarantees a larger size than is reported in this field, then
this namespace specific size is reported in the NACWU field in the Identify
Namespace data structure. Refer to section 6.4.

This field shall be supported if the Compare and Write fused command is supported.
This field is specified in logical blocks and is a 0’s based value. If a Compare and
Write is submitted that requests a transfer size larger than this value, then the
controller may fail the command with a status code of Invalid Field in Command. If
Compare and Write is not a supported fused command, then this field shall be 0h.

535:534 M Reserved

539:536 O

SGL Support (SGLS): This field indicates if SGLs are supported for the NVM
Command Set and the particular SGL types supported. Refer to section 4.4.

Bits Description
31:21 Reserved

20

If set to ‘1’, then the controller supports the Address field in SGL
Data Block, SGL Segment, and SGL Last Segment descriptor
types specifying an offset. If cleared to ‘0’ then the Address field
specifying an offset is not supported.

19

If set to ‘1’, then use of a Metadata Pointer (MPTR) that contains
an address of an SGL segment containing exactly one SGL
Descriptor that is Qword aligned is supported. If cleared to
‘0’, then use of a MPTR containing an SGL Descriptor is not
supported.

18

If set to ‘1’, then the controller supports commands that contain
a data or metadata SGL of a length larger than the amount of
data to be transferred. If cleared to ‘0’, then the SGL length shall
be equal to the amount of data to be transferred.

17

If set to ‘1’, then use of a byte aligned contiguous physical buffer
of metadata (the Metadata Pointer field in Figure 11) is
supported. If cleared to ‘0’, then use of a byte aligned contiguous
physical buffer of metadata is not supported.

16
If set to ‘1’, then the SGL Bit Bucket descriptor is supported. If
cleared to ‘0’, then the SGL Bit Bucket descriptor is not
supported.

15:03 Reserved

02
If set to ‘1’, then the controller supports the Keyed SGL Data
Block descriptor. If cleared to ‘0’, then the controller does not
support the Keyed SGL Data Block descriptor.

01:00

This field is used to determine the SGL support for the NVM
Command Set. Valid values are shown in the table below.

Value Definition
00b SGLs are not supported.

01b SGLs are supported. There is no alignment
nor granularity requirement for Data Blocks.

10b
SGLs are supported. There is a Dword
alignment and granularity requirement for
Data Blocks (refer to section 4.4).

11b Reserved

767:540 Reserved

NVM Express 1.3a

130

Bytes O/M Description

1023:768 M

NVM Subsystem NVMe Qualified Name (SUBNQN): This field specifies the NVM
Subsystem NVMe Qualified Name as a UTF-8 null-terminated string. Refer to
section 7.9 for the definition of NVMe Qualified Name.

Support for this field is mandatory if the controller supports revision 1.2.1 or later as
indicated in the Version register (refer to section 3.1.2).

1791:1024 Reserved
2047:1792 Refer to the NVMe over Fabrics specification.

Power State Descriptors

2079:2048 M Power State 0 Descriptor (PSD0): This field indicates the characteristics of power
state 0. The format of this field is defined in Figure 113.

2111:2080 O Power State 1 Descriptor (PSD1): This field indicates the characteristics of power
state 1. The format of this field is defined in Figure 113.

2143:2112 O Power State 2 Descriptor (PSD2): This field indicates the characteristics of power
state 2. The format of this field is defined in Figure 113.

2175:2144 O Power State 3 Descriptor (PSD3): This field indicates the characteristics of power
state 3. The format of this field is defined in Figure 113.

2207:2176 O Power State 4 Descriptor (PSD4): This field indicates the characteristics of power
state 4. The format of this field is defined in Figure 113.

2239:2208 O Power State 5 Descriptor (PSD5): This field indicates the characteristics of power
state 5. The format of this field is defined in Figure 113.

2271:2240 O Power State 6 Descriptor (PSD6): This field indicates the characteristics of power
state 6. The format of this field is defined in Figure 113.

2303:2272 O Power State 7 Descriptor (PSD7): This field indicates the characteristics of power
state 7. The format of this field is defined in Figure 113.

2335:2304 O Power State 8 Descriptor (PSD8): This field indicates the characteristics of power
state 8. The format of this field is defined in Figure 113.

2367:2336 O Power State 9 Descriptor (PSD9): This field indicates the characteristics of power
state 9. The format of this field is defined in Figure 113.

2399:2368 O Power State 10 Descriptor (PSD10): This field indicates the characteristics of
power state 10. The format of this field is defined in Figure 113.

2431:2400 O Power State 11 Descriptor (PSD11): This field indicates the characteristics of
power state 11. The format of this field is defined in Figure 113.

2463:2432 O Power State 12 Descriptor (PSD12): This field indicates the characteristics of
power state 12. The format of this field is defined in Figure 113.

2495:2464 O Power State 13 Descriptor (PSD13): This field indicates the characteristics of
power state 13. The format of this field is defined in Figure 113.

2527:2496 O Power State 14 Descriptor (PSD14): This field indicates the characteristics of
power state 14. The format of this field is defined in Figure 113.

2559:2528 O Power State 15 Descriptor (PSD15): This field indicates the characteristics of
power state 15. The format of this field is defined in Figure 113.

2591:2560 O Power State 16 Descriptor (PSD16): This field indicates the characteristics of
power state 16. The format of this field is defined in Figure 113.

2623:2592 O Power State 17 Descriptor (PSD17): This field indicates the characteristics of
power state 17. The format of this field is defined in Figure 113.

2655:2624 O Power State 18 Descriptor (PSD18): This field indicates the characteristics of
power state 18. The format of this field is defined in Figure 113.

2687:2656 O Power State 19 Descriptor (PSD19): This field indicates the characteristics of
power state 19. The format of this field is defined in Figure 113.

2719:2688 O Power State 20 Descriptor (PSD20): This field indicates the characteristics of
power state 20. The format of this field is defined in Figure 113.

2751:2720 O Power State 21 Descriptor (PSD21): This field indicates the characteristics of
power state 21. The format of this field is defined in Figure 113.

2783:2752 O Power State 22 Descriptor (PSD22): This field indicates the characteristics of
power state 22. The format of this field is defined in Figure 113.

2815:2784 O Power State 23 Descriptor (PSD23): This field indicates the characteristics of
power state 23. The format of this field is defined in Figure 113.

2847:2816 O Power State 24 Descriptor (PSD24): This field indicates the characteristics of
power state 24. The format of this field is defined in Figure 113.

NVM Express 1.3a

131

Bytes O/M Description

2879:2848 O Power State 25 Descriptor (PSD25): This field indicates the characteristics of
power state 25. The format of this field is defined in Figure 113.

2911:2880 O Power State 26 Descriptor (PSD26): This field indicates the characteristics of
power state 26. The format of this field is defined in Figure 113.

2943:2912 O Power State 27 Descriptor (PSD27): This field indicates the characteristics of
power state 27. The format of this field is defined in Figure 113.

2975:2944 O Power State 28 Descriptor (PSD28): This field indicates the characteristics of
power state 28. The format of this field is defined in Figure 113.

3007:2976 O Power State 29 Descriptor (PSD29): This field indicates the characteristics of
power state 29. The format of this field is defined in Figure 113.

3039:3008 O Power State 30 Descriptor (PSD30): This field indicates the characteristics of
power state 30. The format of this field is defined in Figure 113.

3071:3040 O Power State 31 Descriptor (PSD31): This field indicates the characteristics of
power state 31. The format of this field is defined in Figure 113.

Vendor Specific
4095:3072 O Vendor Specific.

Figure 110: Identify – Primary Controller Capabilities Structure
Bytes Description

1:0 Controller Identifier (CNTLID): This field indicates the Controller Identifier of the primary
controller.

3:2

Port Identifier (PORTID): This field indicates the Port Identifier of the NVM subsystem port
associated with the primary controller. The Port Identifier for a PCI Express Port is the same as
the Port Number field in Link Capabilities Register in the PCI Express Capability structure (refer
to section 2.5.6).

4

Controller Resource Types (CRT): This field indicates the controller resources types
supported. If a controller resource type is supported, then it shall be supported for the primary
controller and all associated secondary controllers.

Bits 7:2 are reserved.

Bit 1 if set to ‘1’ then VI Resources are supported. Bit 1 if cleared to ‘0’ then VI Resources are
not supported. Refer to section 8.5.2.

Bit 0 if set to ‘1’ then VQ Resources are supported. Bit 0 if cleared to ‘0’ then VQ Resources are
not supported. Refer to section 8.5.1.

31:5 Reserved

35:32 VQ Resources Flexible Total (VQFRT): This field indicates the total number of VQ Flexible
Resources for the primary and its secondary controllers.

39:36 VQ Resources Flexible Assigned (VQRFA): This field indicates the total number of VQ
Flexible Resources Assigned to the associated secondary controllers.

41:40

VQ Resources Flexible Allocated to Primary (VQRFAP): This field indicates the total number
of VQ Flexible Resources currently allocated to the primary controller. This value may change
after a Controller Level Reset if a new value was set using the Virtualization Management
command. The default value of this field is implementation specific.

43:42 VQ Resources Private Total (VQPRT): This field indicates the total number of VQ Private
Resources for the primary controller.

45:44 VQ Resources Flexible Secondary Maximum (VQFRSM): This field indicates the maximum
number of VQ Flexible Resources that may be assigned to a secondary controller.

47:46
VQ Flexible Resource Preferred Granularity (VQGRAN): This field indicates the preferred
granularity of assigning and removing VQ Flexible Resources. Assigning and removing VQ
Resources in this granularity minimizes any wasted internal implementation resources.

63:48 Reserved

67:64 VI Resources Flexible Total (VIFRT): This field indicates the total number of VI Flexible
Resources for the primary and its secondary controllers.

71:68 VI Resources Flexible Assigned (VIRFA): This field indicates the total number of VI Flexible
Resources Assigned to the associated secondary controllers.

NVM Express 1.3a

132

Bytes Description

73:72

VI Resources Flexible Allocated to Primary (VIRFAP): This field indicates the total number
of VI Flexible Resources currently allocated to the primary controller. This value may change
after a Controller Level Reset if a new value was set using the Virtualization Management
command. The default value of this field is implementation specific.

75:74 VI Resources Private Total (VIPRT): This field indicates the total number of VI Private
Resources for the primary controller.

77:76 VI Resources Flexible Secondary Maximum (VIFRSM): This field indicates the maximum
number of VI Flexible Resources that may be assigned to a secondary controller.

79:78
VI Flexible Resource Preferred Granularity (VIGRAN): This field indicates the preferred
granularity of assigning and removing VI Flexible Resources. Assigning and removing VI
Resources in this granularity minimizes any wasted internal implementation resources.

4095:80 Reserved

Figure 111 defines a Secondary Controller List. All secondary controllers are represented, including those
that are in an Offline state due to SR-IOV configuration settings (e.g., VF Enable is cleared to 0h or NumVFs
specifies a value that does not enable the associated secondary controller).

Figure 111: Secondary Controller List
Bytes Description

0
Number of Identifiers: This field indicates the number of Secondary Controller Entries in
the list. There are up to 127 entries in the list. A value of 0 indicates there are no entries in
the list.

31:1 Reserved
63:32 SC Entry 0: This field contains the first Secondary Controller Entry in the list, if present.
95:64 SC Entry 1: This field contains the second Secondary Controller Entry in the list, if present.

… …
(N*32+63):
(N*32+32) SC Entry N: This field contains the N+1 Secondary Controller Entry in the list, if present.

Figure 112: Secondary Controller Entry

Bytes Description

1:0 Secondary Controller Identifier (SCID): This field indicates the Controller Identifier of the
secondary controller described by this entry.

3:2 Primary Controller Identifier (PCID): This field indicates the Controller Identifier of the
associated primary controller.

4

Secondary Controller State (SCS): This field indicates the state of the secondary controller.

Bits 7:1 are reserved.

Bit 0 if set to ‘1’ then the controller is in the Online state. Bit 0 if cleared to ‘0’ then the controller is
in the Offline state.

7:5 Reserved

9:8

Virtual Function Number (VFN): If the secondary controller is an SR-IOV VF, this field indicates
its VF Number, where VF Number > 0, and VF Number is no larger than the total number of VFs
indicated by the TotalVFs register (refer to Single Root I/O Virtualization and Sharing
Specification) in the PF’s SR-IOV Extended Capability structure. If the secondary controller is not
an SR-IOV VF, then this field is cleared to zero.

11:10 Number of VQ Flexible Resources Assigned (NVQ): This field indicates the number of VQ
Flexible Resources currently assigned to the indicated secondary controller.

13:12 Number of VI Flexible Resources Assigned (NVI): This field indicates the number of VI Flexible
Resources currently assigned to the indicated secondary controller.

31:14 Reserved

NVM Express 1.3a

133

Figure 113 defines the power state descriptor that describes the attributes of each power state. For more
information on how the power state descriptor fields are used, refer to section 8.4 on power management.

Figure 113: Identify – Power State Descriptor Data Structure

Bits Description
255:184 Reserved
183:182 Active Power Scale (APS): This field indicates the scale for the Active Power field. If an Active

Power Workload is reported for a power state, then the Active Power Scale shall also be reported
for that power state.

Value Definition
00b Not reported for this power state
01b 0.0001 W
10b 0.01 W
11b Reserved

181:179 Reserved
178:176 Active Power Workload (APW): This field indicates the workload used to calculate maximum

power for this power state. Refer to section 8.4.3 for more details on each of the defined
workloads. This field shall not be “No Workload” unless ACTP is 0000h.

175:160 Active Power (ACTP): This field indicates the largest average power consumed by the NVM
subsystem over a 10 second period in this power state with the workload indicated in the Active
Power Workload field. The power in Watts is equal to the value in this field multiplied by the scale
indicated in the Active Power Scale field. A value of 0000h indicates Active Power is not reported.

159:152 Reserved
151:150 Idle Power Scale (IPS): This field indicates the scale for the Idle Power field.

Value Definition
00b Not reported for this power state
01b 0.0001 W
10b 0.01 W
11b Reserved

149:144 Reserved
143:128 Idle Power (IDLP): This field indicates the typical power consumed by the NVM subsystem over

30 seconds in this power state when idle (i.e., there are no pending commands, register
accesses, background processes, nor device self-test operations). The measurement starts after
the NVM subsystem has been idle for 10 seconds. The power in Watts is equal to the value in
this field multiplied by the scale indicated in the Idle Power Scale field. A value of 0000h indicates
Idle Power is not reported.

127:125 Reserved
124:120 Relative Write Latency (RWL): This field indicates the relative write latency associated with this

power state. The value in this field shall be less than the number of supported power states (e.g.,
if the controller supports 16 power states, then valid values are 0 through 15). A lower value
means lower write latency.

119:117 Reserved
116:112 Relative Write Throughput (RWT): This field indicates the relative write throughput associated

with this power state. The value in this field shall be less than the number of supported power
states (e.g., if the controller supports 16 power states, then valid values are 0 through 15). A
lower value means higher write throughput.

111:109 Reserved
108:104 Relative Read Latency (RRL): This field indicates the relative read latency associated with this

power state. The value in this field shall be less than the number of supported power states (e.g.,
if the controller supports 16 power states, then valid values are 0 through 15). A lower value
means lower read latency.

103:101 Reserved

NVM Express 1.3a

134

Bits Description
100:96 Relative Read Throughput (RRT): This field indicates the relative read throughput associated

with this power state. The value in this field shall be less than the number of supported power
states (e.g., if the controller supports 16 power states, then valid values are 0 through 15). A
lower value means higher read throughput.

95:64 Exit Latency (EXLAT): This field indicates the maximum exit latency in microseconds
associated with exiting this power state. A value of 0h indicates Exit Latency is not reported.

63:32 Entry Latency (ENLAT): This field indicates the maximum entry latency in microseconds
associated with entering this power state. A value of 0h indicates Entry Latency is not reported.

31:26 Reserved
25 Non-Operational State (NOPS): This field indicates whether the controller processes I/O

commands in this power state. If this field is cleared to ‘0’, then the controller processes I/O
commands in this power state. If this field is set to ‘1’, then the controller does not process I/O
commands in this power state. Refer to section 8.4.1.

24 Max Power Scale (MXPS): This field indicates the scale for the Maximum Power field. If this
field is cleared to ‘0’, then the scale of the Maximum Power field is in 0.01 Watts. If this field is
set to ‘1’, then the scale of the Maximum Power field is in 0.0001 Watts.

23:16 Reserved
15:00 Maximum Power (MP): This field indicates the maximum power consumed by the NVM

subsystem in this power state. The power in Watts is equal to the value in this field multiplied by
the scale specified in the Max Power Scale field. A value of 0h indicates Maximum Power is not
reported.

NVM Express 1.3a

135

Figure 114 shows the Identify Namespace data structure for the NVM Command Set.

Figure 114: Identify – Identify Namespace Data Structure, NVM Command Set Specific
Bytes O/M Description

7:0 M

Namespace Size (NSZE): This field indicates the total size of the namespace in logical
blocks. A namespace of size n consists of LBA 0 through (n - 1). The number of logical
blocks is based on the formatted LBA size. This field is undefined prior to the namespace
being formatted.

15:8 M

Namespace Capacity (NCAP): This field indicates the maximum number of logical
blocks that may be allocated in the namespace at any point in time. The number of
logical blocks is based on the formatted LBA size. This field is undefined prior to the
namespace being formatted. This field is used in the case of thin provisioning and reports
a value that is smaller than or equal to the Namespace Size. Spare LBAs are not
reported as part of this field.

A logical block is allocated when it is written with a Write or Write Uncorrectable
command. A logical block may be deallocated using the Dataset Management, Sanitize,
or Write Zeroes command.

23:16 M

Namespace Utilization (NUSE): This field indicates the current number of logical blocks
allocated in the namespace. This field is smaller than or equal to the Namespace
Capacity. The number of logical blocks is based on the formatted LBA size.

When using the NVM command set: A logical block is allocated when it is written with a
Write or Write Uncorrectable command. A logical block may be deallocated using the
Dataset Management, Sanitize, or Write Zeroes command.

A controller may report NUSE equal to NCAP at all times if the product is not targeted
for thin provisioning environments.

24 M

Namespace Features (NSFEAT): This field defines features of the namespace.

Bits 7:4 are reserved.

Bit 3 if set to ‘1’ indicates that the non-zero NGUID and non-zero EUI64 fields for this
namespace are never reused by the controller. If cleared to ‘0’, then the NGUID and
EUI64 values may be reused by the controller for a new namespace created after this
namespace is deleted. This bit shall be cleared to ‘0’ if both NGUID and EUI64 fields are
cleared to 0h. Refer to section 7.11.

Bit 2 if set to ‘1’ indicates that the controller supports the Deallocated or Unwritten Logical
Block error for this namespace. If cleared to ‘0’, then the controller does not support the
Deallocated or Unwritten Logical Block error for this namespace. Refer to section 6.7.1.1.

Bit 1 if set to ‘1’ indicates that the fields NAWUN, NAWUPF, and NACWU are defined for
this namespace and should be used by the host for this namespace instead of the
AWUN, AWUPF, and ACWU fields in the Identify Controller data structure. If cleared to
‘0’, then the controller does not support the fields NAWUN, NAWUPF, and NACWU for
this namespace. In this case, the host should use the AWUN, AWUPF, and ACWU fields
defined in the Identify Controller data structure in Figure 109. Refer to section 6.4.

Bit 0 if set to ‘1’ indicates that the namespace supports thin provisioning. Specifically,
the Namespace Capacity reported may be less than the Namespace Size. When this
feature is supported and the Dataset Management command is supported then
deallocating LBAs shall be reflected in the Namespace Utilization field. Bit 0 if cleared
to ‘0’ indicates that thin provisioning is not supported and the Namespace Size and
Namespace Capacity fields report the same value.

NVM Express 1.3a

136

Bytes O/M Description

25 M

Number of LBA Formats (NLBAF): This field defines the number of supported LBA
data size and metadata size combinations supported by the namespace. LBA formats
shall be allocated in order (starting with 0) and packed sequentially. This is a 0’s based
value. The maximum number of LBA formats that may be indicated as supported is 16.
The supported LBA formats are indicated in bytes 128 – 191 in this data structure. The
LBA Format fields with an index beyond the value set in this field are invalid and not
supported. LBA Formats that are valid, but not currently available may be indicated by
setting the LBA Data Size for that LBA Format to 0h.

The metadata may be either transferred as part of the LBA (creating an extended LBA
which is a larger LBA size that is exposed to the application) or it may be transferred as
a separate contiguous buffer of data. The metadata shall not be split between the LBA
and a separate metadata buffer.

It is recommended that software and controllers transition to an LBA size that is 4KB or
larger for ECC efficiency at the controller. If providing metadata, it is recommended that
at least 8 bytes are provided per logical block to enable use with end-to-end data
protection, refer to section 8.2.

26 M

Formatted LBA Size (FLBAS): This field indicates the LBA data size & metadata size
combination that the namespace has been formatted with (refer to section 5.23).

Bits 7:5 are reserved.

Bit 4 if set to ‘1’ indicates that the metadata is transferred at the end of the data LBA,
creating an extended data LBA. Bit 4 if cleared to ‘0’ indicates that all of the metadata
for a command is transferred as a separate contiguous buffer of data. Bit 4 is not
applicable when there is no metadata.

Bits 3:0 indicates one of the 16 supported LBA Formats indicated in this data structure.

27 M

Metadata Capabilities (MC): This field indicates the capabilities for metadata.

Bits 7:2 are reserved.

Bit 1 if set to ‘1’ indicates the namespace supports the metadata being transferred as
part of a separate buffer that is specified in the Metadata Pointer. Bit 1 if cleared to ‘0’
indicates that the namespace does not support the metadata being transferred as part
of a separate buffer.

Bit 0 if set to ‘1’ indicates that the namespace supports the metadata being transferred
as part of an extended data LBA. Bit 0 if cleared to ‘0’ indicates that the namespace
does not support the metadata being transferred as part of an extended data LBA.

NVM Express 1.3a

137

Bytes O/M Description

28 M

End-to-end Data Protection Capabilities (DPC): This field indicates the capabilities for
the end-to-end data protection feature. Multiple bits may be set in this field. Refer to
section 8.3.

Bits 7:5 are reserved.

Bit 4 if set to ‘1’ indicates that the namespace supports protection information transferred
as the last eight bytes of metadata. Bit 4 if cleared to ‘0’ indicates that the namespace
does not support protection information transferred as the last eight bytes of metadata.

Bit 3 if set to ‘1’ indicates that the namespace supports protection information transferred
as the first eight bytes of metadata. Bit 3 if cleared to ‘0’ indicates that the namespace
does not support protection information transferred as the first eight bytes of metadata.

Bit 2 if set to ‘1’ indicates that the namespace supports Protection Information Type 3.
Bit 2 if cleared to ‘0’ indicates that the namespace does not support Protection
Information Type 3.

Bit 1 if set to ‘1’ indicates that the namespace supports Protection Information Type 2.
Bit 1 if cleared to ‘0’ indicates that the namespace does not support Protection
Information Type 2.

Bit 0 if set to ‘1’ indicates that the namespace supports Protection Information Type 1.
Bit 0 if cleared to ‘0’ indicates that the namespace does not support Protection
Information Type 1.

29 M

End-to-end Data Protection Type Settings (DPS): This field indicates the Type
settings for the end-to-end data protection feature. Refer to section 8.3.

Bits 7:4 are reserved.

Bit 3 if set to ‘1’ indicates that the protection information, if enabled, is transferred as the
first eight bytes of metadata. Bit 3 if cleared to ‘0’ indicates that the protection
information, if enabled, is transferred as the last eight bytes of metadata.

Bits 2:0 indicate whether Protection Information is enabled and the type of Protection
Information enabled. The values for this field have the following meanings:

Value Definition
000b Protection information is not enabled
001b Protection information is enabled, Type 1
010b Protection information is enabled, Type 2
011b Protection information is enabled, Type 3

100b – 111b Reserved

30 O

Namespace Multi-path I/O and Namespace Sharing Capabilities (NMIC): This field
specifies multi-path I/O and namespace sharing capabilities of the namespace.

Bits 7:1 are reserved.
Bit 0: If set to ‘1’ then the namespace may be attached to two or more controllers in the
NVM subsystem concurrently (i.e., may be a shared namespace). If cleared to ‘0’ then
the namespace is a private namespace and may only be attached to one controller at a
time.

NVM Express 1.3a

138

Bytes O/M Description

31 O

Reservation Capabilities (RESCAP): This field indicates the reservation capabilities of
the namespace. A value of 00h in this field indicates that reservations are not supported
by this namespace. Refer to section 8.8 for more details.

Bit 7 if set to ‘1’ indicates that Ignore Existing Key is used as defined in revision 1.3 or
later of this specification. Bit 7 if cleared to ‘0’ indicates that Ignore Existing Key is used
as defined in revision 1.2.1 or earlier of this specification. This bit shall be set to ‘1’ if the
controller supports revision 1.3 or later as indicated in the Version register.

Bit 6 if set to ‘1’ indicates that the namespace supports the Exclusive Access – All
Registrants reservation type. If this bit is cleared to ‘0’, then the namespace does not
support the Exclusive Access – All Registrants reservation type.

Bit 5 if set to ‘1’ indicates that the namespace supports the Write Exclusive – All
Registrants reservation type. If this bit is cleared to ‘0’, then the namespace does not
support the Write Exclusive – All Registrants reservation type.

Bit 4 if set to ‘1’ indicates that the namespace supports the Exclusive Access –
Registrants Only reservation type. If this bit is cleared to ‘0’, then the namespace does
not support the Exclusive Access – Registrants Only reservation type.

Bit 3 if set to ‘1’ indicates that the namespace supports the Write Exclusive – Registrants
Only reservation type. If this bit is cleared to ‘0’, then the namespace does not support
the Write Exclusive – Registrants Only reservation type.

Bit 2 if set to ‘1’ indicates that the namespace supports the Exclusive Access reservation
type. If this bit is cleared to ‘0’, then the namespace does not support the Exclusive
Access reservation type.

Bit 1 if set to ‘1’ indicates that the namespace supports the Write Exclusive reservation
type. If this bit is cleared to ‘0’, then the namespace does not support the Write Exclusive
reservation type.

Bit 0 if set to ‘1’ indicates that the namespace supports the Persist Through Power Loss
capability. If this bit is cleared to ‘0’, then the namespace does not support the Persist
Through Power Loss Capability.

32 O

Format Progress Indicator (FPI): If a format operation is in progress, this field indicates
the percentage of the namespace that remains to be formatted.

Bit 7 if set to ‘1’ indicates that the namespace supports the Format Progress Indicator
defined by bits 6:0 in this field. If this bit is cleared to ‘0’, then the namespace does not
support the Format Progress Indicator and bits 6:0 in this field shall be cleared to 0h.

Bits 6:0 indicate the percentage of the Format NVM command that remains to be
completed (e.g., a value of 25 indicates that 75% of the Format NVM command has been
completed and 25% remains to be completed). If bit 7 is set to ‘1’, then a value of 0
indicates that the namespace is formatted with the format specified by the FLBAS and
DPS fields in this data structure and there is no Format NVM command in progress.

NVM Express 1.3a

139

Bytes O/M Description

33 O

Deallocate Logical Block Features (DLFEAT): This field indicates information about
features that affect deallocating logical blocks for this namespace.

Bits 7:5 are reserved.

Bit 4 if set to ‘1’ indicates that the Guard field for deallocated logical blocks that contain
protection information is set to the CRC for the value read from the deallocated logical
block and its metadata (excluding protection information). If cleared to ‘0’ indicates that
the Guard field for the deallocated logical blocks that contain protection information is set
to FFFFh.

Bit 3 if set to ‘1’ indicates that the controller supports the Deallocate bit in the Write Zeros
command for this namespace. If cleared to ‘0’ indicates that the controller does not
support the Deallocate bit in the Write Zeros command for this namespace. This bit shall
be set to the same value for all namespaces in the NVM subsystem.

Bits 2:0 indicate the values read from a deallocated logical block and its metadata
(excluding protection information). The values for this field have the following meanings:

Value Definition
000b Not reported
001b All bytes set to 00h
010b All bytes set to FFh

011b – 111b Reserved

35:34 O

Namespace Atomic Write Unit Normal (NAWUN): This field indicates the namespace
specific size of the write operation guaranteed to be written atomically to the NVM during
normal operation.

A value of 0h indicates that the size for this namespace is the same size as that reported
in the AWUN field of the Identify Controller data structure. All other values specify a size
in terms of logical blocks using the same encoding as the AWUN field. Refer to section
6.4.

37:36 O

Namespace Atomic Write Unit Power Fail (NAWUPF): This field indicates the
namespace specific size of the write operation guaranteed to be written atomically to the
NVM during a power fail or error condition.

A value of 0h indicates that the size for this namespace is the same size as that reported
in the AWUPF field of the Identify Controller data structure. All other values specify a size
in terms of logical blocks using the same encoding as the AWUPF field. Refer to section
6.4.

39:38 O

Namespace Atomic Compare & Write Unit (NACWU): This field indicates the
namespace specific size of the write operation guaranteed to be written atomically to the
NVM for a Compare and Write fused command.

A value of 0h indicates that the size for this namespace is the same size as that reported
in the ACWU field of the Identify Controller data structure. All other values specify a size
in terms of logical blocks using the same encoding as the ACWU field. Refer to section
6.4.

41:40 O

Namespace Atomic Boundary Size Normal (NABSN): This field indicates the atomic
boundary size for this namespace for the NAWUN value. This field is specified in logical
blocks. Writes to this namespace that cross atomic boundaries are not guaranteed to be
atomic to the NVM with respect to other read or write commands.

A value of 0h indicates that there are no atomic boundaries for normal write
operations. All other values specify a size in terms of logical blocks using the same
encoding as the AWUN field. Refer to section 6.4.

NVM Express 1.3a

140

Bytes O/M Description

43:42 O

Namespace Atomic Boundary Offset (NABO): This field indicates the LBA on this
namespace where the first atomic boundary starts.

If the NABSN and NABSPF fields are cleared to 0h, then the NABO field shall be cleared
to 0h. NABO shall be less than or equal to NABSN and NABSPF. Refer to section 6.4.

45:44 O

Namespace Atomic Boundary Size Power Fail (NABSPF): This field indicates the
atomic boundary size for this namespace specific to the Namespace Atomic Write Unit
Power Fail value. This field is specified in logical blocks. Writes to this namespace that
cross atomic boundaries are not guaranteed to be atomic with respect to other read or
write commands and there is no guarantee of data returned on subsequent reads of the
associated logical blocks.

A value of 0h indicates that there are no atomic boundaries for power fail or error
conditions. All other values specify a size in terms of logical blocks using the same
encoding as the AWUPF field. Refer to section 6.4.

47:46 O

Namespace Optimal IO Boundary (NOIOB): This field indicates the optimal IO
boundary for this namespace. This field is specified in logical blocks. The host should
construct read and write commands that do not cross the IO boundary to achieve optimal
performance. A value of 0h indicates that no optimal IO boundary is reported.

63:48 O

NVM Capacity (NVMCAP): This field indicates the total size of the NVM allocated to this
namespace. The value is in bytes. This field shall be supported if Namespace
Management and Namespace Attachment commands are supported.

Note: This field may not correspond to the logical block size multiplied by the Namespace
Size field. Due to thin provisioning or other settings (e.g., endurance), this field may be
larger or smaller than the Namespace Size reported.

103:64 Reserved

119:104 O

Namespace Globally Unique Identifier (NGUID): This field contains a 128-bit value
that is globally unique and assigned to the namespace when the namespace is created.
This field remains fixed throughout the life of the namespace and is preserved across
namespace and controller operations (e.g., controller reset, namespace format, etc.).

This field uses the EUI-64 based 16-byte designator format. Bytes 114:112 contain the
24-bit Organizationally Unique Identifier (OUI) value assigned by the IEEE Registration
Authority. Bytes 119:115 contain an extension identifer assigned by the corresponding
organization. Bytes 111:104 contain the vendor specific extension identifier assigned by
the corresponding organization. See the IEEE EUI-64 guidelines for more information.
This field is big endian (refer to section 7.10).

The controller shall specify a globally unique namespace identifier in this field or the
EUI64 field when the namespace is created. If the controller is not able to allocate a
globally unique identifier then this field shall be cleared to 0h. Refer to section 7.11.

127:120 O

IEEE Extended Unique Identifier (EUI64): This field contains a 64-bit IEEE Extended
Unique Identifier (EUI-64) that is globally unique and assigned to the namespace when
the namespace is created. This field remains fixed throughout the life of the namespace
and is preserved across namespace and controller operations (e.g., controller reset,
namespace format, etc.).

The EUI-64 is a concatenation of a 24-bit or 36-bit Organizationally Unique Identifier (OUI
or OUI-36) value assigned by the IEEE Registration Authority and an extension identifier
assigned by the corresponding organization. See the IEEE EUI-64 guidelines for more
information. This field is big endian (refer to section 7.10).

The controller shall specify a globally unique namespace identifier in this field or the
NGUID field when the namespace is created. If the controller is not able to allocate a
globally unique 64-bit identifier then this field shall be cleared to 0h. Refer to section 7.11.

NVM Express 1.3a

141

Bytes O/M Description

131:128 M LBA Format 0 Support (LBAF0): This field indicates the LBA format 0 that is supported
by the controller. The LBA format field is defined in Figure 115.

135:132 O LBA Format 1 Support (LBAF1): This field indicates the LBA format 1 that is supported
by the controller. The LBA format field is defined in Figure 115.

139:136 O LBA Format 2 Support (LBAF2): This field indicates the LBA format 2 that is supported
by the controller. The LBA format field is defined in Figure 115.

143:140 O LBA Format 3 Support (LBAF3): This field indicates the LBA format 3 that is supported
by the controller. The LBA format field is defined in Figure 115.

147:144 O LBA Format 4 Support (LBAF4): This field indicates the LBA format 4 that is supported
by the controller. The LBA format field is defined in Figure 115.

151:148 O LBA Format 5 Support (LBAF5): This field indicates the LBA format 5 that is supported
by the controller. The LBA format field is defined in Figure 115.

155:152 O LBA Format 6 Support (LBAF6): This field indicates the LBA format 6 that is supported
by the controller. The LBA format field is defined in Figure 115.

159:156 O LBA Format 7 Support (LBAF7): This field indicates the LBA format 7 that is supported
by the controller. The LBA format field is defined in Figure 115.

163:160 O LBA Format 8 Support (LBAF8): This field indicates the LBA format 8 that is supported
by the controller. The LBA format field is defined in Figure 115.

167:164 O LBA Format 9 Support (LBAF9): This field indicates the LBA format 9 that is supported
by the controller. The LBA format field is defined in Figure 115.

171:168 O LBA Format 10 Support (LBAF10): This field indicates the LBA format 10 that is
supported by the controller. The LBA format field is defined in Figure 115.

175:172 O LBA Format 11 Support (LBAF11): This field indicates the LBA format 11 that is
supported by the controller. The LBA format field is defined in Figure 115.

179:176 O LBA Format 12 Support (LBAF12): This field indicates the LBA format 12 that is
supported by the controller. The LBA format field is defined in Figure 115.

183:180 O LBA Format 13 Support (LBAF13): This field indicates the LBA format 13 that is
supported by the controller. The LBA format field is defined in Figure 115.

187:184 O LBA Format 14 Support (LBAF14): This field indicates the LBA format 14 that is
supported by the controller. The LBA format field is defined in Figure 115.

191:188 O LBA Format 15 Support (LBAF15): This field indicates the LBA format 15 that is
supported by the controller. The LBA format field is defined in Figure 115.

383:192 Reserved
4095:384 O Vendor Specific

NVM Express 1.3a

142

Figure 115: Identify – LBA Format Data Structure, NVM Command Set Specific
Bits Description

31:26 Reserved

25:24

Relative Performance (RP): This field indicates the relative performance of the LBA format
indicated relative to other LBA formats supported by the controller. Depending on the size of the
LBA and associated metadata, there may be performance implications. The performance
analysis is based on better performance on a queue depth 32 with 4KB read workload. The
meanings of the values indicated are included in the following table.

Value Definition
00b Best performance
01b Better performance
10b Good performance
11b Degraded performance

23:16
LBA Data Size (LBADS): This field indicates the LBA data size supported. The value is reported
in terms of a power of two (2^n). A value smaller than 9 (i.e. 512 bytes) is not supported. If the
value reported is 0h then the LBA format is not supported / used or is not currently available.

15:00

Metadata Size (MS): This field indicates the number of metadata bytes provided per LBA based
on the LBA Data Size indicated. If there is no metadata supported, then this field shall be cleared
to 00h.

If metadata is supported, then the namespace may support the metadata being transferred as
part of an extended data LBA or as part of a separate contiguous buffer. If end-to-end data
protection is enabled, then the first eight bytes or last eight bytes of the metadata is the protection
information.

NVM Express 1.3a

143

Figure 116: Identify – Namespace Identification Descriptor
Byte Description

00h

Namespace Identifier Type (NIDT): This field indicates the data type contained in the Namespace
Identifier field as defined in the following table.

Value Definition
0h Reserved

1h

IEEE Extended Unique Identifier: The NID field contains a copy of the
EUI64 field in the Identify Namespace structure (refer to Figure 114). If
the EUI64 field of the Identify Namespace structure is not supported, the
controller shall not report a value of type 1h.

For a Namespace Identifier Descriptor of type 1h the Namespace
Identifier Length (NIDL) shall be set to 8h.

2h

Namespace Globally Unique Identifier: The NID field contains a copy
of the NGUID field in the Identify Namespace structure. If the NGUID field
of the Identify Namespace structure is not supported, the controller shall
not report a value of type 2h.

For a Namespace Identifier Descriptor of type 2h the Namespace
Identifier Length (NIDL) shall be set to 10h.

3h

Namespace UUID: The NID field contains a 128-bit Universally Unique
Identifier (UUID) as specified in RFC4122.

For a Namespace Identifier Descriptor of type 3h the Namespace Identifier
Length (NIDL) shall be set to 10h.

4h - FFh Reserved

01h

Namespace Identifier Length (NIDL): This field contains the length in bytes of the Namespace
Identifier field below. The total length of the Namespace Identifier Descriptor in bytes is the value in
this field plus four. If this field is set to 0h it indicates the end of the Namespace Identifier Descriptor
list.

02h – 03h Reserved

04h – (NIDL
+ 03h)

Namespace Identifier (NID): This field contains a value that is globally unique and assigned to the
namespace when the namespace is created. This field remains fixed throughout the life of the
namespace and is preserved across namespace and controller operations (e.g., controller reset,
namespace format, etc.). The exact type of the value is specified by the Namespace Identifier Type
(NIDT) field, and the size is specified by the Namespace Identifier Length (NIDL) field.

5.15.1 Command Completion
A completion queue entry is posted to the Admin Completion Queue if the Identify data structure has been
transferred to the memory buffer indicated in PRP Entry 1.

5.16 Keep Alive command
The Keep Alive command and associated functionality is used by the host to determine that the controller
is operational and by the controller to determine that the host is operational. The host and controller are
operational when each is accessible and able to issue or execute commands.

If a Keep Alive Timeout has been enabled on the Admin Queue, the Keep Alive Timer is reset when this
command is executed.

All command specific fields are reserved.

NVM Express 1.3a

144

5.16.1 Command Completion
If the command is completed, then the controller shall post a completion queue entry to the Admin
Completion Queue indicating the status for the command.

5.17 NVMe-MI Receive command
Refer to the NVM Express Management Interface Specification for details on the NVMe-MI Receive
command.

5.18 NVMe-MI Send command
Refer to the NVM Express Management Interface Specification for details on the NVMe-MI Send command.

5.19 Namespace Attachment command
The Namespace Attachment command is used to attach and detach controllers from a namespace. The
attach and detach operations are persistent across all reset events.

The Namespace Attachment command uses the Data Pointer and Command Dword 10 fields. All other
command specific fields are reserved.

The Select field determines the data structure used as part of the command. The data structure is 4096
bytes in size. The data structure used for Controller Attach and Controller Detach is a Controller List (refer
to section 4.9). The controllers that are to be attached or detached, respectively, are described in the data
structure.

Figure 117: Namespace Attachment – Data Pointer
Bit Description

127:00
Data Pointer (DPTR): This field specifies the start of the data buffer. Refer to Figure 11 for the
definition of this field. If using PRPs, this field shall not be a pointer to a PRP List as the data buffer
may not cross more than one page boundary.

Figure 118: Namespace Attachment – Command Dword 10

Bit Description
31:04 Reserved

03:00

Select (SEL): This field selects the type of attachment to perform.

Value Description
0h Controller Attach
1h Controller Detach

2h - Fh Reserved

NVM Express 1.3a

145

5.19.1 Command Completion
When the command is completed, the controller posts a completion queue entry to the Admin Completion
Queue indicating the status for the command.

Command specific status values associated with the Namespace Attachment command are defined in
Figure 125. For failures, the byte offset of the first failing entry is reported in the Command Specific
Information field of the Error Information Log Entry. The controller does not process further entries in the
Controller List after an error is encountered.

Figure 119: Namespace Attachment – Command Specific Status Values
Value Description
18h Namespace Already Attached: The controller is already attached to the namespace specified.
19h Namespace Is Private: The controller is not attached to the namespace. The request to attach the

controller could not be completed because the namespace is private and is already attached to one
controller.

1Ah Namespace Not Attached: The controller is not attached to the namespace. The request to detach
the controller could not be completed.

1Ch Controller List Invalid: The controller list provided is invalid.

5.20 Namespace Management command
The Namespace Management command is used to manage namespaces (refer to section 8.12), including
create and delete operations. Note: The controller continues to execute commands submitted to I/O
Submission Queues while this operation is in progress.

Host software uses the Namespace Attachment command to attach or detach a namespace to or from a
controller. The create operation does not attach the namespace to a controller. As a side effect of the delete
operation, the namespace is detached from all controllers as the namespace is no longer present in the
system. It is recommended that host software detach all controllers from a namespace prior to deleting the
namespace. If the namespace is attached to another controller (i.e., a controller other than the controller
processing the operation) and that controller has Namespace Attribute Notices enabled (refer to Figure
148), when a delete operation is requested, then as part of the delete operation a Namespace Attribute
Notice is issued by that controller to indicate a namespace change.

The data structure used for the create operation is defined in Figure 129 and has the same format as the
Identify Namespace data structure defined in Figure 114. After successful completion of a Namespace
Management command with the create operation, the namespace is formatted with the specified attributes.
The fields that host software may specify in the create operation are defined in Figure 126. Fields that are
reserved shall be cleared to 0h by host software. There is no data structure transferred for the delete
operation.

Figure 120: Namespace Management – Host Software Specified Fields
Bytes Description Host Specified

7:0 Namespace Size (NSZE) Yes
15:8 Namespace Capacity (NCAP) Yes

25:16 Reserved
26 Formatted LBA Size (FLBAS) Yes

28:27 Reserved
29 End-to-end Data Protection Type Settings (DPS) Yes
30 Namespace Multi-path I/O and Namespace Sharing Capabilities (NMIC) Yes

383:31 Reserved

NVM Express 1.3a

146

The Namespace Management command uses the Data Pointer and Dword 10 fields. All other command
specific fields are reserved.

The Namespace Identifier (CDW1.NSID) field is used as follows for create and delete operations:
• Create: The CDW1.NSID field is reserved for this operation; host software shall set this field to a

value of 0h. The controller shall select an available Namespace Identifier to use for the operation.
• Delete: This field specifies the previously created namespace to delete in this operation.

Specifying a value of FFFFFFFFh is used to delete all namespaces in the NVM subsystem. If the
value of FFFFFFFFh is specified and there are zero valid namespaces, the command completes
successfully.

Figure 121: Namespace Management – Data Pointer
Bit Description

127:00
Data Pointer (DPTR): This field specifies the start of the data buffer. Refer to Figure 11 for the
definition of this field. If using PRPs, this field shall not be a pointer to a PRP List as the data buffer
may not cross more than one page boundary.

Figure 122: Namespace Management – Command Dword 10

Bit Description
31:04 Reserved

03:00

Select (SEL): This field selects the type of management operation to perform.

Value Description
0h Create
1h Delete

2h - Fh Reserved

Figure 123: Namespace Management – Data Structure for Create
Bytes Description

383:0 Identify Namespace: The fields set by host software are specified in Figure 126. Host software
shall set reserved fields to 0h.

1023:384 Reserved
4095:1024 Vendor specific

NVM Express 1.3a

147

5.20.1 Command Completion
When the command is completed, the controller posts a completion queue entry to the Admin Completion
Queue indicating the status for the command.

Namespace Management command specific status values are defined in Figure 130.

Figure 124: Namespace Management – Command Specific Status Values
Value Description
0Ah Invalid Format: The LBA Format specified is not supported. This may be due to various conditions,

including:
1) specifying an invalid LBA Format number, or
2) enabling protection information when there is not sufficient metadata per LBA, or
3) the specified format is not available in the current configuration, or
4) invalid security state (refer to TCG SIIS), etc.

15h Namespace Insufficient Capacity: Creating the namespace requires more free space than is
currently available. The Command Specific Information field of the Error Information Log specifies
the total amount of NVM capacity required to create the namespace in bytes.

16h Namespace Identifier Unavailable: The number of namespaces supported has been exceeded.
1Bh Thin Provisioning Not Supported: Thin provisioning is not supported by the controller.

Dword 0 of the completion queue entry contains the Namespace Identifier created. The definition of Dword
0 of the completion queue entry is in Figure 131.

Figure 125: Namespace Management – Completion Queue Entry Dword 0

Bit Description

31:00 Namespace Identifier (NSID): This field specifies the namespace identifier created in a Create
operation. This field is reserved for all other operations.

5.21 Set Features command
The Set Features command specifies the attributes of the Feature indicated.

The Set Features command uses the Data Pointer, Command Dword 10, Command Dword 11, Command
Dword 12, Command Dword 13, Command Dword 14, and Command Dword 15 fields. All other command
specific fields are reserved.

Figure 126: Set Features – Data Pointer
Bit Description

127:00

Data Pointer (DPTR): This field specifies the start of the data buffer. Refer to Figure 11 for the
definition of this field. If using PRPs, this field shall not be a pointer to a PRP List as the data buffer
may not cross more than one page boundary. If no data structure is used as part of the specified
feature, then this field is not used.

NVM Express 1.3a

148

Figure 127: Set Features – Command Dword 10
Bit Description

31

Save (SV): This field specifies that the controller shall save the attribute so that the attribute
persists through all power states and resets.

The controller indicates in bit 4 of the Optional NVM Command Support field of the Identify
Controller data structure in Figure 109 whether this field is supported.

If the Feature Identifer specified in the Set Features command is not saveable by the controller
and the controller receives a Set Features command with the Save bit set to one, then the
command shall be aborted with a status of Feature Identifer Not Saveable.

30:08 Reserved

07:00 Feature Identifier (FID): This field indicates the identifier of the Feature that attributes are being
specified for.

5.21.1 Feature Specific Information
Figure 134 defines the Features that may be configured with Set Features and retrieved with Get Features.
Figure 135 defines Features that are specific to the NVM Command Set. Some Features utilize a memory
buffer to configure or return attributes for a Feature, whereas others only utilize a Dword in the command
or completion queue entry. Feature values that are not persistent across power cycles and resets are
restored to their default values as part of a controller reset operation. The default value for each Feature
is vendor specific and set by the manufacturer unless otherwise specified; it is not changeable. For more
information on Features, including default, saveable, and current value definitions, refer to section 7.8.

There may be commands in execution when a Feature is changed. The new settings may or may not apply
to commands already submitted for execution when the Feature is changed. Any commands submitted to
a Submission Queue after a Set Features is successfully completed shall utilize the new settings for the
associated Feature. To ensure that a Feature applies to all subsequent commands, commands being
processed should be completed prior to issuing the Set Features command.

NVM Express 1.3a

149

Figure 128: Set Features – Feature Identifiers
Feature

Identifier O/M6 Persistent
Across Power

Cycle and Reset2

Uses
Memory

Buffer for
Attributes

Description

00h Reserved
01h M No No Arbitration
02h M No No Power Management
03h O Yes Yes LBA Range Type
04h M No No Temperature Threshold
05h M No No Error Recovery
06h O No No Volatile Write Cache
07h M No No Number of Queues
08h NOTE 5 No No Interrupt Coalescing
09h NOTE 5 No No Interrupt Vector Configuration
0Ah M No No Write Atomicity Normal
0Bh M No No Asynchronous Event Configuration
0Ch O No Yes Autonomous Power State Transition
0Dh O No3 No4 Host Memory Buffer
0Eh O No Yes Timestamp
0Fh O No No Keep Alive Timer
10h O Yes No Host Controlled Thermal Management
11h O No No Non-Operational Power State Config

12h – 77h Reserved
78h – 7Fh Refer to the NVMe Management Interface Specification for definition.
80h – BFh Command Set Specific (Reserved)
C0h – FFh Vendor Specific1

NOTES:
1. The behavior of a controller in response to an inactive namespace ID to a vendor specific Feature

Identifier is vendor specific.
2. This column is only valid if the feature is not saveable (refer to section 7.8). If the feature is saveable,

then this column is not used and any feature may be configured to be saved across power cycles and
reset.

3. The controller does not save settings for the Host Memory Buffer feature across power states and reset
events, however, host software may restore the previous values. Refer to section 8.9.

4. The feature does not use a memory buffer for Set Features, but it does use a memory buffer for Get
Features. Refer to section 8.9.

5. The feature is mandatory for NVMe over PCIe. This feature is not supported for NVMe over Fabrics.
6. O/M: O = Optional, M = Mandatory.

NVM Express 1.3a

150

Figure 129: Set Features, NVM Command Set Specific – Feature Identifiers
Feature Identifier O/M4 Persistent

Across Power
Cycle and

Reset1

Uses Memory
Buffer for
Attributes

Description

80h O Yes No Software Progress Marker
81h O2 No Yes Host Identifier

82h O3 No No Reservation Notification Mask

83h O3 Yes No Reservation Persistance
84h – BFh Reserved

NOTES:
1. This column is only valid if the feature is not saveable (refer to section 7.8). If the feature is saveable,

then this column is not used and any feature may be configured to be saved across power cycles and
reset.

2. Mandatory if reservations are supported as indicated in the Identify Controller data structure.
3. Mandatory if reservations are supported by the namespace as indicated by a non-zero value in the

Reservation Capabilities (RESCAP) field in the Identify Namespace data structure.
4. O/M: O = Optional, M = Mandatory.

5.21.1.1 Arbitration (Feature Identifier 01h)
This Feature controls command arbitration. Refer to section 4.11 for command arbitration details. The
attributes are indicated in Command Dword 11.

If a Get Features command is submitted for this Feature, the attributes specified in Figure 136 are returned
in Dword 0 of the completion queue entry for that command.

Figure 130: Arbitration & Command Processing – Command Dword 11
Bit Description

31:24 High Priority Weight (HPW): This field defines the number of commands that may be executed
from the high priority service class in each arbitration round. This is a 0’s based value.

23:16
Medium Priority Weight (MPW): This field defines the number of commands that may be
executed from the medium priority service class in each arbitration round. This is a 0’s based
value.

15:08 Low Priority Weight (LPW): This field defines the number of commands that may be executed
from the low priority service class in each arbitration round. This is a 0’s based value.

07:03 Reserved

02:00
Arbitration Burst (AB): Indicates the maximum number of commands that the controller may
launch at one time from a particular Submission Queue. This value is specified as 2^n. A value
of 111b indicates no limit. Thus, the possible settings are 1, 2, 4, 8, 16, 32, 64, or no limit.

NVM Express 1.3a

151

5.21.1.2 Power Management (Feature Identifier 02h)
This Feature allows the host to configure the power state. The attributes are indicated in Command Dword
11.

After a successful completion of a Set Features command for this feature, the controller shall be in the
Power State specified. If enabled, autonomous power state transitions continue to occur from the new state.

If a Get Features command is submitted for this Feature, the attributes specified in Figure 137 are returned
in Dword 0 of the completion queue entry for that command.

Figure 131: Power Management – Command Dword 11
Bit Description

31:08 Reserved

07:05 Workload Hint (WH): This field indicates the type of workload expected. This hint may be used
by the NVM subsystem to optimize performance. Refer to section 8.4.3 for more details.

04:00

Power State (PS): This field indicates the new power state into which the controller should
transition. This power state shall be one supported by the controller as indicated in the Number of
Power States Supported (NPSS) field in the Identify Controller data structure. If the power state
specified is not supported, the controller shall abort the command and should return an error of
Invalid Field in Command.

5.21.1.3 LBA Range Type (Feature Identifier 03h), (Optional)
This feature indicates the type and attributes of LBA ranges that are part of the specified namespace. The
LBA range information may be used by a driver to determine if it may utilize a particular LBA range; the
information is not exposed to higher level software.

This is optional information that is not required for proper behavior of the system. However, it may be
utilized to avoid unintended software issues. For example, if the LBA range indicates that it is a RAID
volume then a driver that does not have RAID functionality should not utilize that LBA range (including not
overwriting the LBA range). The optional information may be utilized by the driver to determine whether
the LBA Range should be exposed to higher level software.

The LBA Range Type uses Command Dword 11 and specifies the type and attribute information in the data
structure indicated in Figure 139. The data structure is 4096 bytes in size and shall be physically
contiguous.

If a Get Features command is submitted for this Feature, the attributes specified in Figure 138 are returned
in Dword 0 of the completion queue entry and the LBA Range Type data structure specified in Figure 139
is returned in the data buffer for that command.

Figure 132: LBA Range Type – Command Dword 11
Bit Description

31:06 Reserved

05:00
Number of LBA Ranges (NUM): This field specifies the number of LBA ranges specified in this
command. This is a 0’s based value. This field is used for the Set Features command only and is
ignored for the Get Features command for this Feature.

Each entry in the LBA Range Type data structure is defined in Figure 139. The LBA Range feature is a set
of 64 byte entries; the number of entries is indicated as a command parameter, the maximum number of
entries is 64. The LBA ranges shall not overlap. If the LBA ranges overlap, the controller should return an

NVM Express 1.3a

152

error of Overlapping Range. All unused entries in the LBA Range Type data structure shall be cleared to
all zeroes for both Get Features and Set Features.

The default value for this feature should clear the Number of LBA Ranges field to 00h and initialize the LBA
Range Type data structure to contain a single entry with:

• Type field cleared to 00h,
• Attributes field set to 01h,
• Starting LBA field cleared to 0h,
• Number of Logical Blocks field set to indicate the number of LBAs in the namespace, and
• GUID field set to a globally unique identifier.

Figure 133: LBA Range Type – Data Structure Entry
Byte Description

00

Type (Type): Specifies the Type of the LBA range. The Types are listed below.

Value Description
00h Reserved
01h Filesystem
02h RAID
03h Cache
04h Page / swap file

05h – 7Fh Reserved
80h - FFh Vendor Specific

01

Attributes: Specifies attributes of the LBA range. Each bit defines an attribute.

Bit Description

0 If set to ‘1’, the LBA range may be overwritten. If cleared to
‘0’, the area should not be overwritten.

1
If set to ‘1’, the LBA range should be hidden from the OS /
EFI / BIOS. If cleared to ‘0’, the area should be visible to
the OS / EFI / BIOS.

2 – 7 Reserved

15:02 Reserved

23:16 Starting LBA (SLBA): This field specifies the 64-bit address of the first logical block that is part
of this LBA range.

31:24 Number of Logical Blocks (NLB): This field specifies the number of logical blocks that are part
of this LBA range. This is a 0’s based value.

47:32
Unique Identifier (GUID): This field is a global unique identifier that uniquely specifies the type
of this LBA range. Well known Types may be defined and are published on the NVM Express
website.

63:48 Reserved

The host storage driver should expose all LBA ranges that are not set to be hidden from the OS / EFI /
BIOS in the Attributes field. All LBA ranges that follow a hidden range shall also be hidden; the host storage
driver should not expose subsequent LBA ranges that follow a hidden LBA range.

5.21.1.4 Temperature Threshold (Feature Identifier 04h)
A controller may report up to nine temperature values in the SMART / Health Information log (i.e., the
Composite Temperature and Temperature Sensor 1 through Temperature Sensor 8). Associated with each
implemented temperature sensor is an over temperature threshold and an under temperature threshold.
When a temperature is greater than or equal to its corresponding over temperature threshold or less than
or equal to its corresponding under temperature threshold, then bit one of the Critical Warning field in the
SMART / Health Information Log is set to one. This may trigger an asynchronous event.

NVM Express 1.3a

153

The over temperature threshold feature shall be implemented for Composite Temperature. The under
temperature threshold Feature shall be implemented for Composite Temperature if a non-zero Warning
Composite Temperature Threshold (WCTEMP) field value is reported in the Identify Controller data
structure in Figure 109. The over temperature threshold and under temperature threshold features shall be
implemented for all implemented temperature sensors (i.e., all Temperature Sensor fields that report a non-
zero value).

The default value of the over temperature threshold feature for Composite Temperature is the value in the
Warning Composite Temperature Threshold (WCTEMP) field in the Identify Controller data if WCTEMP is
non-zero; otherwise, it is implementation specific. The default value of the under temperature threshold
feature for Composite Temperature is implementation specific. The default value of the over temperature
threshold for all implemented temperature sensors is FFFFh. The default value of the under temperature
threshold for all implemented temperature sensors is 0h.

If a Get Features command is submitted for this feature, the temperature threshold selected by Command
Dword 11 is returned in Dword 0 of the completion queue entry for that command.

Figure 134: Temperature Threshold – Command Dword 11
Bit Description

31:22 Reserved

21:20

Threshold Type Select (THSEL): This field selects the threshold type that is modified by a Set
Features command and whose threshold value is returned by a Get Features command.

Value Description
00b Over Temperature Threshold
01b Under Temperature Threshold

10b – 11b Reserved

19:16

Threshold Temperature Select (TMPSEL): This field selects the temperature whose threshold
is modified by a Set Features command and whose threshold value is returned by a Get Features
command.

Value Description
0000b Composite Temperature
0001b Temperature Sensor 1
0010b Temperature Sensor 2
0011b Temperature Sensor 3
0100b Temperature Sensor 4
0101b Temperature Sensor 5
0110b Temperature Sensor 6
0111b Temperature Sensor 7
1000b Temperature Sensor 8

1001b – 1110b Reserved

1111b
All implemented temperature sensors in a Set
Features command. Reserved in a Get Features
command.

15:00 Temperature Threshold (TMPTH): Indicates the threshold value for the temperature sensor and
threshold type specified.

5.21.1.5 Error Recovery (Feature Identifier 05h)
This Feature controls the error recovery attributes. The attributes are indicated in Command Dword 11.

If a Get Features command is submitted for this Feature, the attributes specified in Figure 141 are returned
in Dword 0 of the completion queue entry for that command.

NVM Express 1.3a

154

Figure 135: Error Recovery – Command Dword 11
Bit Description

31:17 Reserved

16

Deallocated or Unwritten Logical Block Error Enable (DULBE): If set to '1', then the
Deallocated or Unwritten Logical Block error is enabled for the namespace specified in
CDW1.NSID. If cleared to '0', then the Deallocated or Unwritten Logical Block error is disabled for
the namespace specified in CDW1.NSID. Host software shall only enable this error if it is
supported for this namespace as indicated in the Namespace Features field of the Identify
Namespace data structure. The default value for this field shall be ‘0’. Refer to section 6.7.1.1.

15:00

Time Limited Error Recovery (TLER): Indicates a limited retry timeout value in 100 millisecond
units. This applies to I/O commands that support the Limited Retry bit. The timeout starts when
error recovery actions have started while processing the command. A value of 0h indicates that
there is no timeout.

Note: This mechanism is primarily intended for use by host software that may have alternate
means of recovering the data.

5.21.1.6 Volatile Write Cache (Feature Identifier 06h), (Optional)
This Feature controls the volatile write cache, if present, on the controller. If a volatile write cache is
supported, then this feature shall be supported. The attributes are indicated in Command Dword 11.

Note: If the controller is able to guarantee that data present in a write cache is written to non-volatile media
on loss of power, then that write cache is considered non-volatile and this setting does not apply to that
write cache. In that case, this setting has no effect.

If a Get Features command is submitted for this Feature, the attributes specified in Figure 142 are returned
in Dword 0 of the completion queue entry for that command.

Figure 136: Volatile Write Cache – Command Dword 11
Bit Description

31:01 Reserved

00 Volatile Write Cache Enable (WCE): If set to ‘1’, then the volatile write cache is enabled. If
cleared to ‘0’, then the volatile write cache is disabled.

5.21.1.7 Number of Queues (Feature Identifier 07h)
This Feature indicates the number of queues that the host requests for this controller. This feature shall
only be issued during initialization prior to creation of any I/O Submission and/or Completion Queues. The
value allocated shall not change between resets. The attributes are indicated in Command Dword 11.

If a Set Features or Get Features command is submitted for this Feature, the attributes specified in Figure
144 are returned in Dword 0 of the completion queue entry for that command.

NVM Express 1.3a

155

Figure 137: Number of Queues – Command Dword 11
Bit Description

31:16

Number of I/O Completion Queues Requested (NCQR): Indicates the number of I/O
Completion Queues requested by software. This number does not include the Admin Completion
Queue. A minimum of one shall be requested, reflecting that the minimum support is for one I/O
Completion Queue. This is a 0’s based value. The maximum value that may be specified is 65,534
(indicating 65,535 I/O Completion Queues). If the value specified is 65,535, the controller should
return an error of Invalid Field in Command.

15:00

Number of I/O Submission Queues Requested (NSQR): Indicates the number of I/O
Submission Queues requested by software. This number does not include the Admin Submission
Queue. A minimum of one shall be requested, reflecting that the minimum support is for one I/O
Submission Queue. This is a 0’s based value. The maximum value that may be specified is 65,534
(indicating 65,535 I/O Submission Queues). If the value specified is 65,535, the controller should
return an error of Invalid Field in Command.

Note: The value allocated may be smaller or larger than the number of queues requested, often in virtualized
implementations. The controller may not have as many queues to allocate as are requested. Alternatively,
the controller may have an allocation unit of queues (e.g. power of two) and may supply more queues to
host software to satisfy its allocation unit.

Figure 138: Number of Queues – Dword 0 of command completion queue entry
Bit Description

31:16

Number of I/O Completion Queues Allocated (NCQA): Indicates the number of I/O Completion
Queues allocated by the controller. A minimum of one shall be allocated, reflecting that the
minimum support is for one I/O Completion Queue. The value may not match the number
requested by host software. This is a 0’s based value.

15:00

Number of I/O Submission Queues Allocated (NSQA): Indicates the number of I/O Submission
Queues allocated by the controller. A minimum of one shall be allocated, reflecting that the
minimum support is for one I/O Submission Queue. The value may not match the number
requested by host software. This is a 0’s based value.

5.21.1.8 Interrupt Coalescing (Feature Identifier 08h)
This Feature configures interrupt coalescing settings. The controller should signal an interrupt when either
the Aggregation Time or the Aggregation Threshold conditions are met. If either the Aggregation Time or
the Aggregation Threshold fields are cleared to 0h, then an interrupt may be generated (i.e., interrupt
coalescing is implicitly disabled). This Feature applies only to the I/O Queues. It is recommended that
interrupts for commands that complete in error are not coalesced. The settings are specified in Command
Dword 11.

The controller may delay an interrupt if it detects that interrupts are already being processed for this vector.
Specifically, if the Completion Queue Head Doorbell register is being updated that is associated with a
particular interrupt vector, then the controller has a positive indication that completion queue entries are
already being processed. In this case, the aggregation time and/or the aggregation threshold may be
reset/restarted upon the associated register write. This may result in interrupts being delayed indefinitely
in certain workloads where the aggregation time or aggregation threshold is non-zero.

If a Get Features command is submitted for this Feature, the attributes specified in Figure 145 are returned
in Dword 0 of the completion queue entry for that command.

This Feature is valid when the controller is configured for Pin Based, MSI, Multiple MSI or MSI-X interrupts.
There is no requirement for the controller to persist these settings if interrupt modes are changed. It is
recommended that the host re-issue this Feature after changing interrupt modes.

NVM Express 1.3a

156

Figure 139: Interrupt Coalescing – Command Dword 11
Bit Description

31:16 Reserved

15:08

Aggregation Time (TIME): Specifies the recommended maximum time in 100 microsecond
increments that a controller may delay an interrupt due to interrupt coalescing. A value of 0h
corresponds to no delay. The controller may apply this time per interrupt vector or across all
interrupt vectors. The reset value of this setting is 0h.

07:00
Aggregation Threshold (THR): Specifies the recommended minimum number of completion
queue entries to aggregate per interrupt vector before signaling an interrupt to the host. This is a
0’s based value. The reset value of this setting is 0h.

5.21.1.9 Interrupt Vector Configuration (Feature Identifier 09h)
This Feature configures settings specific to a particular interrupt vector. The settings are specified in
Command Dword 11.

By default, coalescing settings are enabled for each interrupt vector. Interrupt coalescing is not supported
for the Admin Completion Queue.

If a Get Features command is submitted for this Feature, the attributes specified in Figure 146 are returned
in Dword 0 of the completion queue entry for that command for the Interrupt Vector specified in Command
Dword 11.

Prior to issuing this Feature, the host shall configure the specified Interrupt Vector with a valid I/O
Completion Queue. If the I/O Completion Queue or Interrupt Vector specified is invalid, the controller should
return an error of Invalid Field in Command.

Figure 140: Interrupt Vector Configuration – Command Dword 11
Bit Description

31:17 Reserved

16
Coalescing Disable (CD): If set to ‘1’, then any interrupt coalescing settings shall not be applied
for this interrupt vector. If cleared to ‘0’, then interrupt coalescing settings apply for this interrupt
vector.

15:00 Interrupt Vector (IV): This field specifies the interrupt vector for which the configuration settings
are applied.

5.21.1.10 Write Atomicity Normal (Feature Identifier 0Ah)
This Feature controls the operation of the AWUN and NAWUN parameters (refer to section 6.4). The
attributes are indicated in Command Dword 11.

If a Get Features command is submitted for this Feature, the attributes specified in Figure 147 are returned
in Dword 0 of the completion queue entry for that command.

Figure 141: Write Atomicity Normal – Command Dword 11
Bit Description

31:01 Reserved

00
Disable Normal (DN): If set to ‘1’, then the host specifies that AWUN and NAWUN are not
required and that the controller shall only honor AWUPF and NAWUPF. If cleared to ‘0’, then
AWUN, NAWUN, AWUPF, and NAWUPF shall be honored by the controller.

NVM Express 1.3a

157

5.21.1.11 Asynchronous Event Configuration (Feature Identifier 0Bh)
This Feature controls the events that trigger an asynchronous event notification to the host. This Feature
may be used to disable reporting events in the case of a persistent condition (refer to section 5.2). If the
condition for an event is true when the corresponding notice is enabled, then an event is sent to the host.
The attributes are indicated in Command Dword 11.

If a Get Features command is submitted for this Feature, the attributes specified in Figure 148 are returned
in Dword 0 of the completion queue entry for that command.

Figure 142: Asynchronous Event Configuration – Command Dword 11
Bit Description

31:11 Reserved

10

Telemetry Log Notices: This field determines whether an asynchronous event notification is sent
to the host when the Telemetry Controller-Initiated Data Available field transitions from ‘0’ to ‘1’ in
the Telemetry Controller-Initiated log page. If this bit is set to ‘1’, then the Telemetry Log Changed
event is sent to the host when this condition occurs. If this bit is cleared to ‘0’, then the controller
shall not send the Telemetry Log Changed event to the host.

09

Firmware Activation Notices: This field determines whether an asynchronous event notification
is sent to the host for a Firmware Activation Starting event (refer to Figure 49). If this bit is set to
‘1’, then the Firmware Activation Starting event is sent to the host when this condition occurs. If
this bit is cleared to ‘0’, then the controller shall not send the Firmware Activation Starting event to
the host.

08

Namespace Attribute Notices: This field determines whether an asynchronous event notification
is sent to the host for a Namespace Attribute change (refer to Figure 49). If this bit is set to ‘1’,
then the Namespace Attribute Changed event is sent to the host when this condition occurs. If
this bit is cleared to ‘0’, then the controller shall not send the Namespace Attribute Changed event
to the host.

07:00

SMART / Health Critical Warnings: This field determines whether an asynchronous event
notification is sent to the host for the corresponding Critical Warning specified in the SMART /
Health Information Log (refer to Figure 93). If a bit is set to ‘1’, then an asynchronous event
notification is sent when the corresponding critical warning bit is set to ‘1’ in the SMART / Health
Information Log. If a bit is cleared to ‘0’, then an asynchronous event notification is not sent when
the corresponding critical warning bit is set to ‘1’ in the SMART / Health Information Log.

5.21.1.12 Autonomous Power State Transition (Feature Identifier 0Ch), (Optional)
This feature configures the settings for autonomous power state transitions, refer to section 8.4.2.

The Autonomous Power State Transition uses Command Dword 11 and specifies the attribute information
in the data structure indicated in Figure 149 and the Autonomous Power State Transition data structure
consisting of 32 of the entries defined in Figure 150.

If a Get Features command is issued for this Feature, the attributes specified in Figure 149 are returned in
Dword 0 of the completion queue entry and the Autonomous Power State Transition data structure, whose
entry structure is defined in Figure 150, is returned in the data buffer for that command.

Figure 143: Autonomous Power State Transition – Command Dword 11
Bit Description

31:01 Reserved

00

Autonomous Power State Transition Enable (APSTE): This field specifies whether
autonomous power state transition is enabled. If this field is set to ‘1’, then autonomous power
state transitions are enabled. If this field is cleared to ‘0’, then autonomous power state transitions
are disabled. This field is cleared to ‘0’ by default.

NVM Express 1.3a

158

Each entry in the Autonomous Power State Transition data structure is defined in Figure 150. Each entry
is 64 bits in size. There is an entry for each of the allowable 32 power states. For power states that are
not supported, the unused Autonomous Power State Transition data structure entries shall be cleared to
all zeroes. The entries begin with power state 0 and then increase sequentially (i.e., power state 0 is
described in bytes 7:0, power state 1 is described in bytes 15:8, etc.). The data structure is 256 bytes in
size and shall be physically contiguous.

Figure 144: Autonomous Power State Transition – Data Structure Entry
Bit Description

63:32 Reserved

31:08

Idle Time Prior to Transition (ITPT): This field specifies the amount of idle time that occurs in
this power state prior to transitioning to the Idle Transition Power State. The time is specified in
milliseconds. A value of 0h disables the autonomous power state transition feature for this power
state.

07:03

Idle Transition Power State (ITPS): This field specifies the power state for the controller to
autonomously transition to after there is a continuous period of idle time in the current power state
that exceeds time specified in the Idle Time Prior to Transition field. The field specified is required
to be a non-operational state as described in Figure 113. This field should not specify a power
state with higher reported idle power than the current power state.

02:00 Reserved

5.21.1.13 Host Memory Buffer (Feature Identifier 0Dh), (Optional)
This Feature controls the Host Memory Buffer. The attributes are indicated in Command Dword 11,
Command Dword 12, Command Dword 13, Command Dword 14, and Command Dword 15.

The Host Memory Buffer feature provides a mechanism for the host to allocate a portion of host memory
for the controller to use exclusively. After a successful completion of a Set Features enabling the host
memory buffer, the host shall not write to the associated host memory region, buffer size, or descriptor list
until the host memory buffer has been disabled.

After a successful completion of a Set Features command that disables the host memory buffer, the
controller shall not access any data in the host memory buffer until the host memory buffer has been
enabled. The controller should retrieve any necessary data from the host memory buffer in use before
posting the completion queue entry for the Set Features command. Posting of the completion queue entry
for the Set Features command acknowledges that it is safe for the host software to modify the host memory
buffer contents. Refer to section 8.9.

Figure 145: Host Memory Buffer – Command Dword 11
Bit Description

31:02 Reserved

01

Memory Return (MR): If set to ‘1’, then the host is returning previously allocated memory the
controller used prior to a reset or entering the Runtime D3 state. A returned host memory buffer
shall have the exact same size, descriptor list address, descriptor list contents, and host memory
buffer contents as last seen by the controller before EHM was cleared to '0'. If cleared to ‘0’, then
the host is allocating host memory resources with undefined content.

00 Enable Host Memory (EHM): If set to ‘1’, then the controller may use the host memory buffer.
While cleared to ‘0’, the controller shall not use the host memory buffer.

NVM Express 1.3a

159

Figure 146: Host Memory Buffer – Command Dword 12
Bit Description

31:00 Host Memory Buffer Size (HSIZE): This field specifies the size of the host memory buffer
allocated in memory page size (CC.MPS) units.

Figure 147: Host Memory Buffer– Command Dword 13
Bit Description

31:00

Host Memory Descriptor List Lower Address (HMDLLA): This field specifies the lower 32 bits
of the physical location of the Host Memory Descriptor List (refer to Figure 156) for the Host
Memory Buffer. This address shall be 16 byte aligned, indicated by bits 3:0 being cleared to 0h.

NOTE: The controller shall operate as if bits 3:0 are cleared to 0h. However, the controller is not
required to check that bits 3:0 are cleared to 0h.

Figure 148: Host Memory Buffer – Command Dword 14

Bit Description

31:00 Host Memory Descriptor List Upper Address (HMDLUA): This field specifies the upper 32 bits
of the physical location of the Host Memory Descriptor List for the Host Memory Buffer.

The Host Memory Descriptor List Address (HMDLLA/HMDLUA) specifies the address of a physically
contiguous data structure in host memory that describes the address and length pairs of the Host Memory
Buffer. The number of address and length pairs is specified in the Host Memory Descriptor List Entry Count
in Figure 155. The Host Memory Descriptor List is described in Figure 156.

Figure 149: Host Memory Buffer – Command Dword 15
Bit Description

31:00 Host Memory Descriptor List Entry Count (HMDLEC): This field specifies the number of entries
provided in the Host Memory Descriptor List.

Figure 150: Host Memory Buffer – Host Memory Descriptor List
Bytes Description
15:0 Host Memory Buffer Descriptor (refer to Figure 157) Entry 0

31:16 Host Memory Buffer Descriptor Entry 1
47:32 Host Memory Buffer Descriptor Entry 2
63:48 Host Memory Buffer Descriptor Entry 3

…
…

16*n+15:16*n Host Memory Buffer Descriptor Entry n (where n = HMDLEC - 1) (refer to Figure 155)

Each Host Memory Buffer Descriptor Entry shall describe a host memory address in memory page size
units and the number of contiguous memory page size units associated with the host address.

NVM Express 1.3a

160

Figure 151: Host Memory Buffer – Host Memory Buffer Descriptor Entry
Bit Description

127:96 Reserved

95:64 Buffer Size (BSIZE): Indicates the number of contiguous memory page size (CC.MPS) units for
this descriptor.

63:00

Buffer Address (BADD): Indicates the host memory address for this descriptor aligned to the
memory page size (CC.MPS). The lower bits (n:0) of this field indicate the offset within the memory
page is 0h. If the memory page size is 4KB, then bits 11:00 shall be zero; if the memory page
size is 8KB, then bits 12:00 shall be zero, etc.

If a Get Features command is issued for this Feature, the attributes specified in Figure 151 are returned in
Dword 0 of the completion queue entry and the Host Memory Buffer Attributes data structure, whose
structure is defined in Figure 158, is returned in the data buffer for that command.

Figure 152: Host Memory Buffer – Attributes Data Structure

Byte Description

3:0 Host Memory Buffer Size (HSIZE): This field indicates the size of the host memory buffer
allocated in memory page size units.

7:4 Host Memory Descriptor List Address Lower (HMDLAL): This field indicates the lower 32
bits of the physical location of the Host Memory Descriptor List for the Host Memory Buffer.

11:8 Host Memory Descriptor List Address Upper (HMDLAU): This field indicates the upper 32
bits of the physical location of the Host Memory Descriptor List for the Host Memory Buffer.

15:12 Host Memory Descriptor List Entry Count (HMDLEC): This field indicates the number of valid
Host Memory Descriptor Entries.

4095:16 Reserved

5.21.1.14 Timestamp (Feature Identifier 0Eh), (Optional)
The Timestamp feature enables the host to set a timestamp value in the controller. A controller indicates
support for the Timestamp feature through the Optional NVM Command Support (ONCS) field in the Identify
Controller data structure.

The accuracy of Timestamp values after initialization may be affected by vendor specific factors, such as
whether the controller continuously counts after the timestamp is initialized, or whether it stops counting
during certain intervals (such as non-operational power states). Timestamp values should not be used for
security applications. The use of the Timestamp is beyond the scope of this specification.

If a Set Features command is issued for this Feature, the data structure specified in Figure 159 is transferred
in the data buffer for that command, specifying the Timestamp value.

Figure 153: Timestamp – Data Structure for Set Features
Bytes Description
05:00 Timestamp: Number of milliseconds that have elapsed since midnight, 01-Jan-1970, UTC.
07:06 Reserved

If a Get Features command is issued for this Feature, the data structure specified in Figure 160 is returned
in the data buffer for that command.

NVM Express 1.3a

161

Figure 154: Timestamp – Data Structure for Get Features
Bytes Description

05:00

Timestamp:
If the Timestamp Origin field set to 000b, then this field is set to the time in milliseconds since the last Controller
Level Reset.

If the Timestamp Origin field is set to 001b, then this field is set to the last Timestamp value set by the host, plus
the time in milliseconds since the Timestamp was set. If the sum of the Timestamp value set by the host and
the elapsed time exceeds 2^48, the value returned should be reduced modulo 2^48.

If the Synch bit is set to 1b, then the Timestamp value may be reduced by vendor specific time intervals not
counted by the controller.

06

Bits Attribute Definition
07:04 Reserved Reserved

03:01 Timestamp
Origin

Value Definition

000b The Timestamp field was initialized to ‘0’ by a Controller Level
Reset.

001b The Timestamp field was initialized with a Timestamp value
using a Set Features command.

010b –
111b Reserved

00 Synch

Value Definition

0b The controller counted time in milliseconds continuously since
the Timestamp value was initialized.

1b
The controller may have stopped counting during vendor specific
intervals after the Timestamp value was initialized (e.g., non-
operational power states).

07 Reserved

5.21.1.15 Keep Alive Timer (Feature Identifier 0Fh)
This Feature controls the Keep Alive Timer. Refer to section 7.12 for Keep Alive details. The attributes are
indicated in Command Dword 11.

If a Get Features command is submitted for this Feature, the attributes specified in Figure 161 are returned
in Dword 0 of the completion queue entry for that command.

Figure 155: Keep Alive Timer – Command Dword 11
Bit Description

31:00

Keep Alive Timeout (KATO): This field specifies the timeout value for the Keep Alive feature in
milliseconds. The controller rounds up the value specified to the granularity indicated in the KAS
field in the Identify Controller data structure. If cleared to 0h then the Keep Alive Timer is disabled.
The default value for this field is 0h for PCIe and fabrics that do not require use of the Keep Alive
feature. For fabrics that require use of the Keep Alive feature, the default value for this field is
1D4C0h (i.e., 120,000 milliseconds or 2 minutes) rounded up to that granularity.

NVM Express 1.3a

162

5.21.1.16 Host Controlled Thermal Management (Feature Identifier 10h), (Optional)
This feature configures the settings for the host controlled thermal management feature, refer to section
8.4.5. The host controlled thermal management feature uses Command Dword 11 with the attributes shown
in Figure 162.

If a Get Features command is submitted for this feature, then the attributes shown in Figure 162 are returned
in Dword 0 of the completion queue entry for that command.

This feature is not namespace specific.

Figure 156: HCTM – Command Dword 11

Bit Description

31:16

Thermal Management Temperature 1 (TMT1): This field specifies the temperature, in degrees
Kelvin, when the controller begins to transition to lower power active power states or performs
vendor specific thermal management actions while minimizing the impact on performance (e.g.,
light throttling) in order to attempt to reduce the Composite Temperature.

A value cleared to zero, specifies that this part of the feature shall be disabled.

The range of values that are supported by the controller are indicated in the Minimum Thermal
Management Temperature field and Maximum Thermal Management Temperature field in the
Identify Controller data structure in Figure 109.

If the host attempts to set this field to a value less than the value contained in the Minimum
Thermal Management Temperature field or greater than the value contained in the Maximum
Thermal Management Temperature field in the Identify Controller data structure in Figure 109,
then the command shall fail with a status code of Invalid Field in Command.

If the host attempts to set this field to a value greater than or equal to the value contained in the
Thermal Management Temperature 2 field, if non-zero, then the command shall fail with a status
code of Invalid Field in Command.

15:00

Thermal Management Temperature 2 (TMT2): This field specifies the temperature, in degrees
Kelvin, when the controller begins to transition to lower power active power states or perform
vendor specific thermal management actions regardless of the impact on performance (e.g.,
heavy throttling) in order to attempt to reduce the Composite Temperature.

A value cleared to zero, specifies that this part of the feature shall be disabled.

The range of values that are supported by the controller are indicated in the Minimum Thermal
Management Temperature field and Maximum Thermal Management Temperature field in the
Identify Controller data structure in Figure 109.

If the host attempts to set this field to a value less than the value contained in the Minimum
Thermal Management Temperature field or greater than the value contained in the Maximum
Thermal Management Temperature field in the Identify Controller data structure in Figure 109,
then the command shall fail with a status code of Invalid Field in Command.

If the host attempts to set this field to a non-zero value less than or equal to the value contained
in the Thermal Management Temperature 1 field, then the command shall fail with a status code
of Invalid Field in Command.

NVM Express 1.3a

163

5.21.1.17 Non-Operational Power State Config (Feature Identifier 11h), (Optional)
This Feature configures non-operational power state settings for the controller. The settings are specified
in Command Dword 11.

If a Get Features command is submitted for this Feature, the values in Figure 163 are returned in Dword 0
of the completion queue entry for that command.

Figure 157: Non-Operational Power State Config – Command Dword 11
Bit Description

31:01 Reserved

00

Non-Operational Power State Permissive Mode Enable (NOPPME): If NOPPME is set to ‘1’
then the controller may temporarily exceed the power limits of any non-operational power state,
up to the limits of the last operational power state, to run controller initiated background operations
in that state (i.e., Non-Operational Power State Permissive Mode is enabled). If NOPPME is
cleared to ‘0’, then the controller shall not exceed the limits of any non-operational state while
running controller initiated background operations in that state (i.e., Non-Operational Power State
Permissive Mode is disabled).

If the host attempts to set this field to ‘1’ and the controller does not support Non-Operational
Power State Permissive Mode as indicated in the Controller Attributes field of Identify Controller,
then the command fails with a status of Invalid Field in Command.

5.21.1.18 Software Progress Marker (Feature Identifier 80h), (Optional) – NVM Command Set Specific
This Feature is a software progress marker. The software progress marker is persistent across power
states. For additional details, refer to section 7.6.1.1. This information may be used to indicate to an OS
software driver whether there have been issues with the OS successfully loading. The attributes are
indicated in Command Dword 11.

If a Get Features command is submitted for this Feature, the attributes specified in Figure 164 are returned
in Dword 0 of the completion queue entry for that command.

Figure 158: Software Progress Marker – Command Dword 11
Bit Description

31:08 Reserved

07:00

Pre-boot Software Load Count (PBSLC): Indicates the load count of pre-boot software. After
successfully loading and initializing the controller, pre-boot software should set this field to one
more than the previous value of the Pre-boot Software Load Count. If the previous value is 255
then the value should not be updated by pre-boot software (i.e., the value does not wrap to 0).
OS driver software should set this field to 0h after the OS has successfully been initialized.

5.21.1.19 Host Identifier (Feature Identifier 81h), (Optional1)
This feature allows the host to register a Host Identifier with the controller. The Host Identifier is used by
the controller to determine whether other controllers in the NVM subsystem are associated with the same
host. The Host Identifier may be used to designate host elements that access an NVM subsystem
independently of each other or for reservations.

1 Mandatory if reservations are supported as indicated in the Identify Controller data structure.

NVM Express 1.3a

164

The Host Identifier is contained in the data structure indicated in Figure 166. The attributes are specified in
Command Dword 11. If a Get Features command is issued for this Feature, the data structure specified in
Figure 166 is returned in the data buffer for that command.

The requirements and use of the Host Identifier feature is dependent on whether the implementation
supports NVMe over PCIe or NVMe over Fabrics. Refer to section 5.21.1.19.1 and section 5.21.1.19.2.

Figure 159: Host Identifier – Command Dword 11
Bit Description

31:01 Reserved

00

Enable Extended Host Identifier (EXHID): If set to ‘1’, then the host is using an extended 128-
bit Host Identifier. If cleared to ‘0’, then the host is using a 64-bit Host Identifier. NVMe over Fabrics
implementations shall use an extended 128-bit Host Identifier.

If the controller does not support a 128-bit Host Identifier as indicated in the Controller Attributes
field in the Identify Controller data structure and the host sets this bit to ‘1’, then a status value of
Invalid Field in Command shall be returned.

If the NVM subsystem detects that another controller in the NVM subsystem is using a Host
Identifier of a different size than specified in this command, a status of Host Identifier Inconsistent
Format shall be returned.

Figure 160: Host Identifier – Data Structure Entry
Byte Description

15:00

Host Identifier (HOSTID): This field specifies a 64-bit or 128-bit identifier that uniquely identifies
the host associated with the controller within the NVM subsystem. The host provides an 8 byte or
16 byte data structure depending on the value specified in the Enable Extended Host Identifier
field. The value of the host identifier used by a host, the method used to select this value, and the
method used to ensure uniqueness are outside the scope of this specification. Controllers in an
NVM subsystem that have the same Host Identifier are assumed to be associated with the same
host and have the same reservation and registration rights.

A Host Identifier value of zero indicates that the host is not associated with any other controller in
the NVM subsystem.

5.21.1.19.1 NVMe over PCIe
The Host Identifier is an optional feature in NVMe over PCIe. The controller may support a 64-bit Host
Identifier and/or an extended 128-bit Host Identifier. It is recommended that implementations support the
extended 128-bit Host Identifier as indicated in the Controller Attributes field in the Identify Controller data
structure. The Host Identifier may be modified at any time using Set Features causing the controller to be
logically remapped from the original host associated with the old Host Identifier to a new host associated
with the new Host Identifier.

A Host Identifier value of 0h is a valid value that indicates that the host associated with the controller is not
associated with any other controller in the NVM subsystem. Specifically, two controllers in an NVM
subsystem that both have a Host Identifier of 0h indicates that the controllers are associated with different
hosts. Using a Host Identifier value of 0h is a valid configuration for the reservations feature. However,
reservations and registrations associated with a host identifier of 0h do not persist across a Controller Level
Reset since a host that uses a Host Identifier of 0h is treated as a different host after a Controller Level
Reset.

5.21.1.19.2 NVMe over Fabrics
The Host Identifier is a mandatory feature in NVMe over Fabrics. The Host Identifier shall be an extended
128-bit Host Identifier. The Host Identifier shall be set to a non-zero value in the Fabrics Connect command.

NVM Express 1.3a

165

The Host Identifier shall not be modified. A Set Features command specifying the Host Identifier Feature
shall be aborted with a status of Command Sequence Error. A Get Features command specifying the Host
Identifier Feature shall return the value set in the Fabrics Connect command. A Get Features command
specifying a 64-bit Host Identifier (EXHID cleared to ‘0’) shall be aborted with a status of Invalid Field in
Command.

5.21.1.20 Reservation Notification Mask (Feature Identifier 82h), (Optional2)

This Feature controls the masking of reservation notifications on a per namespace basis. A Reservation
Notification log page is created whenever a reservation notification occurs on a namespace and the
corresponding reservation notification type is not masked on that namespace by this Feature. If reservations
are supported by the controller, then this Feature shall be supported. The attributes are indicated in
Command Dword 11.

A Set Features command that uses a namespace ID other than FFFFFFFFh modifies the reservation
notification mask for the corresponding namespace only. A Set Features command that uses a namespace
ID of FFFFFFFFh modifies the reservation notification mask of all namespaces that are attached to the
controller and that support reservations. A Get Features command that uses a namespace ID other than
FFFFFFFFh returns the reservation notification mask for the corresponding namespace. A Get Features
command that uses a namespace ID of FFFFFFFFh is aborted with status Invalid Field in Command. If a
Set Features or Get Features attempts to access the Reservation Notification Mask on a namespace that
does not support reservations or is invalid, then the command is aborted with status Invalid Field in
Command.

If a Get Features command successfully completes for this Feature, the attributes specified in Figure 167
are returned in Dword 0 of the completion queue entry for that command.

Figure 161: Reservation Notification Configuration – Command Dword 11
Bit Description

31:04 Reserved

03
Mask Reservation Preempted Notification (RESPRE): If set to ‘1’, then mask the reporting of
reservation preempted notification by the controller. If cleared to ‘0’, then the notification is not
masked and a Reservation Notification log page is created whenever notification occurs.

02
Mask Reservation Released Notification (RESREL): If set to ‘1’, then mask the reporting of
reservation released notification by the controller. If cleared to ‘0’, then the notification is not
masked and a Reservation Notification log page is created whenever the notification occurs.

01
Mask Registration Preempted Notification (REGPRE): If set to ‘1’, then mask the reporting of
registration preempted notification by the controller. If cleared to ‘0’, then the notification is not
masked and a Reservation Notification log page is created whenever the notification occurs.

00 Reserved

5.21.1.21 Reservation Persistence (Feature Identifier 83h), (Optional3)

Each namespace that supports reservations has a Persist Through Power Loss (PTPL) state that may be
modified using either a Set Features command or a Reservation Register command (refer to section 6.11).
The Reservation Persistence feature attributes are indicated in Command Dword 11.

2 Mandatory if reservations are supported by the namespace as indicated by a non-zero value in the
Reservation Capabilities (RESCAP) field in the Identify Namespace data structure.
3 Mandatory if reservations are supported by the namespace as indicated by a non-zero value in the
Reservation Capabilities (RESCAP) field in the Identify Namespace data structure.

NVM Express 1.3a

166

The PTPL state is contained in the Reservation Persistence Feature that is namespace specific. A Set
Features command that uses the namespace ID FFFFFFFFh modifies the PTPL state associated with all
namespaces that are attached to the controller and that support PTPL (i.e., support reservations). A Set
Features command that uses a valid namespace ID other than FFFFFFFFh and corresponds to a
namespace that supports reservations, modifies the PTPL state for that namespace. A Get Features
command that uses a namespace ID of FFFFFFFFh is aborted with status Invalid Field in Command. A
Get Features command that uses a valid namespace ID other than FFFFFFFFh and corresponds to a
namespace that supports PTPL, returns the PTPL state for that namespace. If a Set Features or Get
Features command using a namespace ID other than FFFFFFFFh attempts to access the PTPL state for
a namespace that does not support this Feature Identifier, then the command is aborted with status Invalid
Field in Command.

If a Get Features command successfully completes for this Feature Identifier, the attributes specified in
Figure 168 are returned in Dword 0 of the completion queue entry for that command

Figure 162: Reservation Persistence Configuration – Command Dword 11
Bit Description

31:01 Reserved

00
Persist Through Power Loss (PTPL): If set to '1', then reservations and registrants persist across
a power loss. If cleared to ‘0’, then reservations are released and registrants are cleared on a
power loss.

5.21.2 Command Completion
A completion queue entry is posted to the Admin Completion Queue when the controller has completed
setting attributes associated with the Feature. Set Features command specific status values are defined in
Figure 169.

Figure 163: Set Features – Command Specific Status Values
Value Description

0Dh Feature Identifier Not Saveable: The Feature Identifier specified does not support a saveable
value.

0Eh Feature Not Changeable: The Feature Identifier is not able to be changed.

0Fh Feature Not Namespace Specific: The Feature Identifier specified is not namespace specific.
The Feature Identifier settings apply across all namespaces.

14h Overlapping Range: This error is indicated if the LBA Range Type data structure has overlapping
ranges.

5.22 Virtualization Management command
The Virtualization Management command is supported by primary controllers that support the Virtualization
Enhancements capability. This command is used for several functions:

• Modifying Flexible Resource allocation for the primary controller;
• Assigning Flexible Resources for secondary controllers; and
• Setting the Online and Offline state for secondary controllers.

Refer to section 8.5 for more on the Virtualization Enhancements capability and the Virtualization
Management command.

The Virtualization Management command uses the Command Dword 10 and Command Dword 11 fields.
All other command specific fields are reserved.

If the action requested specifies a range of controller resources that does not exist, is a Private Resource,
or is currently in use then an error of Invalid Resource Identifier is returned.

NVM Express 1.3a

167

Figure 164: Virtualization Management – Command Dword 10
Bit Description

31:16 Controller Identifier (CNTLID): This field indicates the controller for which controller resources
are to be modified.

15:11 Reserved

10:08

Resource Type (RT): This field indicates the type of controller resource to be modified.

Value Description
000b VQ Resources
001b VI Resources

010b – 111b Reserved

07:04 Reserved

03:00

Action (ACT): This field indicates the operation for the command to perform as described below.

Value Description
0h Reserved
1h Primary Controller Flexible Allocation: Set the number of Flexible Resources

allocated to this primary controller following the next Controller Level Reset other
than a Controller Reset (i.e., CC.EN transitions from ‘1’ to ‘0’). If the Controller
Identifier field does not correspond to this primary controller then an error of
Invalid Controller Identifier is returned. This value is persistent across power
cycles and resets.

2h – 6h Reserved
7h Secondary Controller Offline: Place the secondary controller in the Offline state

and remove all Flexible Resources. If the Controller Identifier field does not
correspond to a secondary controller associated with this primary controller then
an error of Invalid Controller Identifier is returned.

8h Secondary Controller Assign: Assign the number of controller resources
specified in Number of Controller Resources to the secondary controller. If the
Controller Identifier field does not correspond to a secondary controller associated
with this primary controller then an error of Invalid Controller Identifier is returned.
If the secondary controller is not in the Offline state then an error of Invalid
Secondary Controller State is returned.

9h Secondary Controller Online: Place the secondary controller in the Online state.
If the Controller Identifier field does not correspond to a secondary controller
associated with this primary controller then an error of Invalid Controller Identifier
is returned. If the secondary controller is not configured appropriately (refer to
section 8.5) or the primary controller is not enabled, then an error of Invalid
Secondary Controller State is returned.

Ah – Fh Reserved

Figure 165: Virtualization Management – Command Dword 11
Bit Description

31:16 Reserved

15:00 Number of Controller Resources (NR): This field indicates a number of controller resources to
allocate or assign.

NVM Express 1.3a

168

5.22.1 Command Completion
Command specific status values associated with the Virtualization management command are defined in
Figure 172.

Figure 166: Virtualization Management – Command Specific Status Values
Value Description
1Fh Invalid Controller Identifier: An invalid Controller Identifier was specified.

20h Invalid Secondary Controller State: The action requested for the secondary controller
is invalid based on the current state of the secondary controller and its primary controller.

21h Invalid Number of Controller Resources: The specified number of Flexible Resources
is invalid.

22h Invalid Resource Identifier: At least one of the specified resource identifiers was invalid.

Dword 0 of the completion queue entry contains information about the controller resources that were
modified as part of the Primary Controller Flexible Allocation and Secondary Controller Assign actions.
Dword 0 of the completion queue entry is defined in Figure 173.

Figure 167: Virtualization Management – Completion Queue Entry Dword 0
Bit Description

31:16 Reserved

15:00
Number of Controller Resources Modified (NRM): This field indicates the number of controller
resources that were allocated or assigned. The value may be smaller or larger than the number
requested.

5.23 Format NVM command – NVM Command Set Specific
The Format NVM command is used to low level format the NVM media. This is used when the host wants
to change the LBA data size and/or metadata size. A low level format may destroy all data and metadata
associated with all namespaces or only the specific namespace associated with the command (refer to the
Format NVM Attributes field in the Identify Controller data structure). After the Format NVM command
successfully completes, the controller shall not return any user data that was previously contained in an
affected namespace.

As part of the Format NVM command, the host may request a secure erase of the contents of the NVM.
There are two types of secure erase. The User Data Erase erases all user content present in the NVM
subsystem. The Cryptographic Erase erases all user content present in the NVM subsystem by deleting
the encryption key with which the user data was previously encrypted.

NVM Express 1.3a

169

The scope of the format operation and secure erase depend on the attributes that the controller supports
for the Format NVM command and the Namespace Identifier specified in the command. The scope for the
format operation is defined in Figure 174. The scope for secure erase, if applicable based on the setting of
the Secure Erase Settings field in Command Dword 10 is defined in Figure 175.

Figure 168: Format NVM – Format Scope

FNA1 Bit 0 NSID Format Operation

0b FFFFFFFFh All namespaces attached to the controller
0b All other valid values Particular namespace specified
1b All valid values All namespaces in the NVM subsystem

NOTES:
1. FNA is the Format NVM Attributes field in the Identify Controller data structure.

Figure 169: Format NVM – Secure Erase Scope

FNA1 Bit 1 NSID Secure Erase

0b FFFFFFFFh All namespaces attached to the controller
0b All other valid values Particular namespace specified
1b All valid values All namespaces in the NVM subsystem

NOTES:
1. FNA is the Format NVM Attributes field in the Identify Controller data structure.

The Format NVM command shall fail if the controller is in an invalid security state (refer to the appropriate
security specification, e.g., TCG SIIS). The Format NVM command may fail if there are outstanding I/O
commands to the namespace specified to be formatted. I/O commands for a namespace that has a Format
NVM command in progress may fail.

The settings specified in the Format NVM command are reported as part of the Identify Namespace data
structure.

The Format NVM command uses the Command Dword 10 field. All other command specific fields are
reserved.

Figure 170: Format NVM – Command Dword 10
Bit Description

31:12 Reserved

11:09

Secure Erase Settings (SES): This field specifies whether a secure erase should be performed
as part of the format and the type of the secure erase operation. The erase applies to all user
data, regardless of location (e.g., within an exposed LBA, within a cache, within deallocated LBAs,
etc.).

Value Definition
000b No secure erase operation requested

001b

User Data Erase: All user data shall be erased, contents of the
user data after the erase is indeterminate (e.g., the user data
may be zero filled, one filled, etc.). The controller may perform
a cryptographic erase when a User Data Erase is requested if
all user data is encrypted.

010b
Cryptographic Erase: All user data shall be erased
cryptographically. This is accomplished by deleting the
encryption key.

011b – 111b Reserved

NVM Express 1.3a

170

Bit Description

08

Protection Information Location (PIL): If set to ‘1’ and protection information is enabled, then
protection information is transferred as the first eight bytes of metadata. If cleared to ‘0’ and
protection information is enabled, then protection information is transferred as the last eight bytes
of metadata. This setting is reported in the End-to-end Data Protection Type Settings (DPS) field
of the Identify Namespace data structure and is constrained by the End-to-end Data Protection
Capabilities (DPC) field of the Identify Namespace data structure.

07:05

Protection Information (PI): This field specifies whether end-to-end data protection is enabled
and the type of protection information. The values for this field have the following meanings:

Value Definition
000b Protection information is not enabled
001b Protection information is enabled, Type 1
010b Protection information is enabled, Type 2
011b Protection information is enabled, Type 3

100b – 111b Reserved

When end-to-end data protected is enabled, the host shall specify the appropriate protection
information in the Read, Write, or Compare commands.

04

Metadata Settings (MSET): This field is set to ‘1’ if the metadata is transferred as part of an
extended data LBA. This field is cleared to ‘0’ if the metadata is transferred as part of a separate
buffer. The metadata may include protection information, based on the Protection Information (PI)
field. If the Metadata Size for the LBA Format selected is 0h, then this field is not applicable.

03:00
LBA Format (LBAF): This field specifies the LBA format to apply to the NVM media. This
corresponds to the LBA formats indicated in the Identify command, refer to Figure 114 and Figure
115. Only supported LBA formats shall be selected.

5.23.1 Command Completion
A completion queue entry is posted to the Admin Completion Queue when the NVM media format is
complete. Format NVM command specific status values are defined in Figure 177.

Figure 171: Format NVM – Command Specific Status Values
Value Description

Ah Invalid Format: The format specified is invalid. This may be due to various conditions, including:
1) specifying an invalid LBA Format number, or
2) enabling protection information when there is not sufficient metadata per LBA
3) the specified format is not available in the current configuration, or
4) invalid security state (refer to TCG SIIS), etc.

5.24 Sanitize command – NVM Command Set Specific
The Sanitize command is used to start a sanitize operation or to recover from a previously failed sanitize
operation. The sanitize operation types that may be supported are Block Erase, Crypto Erase, and
Overwrite. All sanitize operations are processed in the background (i.e., completion of the Sanitize
command does not indicate completion of the sanitize operation). Refer to section 8.15 for details on the
sanitize operation.

When a sanitize operation starts on any controller, all controllers in the NVM subsystem:

• Shall clear any outstanding Sanitize Operation Completed asynchronous event;
• Shall update the Sanitize Status log (refer to section 5.14.1.9.2);
• Shall abort any command (submitted or in progress) not allowed during a sanitize operation with a

status of Sanitize In Progress (refer to section 8.15.1);
• Should suspend power management activities; and
• Shall release stream identifiers for any open streams.

NVM Express 1.3a

171

While a sanitize operation is in progress, all controllers in the NVM subsystem shall abort any command
not allowed during a sanitize operation with a status of Sanitize In Progress (refer to section 8.15.1).

After a sanitize operation fails, all controllers in the NVM subsystem shall abort any command not allowed
during a sanitize operation with a status of Sanitize Failed (refer to section 8.15.1) until a subsequent
sanitize operation is started or successful recovery from the failed sanitize operation occurs.

If the most recent failed sanitize operation was started in unrestricted completion mode (i.e. the AUSE bit
was set to ‘1’ in the Sanitize command), failure recovery requires the host to issue a subsequent Sanitize
command in restricted or unrestricted completion mode or to issue a subsequent Sanitize command with
the Exit Failure Mode action.

If the most recent failed sanitize operation was started in restricted completion mode (i.e. the AUSE bit was
cleared to ‘0’ in the Sanitize command), failure recovery requires the host to issue a subsequent Sanitize
command in restricted completion mode. In the case of a sanitize operation failure in restricted completion
mode, before starting another sanitize operation:

• any subsequent Sanitize command issued with the Exit Failure Mode action shall be aborted with
a status of Sanitize Failed; and

• any Sanitize command issued in unrestricted completion mode shall be aborted with a status of
Sanitize Failed.

The Sanitize Capabilities field in the Identify Controller data structure indicates the sanitize operation types
supported. If an unsupported sanitize operation type is selected by a Sanitize command then the controller
shall abort the command with a status of Invalid Field in Command.

If a firmware activation is pending, then the controller shall abort any Sanitize command with a status of
Firmware Activation Requires NVM Subsystem Reset. Activation of new firmware is prohibited during a
sanitize operation (refer to section 8.15.1).

Support for Sanitize commands in a Controller Memory Buffer (i.e., submitted to an Admin Submission
Queue in a Controller Memory Buffer or specifying an Admin Completion Queue in a Controller Memory
Buffer) is implementation specific. If an implementation does not support Sanitize commands in a Controller
Memory Buffer and a controller’s Admin Submission Queue or Admin Completion Queue is in the Controller
Memory Buffer, then the controller shall abort all Sanitize commands with a status of Command Not
Supported for Queue in CMB.

All sanitize operations (Block Erase, Crypto Erase, Overwrite) are performed in the background (i.e.,
Sanitize command completion does not indicate sanitize operation completion). If a sanitize operation is
started, then the controller shall complete the Sanitize command with a status of Successful Completion. If
the controller completes a Sanitize command with any status other than Successful Completion, then the
controller:

• shall not start the sanitize operation for that command;
• shall not modify the Sanitize Status log page; and
• shall not alter any user data.

The Sanitize command uses Command Dword 10 and Command Dword 11. All other command specific
fields are reserved.

NVM Express 1.3a

172

Figure 172: Sanitize – Command Dword 10
Bit Description

31:10 Reserved

09

No Deallocate After Sanitize: If set to ‘1’ then the controller shall not deallocate any logical blocks
as a result of successfully completing the sanitize operation. If cleared to ‘0’, then the controller
should deallocate logical blocks as a result of successfullly completing the sanitize operation. This
bit shall be ignored if the Sanitize Action field is set to 001b (i.e., Exit Failure Mode).

08

Overwrite Invert Pattern Between Passes (OIPBP): If set to ‘1’, then the Overwrite Pattern shall
be inverted between passes. If cleared to ‘0’, then the overwrite pattern shall not be inverted
between passes. This bit shall be ignored unless the Sanitize Action field is set to 011b (i.e.,
Overwrite).

07:04

Overwrite Pass Count (OWPASS): This field specifies the number of overwrite passes (i.e., how
many times the media is to be overwritten) using the data from the Overwrite Pattern field of this
command. A value of 0 specifies 16 overwrite passes. This field shall be ignored unless the
Sanitize Action field is set to 011b (i.e., Overwrite).

03

Allow Unrestricted Sanitize Exit (AUSE): If set to ‘1’, then the sanitize operation is performed
in unrestricted completion mode. If cleared to ‘0’ then the sanitize operation is performed in
restricted completion mode. This bit shall be ignored if the Sanitize Action field is set to 001b (i.e.,
Exit Failure Mode).

02:00

Sanitize Action (SANACT): This field specifies the sanitize action to perform.

Value Description
000b Reserved
001b Exit Failure Mode
010b Start a Block Erase sanitize operation
011b Start an Overwrite sanitize operation
100b Start a Crypto Erase sanitize operation

101b – 111b Reserved

Figure 173: Sanitize – Command Dword 11
Bit Description

31:00
Overwrite Pattern (OVRPAT): This field is ignored unless the Sanitize Action field in Command
Dword 10 is set to 011b (i.e., Overwrite). This field specifies a 32-bit pattern that is used for the
Overwrite sanitize operation. Refer to section 8.15.

5.24.1 Command Completion
When the command is complete, the controller shall post a completion queue entry to the Admin Completion
Queue indicating the status for the command. All sanitize operations are performed in the background (i.e.,
completion of the Sanitize command does not indicate completion of the sanitize operation). If a sanitize
operation is started, then the Sanitize Status log page shall be updated before posting the completion queue
entry for the command that started that sanitize operation. Sanitize command specific status values are
defined in Figure 180.

Figure 174: Sanitize – Command Specific Status Values
Value Description

10h Firmware Activation Requires NVM Subsystem Reset: The sanitize operation could not be
started because a firmware activation is pending.

5.25 Security Receive command – NVM Command Set Specific
The Security Receive command transfers the status and data result of one or more Security Send
commands that were previously submitted to the controller.

NVM Express 1.3a

173

The association between a Security Receive command and previous Security Send commands is
dependent on the Security Protocol. The format of the data to be transferred is dependent on the
Security Protocol. Refer to SFSC for Security Protocol details.

Each Security Receive command returns the appropriate data corresponding to a Security Send
command as defined by the rules of the Security Protocol. The Security Receive command data may not
be retained if there is a loss of communication between the controller and host, or if a controller reset
occurs.

The fields used are Data Pointer, Command Dword 10, and Command Dword 11 fields. All other
command specific fields are reserved.

Figure 175: Security Receive – Data Pointer
Bit Description

127:00 Data Pointer (DPTR): This field specifies the start of the data buffer. Refer to Figure 11 for the
definition of this field.

Figure 176: Security Receive – Command Dword 10
Bit Description

31:24
Security Protocol (SECP): This field specifies the security protocol as defined in SFSC. The
controller shall fail the command with Invalid Parameter indicated if an unsupported value of the
Security Protocol is specified.

23:16 SP Specific 1 (SPSP1): The value of this field contains bits 15:08 of the Security Protocol Specific
field as defined in SFSC.

15:08 SP Specific 0 (SPSP0): The value of this field contains bits 07:00 of the Security Protocol Specific
field as defined in SFSC.

07:00 NVMe Security Specific Field (NSSF): Refer to Figure 184 for definition of this field for Security
Protocol EAh. For all other Security Protocols this field is reserved.

Figure 177: Security Receive – Command Dword 11
Bit Description

31:00 Allocation Length (AL): The value of this field is specific to the Security Protocol as defined in
SFSC where INC_512 = 0.

5.25.1 Command Completion
If the command is completed, then the controller shall post a completion queue entry to the Admin
Completion Queue indicating the status for the command.

5.25.2 Security Protocol 00h
A Security Receive command with the Security Protocol field set to 00h shall return information about the
security protocols supported by the controller. This command is used in the security discovery process and
is not associated with a Security Send command. Refer to SFSC for the details of Security Protocol 00h
and the SP Specific field.

5.25.3 Security Protocol EAh
Security Protocol EAh is assigned for NVMe use (refer to ACS-4). This protocol may be used in Security
Receive and Security Send commands. The specific usage type is defined by the Security Protocol Specific
Field defined in Figure 184.

NVM Express 1.3a

174

Figure 178: Security Protocol EAh – Security Protocol Specific Field Values
SP Specific (SPSP)

Value
Description NVMe Security Specific Field (NSSF)

Definition
0001h Replay Protected Memory Block RPMB Target

0002h - FFFFh Reserved Reserved

5.26 Security Send command – NVM Command Set Specific
The Security Send command is used to transfer security protocol data to the controller. The data structure
transferred to the controller as part of this command contains security protocol specific commands to be
performed by the controller. The data structure transferred may also contain data or parameters
associated with the security protocol commands. Status and data that is to be returned to the host for the
security protocol commands submitted by a Security Send command are retrieved with the Security
Receive command defined in section 5.25.

The association between a Security Send command and subsequent Security Receive command is
Security Protocol field dependent as defined in SFSC.

The fields used are Data Pointer, Command Dword 10, and Command Dword 11 fields. All other
command specific fields are reserved.

Figure 179: Security Send – Data Pointer
Bit Description

127:00 Data Pointer (DPTR): This field specifies the start of the data buffer. Refer to Figure 11 for the
definition of this field.

Figure 180: Security Send – Command Dword 10
Bit Description

31:24
Security Protocol (SECP): This field specifies the security protocol as defined in SFSC. The
controller shall fail the command with Invalid Parameter indicated if a reserved value of the
Security Protocol is specified.

23:16 SP Specific 1 (SPSP1): The value of this field contains bits 15:08 of the Security Protocol Specific
field as defined in SFSC.

15:08 SP Specific 0 (SPSP0): The value of this field contains bits 07:00 of the Security Protocol Specific
field as defined in SFSC.

07:00 NVMe Security Specific Field (NSSF): Refer to Figure 184 for definition of this field for Security
Protocol EAh. For all other Security Protocols this field is reserved.

Figure 181: Security Send – Command Dword 11
Bit Description

31:00 Transfer Length (TL): The value of this field is specific to the Security Protocol as defined in
SFSC where INC_512 = 0.

5.26.1 Command Completion
If the command is completed, then the controller shall post a completion queue entry to the Admin
Completion Queue indicating the status for the command.

NVM Express 1.3a

175

6 NVM Command Set
An NVM subsystem is comprised of some number of controllers, where each controller may access some
number of namespaces, where each namespace is comprised of some number of logical blocks. A logical
block is the smallest unit of data that may be read or written from the controller. The logical block data size,
reported in bytes, is always a power of two. Logical block sizes may be 512 bytes, 1KB, 2KB, 4KB, 8KB,
etc. Supported logical block sizes are reported in the Identify Namespace data structure.

The NVM Command Set includes the commands listed in Figure 188. The following subsections describe
the definition for each of these commands. Commands shall only be submitted by the host when the
controller is ready as indicated in the Controller Status register (CSTS.RDY) and after appropriate I/O
Submission Queue(s) and I/O Completion Queue(s) have been created.

The Submission Queue Entry (SQE) structure and the fields that are common to all NVM commands are
defined in section 4.2. The Completion Queue Entry (CQE) structure and the fields that are common to all
NVM commands are defined in section 4.6. The command specific fields in the SQE and CQE structures
(i.e., SQE Command Dwords 10-15 and CQE Dword 0) for the NVM Command Set are defined in this
section.

In the case of Compare, Read, Write, and Write Zeroes commands, the host may indicate whether a time
limit should be applied to error recovery for the operation by setting the Limited Retry (LR) field in the
command. The time limit is specified in the Error Recovery feature, specified in section 5.21.1.5. If the
host does not specify a time limit should be applied, then the controller should apply all error recovery
means to complete the operation.

Figure 182: Opcodes for NVM Commands

Opcode by Field
Combined
Opcode2 O/M1 Command3 (07) (06:02) (01:00)

Standard
Command Function Data Transfer5

0b 000 00b 00b 00h M Flush
0b 000 00b 01b 01h M Write
0b 000 00b 10b 02h M Read
0b 000 01b 00b 04h O Write Uncorrectable
0b 000 01b 01b 05h O Compare
0b 000 10b 00b 08h O Write Zeroes
0b 000 10b 01b 09h O Dataset Management
0b 000 11b 01b 0Dh O4 Reservation Register
0b 000 11b 10b 0Eh O4 Reservation Report
0b 001 00b 01b 11h O4 Reservation Acquire
0b 001 01b 01b 15h O4 Reservation Release

 Vendor Specific
1b na NOTE 5 80h – FFh O Vendor specific

NOTES:
1. O/M definition: O = Optional, M = Mandatory.
2. Opcodes not listed are reserved.
3. All NVM commands use the Namespace Identifier field (CDW1.NSID).
4. Mandatory if reservations are supported as indicated in the Identify Controller data structure.
5. Indicates the data transfer direction of the command. All options to the command shall transfer data as specified

or transfer no data. All commands, including vendor specific commands, shall follow this convention: 00b = no
data transfer; 01b = host to controller; 10b = controller to host; 11b = bidirectional.

NVM Express 1.3a

176

6.1 Namespaces

6.1.1 Namespace Overview
A namespace is a collection of logical blocks whose logical block addresses range from 0 to the capacity
of the namespace – 1. A namespace ID (NSID) is an identifier used by a controller to provide access to a
namespace.

6.1.2 Valid and Invalid NSIDs
Valid NSIDs are the range of possible NSIDs that may be used to refer to namespaces that exist in the
NVM subsystem. Any NSID is valid, except if it is zero or greater than the Number of Namespaces field
reported in the Identify Controller data structure (refer to Figure 109). NSID FFFFFFFFh is a broadcast
value that is used to specify all namespaces. An invalid NSID is any value that is not a valid NSID and is
also not the broadcast value.

Valid NSIDs are:
a) allocated or unallocated in the NVM subsystem; and
b) active or inactive for a specific controller.

6.1.3 Allocated and Unallocated NSID Types
In the NVM subsystem, a valid NSID is:

a) an allocated NSID; or
b) an unallocated NSID.

Allocated NSIDs refer to namespaces that exist in the NVM subsystem. Unallocated NSIDs do not refer to
any namespaces that exist in the NVM subsystem.

6.1.4 Active and Inactive NSID Types
For a specific controller, an allocated NSID is:

a) an active NSID; or
b) an inactive NSID.

Active NSIDs for a controller refer to namespaces that are attached to that controller. Allocated NSIDs that
are inactive for a controller refer to namespaces that are not attached to that controller.

Unallocated NSIDs are inactive NSIDs for all controllers in the NVM subsystem.

An allocated NSID may be an active NSID for some controllers and an inactive NSID for other controllers
in the same NVM subsystem if the namespace that the NSID refers to is attached to some controllers, but
not all controllers, in the NVM subsystem.

Refer to section 8.12 for actions associated with a namespace being detached or deleted.

6.1.5 NSID and Namespace Relationships
Unless otherwise noted, specifying an inactive NSID in a command that uses the Namespace Identifier field
(CDW1.NSID) shall cause the controller to abort the command with status Invalid Field in Command.
Specifying an invalid NSID in a command that uses the NSID field shall cause the controller to abort the
command with status Invalid Namespace or Format.

The following table summarizes the valid NSID types and Figure 189 visually shows the NSID types and
how they relate.

NVM Express 1.3a

177

Valid NSID Type NSID relationship to namespace Reference

Unallocated Does not refer to any namespace that exists in the NVM subsystem 6.1.2

Allocated Refers to a namespace that exists in the NVM subsystem 6.1.2

Inactive Does not refer to a namespace that is attached to this controller1 6.1.3

Active Refers to a namespace that is attached to this controller 6.1.3
NOTES:

1. If allocated, refers to a namespace that is not attached to this controller. If unallocated, does not
refer to any namespace.

Figure 183: NSID Types

Inv. Valid Invalid

0 1 NN NN+1

NSID

Allocated Unallocated

Active Inactive

NVM
Subsystem

Controller

FFFFFFFFh

B

Broadcast Value

6.1.6 NSID and Namespace Usage
If Namespace Management is supported (refer to the OACS field in Figure 109) then NSIDs shall be unique
within the NVM subsystem (e.g., NSID of 3 shall refer to the same physical namespace regardless of the
accessing controller). If Namespace Management is not supported then NSIDs:

a) for shared namespaces shall be unique; and
b) for private namespaces are not required to be unique.

The Identify command (refer to section 5.15) may be used to determine the active NSIDs for a controller
and the allocated NSIDs in the NVM subsystem.

To determine the active NSIDs for a particular controller, the host may follow either of the following methods:

NVM Express 1.3a

178

1. Issue an Identify command with the CNS field set to 00h for each valid NSID (based on the
Number of Namespaces value in Identify Controller). If a non-zero data structure is returned for a
particular NSID, then that is an active NSID.

2. Issue an Identify command with a CNS field set to 02h to retrieve a list of up to 1024 active
NSIDs. If there are more than 1024 active NSIDs, continue to issue Identify commands with a
CNS field set to 02h until all active NSIDs are retrieved.

To determine the allocated NSIDs in the NVM subsystem, the host may issue an Identify command with
the CNS field set to 10h to retrieve a list of up to 1024 allocated NSIDs. If there are more than 1024 allocated
NSIDs, continue to issue Identify commands with a CNS field set to 10h until all allocated NSIDs are
retrieved.

Namespace IDs may change across power off conditions or due to namespace management. However, it
is recommended that namespace identifiers remain static in order to avoid issues with EFI or OSes.

The Namespace Size field in the Identify Namespace data structure defines the total size of the namespace
in logical blocks (LBA 0 through n-1). The Namespace Utilization field in the Identify Namespace data
structure defines the number of logical blocks currently allocated in the namespace. The Namespace
Capacity field in the Identify data structure defines the maximum number of logical blocks that may be
allocated at one time as part of the namespace in a thin provisioning usage model. The following
relationship holds: Namespace Size >= Namespace Capacity >= Namespace Utilization.

A namespace may or may not have a relationship to a Submission Queue; this relationship is determined
by the host software implementation. The controller shall support access to any valid namespace from any
I/O Submission Queue.

6.2 Fused Operations
The command sequences that may be used in a fused operation for the NVM Command Set are defined in
Figure 190. Refer to section 4.10 for details on fused operations.

Figure 184: Supported Fused Operations

Command 1 Command 2 Fused Operation
Compare Write Compare and Write

6.2.1 Compare and Write
The Compare and Write fused operation compares the contents of the logical block(s) specified in the
Compare command to the data stored at the indicated LBA range. If the compare is successful, then the
LBA range is updated with the data provided in the Write command. If the Compare operation is not
successful, then the Write operation is aborted with a status of Command Aborted due to Failed Fused
Command and the contents in the LBA range are not modified. If the Write operation is not successful, the
Compare operation completion status is unaffected.

Note: To ensure the Compare and Write is an atomic operation in a multi-host environment, host software
should ensure that the size of a Compare and Write fused operation is no larger than the ACWU/NACWU
(refer to section 6.4) and that Atomic Boundaries are respected (refer to section 6.4.3). Controllers may
abort a Compare and Write fused operation that is larger than ACWU/NACWU or that crosses an Atomic
Boundary with an error of Atomic Write Unit Exceeded.

6.3 Command Ordering Requirements
For all commands which are not part of a fused operation (refer to section 4.10), or for which the write size
is greater than AWUN, each command is processed as an independent entity without reference to other

NVM Express 1.3a

179

commands submitted to the same I/O Submission Queue or to commands submitted to other I/O
Submission Queues. Specifically, the controller is not responsible for checking the LBA of a Read or Write
command to ensure any type of ordering between commands. For example, if a Read is submitted for LBA
x and there is a Write also submitted for LBA x, there is no guarantee of the order of completion for those
commands (the Read may finish first or the Write may finish first). If there are ordering requirements
between these commands, host software or the associated application is required to enforce that ordering
above the level of the controller.

The ordering requirements for fused operations are described in section 4.10.

NVM Express 1.3a

180

6.4 Atomic Operations
Figure 191 is an overview of the parameters that define the controller’s support for atomic operations. These
parameters may affect command behavior and execution order based on write size (on a per controller or
a per namespace basis).

Figure 185: Atomicity Parameters

 Parameter Name Value1

Controller
Atomic Parameters

(refer to Identify Controller)

Atomic Write Unit Normal (AWUN)

Atomic Write Unit Power Fail (AWUPF) ≤ AWUN

Atomic Compare and Write Unit (ACWU)

Namespace
Atomic Parameters

(refer to Identify Namespace)

Namespace Atomic Write Unit Normal (NAWUN) ≥ AWUN

Namespace Atomic Write Unit Power Fail (NAWUPF)
≥ AWUPF

≤ NAWUN

Namespace Atomic Compare and Write Unit (NACWU) ≥ ACWU

Namespace
Atomic Boundary Parameters

(refer to Identify Namespace)

Namespace Atomic Boundary Size Normal (NABSN) ≥ NAWUN

Namespace Atomic Boundary Offset (NABO)
≤ NABSN

≤ NABSPF

Namespace Atomic Boundary Size Power Fail (NABSPF) ≥ NAWUPF
NOTES:
1. When the parameter is supported, the value shall meet the listed condition(s).

The NVM subsystem reports in the Identify Controller data structure the size in logical blocks of the write
operation guaranteed to be written atomically under various conditions, including normal operation, power
fail, and in a Compare & Write fused operation. The values reported in the Identify Controller data structure
are valid across all namespaces with any supported namespace format, forming a baseline value that is
guaranteed not to change.

An NVM subsystem may report per namespace values for these fields that are specific to the namespace
format in Identify Namespace. If an NVM subsystem reports a per namespace value, it shall be greater
than or equal to the corresponding baseline value indicated in Identify Controller.

The values are reported in the fields (Namespace) Atomic Write Unit Normal, (Namespace) Atomic Write
Unit Power Fail, and (Namespace) Atomic Compare & Write Unit in Identify Controller or Identify
Namespace depending on whether the values are the baseline or namespace specific.

A controller may support Atomic Boundaries that shall not be crossed by an atomic operation. The
Namespace Atomic Boundary Parameters (NABSN, NABO, and NABSPF) define these boundaries for a
namespace. A namespace supports Atomic Boundaries if NABSN or NABSPF is set to a non-zero value.
A namespace that does not support Atomic Boundaries shall clear the NABSN and NABSPF fields to 0h.
Namespace Atomicity Parameter and Namespace Atomic Boundary Parameter values may be format
specific and may change if the namespace format is modified.

In the case of a shared namespace, operations performed by an individual controller are atomic to the
shared namespace at the write atomicity level reported in the corresponding Identify Controller or Identify
Namespace data structures of the controller to which the command was submitted.

NVM Express 1.3a

181

6.4.1 AWUN/NAWUN
AWUN/NAWUN control the atomicity of command execution in relation to other commands. They impose
inter-command serialization of writing of blocks of data to the NVM and prevent blocks of data ending up
on the NVM containing partial data from one new command and partial data from one or more other new
commands.

If a write command is submitted with size less than or equal to the AWUN/NAWUN value and the write
command does not cross an atomic boundary (refer to section 6.4.3), then the host is guaranteed that the
write command is atomic to the NVM with respect to other read or write commands. If a write command is
submitted with size greater than the AWUN/NAWUN value or crosses an atomic boundary, then there is no
guarantee of command atomicity. AWUN/NAWUN does not have any applicability to write errors caused
by power failure or other error conditions (refer to Atomic Write Unit Power Fail).

The host may indicate that AWUN and NAWUN are not necessary by configuring the Write Atomicity Normal
feature (refer to section 5.21.1.10), which may result in higher performance in some implementations.

6.4.1.1 AWUN/NAWUN Example (Informative)
In this example, AWUN/NAWUN has a value of 2K (equivalent to four 512 byte logical blocks) and the
namespace atomic boundary sizes (NABSN and NABSPF) are 0h. The host issues two write commands,
each with a length of 2K (i.e., four logical blocks). Command A writes LBAs 0-3 and command B writes
LBAs 1-4.

Since the size of both command A and command B is less than or equal to the value of AWUN/NAWUN,
the controller serializes these two write commands so that the resulting data in LBAs 0-4 reflects command
A followed by command B, or command B followed by command A, but not an intermediate state where
some of the logical blocks are written with data from command A and others are written with data from
command B. Figure 192 shows valid results of the data in LBAs 0-4 and examples of invalid results (of
which there are more possible combinations).

Figure 186: AWUN/NAWUN Example Results

 LBA 0 1 2 3 4 5 6 7

Valid Result A A A A B

Valid Result A B B B B

Invalid Result A A B B B

Invalid Result A B A A B

If the size of write commands A and B is larger than the AWUN/NAWUN value, then there is no guarantee
of ordering. After execution of command A and command B, there may be an arbitrary mix of data from
command A and command B in the LBA range specified.

NVM Express 1.3a

182

6.4.2 AWUPF/NAWUPF
AWUPF and NAWUPF indicate the behavior of the controller if a power fail or other error condition interrupts
a write operation causing a torn write. A torn write is a write operation where only some of the logical blocks
that are supposed to be written contiguously are actually stored on the NVM, leaving the target logical
blocks in an indeterminate state in which some logical blocks contain original data and some logical blocks
contain new data from the write operation.

If a write command is submitted with size less than or equal to the AWUPF/NAWUPF value and the write
command does not cross an atomic boundary (refer to section 6.4.3), the controller guarantees that if the
command fails due to a power failure or other error condition, then subsequent read commands for the
logical blocks associated with the write command shall return one of the following:

• All old data (i.e. original data on the NVM in the LBA range addressed by the interrupted write), or
• All new data (i.e. all data to be written to the NVM by the interrupted write)

If a write command is submitted with size greater than the AWUPF/NAWUPF value or crosses an atomic
boundary, then there is no guarantee of the data returned on subsequent reads of the associated logical
blocks.

6.4.2.1 AWUPF/NAWUPF Example (Informative)
In this example, AWUPF/NAWUPF has a value of 1K (equivalent to two 512 byte logical blocks),
AWUN/NAWUN has a value of 2K (equivalent to four 512 byte logical blocks) and the namespace atomic
boundary sizes (NABSN and NABSPF) are 0h. Command A writes LBAs 0-1. Figure 193 shows the initial
state of the NVM.

Figure 187: AWUPF/NAWUPF Example Initial State of NVM

 LBA 0 1 2 3 4 5 6 7
C B B B B

Command A begins executing but is interrupted by a power failure during the writing of the logical block at
LBA 1. Figure 194 describes valid and invalid results.

Figure 188: AWUPF/NAWUPF Example Final State of NVM

 LBA 0 1 2 3 4 5 6 7

Valid Result A A B B B

Valid Result C B B B B

Invalid Result A B B B B

Invalid Result C A B B B

Invalid Result D D B B B

If the size of write command A is larger than the AWUPF/NAWUPF value, then there is no guarantee of the
state of the data contained in the specified LBA range after the power fail or error condition.

NVM Express 1.3a

183

After a write command has completed, reads for that location which are subsequently submitted shall return
the data from that write command and not an older version of the data from previous write commands with
the following exception;

If all of the following conditions are met:
a) the controller supports a volatile write cache;
b) the volatile write cache is enabled;
c) the FUA bit for the write is not set;
d) no flush commands, associated with the same namespace as the write, successfully completed
before shutdown; and
e) a controller shutdown occurs without completing the normal or abrupt shutdown procedure
outlined in section 7.6.2

then subsequent reads for locations written to the volatile write cache that were not written to non-volatile
storage may return older data.

6.4.3 Atomic Boundaries
Atomic Boundaries control how the atomicity guarantees defined in section 6.4 are enforced by the
controller, with the added constraint of the alignment of the LBA range specified in the command. Atomic
Boundaries are defined on a per namespace basis only. The namespace supports Atomic Boundaries if
NABSN or NABSPF are set to non-zero values.

To ensure backwards compatibility, the values reported for AWUN, AWUPF, and ACWU shall be set such
that they are supported even if a write crosses an atomic boundary. If a controller does not guarantee
atomicity across atomic boundaries, the controller shall set AWUN, AWUPF, and ACWU to 0h (1 LBA).

The boundary size shall be greater than or equal to the corresponding atomic write size (i.e.,
NABSN/NABSPF shall be greater than or equal to NAWUN/NAWUPF, respectively). NABO shall be less
than or equal to NABSN and NABSPF.

For Boundary Offset (NABO) and Boundary Size (NABSN or NABSPF), the LBA range in a command is
within a Namespace Atomic Boundary if none of the logical block addresses in the range cross: Boundary
Offset + (y * Boundary Size); for any integer y ≥ 0.

If a write command crosses the atomic boundary specified by the NABSN value, then the atomicity based
on the NAWUN parameters is not guaranteed. If a write command crosses the atomic boundary specified
by the NABSPF value, then the atomicity based on the NAWUPF parameters is not guaranteed.

Figure 195 shows an example of the behavior of Atomic Boundaries. Writes to an individual blue or yellow
section do not cross an atomic boundary.

Figure 189: Atomic Boundaries Example

NVM Express 1.3a

184

6.5 End-to-end Protection Information
The commands that include data transfer may utilize end-to-end data protection. Within these commands,
the protection information action and protection information check field is specified as defined in Figure
196.

Figure 190: Protection Information Field Definition
Bit Description

03

Protection Information Action (PRACT): The protection information action field indicates the
action to take for the protection information. This field is only used if the namespace is formatted
to use end-to-end protection information. Refer to section 8.3.

PRACT
Value

Metadata
Size Description

1b 8 Bytes The protection information is stripped (read) or inserted
(write).

1b > 8 Bytes The protection information is passed (read) or replaces the
first or last 8 bytes of the metadata (write).

0b any The protection information is passed (read and write).

02:00

Protection Information Check (PRCHK): The protection information check field indicates the
fields that need to be checked as part of end-to-end data protection processing. This field is only
used if the namespace is formatted to use end-to-end protection information. Refer to section 8.3.

Bit Definition

02
If set to ‘1’ enables protection information checking of
the Guard field. If cleared to ‘0’, the Guard field is not
checked.

01
If set to ‘1’ enables protection information checking of
the Application Tag field. If cleared to ‘0’, the
Application Tag field is not checked.

00

If set to ‘1’ enables protection information checking of
the Logical Block Reference Tag field. If cleared to
‘0’, the Logical Block Reference Tag field is not
checked.

6.6 Compare command
The Compare command reads the logical blocks specified by the command from the medium and compares
the data read to a comparison data buffer transferred as part of the command. If the data read from the
controller and the comparison data buffer are equivalent with no miscompares, then the command
completes successfully. If there is any miscompare, the command completes with an error of Compare
Failure.

If metadata is provided, then a comparison is also performed for the metadata, excluding protection
information. Refer to section 8.3.

The command uses Command Dword 10, Command Dword 11, Command Dword 12, Command Dword
14, and Command Dword 15 fields. If the command uses PRPs for the data transfer, then the Metadata
Pointer, PRP Entry 1, and PRP Entry 2 fields are used. If the command uses SGLs for the data transfer,
then the Metadata SGL Segment Pointer and SGL Entry 1 fields are used. All other command specific
fields are reserved.

NVM Express 1.3a

185

Figure 191: Compare – Metadata Pointer
Bit Description

63:00 Metadata Pointer (MPTR): This field contains the Metadata Pointer, if applicable. Refer to Figure
11 for the definition of this field.

Figure 192: Compare – Data Pointer
Bit Description

127:00 Data Pointer (DPTR): This field specifies the data to use for the compare. Refer to Figure 11 for
the definition of this field.

Figure 193: Compare – Command Dword 10 and Command Dword 11
Bit Description

63:00
Starting LBA (SLBA): This field specifies the 64-bit address of the first logical block to compare
against as part of the operation. Command Dword 10 contains bits 31:00; Command Dword 11
contains bits 63:32.

Figure 194: Compare – Command Dword 12
Bit Description

31 Limited Retry (LR): If set to ‘1’, the controller should apply limited retry efforts. If cleared to ‘0’,
the controller should apply all available error recovery means to retrieve the data for comparison.

30 Force Unit Access (FUA): This field specifies that the data read shall be read from non-volatile
media.

29:26

Protection Information Field (PRINFO): Specifies the protection information action and check
field, as defined in Figure 196. The Protection Information Action (PRACT) field shall be cleared
to ‘0’. If the Protection Information Check (PRCHK) field is non-zero, a check is performed on the
logical block read from NVM (refer to section 8.3.1.4).

25:16 Reserved

15:00 Number of Logical Blocks (NLB): This field specifies the number of logical blocks to be
compared. This is a 0’s based value.

Figure 195: Compare – Command Dword 14
Bit Description

31:00
Expected Initial Logical Block Reference Tag (EILBRT): This field specifies the Initial Logical
Block Reference Tag expected value. This field is only used if the namespace is formatted to use
end-to-end protection information. Refer to section 8.3.

Figure 196: Compare – Command Dword 15
Bit Description

31:16
Expected Logical Block Application Tag Mask (ELBATM): This field specifies the Application
Tag Mask expected value. This field is only used if the namespace is formatted to use end-to-end
protection information. Refer to section 8.3.

15:00
Expected Logical Block Application Tag (ELBAT): This field specifies the Application Tag
expected value. This field is only used if the namespace is formatted to use end-to-end protection
information. Refer to section 8.3.

NVM Express 1.3a

186

6.6.1 Command Completion
If the command is completed, then the controller shall post a completion queue entry to the associated I/O
Completion Queue indicating the status for the command. If there are any miscompares between the data
read from the NVM media and the data buffer provided, then the command fails with a status code of
Compare Failure.

Compare command specific status values are defined in Figure 203.

Figure 197: Compare – Command Specific Status Values
Value Description
81h Invalid Protection Information: The Protection Information Field (PRINFO) (refer to Figure 200)

settings specified in the command are invalid for the Protection Information with which the
namespace was formatted (refer to the PI field in Figure 176 and the DPS field in Figure 114) or the
EILBRT field is invalid (refer to section 8.3.1.5).

6.7 Dataset Management command
The Dataset Management command is used by the host to indicate attributes for ranges of logical blocks.
This includes attributes like frequency that data is read or written, access size, and other information that
may be used to optimize performance and reliability. This command is advisory; a compliant controller may
choose to take no action based on information provided.

The command uses Command Dword 10, and Command Dword 11 fields. If the command uses PRPs for
the data transfer, then the PRP Entry 1 and PRP Entry 2 fields are used. If the command uses SGLs for
the data transfer, then the SGL Entry 1 field is used. All other command specific fields are reserved.

Figure 198: Dataset Management – Data Pointer
Bit Description

127:00 Data Pointer (DPTR): This field specifies the data to use for the command. Refer to Figure 11
for the definition of this field.

Figure 199: Dataset Management – Command Dword 10

Bit Description
31:08 Reserved

07:00 Number of Ranges (NR): Indicates the number of 16 byte range sets that are specified in the
command. This is a 0’s based value.

Figure 200: Dataset Management – Command Dword 11
Bit Description

31:03 Reserved

02 Attribute – Deallocate (AD): If set to ‘1’ then the NVM subsystem may deallocate all provided
ranges. The data returned for a deallocated range is specified in section 6.7.1.1.

01

Attribute – Integral Dataset for Write (IDW): If set to ‘1’ then the dataset should be optimized for
write access as an integral unit. The host expects to perform operations on all ranges provided
as an integral unit for writes, indicating that if a portion of the dataset is written it is expected that
all of the ranges in the dataset are going to be written.

00

Attribute – Integral Dataset for Read (IDR): If set to ‘1’ then the dataset should be optimized for
read access as an integral unit. The host expects to perform operations on all ranges provided as
an integral unit for reads, indicating that if a portion of the dataset is read it is expected that all of
the ranges in the dataset are going to be read.

NVM Express 1.3a

187

If the Dataset Management command is supported, all combinations of attributes specified in Figure 206
may be set.

The data that the Dataset Management command provides is a list of ranges with context attributes. Each
range consists of a starting LBA, a length of logical blocks that the range consists of and the context
attributes to be applied to that range. The definition of the Dataset Management command Range field is
specified in Figure 207. The maximum case of 256 ranges is shown.

Figure 201: Dataset Management – Range Definition
Range Byte Field

Range 0
03:00 Context Attributes
07:04 Length in logical blocks
15:08 Starting LBA

Range 1
19:16 Context Attributes
23:20 Length in logical blocks
31:24 Starting LBA

…

Range 255
4083:4080 Context Attributes
4087:4084 Length in logical blocks
4095:4088 Starting LBA

6.7.1 Context Attributes
The context attributes specified for each range provides information about how the range is intended to be
used by host software. The use of this information is optional and the controller is not required to perform
any specific action.

Note: The controller is required to maintain the integrity of data on the NVM media regardless of whether
the attributes provided by host software are accurate.

NVM Express 1.3a

188

Figure 202: Dataset Management – Context Attributes
Attribute Bits Description

Command Access Size 31:24
Number of logical blocks expected to be transferred in a single Read or Write
command from this dataset. A value of 0h indicates no Command Access Size is
provided.

Reserved 23:11 Reserved
WP: Write Prepare 10 If set to ‘1’ then the provided range is expected to be written in the near future.

SW: Sequential Write
Range 09 If set to ‘1’ then the dataset should be optimized for sequential write access. The

host expects to perform operations on the dataset as a single object for writes.
SR: Sequential Read

Range 08 If set to ‘1’ then the dataset should be optimized for sequential read access. The
host expects to perform operations on the dataset as a single object for reads.

Reserved 07:06 Reserved

AL: Access Latency 05:04

Value Definition
00b None. No latency information provided.
01b Idle. Longer latency acceptable.
10b Normal. Typical latency.
11b Low. Smallest possible latency.

AF: Access Frequency 03:00

Value Definition
0000b No frequency information provided.
0001b Typical number of reads and writes expected for this LBA range.
0010b Infrequent writes and infrequent reads to the LBA range indicated.
0011b Infrequent writes and frequent reads to the LBA range indicated.
0100b Frequent writes and infrequent reads to the LBA range indicated.
0101b Frequent writes and frequent reads to the LBA range indicated.
0110b

–
1111b

Reserved

6.7.1.1 Deallocate
A logical block that has been deallocated using the Dataset Management command is no longer deallocated
when the logical block is written. Read operations do not affect the deallocation status of a logical block.
The value read from a deallocated logical block shall be deterministic; specifically, the value returned by
subsequent reads of that logical block shall be the same until a write occurs to that logical block.

The values read from a deallocated logical block and its metadata (excluding protection information) shall
be all bytes set to 00h, all bytes set to FFh, or the last data written to the associated logical block and its
metadata, except that access is prohibited to all data and metadata values written before the most recent
successful sanitize operation, if any. The Deallocate Logical Block Features field in the Identify Namespace
data structure may report the values read from a deallocated logical block and its metadata.

The values read from a deallocated or unwritten logical block’s protection information field shall:
• have the Guard field value set to FFFFh or set to the CRC for the value read from the deallocated

logical block and its metadata (excluding protection information) (e.g., set to 0000h if the value read
is all bytes set to 00h); and

• have the Application Tag field value set to FFFFh and the Reference Tag field value set to
FFFFFFFFh (indicating the protection information shall not be checked).

Host software may enable an error to be returned if a deallocated or unwritten logical block is read in the
Error Recovery feature. If this error is supported for the namespace and enabled, then a read or compare
containing a deallocated or unwritten logical block shall fail with the Unwritten or Deallocated Logical Block
status code. Note: Legacy software may not handle an error for this case.

Note: The operation of the Deallocate function is similar to the ATA DATA SET MANAGEMENT with Trim
feature described in ACS-2 and SCSI UNMAP command described in SBC-3.

NVM Express 1.3a

189

6.7.2 Command Completion
When the command is completed, the controller shall post a completion queue entry to the associated I/O
Completion Queue indicating the status for the command.

Dataset Management command specific status values are defined in Figure 209.

Figure 203: Dataset Management – Command Specific Status Values
Value Description
80h Conflicting Attributes: The attributes specified in the command are conflicting.
82h Attempted Write to Read Only Range: The controller may optionally report this status

if a Deallocate is attempted for a read only range.

6.8 Flush command
The Flush command shall commit data and metadata associated with the specified namespace(s) to non-
volatile media. The flush applies to all commands completed prior to the submission of the Flush command.
The controller may also flush additional data and/or metadata from any namespace.

All command specific fields are reserved.

6.8.1 Command Completion
If the command is completed, then the controller shall post a completion queue entry to the associated I/O
Completion Queue indicating the status for the command.

6.9 Read command
The Read command reads data and metadata, if applicable, from the NVM controller for the LBAs indicated.
The command may specify protection information to be checked as part of the read operation.

The command uses Command Dword 10, Command Dword 11, Command Dword 12, Command Dword
13, Command Dword 14, and Command Dword 15 fields. If the command uses PRPs for the data transfer,
then the Metadata Pointer, PRP Entry 1, and PRP Entry 2 fields are used. If the command uses SGLs for
the data transfer, then the Metadata SGL Segment Pointer and SGL Entry 1 fields are used.

Figure 204: Read – Metadata Pointer
Bit Description

63:00 Metadata Pointer (MPTR): This field contains the Metadata Pointer, if applicable. Refer to Figure
11 for the definition of this field.

Figure 205: Read – Data Pointer
Bit Description

127:00 Data Pointer (DPTR): This field specifies where data is transferred to. Refer to Figure 11 for the
definition of this field.

NVM Express 1.3a

190

Figure 206: Read – Command Dword 10 and Command Dword 11
Bit Description

63:00
Starting LBA (SLBA): This field indicates the 64-bit address of the first logical block to be read
as part of the operation. Command Dword 10 contains bits 31:00; Command Dword 11 contains
bits 63: 32.

Figure 207: Read – Command Dword 12
Bit Description

31 Limited Retry (LR): If set to ‘1’, the controller should apply limited retry efforts. If cleared to ‘0’,
the controller should apply all available error recovery means to return the data to the host.

30 Force Unit Access (FUA): This field indicates that the data read shall be returned from non-
volatile media. There is no implied ordering with other commands.

29:26 Protection Information Field (PRINFO): Specifies the protection information action and check
field, as defined in Figure 196.

25:16 Reserved

15:00 Number of Logical Blocks (NLB): This field indicates the number of logical blocks to be read.
This is a 0’s based value.

NVM Express 1.3a

191

Figure 208: Read – Command Dword 13
Bit Description

31:08 Reserved

07:00

Dataset Management (DSM): This field indicates attributes for the LBA(s) being read.

Bits Attribute Definition

07 Incompressible
If set to ‘1’, then data is not compressible for the logical
blocks indicated. If cleared to ‘0’, then no information on
compression is provided.

06 Sequential
Request

If set to ‘1’, then this command is part of a sequential read
that includes multiple Read commands. If cleared to ‘0’,
then no information on sequential access is provided.

05:04 Access
Latency

Value Definition

00b None. No latency information
provided.

01b Idle. Longer latency acceptable.
10b Normal. Typical latency.
11b Low. Smallest possible latency.

03:00 Access
Frequency

Value Definition
0000b No frequency information provided.

0001b Typical number of reads and writes
expected for this LBA range.

0010b Infrequent writes and infrequent
reads to the LBA range indicated.

0011b Infrequent writes and frequent
reads to the LBA range indicated.

0100b Frequent writes and infrequent
reads to the LBA range indicated.

0101b Frequent writes and frequent reads
to the LBA range indicated.

0110b
One time read. E.g. command is
due to virus scan, backup, file copy,
or archive.

0111b Speculative read. The command is
part of a prefetch operation.

1000b The LBA range is going to be
overwritten in the near future.

1001b – 1111b Reserved

Figure 209: Read – Command Dword 14
Bit Description

31:00
Expected Initial Logical Block Reference Tag (EILBRT): This field specifies the Initial Logical
Block Reference Tag expected value. This field is only used if the namespace is formatted to use
end-to-end protection information. Refer to section 8.3.

NVM Express 1.3a

192

Figure 210: Read – Command Dword 15
Bit Description

31:16
Expected Logical Block Application Tag Mask (ELBATM): This field specifies the Application
Tag Mask expected value. This field is only used if the namespace is formatted to use end-to-end
protection information. Refer to section 8.3.

15:00
Expected Logical Block Application Tag (ELBAT): This field specifies the Application Tag
expected value. This field is only used if the namespace is formatted to use end-to-end protection
information. Refer to section 8.3.

6.9.1 Command Completion
When the command is completed with success or failure, the controller shall post a completion queue entry
to the associated I/O Completion Queue indicating the status for the command.

Read command specific status values are defined in Figure 217.

Figure 211: Read – Command Specific Status Values
Value Description
80h Conflicting Attributes: The attributes specified in the command are conflicting.
81h Invalid Protection Information: The Protection Information Field (PRINFO) (refer to Figure 213)

settings specified in the command are invalid for the Protection Information with which the
namespace was formatted (refer to the PI field in Figure 176 and the DPS field in Figure 114) or the
EILBRT field is invalid (refer to section 8.3.1.5).

6.10 Reservation Acquire command
The Reservation Acquire command is used to acquire a reservation on a namespace, preempt a reservation
held on a namespace, and abort a reservation held on a namespace.

The command uses Command Dword 10 and a Reservation Acquire data structure in memory. If the
command uses PRPs for the data transfer, then PRP Entry 1 and PRP Entry 2 fields are used. If the
command uses SGLs for the data transfer, then the SGL Entry 1 field is used. All other command specific
fields are reserved.

Figure 212: Reservation Acquire – Data Pointer
Bit Description

127:00 Data Pointer (DPTR): This field specifies the the location of a data buffer where data is
transferred from. Refer to Figure 11 for the definition of this field.

NVM Express 1.3a

193

Figure 213: Reservation Acquire – Command Dword 10
Bit Description

31:16 Reserved

15:08 Reservation Type (RTYPE): This field specifies the type of reservation to be created. The field is
defined in Figure 221.

07:04 Reserved

03 Ignore Existing Key (IEKEY): If this bit is set to a ‘1’, the controller shall return an error of Invalid
Field In Command. If this bit is cleared to ‘0’, then the Current Reservation Key is checked.

02:00

Reservation Acquire Action (RACQA): This field specifies the action that is performed by the
command.

RACQA Value Description
000b Acquire
001b Preempt
010b Preempt and Abort

011b - 111b Reserved

Figure 214: Reservation Acquire Data Structure
Bytes O/M Description

7:0 M Current Reservation Key (CRKEY): The field specifies the current reservation key
associated with the host.

15:8 M

Preempt Reservation Key (PRKEY): If the Reservation Acquire Action is set to 001b (i.e.,
Preempt) or 010b (i.e., Preempt and Abort), then this field specifies the reservation key to
be unregistered from the namespace. For all other Reservation Acquire Action values, this
field is reserved.

Figure 215: Reservation Type Encoding
Value Description

0h Reserved
1h Write Exclusive Reservation
2h Exclusive Access Reservation
3h Write Exclusive - Registrants Only Reservation
4h Exclusive Access - Registrants Only Reservation
5h Write Exclusive - All Registrants Reservation
6h Exclusive Access - All Registrants Reservation

07h-FFh Reserved

6.10.1 Command Completion
When the command is completed, the controller shall post a completion queue entry to the associated I/O
Completion Queue indicating the status for the command.

NVM Express 1.3a

194

6.11 Reservation Register command
The Reservation Register command is used to register, unregister, or replace a reservation key.

The command uses Command Dword 10 and a Reservation Register data structure in memory. If the
command uses PRPs for the data transfer, then PRP Entry 1 and PRP Entry 2 fields are used. If the
command uses SGLs for the data transfer, then the SGL Entry 1 field is used. All other command specific
fields are reserved.

Figure 216: Reservation Register – Data Pointer
Bit Description

127:00 Data Pointer (DPTR): This field specifies the location of a data buffer where data is transferred
from. Refer to Figure 11 for the definition of this field.

Figure 217: Reservation Register – Command Dword 10
Bit Description

31:30

Change Persist Through Power Loss State (CPTPL): This field allows the Persist Through
Power Loss state associated with the namespace to be modified as a side effect of processing
this command.

CPTPL Value Description
00b No change to PTPL state
01b Reserved

10b Set PTPL state to ‘0’. Reservations are released
and registrants are cleared on a power on.

11b Set PTPL state to ‘1’. Reservations and
registrants persist across a power loss.

29:04 Reserved

03

Ignore Existing Key (IEKEY): If this bit is set to a ‘1’, then Reservation Register Action (RREGA)
field values that use the Current Reservation Key (CRKEY) shall succeed regardless of the value
of the Current Reservation Key field in the command (i.e., the current reservation key is not
checked).

02:00

Reservation Register Action (RREGA): This field specifies the registration action that is
performed by the command.

RREGA Value Description
000b Register Reservation Key
001b Unregister Reservation Key
010b Replace Reservation Key

011b - 111b Reserved

Figure 218: Reservation Register Data Structure
Bytes O/M Description

7:0 M

Current Reservation Key (CRKEY): If the Reservation Register Action is 001b (i.e.,
Unregister Reservation Key) or 010b (i.e., Replace Reservation Key), then this field contains
the current reservation key associated with the host. For all other Reservation Register
Action values, this field is reserved.

The controller ignores the value of this field when the Ignore Existing Key (IEKEY) bit is set
to ‘1’.

15:8 M

New Reservation Key (NRKEY): If the Reservation Register Action is 000b (i.e., Register
Reservation Key) or 010b (i.e., Replace Reservation Key), then this field contains the new
reservation key associated with the host. For all other Reservation Register Action values,
this field is reserved.

NVM Express 1.3a

195

6.11.1 Command Completion
When the command is completed, the controller shall post a completion queue entry to the associated I/O
Completion Queue indicating the status for the command.

6.12 Reservation Release command
The Reservation Release command is used to release or clear a reservation held on a namespace.

The command uses Command Dword 10 and a Reservation Release data structure in memory. If the
command uses PRPs for the data transfer, then PRP Entry 1 and PRP Entry 2 fields are used. If the
command uses SGLs for the data transfer, then the SGL Entry 1 field is used. All other command specific
fields are reserved.

Figure 219: Reservation Release – Data Pointer
Bit Description

127:00 Data Pointer (DPTR): This field specifies the location of a data buffer where data is transferred
from. Refer to Figure 11 for the definition of this field.

Figure 220: Reservation Release – Command Dword 10
Bit Description

31:16 Reserved

15:08

Reservation Type (RTYPE): If the Reservation Release Action is 00b (i.e., Release), then this
field specifies the type of reservation that is being released. The reservation type in this field shall
match the current reservation type; if it does not match the controller should return an error of
Invalid Field In Command. This field is defined in Figure 221.

07:04 Reserved

03 Ignore Existing Key (IEKEY): If this bit is set to a ‘1’, the controller shall return an error of Invalid
Field In Command. If this bit is cleared to ‘0’, then the Current Reservation Key is checked.

02:00

Reservation Release Action (RRELA): This field specifies the registration action that is
performed by the command.

RRELA Value Description
000b Release
001b Clear

010b - 111b Reserved

Figure 221: Reservation Release Data Structure
Bytes O/M Description

7:0 M Current Reservation Key (CRKEY): The field specifies the current reservation key
associated with the host.

6.12.1 Command Completion
When the command is completed, the controller shall post a completion queue entry to the associated I/O
Completion Queue indicating the status for the command.

NVM Express 1.3a

196

6.13 Reservation Report command
The Reservation Report command returns a Reservation Status data structure to memory that describes
the registration and reservation status of a namespace.

The size of the Reservation Status data structure is a function of the number of controllers in the NVM
subsystem that are associated with hosts that are registrants of the namespace (i.e., there is a Registered
Controller data structure and/or Registered Controller extended data structure for each such controller).
The controller returns the data structure in Figure 231 if the host has selected a 64-bit Host Identifier and
the data structure in Figure 232 if the host has selected a 128-bit Host Identifier (refer to section 5.21.1.19).

If a 64-bit Host Identifier has been specified and the Extended Data Structure field is set to ‘1’ in Command
Dword 11, then the controller shall abort the command with the status code of Host Identifier Inconsistent
Format. If a 128-bit Host Identifier has been specified and the Extended Data Structure field is cleared to
‘0’ in Command Dword 11, then the controller shall abort the command with the status code of Host Identifier
Inconsistent Format.

The command uses Command Dword 10 and Command Dword 11. If the command uses PRPs for the
data transfer, then PRP Entry 1 and PRP Entry 2 fields are used. If the command uses SGLs for the data
transfer, then the SGL Entry 1 field is used. All other command specific fields are reserved.

Figure 222: Reservation Report – Data Pointer
Bit Description

127:00 Data Pointer (DPTR): This field specifies the location of a data buffer where data is transferred
to. Refer to Figure 11 for the definition of this field.

Figure 223: Reservation Report – Command Dword 10
Bit Description

31:00

Number of Dwords (NUMD): This field specifies the number of Dwords of the Reservation Status
data structure to transfer. This is a 0’s based value.

If this field corresponds to a length that is less than the size of the Reservation Status data
structure, then only that specified portion of the data structure is transferred. If this field
corresponds to a length that is greater than the size of the Reservation Status data structure, then
the entire contents of the data structure are transferred and no additional data is transferred.

Figure 224: Reservation Report – Command Dword 11
Bit Description

31:01 Reserved

00
Extended Data Structure (EDS): If set to ‘1’ then the controller returns the extended data
structure defined in Figure 232. If cleared to ‘0’ then the controller returns the data structure
defined in Figure 231.

NVM Express 1.3a

197

Figure 225: Reservation Status Data Structure
Bytes Description

3:0

Generation (GEN): This field contains a 32-bit wrapping counter that is incremented any time
any one the following occur:

• A Reservation Register command completes successfully on any controller
associated with the namespace,

• a Reservation Release command with Reservation Release Action (RRELA) set to
001b (i.e., Clear) completes successfully on any controller associated with the
namespace, and

• a Reservation Acquire command with Reservation Acquire Action (RACQA) set to
001b (Preempt) or 010b (Preempt and Abort) completes successfully on any
controller associated with the namespace.

4

Reservation Type (RTYPE): This field indicates whether a reservation is held on the
namespace. A value of zero indicates that no reservation is held on the namespace. A non-
zero value indicates a reservation is held on the namespace and the reservation type is defined
in Figure 221.

6:5

Number of Registered Controllers (REGCTL): This field indicates the number of controllers
that are associated with hosts that are registrants of the namespace. This indicates the number
of Registered Controller data structures and/or Registered Controller extended data structures
contained in this data structure.

8:7 Reserved

9

Persist Through Power Loss State (PTPLS): This field indicates the Persist Through Power
Loss State associated with the namespace.

PTPLS Value Description

0 Reservations are released and registrants are
cleared on a power on.

1 Reservations and registrants persist across a
power loss.

23:10 Reserved
47:24 Registered Controller DataStructure 0

.
.
.

24*n+47:
24*(n+1) Registered Controller DataStructure n

Figure 226: Reservation Status Extended Data Structure
Bytes Description
23:0 Refer to Figure 231 for definition.

63:24 Reserved
127:64 Registered Controller Extended DataStructure 0

.
.
.

64*(n+1)+63:
64*(n+1) Registered Controller Extended DataStructure n

NVM Express 1.3a

198

Figure 227: Registered Controller Data Structure
Bytes Description

1:0

Controller ID (CNTLID): This field contains the controller ID (i.e., the value of the CNTLID field
in the Identify Controller data structure) of the controller whose status is reported in this data
structure.

If the controller is a dynamic controller (refer to the NVMe over Fabrics specification) that is not
associated with a host, then the Controller ID field shall be set to FFFFh.

2

Reservation Status (RCSTS): This field indicates the reservation status of the controller
described by this data structure.

Bits 7:1 are reserved

Bit 0 is set to '1' if the controller is associated with a host that holds a reservation on the
namespace.

7:3 Reserved

15:8 Host Identifier (HOSTID): This field contains the 64-bit Host Identifier of the controller
described by this data structure.

23:16 Reservation Key (RKEY): This field contains the reservation key of the host associated with
the controller described by this data structure.

Figure 228: Registered Controller Extended Data Structure
Bytes Description

1:0 Controller ID (CNTLID): Refer to Figure 233 for definition.
2 Reservation Status (RCSTS): Refer to Figure 233 for definition.

7:3 Reserved
15:8 Reservation Key (RKEY): Refer to Figure 233 for definition.

31:16 Host Identifier (HOSTID): This field contains the 128-bit Host Identifier of the controller
described by this data structure.

63:32 Reserved

6.13.1 Command Completion
When the command is completed, the controller shall post a completion queue entry to the associated I/O
Completion Queue indicating the status for the command.

6.14 Write command
The Write command writes data and metadata, if applicable, to the NVM controller for the logical blocks
indicated. The host may also specify protection information to include as part of the operation.

The command uses Command Dword 10, Command Dword 11, Command Dword 12, Command Dword
13, Command Dword 14, and Command Dword 15 fields. If the command uses PRPs for the data transfer,
then the Metadata Pointer, PRP Entry 1, and PRP Entry 2 fields are used. If the command uses SGLs for
the data transfer, then the Metadata SGL Segment Pointer and SGL Entry 1 fields are used.

Figure 229: Write – Metadata Pointer
Bit Description

63:00 Metadata Pointer (MPTR): This field contains the Metadata Pointer, if applicable. Refer to Figure
11 for the definition of this field.

NVM Express 1.3a

199

Figure 230: Write – Data Pointer
Bit Description

127:00 Data Pointer (DPTR): This field specifies the location of a data buffer where data is transferred
from. Refer to Figure 11 for the definition of this field.

Figure 231: Write – Command Dword 10 and Command Dword 11
Bit Description

63:00
Starting LBA (SLBA): This field indicates the 64-bit address of the first logical block to be written
as part of the operation. Command Dword 10 contains bits 31:00; Command Dword 11 contains
bits 63:32.

Figure 232: Write – Command Dword 12
Bit Description

31 Limited Retry (LR): If set to ‘1’, the controller should apply limited retry efforts. If cleared to ‘0’,
the controller should apply all available error recovery means to write the data to the NVM.

30 Force Unit Access (FUA): This field indicates that the data shall be written to non-volatile media
before indicating command completion. There is no implied ordering with other commands.

29:26 Protection Information Field (PRINFO): Specifies the protection information action and check
field, as defined in Figure 196.

25:24 Reserved

23:20 Directive Type (DTYPE): Specifies the Directive Type associated with the Directive Specific field
(refer to section 9.1).

19:16 Reserved

15:00 Number of Logical Blocks (NLB): This field indicates the number of logical blocks to be written.
This is a 0’s based value.

NVM Express 1.3a

200

Figure 233: Write – Command Dword 13
Bit Description

31:16 Directive Specific (DSPEC): Specifies the Directive Specific value associated with the Directive
Type field (refer to section 9.1).

15:08 Reserved

07:00

Dataset Management (DSM): This field indicates attributes for the LBA(s) being written.

Bits Attribute Definition

07 Incompressible
If set to ‘1’, then data is not compressible for the logical
blocks indicated. If cleared to ‘0’, then no information on
compression is provided.

06 Sequential
Request

If set to ‘1’, then this command is part of a sequential write
that includes multiple Write commands. If cleared to ‘0’,
then no information on sequential access is provided.

05:04 Access
Latency

Value Definition

00b None. No latency information
provided.

01b Idle. Longer latency acceptable.
10b Normal. Typical latency.
11b Low. Smallest possible latency.

03:00 Access
Frequency

Value Definition
0000b No frequency information provided.

0001b Typical number of reads and writes
expected for this LBA range.

0010b Infrequent writes and infrequent
reads to the LBA range indicated.

0011b Infrequent writes and frequent
reads to the LBA range indicated.

0100b Frequent writes and infrequent
reads to the LBA range indicated.

0101b Frequent writes and frequent reads
to the LBA range indicated.

0110b
One time write. E.g. command is
due to virus scan, backup, file copy,
or archive.

0111b – 1111b Reserved

Figure 234: Write – Command Dword 14
Bit Description

31:00
Initial Logical Block Reference Tag (ILBRT): This field specifies the Initial Logical Block
Reference Tag value. This field is only used if the namespace is formatted to use end-to-end
protection information. Refer to section 8.3.

NVM Express 1.3a

201

Figure 235: Write – Command Dword 15
Bit Description

31:16
Logical Block Application Tag Mask (LBATM): This field specifies the Application Tag Mask
value. This field is only used if the namespace is formatted to use end-to-end protection
information. Refer to section 8.3.

15:00
Logical Block Application Tag (LBAT): This field specifies the Application Tag value. This field
is only used if the namespace is formatted to use end-to-end protection information. Refer to
section 8.3.

6.14.1 Command Completion
When the command is completed with success or failure, the controller shall post a completion queue entry
to the associated I/O Completion Queue indicating the status for the command.

Write command specific errors are defined in Figure 242.

Figure 236: Write – Command Specific Status Values
Value Description
80h Conflicting Attributes: The attributes specified in the command are conflicting.
81h Invalid Protection Information: The Protection Information Field (PRINFO) (refer to Figure 238)

settings specified in the command are invalid for the Protection Information with which the
namespace was formatted (refer to the PI field in Figure 176 and the DPS field in Figure 114) or the
ILBRT field is invalid (refer to section 8.3.1.5).

82h Attempted Write to Read Only Range: The LBA range specified contains read-only blocks.

6.15 Write Uncorrectable command
The Write Uncorrectable command is used to mark a range of logical blocks as invalid. When the specified
logical block(s) are read after this operation, a failure is returned with Unrecovered Read Error status. To
clear the invalid logical block status, a write operation is performed on those logical blocks.

The fields used are Command Dword 10, Command Dword 11, and Command Dword 12 fields. All other
command specific fields are reserved.

Figure 237: Write Uncorrectable – Command Dword 10 and Command Dword 11
Bit Description

63:00
Starting LBA (SLBA): This field specifies the 64-bit address of the first logical block to be marked
as invalid as part of the operation. Command Dword 10 contains bits 31:00; Command Dword 11
contains bits 63: 32.

Figure 238: Write Uncorrectable – Command Dword 12
Bit Description

31:16 Reserved

15:00 Number of Logical Blocks (NLB): This field specifies the number of logical blocks to be marked
as invalid. This is a 0’s based value.

NVM Express 1.3a

202

6.15.1 Command Completion
If the command is completed, then the controller shall post a completion queue entry to the associated I/O
Completion Queue indicating the status for the command.

Figure 239: Write Uncorrectable – Command Specific Status Values
Bit Description
82h Attempted Write to Read Only Range: The LBA range specified contains read-only blocks.

6.16 Write Zeroes command
The Write Zeroes command is used to set a range of logical blocks to zero. Non-PI related metadata for
this command, if any, shall be all bytes set to 00h. The protection information for logical blocks written to
the media is updated based on CDW12.PRINFO. If the Protection Information Action field (PRACT) is
cleared to ‘0’, then the protection information for this command shall be all zeroes. If the Protection
Information Action field (PRACT) is set to ‘1’, then the protection information shall be based on the End-to-
end Data Protection Type Settings (DPS) field in the Identify Namespace data structure (refer to Figure
114) and the CDW15.EILBRT, CDW15.ELBATM, and CDW15.ELBAT fields in the Write Zeroes command.

After successful completion of this command, the value returned by subsequent reads of logical blocks in
this range shall be all bytes set to 00h until a write occurs to this LBA range.

If the Deallocate bit (CDW12.DEAC) is set to ‘1’ in a Write Zeroes command, and the namespace supports
setting all bytes to 00h in the values read from a deallocated logical block and its metadata (excluding
protection information), then the controller:

• should deallocate all logical blocks in the range specified by that command;
• shall return all bytes cleared to 00h in the values read from the deallocated logical blocks and its

metadata (excluding protection information); and
• shall return the protection information in the deallocated logical blocks as specified in section

6.7.1.1.

If the Deallocate bit is cleared to ‘0’ in a Write Zeroes command, and the namespace supports setting all
bytes to 00h in the values read from a deallocated logical block and its metadata (excluding protection
information), then the controller:

• may deallocate any logical blocks in the range specified by that command;
• shall return all bytes cleared to 00h in the values read from the deallocated logical blocks and its

metadata (excluding protection information); and
• shall return the protection information in the deallocated logical blocks based on CDW12.PRINFO

in that Write Zeroes command.

If the namespace does not support setting all bytes to 00h in the values read from a deallocated logical
block and its metadata (excluding protection information), then the controller shall not deallocate any logical
blocks in the range specified by a Write Zeroes command.

The fields used are Command Dword 10, Command Dword 11, Command Dword 12, Command Dword
14, and Command Dword 15 fields.

Figure 240: Write Zeroes – Command Dword 10 and Command Dword 11
Bit Description

63:00
Starting LBA (SLBA): This field indicates the 64-bit address of the first logical block to be written
as part of the operation. Command Dword 10 contains bits 31:00; Command Dword 11 contains
bits 63:32.

NVM Express 1.3a

203

Figure 241: Write Zeroes – Command Dword 12
Bit Description

31 Limited Retry (LR): If set to ‘1’, the controller should apply limited retry efforts. If cleared to ‘0’,
the controller should apply all available error recovery means to write the data to the NVM.

30 Force Unit Access (FUA): This field indicates that the data shall be written to non-volatile media
before indicating command completion. There is no implied ordering with other commands.

29:26 Protection Information Field (PRINFO): Specifies the protection information action and check
field, as defined in Figure 196. The Protection Information Check field (PRCHK) shall be 000b.

25
Deallocate (DEAC): If set to ‘1’, then the controller should deallocate logical blocks and may write
all bytes set to 00h. If cleared to ‘0’, then the controller may write all bytes set to 00h or may
deallocate logical blocks.

24:16 Reserved

15:00 Number of Logical Blocks (NLB): This field indicates the number of logical blocks to be written.
This is a 0’s based value.

Figure 242: Write Zeroes – Command Dword 14

Bit Description

31:00
Initial Logical Block Reference Tag (ILBRT): This field indicates the Initial Logical Block
Reference Tag value. This field is only used if the namespace is formatted to use end-to-end
protection information. Refer to section 8.3.

Figure 243: Write Zeroes – Command Dword 15

Bit Description

31:16
Logical Block Application Tag Mask (LBATM): This field indicates the Application Tag Mask
value. This field is only used if the namespace is formatted to use end-to-end protection
information. Refer to section 8.3.

15:00
Logical Block Application Tag (LBAT): This field indicates the Application Tag value. This field
is only used if the namespace is formatted to use end-to-end protection information. Refer to
section 8.3.

6.16.1 Command Completion
When the command is completed with success or failure, the controller shall post a completion queue entry
to the associated I/O Completion Queue indicating the status for the command.

Write Zeroes command specific status values are defined in Figure 250.

Figure 244: Write Zeroes – Command Specific Status Values
Value Description
81h Invalid Protection Information: The Protection Information Field (PRINFO) (refer to Figure 247)

settings specified in the command are invalid for the Protection Information with which the
namespace was formatted (refer to the PI field in Figure 176 and the DPS field in Figure 114) or
the ILBRT field is invalid (refer to section 8.3.1.5).

82h Attempted Write to Read Only Range: The LBA range specified contains read-only blocks.

NVM Express 1.3a

204

7 Controller Architecture
7.1 Introduction
Host software submits commands to the controller through pre-allocated Submission Queues. The
controller is alerted to newly submitted commands through SQ Tail Doorbell register writes. The difference
between the previous doorbell register value and the current register write indicates the number of
commands that were submitted.

The controller fetches the commands from the Submission Queue(s) and transmits them to the NVM
subsystem for processing. Except for fused operations, there are no ordering restrictions for processing of
the commands within or across Submission Queues. Host software should not place commands in the list
that may not be re-ordered arbitrarily. Data may or may not be committed to the NVM media in the order
that commands are received.

Host software submits commands of higher priorities to the appropriate Submission Queues. Priority is
associated with the Submission Queue itself, thus the priority of the command is based on the Submission
Queue it is issued through. The controller arbitrates across the Submission Queues based on fairness and
priority according to the arbitration scheme specified in section 4.11.

Upon completion of the commands by the NVM subsystem, the controller presents completion queue
entries to the host through the appropriate Completion Queues. If MSI-X or multiple message MSI is in
use, then the interrupt vector indicates the Completion Queue(s) with possible new command completions
for the host to process. If pin-based interrupts or single message MSI interrupts are used, host software
interrogates the Completion Queue(s) for new completion queue entries. The host updates the CQ Head
doorbell register to release Completion Queue entries to the controller and clear the associated interrupt.

There are no ordering restrictions for completions to the host. Each completion queue entry identifies the
Submission Queue Identifier and Command Identifier of the associated command. Host software uses this
information to correlate the completions with the commands submitted to the Submission Queue(s).

Host software is responsible for creating I/O Submission Queues and I/O Completion Queues prior to using
those queue pairs to submit commands to the controller. I/O Submission Queues and I/O Completion
Queues are created using the Create I/O Submission Queue command (refer to section 5.4) and the Create
I/O Completion Queue command (refer to section 5.3).

7.2 Command Submission and Completion Mechanism (Informative)
This section describes the command issue and completion mechanism. It also describes how commands
are built by host software and command completion processing.

7.2.1 Command Processing
This section describes command submission and completion processing. Figure 251 shows the steps that
are followed to submit and complete a command. The steps are:

1. The host places one or more commands for execution in the next free Submission Queue slot(s)
in memory.

2. The host updates the Submission Queue Tail Doorbell register with the new value of the
Submission Queue Tail entry pointer. This indicates to the controller that a new command(s) is
submitted for processing.

3. The controller transfers the command(s) from in the Submission Queue slot(s) into the controller
for future execution. Arbitration is the method used to determine the Submission Queue from which
the controller starts processing the next candidate command(s), refer to section 4.11.

4. The controller then proceeds with execution of the next command(s). Commands may complete
out of order (the order submitted or started execution).

5. After a command has completed execution, the controller places a completion queue entry in the
next free slot in the associated Completion Queue. As part of the completion queue entry, the

NVM Express 1.3a

205

controller indicates the most recent Submission Queue entry that has been consumed by
advancing the Submission Queue Head pointer in the completion entry. Each new completion
queue entry has a Phase Tag inverted from the previous entry to indicate to the host that this
completion queue entry is a new entry.

6. The controller optionally generates an interrupt to the host to indicate that there is a new completion
queue entry to consume and process. In the figure, this is shown as an MSI-X interrupt, however,
it could also be a pin-based or MSI interrupt. Note that based on interrupt coalescing settings, an
interrupt may or may not be generated for each new completion queue entry.

7. The host consumes and then processes the new completion queue entries in the Completion
Queue. This includes taking any actions based on error conditions indicated. The host continues
consuming and processing completion queue entries until it encounters a previously consumed
entry with a Phase Tag inverted from the value of the current completion queue entries.

8. The host writes the Completion Queue Head Doorbell register to indicate that the completion queue
entry has been consumed. The host may consume many entries before updating the associated
Completion Queue Head Doorbell register.

Figure 245: Command Processing

7.2.2 Basic Steps when Building a Command
When host software builds a command for the controller to execute, it first checks to make sure that the
appropriate Submission Queue (SQx) is not full. The Submission Queue is full when the number of entries
in the queue is one less than the queue size. Once an empty slot (pFreeSlot) is available:

1. Host software builds a command at SQx[pFreeSlot] with:
a. CDW0.OPC is set to the appropriate command to be executed by the controller.
b. CDW0.FUSE is set to the appropriate value, depending on whether the command is a

fused operation.
c. CDW0.CID is set to a unique identifier for the command when combined with the

Submission Queue identifier.

NVM Express 1.3a

206

d. The Namespace Identifier, CDW1.NSID, is set to the namespace the command applies
to.

e. MPTR shall be filled in with the offset to the beginning of the Metadata Region, if there
is a data transfer and the namespace format contains metadata as a separate buffer.

f. PRP1 and/or PRP2 (or SGL Entry 1 if SGLs are used) are set to the source/destination
of data transfer, if there is a data transfer.

g. CDW10 – CDW15 are set to any command specific information.
2. Host software writes the corresponding Submission Queue doorbell register (SQxTDBL)

to submit one or more commands for processing.

The write to the Submission Queue doorbell register triggers the controller to consume one or more
new commands contained in the Submission Queue entry. The controller indicates the most recent
SQ entry that has been consumed as part of reporting completions. Host software may use this
information to determine when SQ slots may be re-used for new commands.

7.2.3 Processing Completed Commands
Host software processes the interrupt generated by the controller for command completion(s). If MSI-X or
multiple message MSI is in use, then the interrupt vector implies the Completion Queue(s) with new
command completions for the host to process. If pin-based interrupts or single message MSI interrupts are
used, then host software interrogates the Completion Queue(s) to determine if new completion queue
entries are present for the host to process.

Once the host software determines the Completion Queue (CQy) that generated the interrupt:
1. Host software reads a completion queue entry from the specified Completion Queue.
2. Host software processes the CQ entry to identify the Submission Queue entry that

generated this completion. DW2.SQID indicates the Submission Queue ID and
DW3.CID indicates the command that generated the completion.

3. DW3.SF indicates the status of the completion.
4. Host software indicates available Completion Queue slots by updating the

corresponding Completion Queue Head doorbell register (CQyHDBL). By updating
CQyHDBL, the associated interrupt is cleared.

5. If there were errors, noted in the DW3.SF field, host software performs error recovery
actions (refer to section 10.1).

7.2.4 Command Related Resource Retirement
As part of reporting completions, the controller indicates the most recent Submission Queue entry that has
been consumed. Submission Queue slots containing consumed Submission Queue entries are free and
may be re-used by host software to submit new commands.

If a completion queue entry is posted for a command, then host software may re-use the associated PRP
List(s) for that command and other resources (an exception is the PRP List for I/O Submission Queues and
I/O Completion Queues).

NVM Express 1.3a

207

7.2.5 Command Examples
7.2.5.1 Creating an I/O Submission Queue
This example describes how host software creates an I/O Submission Queue that utilizes non-contiguous
PRP entries. Creating an I/O Submission Queue that utilizes a PRP List is only valid if the controller
supports non-contiguous queues as indicated in CAP.CQR.

Prior to creating an I/O Submission Queue, host software shall create the I/O Completion Queue that the
SQ uses with the Create I/O Completion Queue command.

To create an I/O Submission Queue, host software builds a Create I/O Submission Queue command for
the Admin Submission Queue. Host software builds the Create I/O Submission Queue command in the
next free Admin Submission Queue command location. The attributes of the command are:

• CDW0.OPC is set to 01h.
• CDW0.FUSE is set to 00b indicating that this is not a fused operation.
• CDW0.CID is set to a free command identifier.
• CDW1.NSID is set to 0h; Submission Queues are not specific to a namespace.
• MPTR is cleared to 0h; metadata is not used for this command.
• PRP1 is set to the physical address of the PRP List. The PRP List is shown in Figure 252 for a

PRP List with three entries.
• PRP2 is cleared to 0h; PRP Entry 2 is not used for this command.
• CDW10.QSIZE is set to the size of queue to create. In this case, it is set to a value of 191, indicating

a queue size of 192 entries. The queue size shall not exceed the maximum queue entries
supported, indicated in the CAP.MQES field.

• CDW10.QID is set to the Submission Queue identifier.
• CDW11.CQID is set to the I/O Completion Queue identifier where command completions are

posted.
• CDW11.QPRIO is set to 10b, indicating a Medium priority queue.
• CDW11.PC is cleared to ‘0’ indicating that the data buffer indicated by PRP1 is not physically

contiguously.

After the command is built, host software submits the command for execution by writing the Admin
Submission Queue doorbell (SQ0TDBL) to indicate to the controller that this command is available for
processing.

Host software shall maintain the PRP List unmodified in host memory until the Submission Queue is
deleted.

NVM Express 1.3a

208

Figure 246: PRP List Describing I/O Submission Queue

4KB Memory Page k

4KB Memory Page j

4KB Memory Page i

Cmd#0 (64Bytes)
Cmd#1 (64Bytes)
Cmd#2 (64Bytes)

Cmd#63 (64Bytes)

Cmd#64 (64Bytes)
Cmd#65 (64Bytes)
Cmd#66 (64Bytes)

Cmd#127 (64Bytes)

Cmd#128 (64Bytes)
Cmd#129 (64Bytes)
Cmd#130 (64Bytes)

Cmd#191 (64Bytes)

Non-Contiguous

PRP Entry#0 (offset of 0h)
PRP Entry#1 (offset of 0h)
PRP Entry#2 (offset of 0h)

PRP List
PRP1

NVM Express 1.3a

209

7.2.5.2 Executing a Fused Operation
This example describes how host software creates and executes a fused command, specifically Compare
and Write for a total of 16KB of data. In this case, there are two commands that are created. The first
command is the Compare, referred to as CMD0. The second command is the Write, referred to as CMD1.
In this case, end-to-end data protection is not enabled and the size of each logical block is 4KB.

To build commands for a fused operation, host software utilizes the next two available adjacent command
locations in the appropriate I/O Submission Queue.

The attributes of the Compare command are:

• CMD0.CDW0.OPC is set to 05h for Compare.
• CMD0.CDW0.FUSE is set to 01b indicating that this is the first command of a fused operation.
• CMD0.CDW0.CID is set to a free command identifier.
• CMD0.CDW1.NSID is set to the appropriate namespace.
• If metadata is being used in a separate buffer, then the location of that buffer is specified in the

CMD0.MPTR field.
• The physical address of the first page of the data to compare.

o If PRPs are used, CMD0.PRP1 is set to the physical address of the first page of the data
to compare and CMD0.PRP2 is set to the physical address of the PRP List. The PRP List
is shown in Figure 253 for a PRP List with three entries.

o If the command uses SGLs, CMD0.SGL1 is set to an appropriate SGL segment
descriptor depending on whether more than one descriptor is needed.

• CMD0.CDW10.SLBA is set to the first LBA to compare against. Note that this field also spans
Command Dword 11.

• CMD0.CDW12.LR is cleared to ‘0’ to indicate that the controller should apply all available error
recovery means to retrieve the data for comparison.

• CMD0.CDW12.FUA is cleared to ‘0’, indicating that the data may be read from any location,
including a DRAM cache, in the NVM subsystem.

• CMD0.CDW12.PRINFO is cleared to 0h since end-to-end protection is not enabled.
• CMD0.CDW12.NLB is set to 3h, indicating that four logical blocks of a size of 4KB each are to be

compared against.
• CMD0.CDW14 is cleared to 0h since end-to-end protection is not enabled.
• CMD0.CDW15 is cleared to 0h since end-to-end protection is not enabled.

NVM Express 1.3a

210

Figure 247: PRP List Describing Data to Compare

The attributes of the Write command are:

• CMD1.CDW0.OPC is set to 01h for Write.
• CMD1.CDW0.FUSE is set to 10b indicating that this is the second command of a fused operation.
• CMD1.CDW0.CID is set to a free command identifier.
• CMD1.CDW1.NSID is set to the appropriate namespace. This value shall be the same as

CMD0.CDW1.NSID.
• If metadata is being used in a separate buffer, then the location of that buffer is specified in the

CMD1.MPTR field.
• The physical address of the first page of data to write is identified.

o If the command uses PRPs, then CMD1.PRP1 is set to the physical address of the first
page of the data to write. and CMD1.PRP2 is set to the physical address of the PRP List.
The PRP List includes three entries.

o If the command uses SGLs, CMD1.SGL1 is set to an appropriate SGL segment
descriptor depending on whether more than one descriptor is needed.

• CMD1.CDW10.SLBA is set to the first LBA to compare against. Note that this field also spans
Command Dword 11. This value shall be the same as CMD0.CDW10.SLBA.

• CMD1.CDW12.LR is cleared to ‘0’ to indicate that the controller should apply all available error
recovery means to write the data to the NVM.

• CMD1.CDW12.FUA is cleared to ‘0’, indicating that the data may be written to any location,
including a DRAM cache, in the NVM subsystem.

• CMD1.CDW12.PRINFO is cleared to 0h since end-to-end protection is not enabled.
• CMD1.CDW12.NLB is set to 3h, indicating that four logical blocks of a size of 4KB each are to be

compared against. This value shall be the same as CMD0.CDW12.NLB.

Page #0

PRP Entry#0 (offset of 0h)
PRP Entry#1 (offset of 0h)

PRP List

LBA #0 (4KB)

Page #1

LBA #1 (4KB)

Command

PRP 1 (offset of xxh)31:24
PRP 2 (offset of xxh)39:32

PRP Entry#2 (offset of 0h) Page #2

LBA #2 (4KB)

Page #3

LBA #3 (4KB)

NVM Express 1.3a

211

• CMD1.CDW14 is cleared to 0h since end-to-end protection is not enabled.
• CMD1.CDW15 is cleared to 0h since end-to-end protection is not enabled.

After the commands are built, host software submits the commands for execution by writing the appropriate
I/O Submission Queue doorbell (SQxTDBL) to indicate to the controller that these commands are
submitted. Note that the doorbell write shall indicate both commands have been submitted at one time.

7.3 Resets
7.3.1 NVM Subsystem Reset
An NVM Subsystem Reset is initiated when:

• Power is applied to the NVM subsystem,
• A value of 4E564D65h (“NVMe”) is written to the NSSR.NSSRC field, or
• A vendor specific event occurs.

When an NVM Subsystem Reset occurs, the entire NVM subsystem is reset. This includes the initiation of
a Controller Level Reset on all controllers that make up the NVM subsystem and a transition to the Detect
LTSSM state by all PCI Express ports of the NVM subsystem.

The occurrence of an NVM Subsystem Reset while power is applied to the NVM subsystem is reported by
the initial value of the CSTS.NSSRO field following the NVM Subsystem Reset. This field may be used by
host software to determine if the sudden loss of communication with a controller was due to an NVM
Subsystem Reset or some other condition.

The ability for host software to initiate an NVM Subsystem Reset by writing to the NSSR.NSSRC field is an
optional capability of a controller indicated by the state of the CAP.NSSRS field. An implementation may
protect the NVM subsystem from an inadvertent NVM Subsystem Reset by not providing this capability to
one or more controllers that make up the NVM subsystem.

7.3.2 Controller Level Reset
There are five primary Controller Level Reset mechanisms:

• NVM Subsystem Reset
• Conventional Reset (PCI Express Hot, Warm, or Cold reset)
• PCI Express transaction layer Data Link Down status
• Function Level Reset (PCI reset)
• Controller Reset (CC.EN transitions from ‘1’ to ‘0’)

When any of the above resets occur, the following actions are performed:

• The controller stops processing any outstanding Admin or I/O commands.
• All I/O Submission Queues are deleted.
• All I/O Completion Queues are deleted.
• The controller is brought to an Idle state. When this is complete, CSTS.RDY is cleared to ‘0’.
• The Admin Queue registers (AQA, ASQ, or ACQ) are not reset as part of a controller reset. All

other controller registers defined in section 3 and internal controller state are reset.

In all cases except a Controller Reset, the PCI register space is reset as defined by the PCI Express base
specification. Refer to the PCI Express specification for further details.

To continue after a reset, the host shall:

• Update register state as appropriate.
• Set CC.EN to ‘1’.
• Wait for CSTS.RDY to be set to ‘1’.
• Configure the controller using Admin commands as needed.

NVM Express 1.3a

212

• Create I/O Completion Queues and I/O Submission Queues as needed.
• Proceed with normal I/O operations.

Note that all cases except a Controller Reset result in the controller immediately losing communication with
the host. In these cases, the controller is unable to indicate any aborts or update any completion queue
entries.

7.3.3 Queue Level
The host may reset and/or reconfigure the I/O Submission and I/O Completion Queues by resetting them.
A queue level reset is performed by deleting and then recreating the queue. In this process, the host should
wait for all pending commands to the appropriate I/O Submission Queue(s) to complete. To perform the
reset, the host submits the Delete I/O Submission Queue or Delete I/O Completion Queue command to the
Admin Queue specifying the identifier of the queue to be deleted. After successful command completion
of the queue delete operation, the host then recreates the queue by submitting the Create I/O Submission
Queue or Create I/O Completion Queue command. As part of the creation operation, the host may modify
the attributes of the queue if desired.

The host should ensure that the appropriate I/O Submission Queue or I/O Completion Queue is idle before
deleting it. Submitting a queue deletion command causes any pending commands to be aborted by the
controller; this may or may not result in a completion queue entry being posted for the aborted command(s).
Note that if a queue level reset is performed on an I/O Completion Queue, the I/O Submission Queues that
are utilizing the I/O Completion Queue should be deleted before the I/O Completion Queue is reset and
recreated after the I/O Completion Queue is recreated. The behavior of an I/O Submission Queue without
a corresponding I/O Completion Queue is undefined.

7.4 Queue Management

7.4.1 Queue Setup and Initialization
To setup and initialize I/O Submission Queues and I/O Completion Queues for use, host software follows
these steps:

1. Configures the Admin Submission and Completion Queues by initializing the Admin Queue
Attributes (AQA), Admin Submission Queue Base Address (ASQ), and Admin Completion Queue
Base Address (ACQ) registers appropriately.

2. Submits a Set Features command with the Number of Queues attribute to request the desired
number of I/O Submission Queues and I/O Completion Queues. The completion queue entry for
this Set Features command indicates the number of I/O Submission Queues and I/O Completion
Queues allocated by the controller.

3. Determines the maximum number of entries supported per queue (CAP.MQES) and whether the
queues are required to be physically contiguous (CAP.CQR).

4. Creates the desired I/O Completion Queues within the limitations of the number allocated by the
controller and the queue attributes supported (maximum entries and physically contiguous
requirements) by using the Create I/O Completion Queue command.

5. Creates the desired I/O Submission Queues within the limitations of the number allocated by the
controller and the queue attributes supported (maximum entries and physically contiguous
requirements) by using the Create I/O Submission Queue command.

At the end of this process, the desired I/O Submission Queues and I/O Completion Queues have been
setup and initialized and may be used to complete I/O commands.

NVM Express 1.3a

213

7.4.2 Queue Coordination
There is one Admin queue pair associated with multiple I/O queue pairs. The Admin Submission Queue
and Completion Queue are used to carry out functions that impact the entire controller. An I/O Submission
Queue and Completion Queue may be used to carry out I/O (read/write) operations and may be distributed
across CPU cores and threads.

An Admin command may impact one or more I/O queue pairs. The host should ensure that Admin actions
are coordinated with threads that are responsible for the I/O queue pairs to avoid unnecessary error
conditions. The details of this coordination are outside the scope of this specification.

7.4.3 Queue Abort
To abort a large number of commands, the recommended procedure is to delete and recreate the I/O
Submission Queue. Specifically, to abort all commands that are submitted to the I/O Submission Queue
host software should issue a Delete I/O Submission Queue command for that queue. After the queue has
been successfully deleted, indicating that all commands have been completed or aborted, then host
software should recreate the queue by submitting a Create I/O Submission Queue command. Host
software may then re-submit any commands desired to the associated I/O Submission Queue.

7.5 Interrupts
The interrupt architecture allows for efficient reporting of interrupts such that the host may service interrupts
through the least amount of overhead.

The specification allows the controller to be configured to report interrupts in one of four modes. The four
modes are: pin-based interrupt, single message MSI, multiple message MSI, and MSI-X. It is
recommended that MSI-X be used whenever possible to enable higher performance, lower latency, and
lower CPU utilization for processing interrupts.

Interrupt aggregation, also referred to as interrupt coalescing, mitigates host interrupt overhead by reducing
the rate at which interrupt requests are generated by a controller. This reduced host overhead typically
comes at the expense of increased latency. Rather than prescribe a specific interrupt aggregation algorithm,
this specification defines the mechanisms a host may use to communicate desired interrupt aggregation
parameters to a controller and leaves the specific interrupt aggregation algorithm used by a controller as
vendor specific. Interrupts associated with the Admin Completion Queue should not be delayed.

The Aggregation Threshold field in the Interrupt Coalescing feature (refer to section 5.21.1.8) specifies the
host desired minimum interrupt aggregation threshold on a per vector basis. This value defines the number
of Completion Queue entries that when aggregated on a per interrupt vector basis reduces host interrupt
processing overhead below a host determined threshold. This value is provided to the controller as a
recommendation by the host and a controller is free to generate an interrupt before or after this aggregation
threshold is achieved. The specific manner in which this value is used by the interrupt aggregation algorithm
implemented by a controller is implementation specific.

The Aggregation Time field in the Interrupt Coalescing feature (refer to section 5.21.1.8) specifies the host
desired maximum delay that a controller may apply to a Completion Queue entry before an interrupt is
signaled to the host. This value is provided to the controller as a recommendation by the host and a
controller is free to generate an interrupt before or after this aggregation time is achieved. A controller may
apply this value on a per vector basis or across all vectors. The specific manner in which this value is used
by the interrupt aggregation algorithm implemented by a controller is implementation specific.

Although support of the Get Features and Set Features commands associated with interrupt coalescing is
required, the manner in which the Aggregation Threshold and Aggregation Time fields are used is
implementation specific. For example, an implementation may ignore these fields and not implement
interrupt coalescing.

NVM Express 1.3a

214

7.5.1 Pin Based, Single MSI, and Multiple MSI Behavior
This is the mode of interrupt operation if any of the following conditions are met:

• Pin based interrupts are being used – MSI (MSICAP.MC.MSIE=’0’) and MSI-X are disabled
• Single MSI is being used – MSI is enabled (MSICAP.MC.MSIE=’1’), MSICAP.MC.MME=0h, and

MSI-X is disabled
• Multiple MSI is being used – Multiple-message MSI is enabled (MSICAP.MC.MSIE=’1’),

MSICAP.MC.MME is set to a value between 001b and 101b inclusive, and MSI-X is disabled.

Within the controller there is an interrupt status register (IS) that is not visible to the host. In this mode, the
IS register determines whether the PCI interrupt line shall be driven active or an MSI message shall be
sent. Each bit in the IS register corresponds to an interrupt vector. The IS bit is set to ‘1’ when the AND of
the following conditions is true:

• There is one or more unacknowledged completion queue entries in a Completion Queue that
utilizes this interrupt vector;

• The Completion Queue(s) with unacknowledged completion queue entries has interrupts enabled
in the “Create I/O Completion Queue” command;

• The corresponding INTM bit exposed to the host is cleared to ‘0’, indicating that the interrupt is not
masked.

For single and multiple MSI, the INTM register masks interrupt delivery prior to MSI logic. As such, an
interrupt on a vector masked by INTM does not cause the corresponding Pending bit to assert within the
MSI Capability Structure.

If MSIs are not enabled, IS[0] being a one causes the PCI interrupt line to be active (electrical ‘0’). If MSIs
are enabled, any change to the IS register that causes an unmasked status bit to transition from zero to
one or clearing of a mask bit whose corresponding status bit is set shall cause an MSI to be sent. Therefore,
while in wire mode, a single wire remains active, while in MSI mode, several messages may be sent, as
each edge triggered event on a port shall cause a new message.

In order to clear an interrupt for a particular interrupt vector, host software shall acknowledge all completion
queue entries for Completion Queues associated with the interrupt vector.

Status of IS Register Pin-based Action MSI Action
All bits ‘0’
Note: May be caused by corresponding bit(s) in the INTM
register being set to ‘1’, masking the corresponding interrupt.

Wire inactive No action

One or more bits set to ‘1’
Note: May be caused by corresponding bit(s) in the INTM
register being cleared to ‘0’, unmasking the corresponding
interrupt.

Wire active New message sent

One or more bits set to ‘1’, new bit gets set to ‘1’ Wire active New message sent
One or more bits set to ‘1’, some (but not all) bits in the IS
register are cleared (i.e., host software acknowledges some
of the associated completion queue entries)

Wire active New message sent

One or more bits set to ‘1’, all bits in the IS register are cleared
(i.e., host software acknowledges all associated completion
queue entries)

Wire inactive No action

7.5.1.1 Host Software Interrupt Handling
It is recommended that host software utilize the Interrupt Mask Set and Interrupt Mask Clear
(INTMS/INTMC) registers to efficiently handle interrupts when configured to use pin based or MSI
messages. Specifically, within the interrupt service routine, host software should set the appropriate mask
register bits to ‘1’ to mask interrupts via the INTMS register. In the deferred procedure call, host software
should process all completion queue entries and acknowledge the completion queue entries have been

NVM Express 1.3a

215

processed by writing the associated CQyHDBL doorbell registers. When all completion queue entries have
been processed, host software should unmask interrupts by clearing the appropriate mask register bits to
‘0 via the INTMC register.

It is recommended that the MSI interrupt vector associated with the CQ(s) being processed be masked
during processing of completion queue entries within the CQ(s) to avoid spurious and/or lost interrupts. For
single message or multiple message MSI, the INTMS and INTMC registers should be used to appropriately
mask interrupts during completion queue entry processing.

7.5.1.1.1 Interrupt Example (Informative)
An example of the host software flow for processing interrupts is described in this section. This example
assumes multiple message MSI is used and that interrupt vector 3 is associated with I/O Completion Queue
3.

1. The controller posts a completion queue entry to I/O Completion Queue 3. The controller sets IS[3]
to ‘1’ in its internal IS register. The controller asserts an interrupt to the host.

2. The interrupt service routine (ISR) is triggered.
3. Host software scans all I/O Completion Queues associated with the asserted MSI vector to

determine the location of new completion queue entries. In this case, a new completion queue
entry has been posted to I/O Completion Queue 3.

4. Host software writes 08h to the INTMS register to mask interrupts for interrupt vector 3, which is
associated with I/O Completion Queue 3.

5. The controller masks interrupt vector 3, based on the host write to the INTMS register.
6. Host software schedules a deferred procedure call (DPC) to process the completed command.
7. The deferred procedure call (DPC) is triggered.
8. Host software processes new completion queue entries for I/O Completion Queue 3, completing

the associated commands to the OS. Host software updates CQyHDBL to acknowledge the
processed completion queue entries and clear the interrupt associated with those completion
queue entries. If all completion queue entries have been acknowledged by host software, the
controller de-asserts interrupt vector 3.

9. Host software unmasks interrupt vector 3 by writing 08h to the INTMC register.

7.5.1.2 Differences Between Pin Based and MSI Interrupts
Single MSI is similar to the pin based interrupt behavior mode. The primary difference is the method of
reporting the interrupt. Instead of communicating the interrupt through an INTx virtual wire, an MSI message
is generated to the host. Unlike INTx virtual wire interrupts which are level sensitive, MSI interrupts are
edge sensitive.

Pin based and single MSI only use one interrupt vector. Multiple MSI may use up to 32 interrupt vectors.

For multiple MSI, the controller advertises the number of MSI interrupt vectors it requests in the Multiple
Message Capable (MMC) field in the Message Signaled Interrupt Message Control (MC) register. The
MSICAP.MC.MMC field represents a power-of-2 wrapper on the number of requested vectors. For
example, if three vectors are requested, then the MSICAP.MC.MMC field shall be ‘010’ (four vectors).

Multiple-message MSI allows completions to be aggregated on a per vector basis. If sufficient MSI vectors
are allocated, each Completion Queue(s) may send its own interrupt message, as opposed to a single
message for all completions.

7.5.2 MSI-X Based Behavior
This is the mode of interrupt operation if the MSI-X is being used – (multiple-message) MSI is disabled
(MSICAP.MC.MSIE=’0’) and (MSICAP.MC.MME=0h) and MSI-X is enabled. This is the preferred interrupt
behavior to use.

NVM Express 1.3a

216

MSI-X, similar to multiple-message MSI, allows completions to be aggregated on a per vector basis.
However, the maximum number of vectors is 2K. MSI-X also allows each interrupt to send a unique
message data corresponding to the vector.

MSI-X allows completions to be aggregated on a per vector basis. Each Completion Queue(s) may send
its own interrupt message, as opposed to a single message for all completions.

When generating an MSI-X message, the following checks occur before generating the message:
• The function mask bit in the MSI-X Message Control register is not set to ‘1’
• The corresponding vector mask in the MSI-X table structure is not set to ‘1’

If either of the masks are set, the corresponding pending bit in the MSI-X PBA structure is set to ‘1’ to
indicate that an interrupt is pending for that vector. The MSI for that vector is later generated when both the
mask bits are reset to ‘0’.

It is recommended that the interrupt vector associated with the CQ(s) being processed be masked during
processing of completion queue entries within the CQ(s) to avoid spurious and/or lost interrupts. The
interrupt mask table defined as part of MSI-X should be used to mask interrupts.

7.6 Controller Initialization and Shutdown Processing
This section describes the recommended procedure for initializing the controller and for shutdown
processing prior to a power-off condition.

7.6.1 Initialization
The host should perform the following actions in sequence to initialize the controller to begin executing
commands:

1. Set the PCI and PCI Express registers described in section 2 appropriately based on the system
configuration. This includes configuration of power management features. A single interrupt (e.g.
pin-based, single-MSI, or single MSI-X) should be used until the number of I/O Queues is
determined.

2. The host waits for the controller to indicate that any previous reset is complete by waiting for
CSTS.RDY to become ‘0.’

3. The Admin Queue should be configured. The Admin Queue is configured by setting the Admin
Queue Attributes (AQA), Admin Submission Queue Base Address (ASQ), and Admin Completion
Queue Base Address (ACQ) to appropriate values.

4. The controller settings should be configured. Specifically:
a. The arbitration mechanism should be selected in CC.AMS.
b. The memory page size should be initialized in CC.MPS.
c. The I/O Command Set that is to be used should be selected in CC.CSS.

5. The controller should be enabled by setting CC.EN to ‘1’.
6. The host should wait for the controller to indicate it is ready to process commands. The controller

is ready to process commands when CSTS.RDY is set to ‘1’.
7. The host should determine the configuration of the controller by issuing the Identify command,

specifying the Controller data structure. The host should then determine the configuration of each
namespace by issuing the Identify command for each namespace, specifying the Namespace data
structure.

8. The host should determine the number of I/O Submission Queues and I/O Completion Queues
supported using the Set Features command with the Number of Queues feature identifier. After
determining the number of I/O Queues, the MSI and/or MSI-X registers should be configured.

9. The host should allocate the appropriate number of I/O Completion Queues based on the number
required for the system configuration and the number supported by the controller. The I/O
Completion Queues are allocated using the Create I/O Completion Queue command.

NVM Express 1.3a

217

10. The host should allocate the appropriate number of I/O Submission Queues based on the number
required for the system configuration and the number supported by the controller. The I/O
Submission Queues are allocated using the Create I/O Submission Queue command.

11. If the host desires asynchronous notification of optional events, the host should issue a Set
Features command specifying the events to enable. If the host desires asynchronous notification
of events, the host should submit an appropriate number of Asynchronous Event Request
commands. This step may be done at any point after the controller signals it is ready (i.e.,
CSTS.RDY is set to ‘1’).

After performing these steps, the controller may be used for I/O commands.

For exit of the D3 power state, the initialization steps outlined should be followed. In this case, the number
of I/O Submission Queues and I/O Completion Queues shall not change, thus step 7 of the initialization
sequence is optional.

7.6.1.1 Software Progress Marker
The Software Progress Marker feature, defined in section 5.21.1.18, indicates the number of times pre-boot
software has loaded prior to the OS successfully loading. If the pre-boot software load count becomes
large, it may indicate there are issues with cached data within the NVM since the OS driver software has
not set this field to 0h recently. In this case, the OS driver software may choose to use the NVM more
conservatively (e.g., not utilize cached data).

The Software Progress Marker should be updated by both Pre-boot and OS driver software as part of
completing initialization.

7.6.2 Shutdown
It is recommended that the host perform an orderly shutdown of the controller by following the procedure
in this section when a power-off or shutdown condition is imminent.

The host should perform the following actions in sequence for a normal shutdown:

1. Stop submitting any new I/O commands to the controller and allow any outstanding commands to
complete.

2. The host should delete all I/O Submission Queues, using the Delete I/O Submission Queue
command. A result of the successful completion of the Delete I/O Submission Queue command is
that any remaining commands outstanding are aborted.

3. The host should delete all I/O Completion Queues, using the Delete I/O Completion Queue
command.

4. The host should set the Shutdown Notification (CC.SHN) field to 01b to indicate a normal shutdown
operation. The controller indicates when shutdown processing is completed by updating the
Shutdown Status (CSTS.SHST) field to 10b.

For entry to the D3 power state, the shutdown steps outlined for a normal shutdown should be followed.

The host should perform the following actions in sequence for an abrupt shutdown:

1. Stop submitting any new I/O commands to the controller.
2. The host should set the Shutdown Notification (CC.SHN) field to 10b to indicate an abrupt shutdown

operation. The controller indicates when shutdown processing is completed by updating the
Shutdown Status (CSTS.SHST) field to 10b.

NVM Express 1.3a

218

It is recommended that the host wait a minimum of the RTD3 Entry Latency reported in the Identify
Controller data structure for the shutdown operations to complete; if the value reported in RTD3 Entry
Latency is 0h, then the host should wait for a minimum of one second. It is not recommended to disable
the controller via the CC.EN field. This causes a Controller Reset which may impact the time required to
complete shutdown processing.

It is safe to power off the controller when CSTS.SHST indicates shutdown processing is complete
(regardless of the value of CC.EN). It remains safe to power off the controller until CC.EN transitions from
‘0’ to ‘1’.

To start executing commands on the controller after a shutdown operation, a Controller Reset (CC.EN
cleared from ‘1’ to ‘0’) is required. The initialization sequence should then be executed.

It is an implementation choice whether the host aborts all outstanding commands to the Admin Queue prior
to the shutdown. The only commands that should be outstanding to the Admin Queue at shutdown are
Asynchronous Event Request commands.

7.7 Asynchronous Event Request Host Software Recommendations (Informative)
This section describes the recommended host software procedure for Asynchronous Event Requests.

The host sends n Asynchronous Event Request commands (refer to section 7.6.1, step 11). When an
Asynchronous Event Request completes (providing Event Type, Event Information, and Log Page details):

1. If the event(s) in the reported Log Page may be disabled with the Asynchronous Event

Configuration feature (refer to section 5.21.1.11), then host software issues a Set Features
command for the Asynchronous Event Configuration feature specifying to disable reporting of all
events that utilize the Log Page reported. Host software should wait for the Set Features
command to complete.

2. Host software issues a Get Log Page command requesting the Log Page reported as part of the
Asynchronous Event Command completion. Host software should wait for the Get Log Page
command to complete.

3. Host software parses the returned Log Page. If the condition is not persistent, then host software
should re-enable all asynchronous events that utilize the Log Page. If the condition is persistent,
then host software should re-enable all asynchronous events that utilize the Log Page except for
the one(s) reported in the Log Page. The host re-enables events by issuing a Set Features
command for the Asynchronous Event Configuration feature.

4. Host software should issue an Asynchronous Event Request command to the controller (restoring
to n the number of these commands outstanding).

5. If the reporting of event(s) was disabled, host software should enable reporting of the event(s)
using the Asynchronous Event Configuration feature. If the condition reported may persist, host
software should continue to monitor the event (e.g., spare below threshold) to determine if
reporting of the event should be re-enabled.

7.8 Feature Values
The Get Features command, defined in section 5.13, and Set Features command, defined in section 5.21,
may be used to read and modify operating parameters of the controller. The operating parameters are
grouped and identified by Feature Identifiers. Each Feature Identifier contains one or more attributes that
may affect the behavior of the Feature.

If bit 4 is set to ‘1’ in the Optional NVM Command Support field of the Identify Controller data structure in
Figure 109 then for each Feature, there are three settings: default, saveable, and current. If bit 4 is cleared
to ‘0’ in the Optional NVM Command Support field of the Identify Controller data structure in Figure 109
then the controller only supports a current and default value for each Feature. In this case, the current
value may be persistent across power states based on the information specified in Figure 134 and Figure
135.

NVM Express 1.3a

219

The default value for each Feature is vendor specific and set by the manufacturer unless otherwise
specified; it is not changeable. The saveable value is the value that the Feature has after a power on or
reset event. The controller may not support a saveable value for a Feature; this is discovered by using the
‘supported capabilities’ value in the Select field in Get Features. If the controller does not support a
saveable value for a Feature, then the default value is used after a power on or reset event. The current
value is the value actively in use by the controller for a Feature after a Set Features command completes.

Set Features may be used to modify the saveable and current value for a Feature. Get Features may be
used to read the default, saveable, and current value for a Feature. If the controller does not support a
saveable value for a Feature, then the default value is returned for the saveable value in Get Features.

Feature settings may apply to:
a) the controller (i.e., the feature is not namespace specific); or
b) a namespace (i.e., the feature is namespace specific).

For feature values that apply to the controller:
a) if the CDW1.NSID field is set to 0h or FFFFFFFFh, then:

• the Set Features command shall set the specified feature value for the controller; and
• the Get Features command shall return the current setting of the requested feature value for

the controller,
and

b) if the CDW1.NSID field is set to a valid namespace identifier (refer to section 6.1), then:
• the Set Features command shall fail with a status code of Feature Not Namespace Specific;

and
• the Get Features command shall return the current setting of the requested feature value for

the controller.

For feature values that apply to a namespace:
a) if the CDW1.NSID field is set to an active namespace identifier (refer to section 6.1), then:

• the Set Features command shall set the specified feature value of the specified namespace;
and

• the Get Features command shall return the current setting of the requested feature value for
the specified namespace,

b) if the CDW1.NSID field is set to FFFFFFFFh, then:
• the Set Features command shall set the specified feature value for all namespaces attached

to the controller processing the command; and
• the Get Features command shall fail with a status code of Invalid Namespace or Format,
and

c) if the CDW1.NSID field is set to any other value, then the Set Features command and the Get
Features command shall fail as described in the rules for namespace identifier usage in Figure 11.

If the controller supports the Save field in the Set Features command and the Select field in the Get Features
command, then any Feature Identifier that is namespace specific may be saved on a per namespace basis.

There are mandatory and optional Feature Identifiers defined in Figure 134 and Figure 135. If a Get
Features command or Set Features command is processed that specifies a Feature Identifier that is not
supported, then the controller shall abort the command with a status of Invalid Field in Command.

7.9 NVMe Qualified Names
NVMe Qualified Names (NQNs) are used to uniquely describe a host or NVM subsystem for the purposes
of identification and authentication. The NVMe Qualified Name for the NVM subsystem is specified in the
Identify Controller data structure. An NQN is permanent for the lifetime of the host or NVM subsystem.

An NVMe Qualified Name is encoded as a string of Unicode characters with the following properties:
• The encoding is UTF-8 (refer to RFC 3629).
• The following characters are used in formatting:

o dash (‘-‘=U+002d)

NVM Express 1.3a

220

o dot (‘.’=U+002e)
o colon (‘:’=U+003a)

• The maximum name is 223 bytes in length.
• The string is null terminated.

There are two supported NQN formats. The first format may be used by any organization that owns a
domain name. This naming format may be used to create a human readable string to describe the host or
NVM subsystem. This format consists of:

• The string “nqn.”
• A date code, in “yyyy-mm.” format. This date shall be during a time when the naming authority

owned the domain name used in this format. The date code uses the Gregorian calendar. All
digits and the dash shall be included.

• The reverse domain name of the naming authority that is creating the NQN.
• A colon (:) prefixed string that the owner of the domain name assigns that does not exceed the

maximum length. The naming authority is responsible to ensure that the NQN is worldwide
unique.

The following are examples of NVMe Qualified Names that may be generated by “Example NVMe, Inc.”
• nqn.2014-08.com.example:nvme:nvm-subsystem-sn-d78432
• nqn.2014-08.com.example:nvme.host.sys.xyz

The second format may be used to create a unique identifier when there is not a naming authority or there
is not a desire for a human readable string. This format consists of:

• The string “nqn.”
• The string “2014-08.org.nvmexpress:uuid:”.
• A 128-bit UUID based on the definition in RFC 4122 represented as a string formatted as

“11111111-2222-3333-4444-555555555555”.

The following is an example of an NVMe Qualified Name using the UUID-based format:
• nqn.2014-08.org.nvmexpress:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6

7.10 Identifier Format and Layout (Informative)
This section provides guidance for proper implementation of various identifiers defined in the Identify
Controller and Identify Namespace data structures.

7.10.1 PCI Vendor ID (VID) and PCI Subsystem Vendor ID (SSVID)
The PCI Vendor ID (VID, bytes 01:00) and PCI Subsystem Vendor ID (SSVID, bytes 03:02) are defined in
the Identify Controller data structure. The values are assigned by the PCI SIG. Each identifier is a 16-bit
number in little endian format.

Example:
• VID = ABCDh
• SSVID = 1234h

Byte 00 01 02 03
Value CDh ABh 34h 12h

7.10.2 Serial Number (SN) and Model Number (MN)
The Serial Number (SN, bytes 23:04) and Model Number (MN, bytes 63:24) are defined in the Identify
Controller data structure. The values are ASCII strings assigned by the vendor. Each identifier is in big
endian format.

NVM Express 1.3a

221

Example (Value shown as ASCII characters):
• SN = “SN1”
• MN = “M2”

Byte 04 05 06 23 - 07 24 25 63 - 26
Value 53h (‘S’) 4Eh (‘N’) 31h (‘1’) 20h (‘ ‘) 4Dh (‘M’) 32h (‘2’) 20h (‘ ‘)

7.10.3 IEEE OUI Identifier (IEEE)
The IEEE OUI Identifier (OUI, bytes 75:73) is defined in the Identify Controller data structure. The value is
assigned by the IEEE Registration Authority. The identifier is in little endian format.

Example:
• OUI = ABCDEFh

Byte 73 74 75
Value EFh CDh ABh

7.10.4 IEEE Extended Unique Identifier (EUI64)
The IEEE Extended Unique Identifier (EUI64, bytes 127:120) is defined in the Identify Namespace data
structure. A tutorial is available at https://standards.ieee.org/develop/regauth/tut/eui64.pdf. IEEE defines
three formats that may be used in this field: MA-L, MA-M, and MA-S. The examples in this section use the
MA-L format.

The MA-L format is defined as a string of eight octets:

EUI[0] EUI[1] EUI[2] EUI[3] EUI[4] EUI[5] EUI[6] EUI[7]

OUI Extension Identifier

EUI64 is defined in big endian format. The OUI field differs from the OUI Identifier which is in little endian
format as described in section 7.10.3.

Example:
• OUI Identifier = ABCDEFh
• Extension Identifier = 0123456789h

Byte 120 121 122 123 124 125
Value ABh CDh EFh 01h 23h 45h
Field OUI Extension Identifier

Byte 126 127
Value 67h 89h
Field Ext ID (cont)

The MA-L format is similar to the World Wide Name (WWN) format defined as IEEE Registered designator
(NAA = 5) as shown below.

https://standards.ieee.org/develop/regauth/tut/eui64.pdf

NVM Express 1.3a

222

Byte 0 1 2 3 4 5 6 7
EUI64 OUI Extension Identifier
WWN

(NAA = 5) 5h OUI Vendor Specific Identifier

7.10.5 Namespace Globally Unique Identifier (NGUID)
The Namespace Globally Unique Identifier (NGUID, bytes 119:104) is defined in the Identify Namespace
data structure. The NGUID is composed of an IEEE OUI, an extension identifier, and a vendor specific
extension identifier. The extension identifier and vendor specific extension identifier are both assigned by
the vendor and may be considered as a single field. NGUID is defined in big endian format. The OUI field
differs from the OUI Identifier which is in little endian format as described in section 7.10.3.

Example:
• OUI Identifier = ABCDEFh
• Extension Identifier = 0123456789h
• Vendor Specific Extension Identifier = FEDCBA9876543210h

Byte 104 105 106 107 108 109
Value FEh DCh BAh 98h 76h 54h
Field Vendor Specific Extension Identifier

Byte 110 111 112 113 114 115
Value 32h 10h ABh CDh EFh 01h
Field VSP Ex ID (cont) OUI Ex ID

Byte 116 117 118 119
Value 23h 45h 67h 89h
Field Extension Identifier (cont)

The NGUID format is similar to the World Wide Name (WWN) format as IEEE Registered Extended
designator (NAA = 6) as shown below.

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NGUID Vendor Specific Extension Identifier OUI Extension Identifier
WWN

(NAA = 6) 6h OUI Vendor Specific Identifier Vendor Specific Identifier Extension

7.11 Unique Identifier
The NVM Subsystem NVMe Qualified Name specified in the Identify Controller data structure should be
used (e.g., by host software) as the unique identifier for the NVM subsystem. If the controller complies with
an older version of this specification that does not include the NVM Subsystem NQN, then the PCI Vendor
ID, Serial Number, and Model Number fields in the Identify Controller and the NQN Starting String
“nqn.2014.08.org.nvmexpress:” may be combined to form a globally unique value that identifies the NVM
subsystem (e.g., for host software that uses NQNs). The method shown in Figure 254 should be used to
construct an NVM Subsystem NQN for older NVM subsystems that do not provide an NQN in the Identify
Controller data structure. The mechanism used by the vendor to assign Serial Number and Model Number
values to ensure uniqueness is outside the scope of this specification.

NVM Express 1.3a

223

Figure 248: NQN Construction for Older NVM Subsystems
Bytes Description

26:00 NQN Starting String (NSS): Contains the 27 letter ASCII string ”nqn.2014-
08.org.nvmexpress:”.

30:27 PCI Vendor ID (VID): Contains the company vendor identifier that is assigned by the
PCI SIG as a hexadecimal ASCII string.

34:31 PCI Subsystem Vendor ID (SSVID): Contains the company vendor identifier that is
assigned by the PCI SIG for the subsystem as a hexadecimal ASCII string.

54:35 Serial Number (SN): Contains the serial number for the NVM subsystem that is
assigned by the vendor as an ASCII string.

94:55 Model Number (MN): Contains the model number for the NVM subsystem that is
assigned by the vendor as an ASCII string.

222:95 Padding (PAD): Contains spaces (ASCII character 20h).

An NVM subsystem may contain multiple controllers. All of the controllers that make up an NVM subsystem
share the same NVM subsystem unique identifier. The Controller ID (CNTLID) value returned in the Identify
Controller data structure may be used to uniquely identify a controller within an NVM subsystem. The
Controller ID value when combined with the NVM subsystem identifier forms a globally unique value that
identifies the controller. The mechanism used by the vendor to assign Controller ID values is outside the
scope of this specification.

The Identify Namespace data structure contains the IEEE Extended Unique Identifier (EUI64) and the
Namespace Globally Unique Identifier (NGUID) fields. EUI64 is an 8-byte EUI-64 identifier and NGUID is a
16-byte identifier based on EUI-64. When creating a namespace, the controller specifies a globally unique
value in the EUI64 or NGUID field (the controller may optionally specify a globally unique value in both
fields). In cases where the 64-bit EUI64 field is unable to ensure a globally unique namespace identifier,
the EUI64 field shall be cleared to 0h. When not implemented, these fields contain a value of 0h. If bit 3 in
NSFEAT is cleared to ‘0’, then a controller may reuse a non-zero NGUID/EUI64 value for a new namespace
after the original namespace using the value has been deleted. If bit 3 in NSFEAT is set to ‘1’, then a
controller shall not reuse a non-zero NGUID/EUI64 for a new namespace after the original namespace
using the value has been deleted.

NVM Express 1.3a

224

7.12 Keep Alive
The Keep Alive feature (refer to section 5.21.1.15) is used by the host to determine that the controller is
operational and by the controller to determine that the host is operational. The host and controller are
operational when each is accessible and able to issue or execute commands. The controller indicates the
granularity of the Keep Alive Timer in the Identify Controller data structure.

The Keep Alive is a watchdog timer intended to detect a malfunctioning connection, controller, or host. The
Keep Alive Timeout is the maximum time a connection remains established without processing a Keep
Alive command. The Keep Alive timer in the controller expires when a Keep Alive command is not received
within the Keep Alive Timeout interval.

The Keep Alive timer is active only for an enabled controller, i.e., the Keep Alive timer is active if:
• CC.EN is set to ‘1’ and CSTS.RDY is set to ‘1’; and
• CC.SHN is cleared to ‘0’ and CSTS.SHST is cleared to ‘0’.

Otherwise, the Keep Alive timer is inactive and a Keep Alive Timeout shall not occur. Activating an
inactive Keep Alive timer (e.g., enabling a controller with the Keep Alive feature in use) shall initialize the
Keep Alive timer to the Keep Alive Timeout value.

The host may consider a Keep Alive Timeout to have occurred when it does not receive the completion of
the Keep Alive command within the Keep Alive Timeout interval. The host is intended to send Keep Alive
commands at a faster rate than the Keep Alive Timeout accounting for transport roundtrip times, transport
delays, command execution times, and the Keep Alive Timer granularity.

When a Keep Alive Timer for the Admin Queue expires:

• the controller records an Error Information Log Entry with the status code Keep Alive Timeout
Expired and sets the Controller Fatal Status (CSTS.CFS) bit to ‘1’; and

• the host assumes all outstanding commands are not completed and need to be re-issued.

The Keep Alive command restarts the timeout period; other commands have no effect on the timeout. The
controller should process the Keep Alive command as soon as it is received.

The NVMe Transport binding specification defines for the associated NVMe Transport:

• the minimum Keep Alive Timeout value;
• the maximum Keep Alive Timeout value; and
• if Keep Alive is required.

NVMe Transports that do not detect a connection loss in a timely manner shall require that the Keep Alive
be enabled. If a command attempts to disable Keep Alive by setting the timeout value to 0h or to a value
that exceeds the maximum allowed by the associated NVMe Transport binding specification, a status value
of Keep Alive Invalid shall be returned. If a command sets the timeout value to a value that is smaller than
the minimum supported by the NVMe Transport or specific implementation, then the controller rounds up
the timeout to the minimum.

7.12.1 NVMe over PCIe
Keep Alive is not required for NVMe over PCIe. The PCIe Transport does not impose any limitations on the
minimum and maximum Keep Alive Timeout value.

7.13 Updating Controller Doorbell Registers using a Shadow Doorbell Buffer
7.13.1 Shadow Doorbell Buffer Overview
Controllers that support the Doorbell Buffer Config command are typically emulated controllers where this
feature is used to enhance the performance of host software running in Virtual Machines. If supported by
the controller, host software may enable Shadow Doorbell buffers by submitting the Doorbell Buffer Config
command (refer to section 5.7).

NVM Express 1.3a

225

After the completion of the Doorbell Buffer Config command, host software shall submit commands by
updating the appropriate entry in the Shadow Doorbell buffer instead of updating the controller's
corresponding doorbell register. If updating an entry in the Shadow Doorbell buffer changes the value from
being less than or equal to the value of the corresponding EventIdx buffer entry to being greater than that
value, then the host shall also update the controller's corresponding doorbell register to match the value of
that entry in the Shadow Doorbell buffer. Queue wrap conditions shall be taken into account in all
comparisons in this paragraph.

The controller may read from the Shadow Doorbell buffer and update the EventIdx buffer at any time (e.g.,
before the host writes to the controller's doorbell register).

7.13.2 Example Algorithm for Controller Doorbell Register Updates (Informative)
Host software may use modular arithmetic where the modulus is the queue depth to decide if the controller
doorbell register should be updated, specifically:

• Compute X as the new doorbell value minus the corresponding EventIdx value, modulo queue
depth.

• Compute Y as the new doorbell value minus the old doorbell value in the shadow doorbell buffer,
also modulo queue depth.

If X is less than or equal to Y, the controller doorbell register should be updated with the new doorbell value.

NVM Express 1.3a

226

8 Features
8.1 Firmware Update Process
The process for a firmware update to be activated by a reset is:

1. The host issues a Firmware Image Download command to download the firmware image to the
controller. There may be multiple portions of the firmware image to download, thus the offset for
each portion of the firmware image being downloaded is specified in the Firmware Image Download
command. The data provided in the Firmware Image Download command should conform to the
Firmware Update Granularity indicated in the Identify Controller data structure or the firmware
update may fail.

2. After the firmware is downloaded to the controller, the next step is for the host to submit a Firmware
Commit command. The Firmware Commit command verifies that the last firmware image
downloaded is valid and commits that image to the firmware slot indicated for future use. A
firmware image that does not start at offset zero, contains gaps, or contains overlapping regions is
considered invalid. A controller may employ additional vendor specific means (e.g., checksum,
CRC, cryptographic hash or a digital signature) to determine the validity of a firmware image.

a. The Firmware Commit command may also be used to activate a firmware image
associated with a previously committed firmware slot.

3. The last step is to perform a reset that then causes the firmware image specified in the Firmware
Slot field in the Firmware Commit command to be activated. The reset may be an NVM Subsystem
Reset, Conventional Reset, Function Level Reset, or Controller Reset (CC.EN transitions from ‘1’
to ‘0’).

a. In some cases a Conventional Reset or NVM Subsystem Reset is required to activate a
Firmware image. This requirement is indicated by Firmware Commit command specific
status (refer to section 5.11.1).

4. After the reset has completed, host software re-initializes the controller. This includes re-allocating
I/O Submission and Completion Queues. Refer to section 7.6.1.

The process for a firmware update to be activated without a reset is:

1. The host issues a Firmware Image Download command to download the firmware image to the
controller. There may be multiple portions of the firmware image to download, thus the offset for
each portion of the firmware image being downloaded is specified in the Firmware Image Download
command. The data provided in the Firmware Image Download command should conform to the
Firmware Update Granularity indicated in the Identify Controller data structure or the firmware
update may fail.

2. The host submits a Firmware Commit command with a Commit Action of 011b which specifies that
the image should be activated immediately without reset. The downloaded image should replace
the image in the firmware slot. If no image was downloaded since the last reset or Firmware Commit
command, (i.e., the first step was skipped), then the controller shall verify and activate the image
in the specified slot. If the controller starts to activate the firmware, any controllers affected by the
new firmware send a Firmware Activation Starting asynchronous event to the host if Firmware
Activation Notices are enabled (refer to Figure 148).

a. The Firmware Commit command may also be used to activate a firmware image
associated with a previously committed firmware slot.

3. The controller completes the Firmware Commit command. The following actions are taken in
certain error scenarios:

a. If the firmware image is invalid, then the controller reports the appropriate error (e.g., Invalid
Firmware Image).

b. If the firmware activation was not successful because a reset is required to activate this
firmware, then the controller reports an error of Firmware Activation Requires Reset and
the image is applied at the next reset.

NVM Express 1.3a

227

c. If the firmware activation was not successful because the firmware activation time would
exceed the MTFA value reported in the Identify Controller data structure, then the controller
reports an error of Firmware Activation Requires Maximum Time Violation. In this case, to
activate the firmware, the Firmware Commit command needs to be re-issued and the
image activated using a reset.

If a D3 cold condition occurs during the firmware activation process, the controller may resume operation
with either the old or new firmware.

If the firmware is not able to be successfully loaded, then the controller shall revert to the previously active
firmware image or the baseline read-only firmware image, if available, and indicate the failure as an
asynchronous event with a Firmware Image Load Error.

Host software should not update multiple firmware images simultaneously. After downloading an image,
host software issues a Firmware Commit command before downloading additional firmware images.
Processing of the first Firmware Download command after completion of a Firmware Commit command
shall cause the controller to discard remaining portions, if any, of downloaded images. If a reset occurs
between a firmware download and completion of the Firmware Commit command, then the controller shall
discard all portion(s), if any, of downloaded images.

8.2 Metadata Handling
The controller may support metadata per logical block. Metadata is additional data allocated on a per
logical block basis. There is no requirement for how the host makes use of the metadata area. One of the
most common usages for metadata is to convey end-to-end protection information.

The metadata may be transferred by the controller to or from the host in one of two ways. The mechanism
used is selected when the namespace is formatted.

The first mechanism for transferring the metadata is as a contiguous part of the logical block that it is
associated with. The metadata is transferred at the end of the associated logical block, forming an extended
logical block. This mechanism is illustrated in Figure 255. In this case, both the logical block data and
logical block metadata are pointed to by the PRP1 and PRP2 pointers (or SGL Entry 1 if SGLs are used).

Figure 249: Metadata – Contiguous with LBA Data, Forming Extended LBA

The second mechanism for transferring the metadata is as a separate buffer of data. This mechanism is
illustrated in Figure 256. In this case, the metadata is pointed to with the Metadata Pointer, while the logical
block data is pointed to by the Data Pointer. When a command uses PRPs for the metadata in the
command, the metadata is required to be physically contiguous. When a command uses SGLs for the
metadata in the command, the metadata is not required to be physically contiguous.

LBA n Data LBA n +1 Data Sector N
Metadata

Sector N+2
Metadata

Sector N
Metadata

Sector N+2
Metadata

Sector N
Metadata

LBA n +1
Metadata

LBA n
Metadata

Host …

Data Buffer (PRP1 & PRP2)

NVM Express 1.3a

228

Figure 250: Metadata – Transferred as Separate Buffer

One of the transfer mechanisms shall be selected for each namespace when it is formatted; transferring a
portion of metadata with one mechanism and a portion with the other mechanism is not supported.

If end-to-end data protection is used, then the Protection Information field for each logical block is contained
in the metadata.

8.3 End-to-end Data Protection (Optional)
To provide robust data protection from the application to the NVM media and back to the application itself,
end-to-end data protection may be used. If this optional mechanism is enabled, then additional protection
information (e.g. CRC) is added to the logical block that may be evaluated by the controller and/or host
software to determine the integrity of the logical block. This additional protection information, if present, is
either the first eight bytes of metadata or the last eight bytes of metadata, based on the format of the
namespace. For metadata formats with more than eight bytes, if the protection information is contained
within the first eight bytes of metadata, then the CRC does not cover any metadata bytes. For metadata
formats with more than eight bytes, if the protection information is contained within the last eight bytes of
metadata, then the CRC covers all metadata bytes up to but excluding these last eight bytes. As described
in section 8.2, metadata and hence this protection information may be configured to be contiguous with the
logical block data or stored in a separate buffer.

The most commonly used data protection mechanisms in Enterprise implementations are SCSI Protection
Information, commonly known as Data Integrity Field (DIF), and the Data Integrity Extension (DIX). The
primary difference between these two mechanisms is the location of the protection information. In DIF, the
protection information is contiguous with the logical block data and creates an extended logical block, while
in DIX, the protection information is stored in a separate buffer. The end-to-end data protection mechanism
defined by this specification is functionally compatible with both DIF and DIX. DIF functionality is achieved
by configuring the metadata to be contiguous with logical block data (as shown in Figure 255), while DIX
functionality is achieved by configuring the metadata and data to be in separate buffers (as shown in Figure
256).

NVM Express supports the same end-to-end protection types as DIF. The type of end-to-end data
protection (Type 1, Type 2, or Type 3) is selected when a namespace is formatted and is reported in the
Identify Namespace data structure.

The Protection Information format is shown in Figure 257 and is contained in the metadata associated with
each logical block. The Guard field contains a CRC-16 computed over the logical block data. In addition
to a CRC-16, DIX also specifies an optional IP checksum that is not supported by NVM Express. The
Application Tag is an opaque data field not interpreted by the controller and that may be used to disable
checking of protection information. The Reference Tag associates logical block data with an address and
protects against misdirected or out-of-order logical block transfer. Like the Application Tag, the Reference
Tag may also be used to disable checking of protection information.

Sector N Data

Sector N
Metadata

Sector N+1
Metadata

Sector N+2
Metadata

LBA n+1 Data LBA n+2 Data

Sector N
Metadata

Sector N+1
Metadata

Sector N+2
Metadata

Sector N
Metadata

Sector N+1
Metadata

Sector N+2
Metadata

Sector N
Metadata

Sector N+1
Metadata

Sector N+2
Metadata

Sector N
Metadata

Sector N+1
Metadata

Sector N+2
Metadata

LBA n+1
Metadata

LBA n+2
Metadata

Host

…

…

Data Buffer (PRP1 & PRP2)

Metadata Buffer (MD)

LBA n Data

LBA n
Metadata

NVM Express 1.3a

229

Figure 251: Protection Information Format

8.3.1 The PRACT Bit
The protection information processing performed as a side effect of Read and Write commands is controlled
by the Protection Information Action (PRACT) bit in the command.

8.3.1.1 Protection Information and Write Commands
Figure 258 provides some examples of the protection information processing that may occur as a side effect
of a Write command.

If the namespace is not formatted with end-to-end data protection, then logical block data and metadata is
transferred from the host to the NVM with no protection information related processing by the controller.

If the namespace is formatted with protection information and the PRACT bit is cleared to ‘0’, then logical
block data and metadata, which contains the protection information and may contain additional metadata,
are transferred from the host buffer to NVM (i.e., the metadata field remains the same size in the NVM and
the host buffer). As the logical block data and metadata passes through the controller, the protection
information is checked. If a protection information check error is detected, the command completes with
the status code of the error detected (i.e., End-to-end Guard Check, End-to-end Application Tag Check or
End-to-end Reference Tag Check).

If the namespace is formatted with protection information and the PRACT bit is set to ‘1’, then:

1. If the namespace is formatted with Metadata Size equal to 8 (refer to Figure 115), then the logical
block data is transferred from the host buffer to the controller. As the logical block data passes
through the controller, the controller generates and appends protection information to the end of
the logical block data, and the logical block data and protection information are written to NVM (i.e.,
the metadata is not resident within the host buffer).

2. If the namespace is formatted with Metadata Size greater than 8, then the logical block data and
the metadata are transferred from the host buffer to the controller. As the metadata passes through
the controller, the controller overwrites the protection information portion of the metadata. The
logical block data and metadata are written to the NVM (i.e., the metadata field remains the same
size in the NVM and the host buffer). The location of the protection information within the metadata
is configured when the namespace is formatted (refer to the DPS field in Figure 114).

0

1

2

3

4

5

6

7

MSB

LSB
Guard

MSB

LSB
Application Tag

MSB

MSB

Reference Tag

Byte

7 6 5 4 3 2 1 0
Bit

LSB

NVM Express 1.3a

230

Figure 252: Write Command Protection Information Processing

NOTE: In cases (b) and (d) the Protection Information could be before or after the 8 bytes of metadata.

8.3.1.2 The PRACT Bit and Read Commands
Figure 259 provides some examples of the protection information processing that may occur as a side effect
of Read command processing.

NVM Express 1.3a

231

If the namespace is formatted with protection information and the PRACT bit is cleared to ‘0’, then the
logical block data and metadata, which in this case contains the protection information and possibly
additional host metadata, is transferred by the controller from the NVM to the host buffer (i.e., the metadata
field remains the same size in the NVM and the host buffer). As the logical block data and metadata pass
through the controller, the protection information within the metadata is checked. If a protection information
check error is detected, the command completes with the status code of the error detected (i.e., End-to-
end Guard Check, End-to-end Application Tag Check or End-to-end Reference Tag Check).

If the namespace is formatted with protection information and the PRACT bit is set to ‘1’, then:
a) if the namespace is formatted with Metadata Size equal to 8 (refer to Figure 115), the logical

block data and metadata (which in this case is, by definition, the protection information), is read
from the NVM by the controller. As the logical block and metadata pass through the controller,
the protection information is checked. If a protection information check error is detected, the
command completes with the status code of the error detected (i.e., End-to-end Guard Check,
End-to-end Application Tag Check or End-to-end Reference Tag Check). After processing the
protection information, the controller strips it and returns the logical block data to the host (i.e., the
metadata is not resident within the host buffer);

b) if the namespace is formatted with Metadata Size greater than 8, the logical block data and the
metadata, which in this case contains the protection information and additional host formatted
metadata, is read from the NVM by the controller. As the logical block and metadata pass
through the controller, the protection information embedded within the metadata is checked. If a
protection information check error is detected, the command completes with the status code of
the error detected (i.e., End-to-end Guard Check, End-to-end Application Tag Check or End-to-
end Reference Tag Check). After processing the protection information, the controller passes the
logical block data and metadata, with the embedded protection information unchanged, to the
host (i.e., the metadata field remains the same size in the NVM as within the host buffer).

NVM Express 1.3a

232

Figure 253: Read Command Protection Information Processing

 NOTE: In cases (b) and (d) the PI could be before or after the 8 bytes of metadata.

8.3.1.3 Protection Information for Fused Operations
Protection processing for fused operations is the same as those for the individual commands that make up
the fused operation.

NVM Express 1.3a

233

8.3.1.4 Protection Checking with the Compare command
Figure 260 illustrates the protection information processing that may occur as a side effect of Compare
command processing. Compare command processing parallels both Write and Read commands. The
controller checks the protection information contained in the command and the protection information read
from the NVM.

Figure 254: Protection Information Processing for Compare

8.3.1.5 Control of Protection Information Checking - PRCHK
Checking of protection information consists of the following operations performed by the controller. If bit 2
of the Protection Information Check (PRCHK) field of the command is set to ‘1’, then the controller compares
the protection information Guard field to the CRC-16 computed over the logical block data. If bit 1 of the
PRCHK field is set to ‘1’, then the controller compares unmasked bits in the protection information
Application Tag field to the Logical Block Application Tag (LBAT) field in the command. A bit in the
protection information Application Tag field is masked if the corresponding bit is cleared to ‘0’ in the Logical
Block Application Tag Mask (LBATM) field of the command.

For Type 1 protection, if bit 0 of the PRCHK field is set to ‘1’, then the controller compares the protection
information Reference Tag field to the computed reference tag. The value of the computed reference tag
for the first LBA of the command is the value contained in the Initial Logical Block Reference Tag (ILBRT)
or Expected Initial Logical Block Reference Tag (EILBRT) field in the command. If the namespace is
formatted for Type 1 or Type 2 protection, the computed reference tag is incremented for each subsequent
logical block. If the namespace is formatted for Type 3 protection, the reference tag for each subsequent
logic block remains the same as the initial reference tag. Unlike SCSI Protection Information Type 1
protection which implicitly uses the least significant four bytes of the LBA, the controller always uses the
ILBRT or EILBRT field and requires host software to initialize the ILBRT or EILBRT field to the least
significant four bytes of the LBA when Type 1 protection is used. In Type 1 protection, the controller should
check the ILBRT field or the EILBRT field for the correct value; if the value does not match the least
significant four bytes of the LBA, then the controller completes the command with a status of Invalid
Protection Information.

For Type 2 protection, if bit 0 of the PRCHK field is set to ‘1’, then the controller compares the protection
information Reference Tag field from each logical block to the computed reference tag. The computed
reference tag is incremented for each subsequent logical block. The value of the computed reference tag
for the first LBA of the command is the value contained in the ILBRT or EILBRT field in the command. Host
software may set the ILBRT and EILBRT fields to any value.

NVM Express 1.3a

234

For Type 3 protection, if bit 0 of the PRCHK field is set to ‘1’, then the command should be aborted with
status Invalid Protection Information, but may be aborted with status Invalid Field in Command. The
controller may ignore the ILBRT and EILBRT fields when Type 3 protection is used because the computed
reference tag remains unchanged.

Protection checking may be disabled as a side effect of the value of the protection information Application
Tag and Reference Tag fields regardless of the state of the PRCHK field in the command. If the namespace
is formatted for Type 1 or Type 2 protection, then all protection information checks are disabled regardless
of the state of the PRCHK field when the protection information Application Tag has a value of FFFFh. If
the namespace is formatted for Type 3 protection, then all protection information checks are disabled
regardless of the state of the PRCHK field when the protection information Application Tag has a value of
FFFFh and the protection information Reference Tag has a value of FFFFFFFFh.

Inserted protection information consists of the computed CRC-16 in the Guard field, the LBAT field value
in the Application Tag, and the computed reference tag in the Reference Tag field.

8.4 Power Management
The power management capability allows the host to manage NVM subsystem power statically or
dynamically. Static power management consists of the host determining the maximum power that may be
allocated to an NVM subsystem and setting the NVM Express power state to one that consumes this
amount of power or less. Dynamic power management is illustrated in Figure 261 and consists of the host
modifying the NVM Express power state to best satisfy changing power and performance objectives. This
power management mechanism is meant to complement and not replace autonomous power management
or thermal management performed by a controller.

Figure 255: Dynamic Power Management

The number of power states implemented by a controller is returned in the Number of Power States
Supported (NPSS) field in the Identify Controller data structure. A controller shall support at least one
power state and may optionally support up to a total of 32 power states. Power states are contiguously
numbered starting with zero such that each subsequent power state consumes less than or equal to the
maximum power consumed in the previous state. Thus, power state zero indicates the maximum power
that the NVM subsystem is capable of consuming.

Associated with each power state is a Power State Descriptor in the Identify Controller data structure (refer
to Figure 113). The descriptors for all implemented power states may be viewed as forming a table as
shown in Figure 262 for a controller with seven implemented power states. Note that Figure 262 is
illustrative and does not include all fields in the power state descriptor. The Maximum Power (MP) field
indicates the maximum power that may be consumed in that state. Refer to the appropriate form factor
specification for power measurement methodologies for that form factor. The controller may employ

NVM Express 1.3a

235

autonomous power management techniques to reduce power consumption below this level, but under no
circumstances is power allowed to exceed this level except for non-operational power states as described
in section 8.4.1.

Figure 256: Example Power State Descriptor Table

Power
State

Maximum
Power
(MP)

Entry
Latency

(ENTLAT)

Exit
Latency
(EXLAT)

Relative
Read

Throughput
(RRT)

Relative
Read

Latency
(RRL)

Relative
Write

Throughput
(RWT)

Relative
Write

Latency
(RWL)

0 25 W 5 µs 5 µs 0 0 0 0
1 18 W 5 µs 7 µs 0 0 1 0
2 18 W 5 µs 8 µs 1 0 0 0
3 15 W 20 µs 15 µs 2 0 2 0
4 10 W 20 µs 30 µs 1 1 3 0
5 8 W 50 µs 50 µs 2 2 4 0
6 5 W 20 µs 5000 µs 4 3 5 1

The Idle Power (IDLP) field indicates the typical power consumed by the NVM subsystem over 30 seconds
in the power state when idle (i.e., there are no pending commands register accesses, background
processes, nor device self-test operations). The measurement starts after the NVM subsystem has been
idle for 10 seconds.

The Active Power (ACTP) field indicates the largest average power of the NVM subsystem over a 10 second
window on a particular workload (refer to section 8.4.3). Active Power measurement starts when the first
command is submitted and ends when the last command is completed. The largest average power over a
10 second window, consumed by the NVM subsystem in that state is reported in the Active Power field. If
the workload completes faster than 10 seconds, the average active power should be measured over the
period of the workload. Non-operational states shall set Active Power Scale, Active Power Workload, and
Active Power fields to 0h.

The host may dynamically modify the power state using the Set Features command and determine the
current power state using the Get Features command. The host may directly transition between any two
supported power states. The Entry Latency (ENTLAT) field in the power management descriptor indicates
the maximum amount of time in microseconds that it takes to enter that power state and the Exit Latency
(EXLAT) field indicates the maximum amount of time in microseconds that it takes to exit that state.

The maximum amount of time to transition between any two power states is equal to the sum of the old
state’s exit latency and the new state’s entry latency. The host is not required to wait for a previously
submitted power state transition to complete before initiating a new transition. The maximum amount of
time for a sequence of power state transitions to complete is equal to the sum of transition times for each
individual power state transition in the sequence.

Associated with each power state descriptor are Relative Read Throughput (RRT), Relative Write
Throughput (RWT), Relative Read Latency (RRL) and Relative Write Latency (RWL) fields that provide the
host with an indication of relative performance in that power state. Relative performance values provide an
ordering of performance characteristics between power states. Relative performance values may repeat,
may be skipped, and may be assigned in any order (i.e., increasing power states need not have increasing
relative performance values).

A lower relative performance value indicates better performance (e.g., higher throughput or lower latency).
For example, in Figure 262 power state 1 has higher read throughput than power state 2, and power states
0 through 3 all have the same read latency. Relative performance ordering is only with respect to a single
performance characteristic. Thus, although the relative read throughput value of one power state may
equal the relative write throughput value of another power state, this does not imply that the actual read
and write performance of these two power states are equal.

NVM Express 1.3a

236

The default NVM Express power state is implementation specific and shall correspond to a state that does
not consume more power than the lowest value specified in the form factor specification used by the PCI
Express SSD. The host shall never select a power state that consumes more power than the PCI Express
slot power limit control value expressed by the Captured Slot Power Limit Value (CSPLV) and Captured
Slot Power Limit Scale (CSPLS) fields of the PCI Express Device Capabilities (PXDCAP) register. Hosts
that do not dynamically manage power should set the power state to the lowest numbered state that
satisfies the PCI Express slot power limit control value.

If a controller implements the PCI Express Dynamic Power Allocation (DPA) capability and it is enabled
(i.e., the Substate Control Enable bit is set), then the maximum power that may be consumed by the NVM
subsystem is equal to the minimum value specified by the DPA substate or the NVM Express power state,
whichever is lower.

8.4.1 Non-Operational Power States
A power state may be a non-operational power state, as indicated by Non-Operational State (NOPS) field
in Figure 113. In a non-operational power state, memory-mapped I/O (MMIO) accesses, configuration
register accesses and Admin Queue commands are serviced. No I/O commands are processed by the
controller while in a non-operational power state. The host should wait until there are no pending I/O
commands prior to issuing a Set Features command to change the current power state of the device to a
non-operational power state, and not submit new I/O commands until the Set Features command
completes. Issuing an I/O command in parallel may result in the controller being in an unexpected power
state.

When in a non-operational power state, regardless of whether autonomous power state transitions are
enabled, the controller shall autonomously transition back to the most recent operational power state when
an I/O Submission Queue Tail Doorbell is written.

While in a non-operational state, a controller may exceed the power advertised by the state for the following
purposes:

• servicing a memory-mapped I/O (MMIO) or configuration register access;
• processing a command submitted to the Admin Submission Queue (such as Device Self-test

command); or
• if Non-Operational Power State Permissive Mode is supported and enabled, executing controller

initiated background operations (refer to section 5.21.1.17).

For all of the cases in the preceding paragraph, the controller shall:
• logically remain in the current non-operational power state unless an IO command is received or

if an explicit transition is requested by a Set Features command with the Power Management
identifier; and

• not exceed the maximum power advertised for the most recent operational power state.

8.4.2 Autonomous Power State Transitions
The controller may support autonomous power state transitions, as indicated in the Identify Controller data
structure in Figure 109. Autonomous power state transitions provide a mechanism for the host to configure
the controller to automatically transition between power states on certain conditions without software
intervention.

The entry condition to transition to the Idle Transition Power State is that the controller has been in idle for
a continuous period of time exceeding the Idle Time Prior to Transition time specified. The controller is idle
when there are no commands outstanding to any I/O Submission Queue. If a controller has an operation in
process (e.g., device self-test operation) that would cause controller power to exceed that advertised for
the proposed non-operational power state, then the controller should not autonomously transition to that
state.

The power state to transition to shall be a non-operational power state (a non-operational power state may
autonomously transition to another non-operational power state). If an operational power state is specified

NVM Express 1.3a

237

then the controller should abort the command with a status of Invalid Field in Command. Refer to section
8.4.1 for more details.

8.4.3 NVM Subsystem Workloads
The workload values described in this section may specify a workload hint in the Power Management
Feature (refer to section 5.21.1.2) to inform the NVM subsystem or indicate the conditions for the active
power level.

Active power values in the power state descriptors are specified for a particular workload since they may
vary based on the workload of the NVM subsystem. The workload field indicates the conditions to observe
the energy values. If Active Power is indicated for a power state, a corresponding workload shall also be
indicated.

The workload values are described in Figure 263.

Figure 257: Workload Hints

Value Description
000b No Workload: The workload is unknown or not provided.
001b Workload #1: Extended Idle Period with a Burst of Random Writes. Workload #1

consists of five (5) minutes of idle followed by thirty-two (32) random write commands of
size 1MB submitted to a single controller while all other controllers in the NVM
subsystem are idle, and then thirty (30) seconds of idle.

010b Workload #2: Heavy Sequential Writes. Workload #2 consists of 80,000 sequential
write commands of size 128KB submitted to a single controller while all other controllers
in the NVM subsystem are idle. The submission queue(s) should be sufficiently large
allowing the host to ensure there are multiple commands pending at all times during the
workload.

011b – 111b Reserved

8.4.4 Runtime D3 Transitions
In Runtime D3 (RTD3) main power is removed from the controller. Auxiliary power may or may not be
provided. RTD3 is used for additional power savings when the controller is expected to be idle for a period
of time.

To enable host software to determine when to use RTD3, the controller reports the latency to enter RTD3
and the latency to resume from RTD3 in the Identify Controller data structure in Figure 109. The host may
use the sum of these two values to evaluate whether the expected idle period is long enough to benefit
from a transition to RTD3.

The RTD3 Resume Latency is measured from the time power is applied until the controller is able to
complete an I/O command. The latency reported is based on a normal shutdown with optimal controller
settings preceding the RTD3 resume. The latency reported assumes that host software enables and
initializes the controller and then sends a 4KB read operation.

The RTD3 Entry Latency is measured from the time CC.SHN is set to 01b by host software until CC.SHST
is set to 10b by the controller. When CC.SHST is set to 10b, it is safe for host software to remove power
from the controller.

8.4.5 Host Controlled Thermal Management
A controller may support host controlled thermal management (HCTM), as indicated in the Host Controlled
Thermal Management Attributes of the Identify Controller data structure in Figure 109. Host controlled
thermal management provides a mechanism for the host to configure a controller to automatically transition
between active power states or perform vendor specific thermal management actions in order to attempt to
meet thermal management requirements specified by the host. If active power states transitions are used

NVM Express 1.3a

238

to attempt to meet these thermal management requirements specified by the host then those active power
states transitions are vendor specific.

The host specifies and enables the thermal management requirements by setting the Thermal Management
Temperature 1 field and/or Thermal Management Temperature 2 field (refer to section 5.21.1.16) in a Set
Features command to a non-zero value. The supported range of values for the Thermal Management
Temperature 1 field and Thermal Management Temperature 2 field are indicated in the Identify Controller
data structure in Figure 109.

The Thermal Management Temperature 1 specifies that if the Composite Temperature (refer to Figure 94)
is:

a) at or above this value; and
b) less than the Thermal Management Temperature 2, if non-zero,

then the controller should start transitioning to lower power active power states or perform vendor specific
thermal management actions while minimizing the impact on performance in order to attempt to reduce the
Composite Temperature (e.g., transition to an active power state that performs light throttling).

The Thermal Management Temperature 2 field specifies that if the Composite Temperature is at or above
this value, then the controller shall start transitioning to lower power active power states or perform vendor
specific thermal management actions regardless of the impact on performance in order to attempt to reduce
the Composite Temperature (e.g., transition to an active power state that performs heavy throttling).

If the controller is currently in a lower power active power state or performing vendor specific thermal
management actions because of this feature (e.g., throttling performance) because the Composite
Temperature:

a) is at or above the current value of the Thermal Management Temperature 1 field; and
b) is below the current value of the Thermal Management Temperature 2 field;

and the Composite Temperature decreases to a value below the current value of the Thermal Management
Temperature 1 field, then the controller should return to the active power state that the controller was in
prior to going to a lower power active power state or stop performing vendor specific thermal management
actions because of this feature, the Composite Temperature and the current value of the Thermal
Management Temperature 1 field.

If the controller is currently in a lower power active power state or performing vendor specific thermal
management actions because the Composite Temperature is at or above the current value of the Thermal
Management Temperature 2 field and the Composite Temperature decreases to below the current value
of the Thermal Management Temperature 1 field, then the controller should return to the active power state
that the controller was in prior to going to a lower power active power state or stop performing vendor
specific thermal management actions because of this feature, and the Composite Temperature.

The temperature at which the controller stops being in a lower power active power state or performing
vendor specific thermal management actions because of this feature is vendor specific (i.e., hysteresis is
vendor specific.)

Figure 264 shows examples of how the Composite Temperature may be effected by this feature.

NVM Express 1.3a

239

Figure 258: HCTM Example

TMT1

Vendor
Specific

TMT2

No Thermal Management

e.g., light throttle

e.g., heavy thottling

Lines represent the
Composite Temperature

Note: Since the host controlled thermal management (HCTM) feature uses the Composite
Temperature, the actual interactions between a platform (e.g., tablet, or laptop) and two different device
implementations may vary even with the same Thermal Management Temperature 1 and Thermal
Management Temperature 2 temperature settings. The use of this feature requires validation between
those devices implementations and the platform in order to be used effectively.

8.5 Virtualization Enhancements (Optional)
Virtualized environments may use an NVM subsystem with multiple controllers to provide virtual or physical
hosts direct I/O access. The NVM subsystem is composed of primary controller(s) and secondary
controller(s), where the secondary controller(s) depend on primary controller(s) for dynamically assigned
resources. A host may issue the Identify command to a primary controller specifying the Secondary
Controller List to discover the secondary controllers associated with that primary controller.

Controller resources may be assigned or removed from a controller using the Virtualization Management
command issued to a primary controller. The following types of controller resources are defined:

• Virtual Queue Resource (VQ Resource): a type of controller resource that manages one
Submission Queue (SQ) and one Completion Queue (CQ) (refer to section 8.5.1).

• Virtual Interrupt Resource (VI Resource): a type of controller resource that manages one interrupt
vector (refer to section 8.5.2).

Flexible Resources are controller resources that may be assigned to the primary controller or one of its
secondary controllers. The Virtualization Management command is used to provision the Flexible
Resources between a primary controller and one of its secondary controller(s). A primary controller’s

NVM Express 1.3a

240

allocation of Flexible Resources may be modified using the Virtualization Management command and the
change takes effect after any Controller Level Reset other than a Controller Reset (i.e., CC.EN transitions
from ‘1’ to ‘0’). A secondary controller only supports having Flexible Resources assigned or removed when
it is in the Offline state.

Private Resources are controller resources that are permanently assigned to a primary or secondary
controller. These resources are not supported by the Virtualization Management command.

The primary controller is allowed to have a mix of Private and Flexible Resources for a particular controller
resource type. If there is a mix, then the Private Resources occupy the lower contiguous range of resource
identifiers starting with 0. Secondary controllers shall have all Private or all Flexible Resources for a
particular resource type. Controller resources assigned to a secondary controller always occupy a
contiguous range of identifiers with no gaps, starting with 0. If a particular controller resource type is
supported as indicated in the Controller Resource Types field of the Primary Controller Capabilities
Structure, then all secondary controllers shall have that controller resource type assigned as a Flexible
Resource. Figure 265 shows the controller resource allocation model for a controller resource type that is
assignable as a Flexible Resource.

Figure 259: Controller Resource Allocation

For each controller resource type supported, the Primary Controller Capabilities Structure (refer to Figure
110) defines:

• The total number of Flexible Resources;
• The total number of Private Resources for the primary controller;
• The maximum number of Flexible Resources that may be assigned to a secondary controller using

the Virtualization Management command; and

NVM Express 1.3a

241

• The assignment of resources to the primary controller.

Primary and secondary controllers may implement all features of this specification, except in the case of
where commands are clearly marked as primary controller only. It is recommended that only primary
controllers support privileged actions so that untrusted hosts using secondary controllers do not impact the
entire NVM subsystem state.

The Secondary Controller List structure returned by the Identify command is used to determine the topology
of secondary controllers and the resources assigned. The secondary controller shall be in the Offline state
to configure resources. The Virtualization Management command is used to transition the secondary
controller between the Online state and the Offline state. Refer to section 8.5.3 for details on the Online
and Offline states.

To support the Virtualization Enhancements capability, the NVM subsystem shall support the following:

• One or more primary controllers, each of which supports:
o One or more secondary controllers;
o A pool of unassigned Flexible Resources that supports allocation to a primary controller

and dynamic assignment to its associated secondary controllers;
o Indicate support for the Virtualization Management command in the Optional Admin

Command Support (OACS) field in the Identify Controller data structure;
o The Virtualization Management command;
o The Primary Controller Capabilities Structure defined in Figure 110 (Identify command with

CNS value of 14h);
o The Secondary Controller List defined in Figure 111 (Identify command with CNS value of

15h);
o The Namespace Management and Namespace Attachment commands;

• One or more secondary controllers;
• Flexible Resources, each of which supports all of the following:

o Assignment and removal by exactly one primary controller; and
o Assignment to no more than one controller at a time.

Within an NVM subsystem that supports both the Virtualization Enhancements capability and SR-IOV (refer
to section 8.5.4), all controllers that are SR-IOV PFs shall be primary controllers, and all controllers that are
SR-IOV VFs shall be secondary controllers of their associated PFs.

8.5.1 VQ Resource Definition
A Virtual Queue Resource (VQ Resource) is a type of controller resource that manages one CQ and one
SQ. For a VQ Resource that is assigned to a controller, its resource identifier is equivalent to its Queue
Identifier.

The Controller Resource Types field of the Primary Controller Capabilities Structure indicates whether VQ
Resources are supported. If VQ Resources are unsupported, a primary controller and its associated
secondary controllers have all queues as Private Resources. The rest of this section assumes that VQ
Resources are supported.

The secondary controller is assigned VQ Resources using the Virtualization Management command. The
number of VQ Resources assigned is discoverable in the Secondary Controller List entry for the associated
secondary controller. The number of VQ Resources assigned may also be discovered using the Get
Features command with the Number of Queues Feature identifier (refer to section 5.21.1.7).

If a secondary controller has no VQ Resources assigned to it, then it remains in the Offline state. A
secondary controller cannot transition to the Online state until it has VQ Resources for an Admin Queue
and one or more I/O Queues assigned to it (i.e., the minimum number of VQ Resources that may be
assigned is two).

A primary controller that supports VQ Resources shall have at least two queues that are Private Resources
to ensure there is a minimum of an Admin Queue and one I/O Queue for the primary controller at all times.

NVM Express 1.3a

242

A primary controller may be allocated VQ Resources using the Primary Controller Flexible Allocation action
of the Virtualization Management command. The VQ resources allocated take effect after a Controller Level
Reset and are persistent across power cycles and resets. The number of VQ Resources currently allocated
is discoverable in the Primary Controller Capabilities Structure. The number of VQ Resources currently
allocated may also be discovered using the Get Features command with the Number of Queues Feature
identifier (refer to section 5.21.1.7).

8.5.2 VI Resource Definition
A Virtual Interrupt Resource (VI Resource) is a type of controller resource that manages one interrupt
vector, such as an MSI-X vector. For a VI Resource that is assigned to a controller, its resource identifier
is equivalent to its interrupt vector number.

The Controller Resource Types field of the Primary Controller Capabilities Structure indicates whether VI
Resources are supported. If VI Resources are unsupported, a primary controller and its associated
secondary controllers have all interrupts as Private Resources. The rest of this section assumes that VI
Resources are supported.

The secondary controller is assigned VI Resources using the Virtualization Management command. The
number of VI Resources assigned is discoverable in the Secondary Controller List entry for the associated
secondary controller.

While a primary controller and/or its associated secondary controllers may concurrently support multiple
types of interrupt vectors (e.g. MSI and MSI-X), all the controllers’ VI Resources shall contain interrupt
resources for interrupt vectors of the same type. In this revision, MSI-X is the only supported type of VI
Resource.

For a secondary controller that supports VI Resources with MSI-X vectors, if at least one VI Resource is
assigned to it, MSIXCAP.MXC.TS (refer to section 2.4.2) indicates the number of VI Resources assigned
to the controller. Since MSIXCAP.MXC.TS is read-only, the value shall only be updated when the secondary
controller is in the Offline state. MSI-X Table Entries on the secondary controller for newly assigned VI
Resources shall be reset to default values.

If a secondary controller that supports VI Resources has no VI Resources assigned to it, then it remains in
the Offline state. A secondary controller cannot transition to the Online state until it has a VI Resource for
interrupt vector 0 assigned to it. For a secondary controller that supports VI Resources with MSI-X vectors,
if no VI Resources are assigned to it, then MSIXCAP.MXC.TS is reserved.

A primary controller that supports VI Resources shall have at least one interrupt that is a Private Resource.
As such, the primary controller always has interrupt vector 0 assigned to it. A primary controller may be
allocated VI Resources using the Primary Controller Flexible Allocation action of the Virtualization
Management command. The VI resources allocated take effect after a Controller Level Reset and are
persistent across power cycles and resets. The number of VI Resources currently allocated is discoverable
in the Primary Controller Capabilities Structure. For a primary controller that supports VI Resources with
MSI-X vectors, MSIXCAP.MXC.TS indicates an MSI-X Table size equal to the total number of Private
Resources and the Flexible Resources currently allocated following a Controller Level Reset.

When an I/O CQ is created, the controller supports mapping it to any valid interrupt vector, regardless of
whether they have the same resource identifier, as long as the CQ and the interrupt vector are attached to
the same controller.

8.5.3 Secondary Controller States and Resource Configuration
A secondary controller shall be in one of the following states:

• Online: The secondary controller may be in use by a host. Required resources have been
assigned. The secondary controller may be enabled in this state (CC.EN may be set to ‘1’ and
CSTS.RDY may then transition to ‘1’).

NVM Express 1.3a

243

• Offline: The secondary controller may not be used by a host. CSTS.CFS shall be set to ‘1’.
Controller registers other than CSTS are undefined in this state.

The host may request a transition to the Online or Offline state using the Virtualization Management
command. When a secondary controller transitions from the Online state to the Offline state all Flexible
Resources are removed from the secondary controller.

To ensure that the host accurately detects capabilities of the secondary controller, the host should complete
the following procedure to bring a secondary controller Online:

1. Use the Virtualization Management command to set the secondary controller to the Offline state.
2. Use the Virtualization Management command to assign VQ resources and VI resources.
3. Perform a Controller Level Reset. If the secondary controller is a VF, then this should be a VF

Function Level Reset.
4. Use the Virtualization Management command to set the secondary controller to the Online state.

If VI Resources are supported, then following this process ensures the MSI-X Table size indicated by
MSIXCAP.MXC.TS is updated to reflect the appropriate number of VI Resources before the transition to
the Online state.

A primary controller or secondary controller is enabled when CC.EN and CSTS.RDY are both set to ‘1’ for
that controller. A secondary controller may only be enabled when it is in the Online state. If the primary
controller associated with a secondary controller is disabled or undergoes a Controller Level Reset, then
the secondary controller shall transition to the Offline state implicitly.

Resources shall only be assigned to a secondary controller when it is in the Offline state. If the minimum
number of resources are not assigned to a secondary controller, then a request to transition to the Online
state shall fail for that secondary controller. For implementations that support SR-IOV, if VF Enable is
cleared to 0h or NumVFs specifies a value that does not enable the associated secondary controller then
the secondary controller shall transition to the Offline state implicitly.

8.5.4 Single Root I/O Virtualization and Sharing (SR-IOV)
The PCI-SIG Single Root I/O Virtualization and Sharing Specification (SR-IOV) defines extensions to PCI
Express that allow multiple System Images (SIs), such as virtual machines running on a hypervisor, to
share PCI hardware resources. The primary benefit of SR-IOV is that it eliminates the hypervisor from
participating in I/O operations which may be a significant factor limiting storage performance in some
virtualized environments and allows direct SI access to PCI hardware resources.

A Physical Function (PF) is a PCI Express Function that supports the SR-IOV Capability, which in turn
allows it to support one or more dependent Virtual Functions (VFs). These PFs and VFs may support NVM
Express controllers that share an underlying NVM subsystem with multi-path I/O and namespace sharing
capabilities (refer to section 1.4.1).

SR-IOV Virtual Functions (VFs) with an NVM Express Class Code (refer to section 2.1.5) shall implement
fully compliant NVM Express controllers. This ensures that the same host software developed for non-
virtualized environments is capable of running unmodified within an SI.

For hosts where SR-IOV is unsupported or not needed, a controller that is a PF shall support operation as
a stand-alone controller.

For a controller that is a PF, the requirements for SR-IOV Capability registers VF BAR0, VF BAR1, VF
BAR2, VF BAR4, and VF BAR5 are the same as the requirements for PCI registers BAR0, BAR1, BAR4,
and BAR5, respectively, as specified in sections 2.1.10, 2.1.11, 2.1.14, and 2.1.15. For a controller that is
a PF, SR-IOV Capability register VF BAR2 shall not support Index/Data Pair (refer to section 2.1.12).

To accommodate SR-IOV address range isolation requirements, VF BAR2 and VF BAR3 may support a
64-bit prefetchable memory register space which shall only be used for MSI-X Tables and MSI-X PBAs of
VFs. MSI-X Table BIR = ‘2’ (refer to section 2.4.3) and MSI-X PBA BIR = ‘2’ (refer to section 2.4.4) are valid
for controllers that are VFs.

NVM Express 1.3a

244

While the controller registers of a controller that is a VF are accessible only if SR-IOV Control.VF MSE is
set to ‘1’, clearing VF MSE from ‘1’ to ‘0’ does not cause a reset of that controller. In this case, controller
registers are hidden, but their values are not reset.

8.6 Doorbell Stride for Software Emulation
The doorbell stride, specified in CAP.DSTRD, may be used to separate doorbells by a number of bytes in
memory space. The doorbell stride is a number of bytes equal to (2 ^ (2 + CAP.DSTRD)). This is useful
in software emulation of an NVM Express controller. In this case, a software thread is monitoring doorbell
notifications. The software thread may be made more efficient by monitoring one doorbell per discrete
cacheline or utilize the monitor/mwait CPU instructions. For hardware implementations of NVM Express,
the expected doorbell stride value is 0h.

8.7 Standard Vendor Specific Command Format
Controllers may support the standard Vendor Specific command format defined in Figure 12. Host storage
drivers may use the Number of Dwords fields to ensure that the application is not corrupting physical
memory (e.g. overflowing a data buffer). The controller indicates support of this format in the Identify
Controller data structure in Figure 109; refer to Admin Vendor Specific Command Configuration and NVM
Vendor Specific Command Configuration.

8.8 Reservations (Optional)
NVM Express reservations provide capabilities that may be utilized by two or more hosts to coordinate
access to a shared namespace. The protocol and manner in which these capabilities are used is outside
the scope of this specification. Incorrect application of these capabilities may corrupt data and/or otherwise
impair system operation.

A reservation on a namespace restricts hosts access to that namespace. If a host submits a command to
a namespace in the presence of a reservation and lacks sufficient rights, then the command is aborted by
the controller with a status of Reservation Conflict. Capabilities are provided that allow recovery from a
reservation on a namespace held by a failing or uncooperative host.

NVM Express 1.3a

245

Figure 260: Example Multi-Host System

Namespace

NSID 1

NVM Express
Controller 1

Host ID = A

NSID 1

NVM Express
Controller 2

Host ID = A

NSID 1

NVM Express
Controller 3

Host ID = B

NSID 1

Host
A

Host
B

Host
C

NVM Subsystem

NVM Express
Controller 4

Host ID = C

A reservation requires an association between a host and a namespace. As shown in Figure 266, each
controller in a multi-path I/O and namespace sharing environment is associated with exactly one host. While
it is possible to construct systems where two or more hosts share a single controller, such usage is outside
the scope of this specification.

A host may be associated with multiple controllers. In Figure 266 host A is associated with two controllers
while hosts B and C are each associated with a single controller. A host registers a Host Identifier (Host
Identifier) with each controller with which it is associated using a Set Features command prior to performing
any operations associated with reservations. The Host Identifier allows the NVM subsystem to identify
controllers associated with the same host and preserve reservation properties across these controllers (i.e.,
a host issued command has the same reservation rights no matter which controller associated with the host
processes the command).

Support for reservations by a namespace or controller is optional. A namespace indicates support for
reservations by reporting a non-zero value in the Reservation Capabilities (RESCAP) field in the Identify
Namespace data structure. A controller indicates support for reservations through the Optional NVM
Command Support (ONCS) field in the Identify Controller data structure. If a host submits a command
associated with reservations (i.e., Reservation Report, Reservation Register, Reservation Acquire, and
Reservation Release) to a controller or a namespace that do not both support reservations, then the
command is aborted by the controller with status Invalid Command Opcode.

Controllers that make up an NVM subsystem shall all have the same support for reservations. Although
strongly encouraged, namespaces that make up an NVM subsystem are not all required to have the same
support for reservations. For example, some namespaces within a single controller may support
reservations while others do not, or the supported reservation types may differ among namespaces. If a
controller supports reservations, then the controller shall:

• Indicate support for reservations by returning a '1' in bit 5 of the Optional NVM Command Support
(ONCS) field in the Identify Controller data structure;

• Support the Reservation Report command, Reservation Register command, Reservation Acquire
command, and Reservation Release command;

• Support the Reservation Notification log page;
• Support the Reservation Log Page Available asynchronous events;
• Support the Reservation Notification Mask Feature;
• Support the Host Identifier Feature; and

NVM Express 1.3a

246

• Support the Reservation Persistence Feature;

If a namespace supports reservations, then the namespace shall:

• Report a non-zero value in the Reservation Capabilities (RESCAP) field in the Identify Namespace
data structure.

• Support Persist Through Power Loss (PTPL) state; and
• Support sufficient resources to allow a host to successfully register a reservation key on every

controller in the NVM subsystem with access to the shared namespace (i.e., a Reservation Register
command shall never fail due to lack of resources).

NOTE: The behavior of Ignore Existing Key has been changed to improve compatibility with SCSI based
implementations. Conformance to the modified behavior is indicated in the Reservation Capabilities field of
Identify Namespace. For the previous definition of Ignore Existing Key behavior, refer to revision 1.2.1.

8.8.1 Reservation Notifications
There are three types of reservation notifications: registration preempted, reservation released, and
reservation preempted. Conditions that cause a reservation notification to occur are described in the
following sections. A Reservation Notification log page is created whenever an unmasked reservation
notification occurs on a namespace associated with the controller (refer to section 5.14.1.9.1). Reservation
notifications may be masked from generating a reservation log page on a per reservation notification type
and per namespace ID basis through the Reservation Notification Mask feature (refer to section 5.21.1.20).
A host may use the Asynchronous Event Request command to be notified of the presence of one or more
available Reservation Notification log pages (refer to section 5.2).

8.8.2 Registering
Prior to establishing a reservation on a namespace, a host shall become a registrant of that namespace by
registering a reservation key. This reservation key may be used as a means of identifying the registrant
(host), authenticating the registrant, and preempting a failed or uncooperative registrant. The value of the
reservation key used by a host and the method used to select its value is outside the scope of this
specification.

Registering a reservation key with a namespace creates an association between a host and a namespace.
A host that is a registrant of a namespace may use any controller with which it is associated (i.e., that has
the same Host Identifier, refer to section 5.21.1.19) to access that namespace as a registrant. Thus, a host
need only register on a single controller in order to become a registrant of the namespace on all controllers
in the NVM subsystem that have access to the namespace and are associated with the host.

A host registers a reservation key by executing a Reservation Register command on the namespace with
the Reservation Register Action (RREGA) field set to 000b (i.e., Register Reservation Key) and supplying
a reservation key in the New Reservation Key (NRKEY) field.

A host that is a registrant of a namespace may register the same reservation key value multiple times with
the namespace on the same or different controllers. It is an error for a host that is already a registrant of a
namespace to register with the same namespace using a different registration key value (i.e., the command
is aborted with status Reservation Conflict). There are no restrictions on the reservation key value used by
hosts with different Host Identifiers. For example, multiple hosts may all register with the same reservation
key value.

A host that is a registrant of a namespace may replace its existing reservation key by executing a
Reservation Register command on the namespace with the RREGA field set to 010b (i.e., Replace
Reservation Key), supplying the current reservation key in the Current Reservation Key (CRKEY) field, and
the new reservation key in the NRKEY field. If the contents of the CRKEY field do not match the key
currently associated with the host, then the command is aborted with a status of Reservation Conflict. A
host may replace its reservation key without regard to its registration status or current reservation key value

NVM Express 1.3a

247

by setting the Ignore Existing Key (IEKEY) bit to '1' in the Reservation Register command. Replacing a
reservation key has no effect on any reservation that may be held on the namespace.

8.8.3 Reservation Types
NVM Express supports six types of reservations:

• Write Exclusive,
• Exclusive Access,
• Write Exclusive - Registrants Only,
• Exclusive Access - Registrants Only,
• Write Exclusive - All Registrants, and
• Exclusive Access - All Registrants.

Figure 261: Command Behavior in the Presence of a Reservation

Reservation Type

Reservation
Holder Registrant Non-

Registrant

Reservation Holder Definition Read Write Read Write Read Write

Write Exclusive Y Y Y N Y N One Reservation Holder

Exclusive Access Y Y N N N N One Reservation Holder

Write Exclusive -
Registrants Only Y Y Y Y Y N One Reservation Holder

Exclusive Access -
Registrants Only Y Y Y Y N N One Reservation Holder

Write Exclusive - All
Registrants Y Y Y Y Y N All Registrants are Reservation

Holders

Exclusive Access - All
Registrants Y Y Y Y N N All Registrants are Reservation

Holders

The differences between these reservation types are: the type of access that is excluded (i.e., writes or all
accesses), whether registrants have the same access rights as the reservation holder, and whether
registrants are also considered to be reservation holders. These differences are summarized in Figure 267
and the specific behavior for each NVM Express command is shown in Figure 268.

Reservations and registrations persist across all Controller Level Resets and all NVM Subsystem Resets
except reset due to power loss. A reservation may be optionally configured to be retained across a reset
due to power loss using the Persist Through Power Loss State (PTPLS). A Persist Through Power Loss
State (PTPLS) is associated with each namespace that supports reservations and may be modified as a
side effect of a Reservation Register command or a Set Features command.

NVM Express 1.3a

248

Figure 262: Command Behavior in the Presence of a Reservation

NVMe Command

Write
Exclusive

Reservation

Exclusive
Access

Reservation

Write Exclusive
Registrants Only

or
Write Exclusive
All Registrants

Reservation

Exclusive Access
Registrants Only

or
Exclusive Access

All Registrants
Reservation

N
on-

R
egistrant

R
egistrant

N
on-

R
egistrant

R
egistrant

N
on-

R
egistrant

R
egistrant

N
on-

R
egistrant

R
egistrant

NVM Read Command Group:
Read
Compare
Security Receive (Admin)

A A C C A A C A

NVM Write Command Group:
Write
Write Uncorrectable
Write Zeroes
Dataset Management
Flush
Format NVM (Admin)
Namespace Attachment (Admin)
Namespace Management (Admin)
Sanitize (Admin)
Security Send (Admin)

C C C C C A C A

Reservation Acquire - Acquire C C C C C C C C
Reservation Release
Reservation Acquire - Preempt
Reservation Acquire - Preempt and Abort

C A C A C A C A

All other commands1 A A A A A A A A

Key:
A definition: A=Allowed, command processed normally by the controller
C definition: C=Conflict, command aborted by the controller with status Reservation Conflict

Notes:
1. The behavior of a vendor specific command is vendor specific.

8.8.4 Unregistering
A host that is a registrant of a namespace may unregister with the namespace by executing a Reservation
Register command on the namespace with the RREGA field set to 001b (i.e., Unregister Reservation Key)
and supplying its current reservation key in the CRKEY field. If the contents of the CRKEY field do not
match the key currently associated with the host, then the command is aborted with a status of Reservation
Conflict. If the host is not a registrant, then the command is aborted with a status of Reservation Conflict.

Successful completion of an unregister operation causes the host to no longer be a registrant of that
namespace. A host may unregister without regard to its current reservation key value by setting the IEKEY
bit to '1' in the Reservation Register command.

Unregistering by a host may cause a reservation held by the host to be released. If a host is the last
remaining reservation holder (i.e., the reservation type is Write Exclusive - All Registrants or Exclusive
Access - All Registrants) or is the only reservation holder, then the reservation is released when the host
unregisters.

NVM Express 1.3a

249

If a reservation is released and the type of the released reservation was Write Exclusive - Registrants Only
or Exclusive Access - Registrants Only, then a reservation released notification occurs on all controllers
associated with a registered host other than the host that issued the Reservation Register command.

8.8.5 Acquiring a Reservation
In order for a host to obtain a reservation on a namespace, it shall be a registrant of that namespace. A
registrant obtains a reservation by executing a Reservation Acquire command, setting the Reservation
Acquire Action (RACQA) field to 000b (Acquire), and supplying the current reservation key associated with
the host in the Current Reservation Key (CRKEY) field. The CRKEY value shall match that used by the
registrant to register with the namespace. If the key value does not match, then the command is aborted
with status Reservation Conflict. If the host is not a registrant, then the command is aborted with a status
of Reservation Conflict.

Only one reservation is allowed at a time on a namespace. If a registrant attempts to obtain a reservation
on a namespace that already has a reservation holder, then the command is aborted with status
Reservation Conflict. If a reservation holder attempts to obtain a reservation of a different type on a
namespace for which it already is the reservation holder, then the command is aborted with status
Reservation Conflict. It is not an error if a reservation holder attempts to obtain a reservation of the same
type on a namespace for which it already is the reservation holder. A reservation holder may preempt a
reservation to change the reservation type.

8.8.6 Releasing a Reservation
Only a reservation holder may release in an orderly manner a reservation held on a namespace. A host
releases a reservation by executing a Reservation Release command, setting the Reservation Release
Action (RRELA) field to 000b (i.e., Release), setting the Reservation Type (RTYPE) field to the type of
reservation being released, and supplying the current reservation key associated with the host in the
Current Reservation Key (CRKEY) field. The CRKEY value shall match that used by the host to register
with the namespace. If the key value doesn’t match, then the command is aborted with status Reservation
Conflict. If the RTYPE field does not match the type of the current reservation, then the command completes
with status Invalid Field in Command.

An attempt by a registrant to release a reservation using the Reservation Release command in the absence
of a reservation held on the namespace or when the host is not the reservation holder shall cause the
command to complete successfully, but shall have no effect on the controller or namespace.

When a reservation is released as a result of actions described in this section and the reservation type is
not Write Exclusive or Exclusive Access, a reservation released notification occurs on all controllers in the
NVM subsystem that are associated with hosts that are registrants except for controllers that are associated
with the host that issued the Reservation Release command.

8.8.7 Preempting a Reservation or Registration
A host that is a registrant may preempt a reservation and/or registration by executing a Reservation Acquire
command, setting the Reservation Acquire Action (RACQA) field to 001b (Preempt), and supplying the
current reservation key associated with the host in the Current Reservation Key (CRKEY) field. The preempt
actions that occur are dependent on the type of reservation held on the namespace, if any, and the value
of the Preempt Reservation Key (PRKEY) field in the command. If the host is not a registrant, then the
command is aborted with a status of Reservation Conflict. The remainder of this section assumes that the
host is a registrant.

If the existing reservation type is not Write Exclusive - All Registrants and not Exclusive Access - All
Registrants, then the actions performed by the command depend on the value of the PRKEY field as
follows. If the PRKEY field value matches the reservation key of the current reservation holder, then the
following occur as an atomic operation: the reservation holder is unregistered, the reservation is released,

NVM Express 1.3a

250

and a new reservation is created of the type specified by the Reservation Type (RTYPE) field in the
command for the host as the reservation key holder. If the PRKEY field value does not match that of the
current reservation holder and is not equal to zero, then registrants whose reservation key matches the
value of the PRKEY field are unregistered. If the PRKEY field value does not match that of the current
reservation holder and is equal to zero, then the command is aborted with status Invalid Field in Command.

If the existing reservation type is Write Exclusive - All Registrants or Exclusive Access - All Registrants,
then the actions performed by the command depend on the value of the PRKEY field as follows. If the
PRKEY field value is zero, then the following occurs as an atomic operation: all registrants other than the
host that issued the command are unregistered, the reservation is released, and a new reservation is
created for the host of the type specified by the Reservation Type (RTYPE) field in the command. If the
PRKEY value is non-zero, then registrants whose reservation key matches the value of the PRKEY field
are unregistered. If the PRKEY value is non-zero and there are no registrants whose reservation key
matches the value of the PRKEY field, the controller should return an error of Reservation Conflict.

If there is no reservation held on the namespace, then execution of the command causes registrants whose
reservation key match the value of the PRKEY field to be unregistered.

A reservation holder may preempt itself using the above mechanism. When a host preempts itself the
following occurs as an atomic operation: registration of the host is maintained, the reservation is released,
and a new reservation is created for the host of the type specified by the RTYPE field.

A host may abort commands as a side effect of preempting a reservation by executing a Reservation
Acquire command and setting the RACQA field to 010b (Preempt and Abort). The behavior of such a
command is exactly the same as that described above with the RACQA field set to 001b (Preempt), with
two exceptions:

• After the atomic operation changes namespace reservation and registration state, all controllers
associated with any host whose reservation or registration is preempted by that atomic operation
are requested to abort all commands being processed that target the namespace specified in the
Namespace Identifier field (CDW1.NSID of the Reservation Acquire command) (refer to section
4.11 for the definition of “being processed”); and

• Completion of the Reservation Acquire command shall not occur until all commands that are
requested to be aborted are completed, regardless of whether or not each command is actually
aborted.

As with the Abort Admin command, abort as a side effect of preempting a reservation is best effort; as a
command that is requested to be aborted may currently be at a point in execution where it can no longer
be aborted or may have already completed, when a Reservation Acquire or Abort Admin command is
submitted. Although prompt execution of abort requests reduces delay in completing the Reservation
Acquire command, a command which is requested to be aborted shall either be aborted or otherwise
completed before the completion of the Reservation Acquire command.

When a registrant is unregistered as a result of actions described in this section, then a registration
preempted notification occurs on all controllers associated with a host that was unregistered other than the
host that issued the Reservation Acquire command.

When the type of reservation held on a namespace changes as a result of actions described in this section,
then a reservation released notification occurs on all controllers associated with hosts that remain
registrants of the namespace except the host that issued the Reservation Acquire command.

8.8.8 Clearing a Reservation
A host that is a registrant may clear a reservation (i.e., force the release of a reservation held on the
namespace and unregister all registrants) by executing a Reservation Release command, setting the
Reservation Release Action (RRELA) field to 001b (i.e., Clear), and supplying the current reservation key
associated with the host in the Current Reservation Key (CRKEY) field. If the value in the CRKEY field does
not match the value used by the host to register with the namespace, then the command shall be aborted
with status Reservation Conflict. If the host is not a registrant, then the command is aborted with a status
of Reservation Conflict. When a command to clear a reservation is executed the following occur as an

NVM Express 1.3a

251

atomic operation: the reservation held on the namespace, if any, is released, and all registrants are
unregistered from the namespace.

A reservation preempted notification occurs on all controllers in the NVM subsystem that are associated
with hosts that have their registrations removed as a result of actions taken in this section except those
associated with the host that issued the Reservation Release command.

8.8.9 Reporting Reservation Status
A host may determine the current reservation status associated with a namespace by executing a
Reservation Report command.

8.9 Host Memory Buffer (Optional)
The Host Memory Buffer feature allows the controller to utilize an assigned portion of host memory
exclusively. The use of the host memory resources is vendor specific. Host software may not be able to
provide any or a limited amount of the host memory resources requested by the controller. The controller
shall function properly without host memory resources. Refer to section 5.21.1.13.

During initialization, host software may provide a descriptor list that describes a set of host memory address
ranges for exclusive use by the controller. The host memory resources assigned are for the exclusive use
of the controller (host software should not modify the ranges) until host software requests that the controller
release the ranges and the controller completes the Set Features command. The controller is responsible
for initializing the host memory resources. Host software should request that the controller release the
assigned ranges prior to a shutdown event, a Runtime D3 event, or any other event that requires host
software to reclaim the assigned ranges. After the controller acknowledges that it is no longer using the
ranges, host software may reclaim the host memory resources. In the case of Runtime D3, host software
should provide the host memory resources to the controller again and inform the controller that the ranges
were in use prior to the RTD3 event and have not been modified.

The host memory resources are not persistent in the controller across a reset event. Host software should
provide the previously allocated host memory resources to the controller after the reset completes. If host
software is providing previously allocated host memory resources (with the same contents) to the controller,
the Memory Return bit is set to ‘1’ in the Set Features command.

The controller shall ensure that there is no data loss or data corruption in the event of a surprise removal
while the Host Memory Buffer feature is being utilized.

8.10 Replay Protected Memory Block (Optional)
The Replay Protected Memory Block (RPMB) provides a means for the system to store data to a specific
memory area in an authenticated and replay protected manner. This is provided by first programming
authentication key information to the controller that is used as a shared secret. The system is not
authenticated in this phase, therefore the authentication key programming should be done in a secure
environment (e.g., as part of the manufacturing process). The authentication key is utilized to sign the read
and write accesses made to the replay protected memory area with a Message Authentication Code (MAC).
Use of random number (nonce) generation and a write count register provide additional protection against
replay of messages where messages could be recorded and played back later by an attacker.

The controller may support multiple RPMB targets. RPMB targets are not contained within a namespace.
Security Send and Security Receive commands for RPMB do not use the namespace ID field; NSID shall
be cleared to 0h. Each RPMB target operates independently – there may be requests outstanding to
multiple RPMB targets at once (where the requests may be interleaved between RPMB targets). In order
to guarantee ordering the host should issue and wait for completion for one Security Send or Security
Receive command at a time. Each RPMB target requires individual authentication and key programming.
Each RPMB target may have its own unique Authentication Key.

NVM Express 1.3a

252

The message types defined in Figure 270 are used by the host to communicate with an RPMB target.
Request Message Types are sent from the host to the controller. Response Message Types are sent to the
host from the controller.

Figure 269 defines the RPMB Device Configuration Block data structure – the non-volatile contents stored
within the controller for RPMB target 0.

Figure 263: RPMB Device Configuration Block Data Structure

Bytes Component Name Description

00 Boot Partition Protection
Enable

This field indicates if Boot Partition Protection is enabled.

Bits 7 to 1 are reserved.

Bit 0: A value of ‘1’ indicates Boot Partition Protection is enabled. A
value of ‘0’ indicates Boot Partition Protection is disabled or not
supported. Once enabled, the controller shall prevent disabling Boot
Partition Protection

01 Boot Partition Lock

This field indicates the current status of the Boot Partition Lock. This
field shall be cleared to 0h unless Boot Partition Protection is enabled.
Refer to section 8.13.3.

Bits 7 to 2 are reserved.

Bit 1: A value of ‘1’ indicates Boot Partition 1 (BPID = 1) is locked. A
value of ‘0’ indicates Boot Partition 1 (BPID = 1) is unlocked.

Bit 0: A value of ‘1’ indicates Boot Partition 0 (BPID = 0) is locked. A
value of ‘0’ indicates Boot Partition 0 (BPID = 0) is unlocked.

511:02 Reserved

Each RPMB Data Frame is 256 bytes in size plus the size of the Data field, and is organized as shown in
Figure 273. RPMB uses a sector size of 512 bytes. The RPMB sector size is independent and not related
to the logical block size used for the namespace(s).

Figure 264: RPMB Request and Response Message Types

Request Message Types Description Requires
Data

RPMB Frame
Length
(bytes)

0001h Authentication key
programming request

The host is attempting to program the Authentication
Key for the selected RPMB target to the controller No 256

0002h Reading of the Write
Counter value request

The host is requesting to read the current Write
Counter value from the selected RPMB target No 256

0003h Authenticated data write
request

The host is attempting to write data to the selected
RPMB target Yes M + 256

0004h Authenticated data read
request

The host is attempting to read data from the
selected RPMB target No 256

0005h Result read request The host is attempting to read the result code for
any of the other Message Types No 256

0006h
Authenticated Device
Configuration Block write
request

The host is attempting to write Device Configuration
Block (DCB) to the selected RPMB target. This
request message type is only valid for RPMB target
0.

Yes 512 + 256

0007h
Authenticated Device
Configuration Block read
request

The host is attempting to read Device Configuration
Block (DCB) from the selected RPMB target. This
request message type is only valid for RPMB target
0.

No 256

NVM Express 1.3a

253

Request Message Types Description Requires
Data

RPMB Frame
Length
(bytes)

0100h Authentication key
programming response

Returned as a result of the host requesting a Result
read request Message Type after programming the
Authentication Key

No 256

0200h Reading of the Write
Counter value response

Returned as a result of the host requesting a Result
read request Message Type after requesting the
Write Counter value

No 256

0300h Authenticated data write
response

Returned as a result of the host requesting a Result
read request Message Type after attempting to write
data to an RPMB target

No 256

0400h Authenticated data read
response

Returned as a result of the host requesting a Result
read request Message Type after attempting to read
data from an RPMB target

Yes M + 256

0600h
Authenticated Device
Configuration data write
response

Returned as a result of the host requesting a Result
read request Message Type after attempting to write
a Device Configuration Block to an RPMB target

No 256

0700h
Authenticated Device
Configuration data read
response

Returned as a result of the host requesting a Result
read request Message Type after attempting to read
DCB from an RPMB target

Yes 512 + 256

The operation result defined in Figure 271 indicates whether an RPMB request was successful or not.

Figure 265: RPMB Operation Result
Bit Description

15:08 Reserved

07
Write Counter Status: Indicates if the Write Counter has expired (i.e., reached its maximum
value). A value of one indicates that the Write Counter has expired. A value of zero indicates a
valid Write Counter.

06:00

Operation Status: Indicates the operation status. Valid operation status values are listed below.

Value Description
00h Operation successful
01h General failure
02h Authentication failure (MAC comparison not matching, MAC calculation

failure)
03h Counter failure (counters not matching in comparison, counter

incrementing failure)
04h Address failure (address out of range, wrong address alignment)
05h Write failure (data/counter/result write failure)
06h Read failure (data/counter/result read failure)
07h Authentication Key not yet programmed. This value is the only valid

Result value until the Authentication Key has been programmed. Once
the key is programmed, this Result value shall no longer be used.

08h Invalid RPMB Device Configuration Block – this may be used when the
target is not 0.

Figure 272 defines the non-volatile contents stored within the controller for each RPMB target.

NVM Express 1.3a

254

Figure 266: RPMB Contents

Content Type Size Description

Authentication
Key

Write once, not
erasable or
readable

Size is dependent on
authentication method
reported in Identify
Controller data
structure (e.g. SHA-
256 is 32 bytes)

Authentication key which is used to authenticate
accesses when MAC is calculated.

Write Counter Read only 4 bytes

Counter value for the total amount of successful
authenticated data write requests made by the
host. The initial value of this register after
manufacture is 00000000h. The value is
incremented by one automatically by the controller
with each successful programming access. The
value is not resettable. After the counter has
reached the maximum value of FFFFFFFFh, the
controller shall no longer increment to prevent
overflow.

RPMB Data
Area

Readable and
writable, not
erasable

Size is reported in
Identify Controller data
structure (128KB
minimum, 32MB
maximum)

Data which may only be read and written via
successfully authenticated read/write access.

Each RPMB Data Frame is 256 bytes in size plus the size of the Data field, and is organized as shown in
Figure 273. RPMB uses a sector size of 512 bytes. The RPMB sector size is independent and not related
to the logical block size used for the namespace(s).

NVM Express 1.3a

255

Figure 267: RPMB Data Frame

Bytes Component Name Description

222-N:00 Stuff Bytes
Padding for the frame. Values in this field are not part of the MAC
calculation. The size is 223 bytes minus the size of the Authentication
Key (N).

222:222-(N-1)
Authentication Key or

Message Authentication
Code (MAC)

Size is dependent on authentication method reported in the Identify
Controller data structure (e.g., SHA-256 key is 32 bytes).

223 RPMB Target

Indicates which RPMB this Request/Response is targeted for. Values
0-6 are supported. If the value in this field is not equal to the NVMe
Security Specific Field (NSSF) in the Security Send or Security
Receive command, then the controller shall return an error of Invalid
Field in Command for the Security Send or Security Receive
command.

239:224 Nonce Random number generated by the host for the requests and copied
to the response by the RPMB target.

243:240 Write Counter Total amount of successfully authenticated data write requests.

247:244 Address Starting address of data to be programmed to or read from the
RPMB.

251:248 Sector Count Number of sectors (512 bytes) requested to be read or written.

253:252 Result Defined in Figure 271. Note: The Result field is not needed for
Requests.

255:254 Request/Response
Message Defined in Figure 270.

(M-1)+256:256 Data (optional) Data to be written or read by signed access where M = 512 * Sector
Count.

Security Send and Security Receive commands are used to encapsulate and deliver data packets of any
security protocol between the host and controller without interpreting, dis-assembling or re-assembling the
data packets for delivery. Security Send and Security Receive commands used for RPMB access are
populated with the RPMB Data Frame(s) defined in Figure 273. The controller shall not return successful
completion of a Security Send or Security Receive command for RPMB access until the requested RPMB
Request/Response Message Type indicated is completed. The Security Protocol used for RPMB is defined
in section 5.25.3.

8.10.1 Authentication Method
A controller supports one Authentication Method as indicated in the Identify Controller data structure.

If the Authentication Method supported is HMAC SHA-256 then the message authentication code (MAC) is
calculated using HMAC SHA-256 as defined in [HMAC-SHA]. The key used to generate a MAC using
HMAC SHA-256 is the 256-bit Authentication Key stored in the controller for the selected RPMB target. The
HMAC SHA-256 calculation takes as input a key and a message. Input to the MAC calculation is the
concatenation of the fields in the RPMB Data Frame (request or response) excluding stuff bytes and the
MAC itself – i.e., bytes [223:255] and Data of the frame in that order.

8.10.2 RPMB Operations
The host sends a Request Message Type to the controller to request an operation by the controller or to
deliver data to be written into the RPMB memory block. To deliver a Request Message Type, the host uses
the Security Send command. If the data to be delivered to the controller is more than reported in Identify
Controller data structure, the host sends multiple Security Send commands to transfer the entire data.

NVM Express 1.3a

256

The host sends a Response Message Type to the controller to read the result of a previous operation
request, to read the Write Counter, or to read data from the RPMB memory block. To deliver a Response
Message Type, the host uses the Security Receive command. If the data to be read from the controller is
more than reported in Identify Controller data structure, the host sends multiple Security Receive
commands to transfer the entire data.

8.10.2.1 Authentication Key Programming
Authentication Key programming is initiated by a Security Send command to program the Authentication
Key to the specified RPMB target, followed by a subsequent Security Send command to request the result,
and lastly, the host issues a Security Receive command to retrieve the result.

Figure 268: RPMB – Authentication Key Data Flow
Command Bytes in Command Field Name Value Objective

Security
Send 1

Data populated by the host and sent to the controller

Send
Authentication
Key to be
Programmed to
the controller

222-N:00 Stuff Bytes 0…00h

222:222-(N-1) MAC/Key Key to be
programmed

223 RPMB Target RPMB target to
access

239:224 Nonce 0…00h
243:240 Write Counter 0000 0000h
247:244 Address 0000 0000h
251:248 Sector Count 0000 0000h
253:252 Result 0000h
255:254 Request/Response 0001h (Request)

Security
Send 2

Data populated by the host and sent to the controller

Request Result
of Key
Programming

222-N:00 Stuff Bytes 0…00h
222:222-(N-1) MAC/Key 0…00h

223 RPMB Target RPMB target to
access

239:224 Nonce 0…00h
243:240 Write Counter 0000 0000h
247:244 Address 0000 0000h
251:248 Sector Count 0000 0000h
253:252 Result 0000h
255:254 Request/Response 0005h (Request)

Security
Receive 1

Data populated by the controller and returned to the host

Retrieve the Key
Programming
Result

222-N:00 Stuff Bytes 0…00h
222:222-(N-1) MAC/Key 0…00h

223 RPMB Target RPMB target to
access

239:224 Nonce 0…00h
243:240 Write Counter 0000 0000h
247:244 Address 0000 0000h
251:248 Sector Count 0000 0000h
253:252 Result Result Code
255:254 Request/Response 0100h (Response)

8.10.2.2 Read Write Counter Value
The Read Write Counter Value sequence is initiated by a Security Send command to request the Write
Counter value, followed by a Security Receive command to retrieve the Write Counter result.

NVM Express 1.3a

257

Figure 269: RPMB – Read Write Counter Value Flow
Command Bytes in Command Field Name Value Objective

Security
Send 1

Data populated by the host and sent to the controller

Request Write
Counter Read

222-N:00 Stuff Bytes 0…00h
222:222-(N-1) MAC/Key 0…00h

223 RPMB Target RPMB target to
access

239:224 Nonce Nonce generated by
the host

243:240 Write Counter 0000 0000h
247:244 Address 0000 0000h
251:248 Sector Count 0000 0000h
253:252 Result 0000h
255:254 Request/Response 0002h (Request)

Security
Receive 1

Data populated by the controller and returned to the host

Retrieve Write
Counter Read
Result

222-N:00 Stuff Bytes 0…00h

222:222-(N-1) MAC/Key MAC generated by
the controller

223
RPMB Target RPMB target

response was sent
from

239:224
Nonce Copy of the Nonce

generated by the
host

243:240 Write Counter Current Write
Counter value

247:244 Address 0000 0000h
251:248 Sector Count 0000 0000h
253:252 Result Result Code
255:254 Request/Response 0200h (Response)

8.10.2.3 Authenticated Data Write
The Authenticated Data Write is initiated by a Security Send command. The RPMB Data Frame delivered
from the host to the controller includes the Request Message Type = 0003h, Block Count, Address, Write
Counter, Data and MAC.

When the controller receives this RPMB Data Frame, it first checks whether the Write Counter has expired.
If the Write Counter has expired then the controller sets the result to 0085h (write failure, write counter
expired) and no data is written to the RPMB data area.

After checking the Write Counter is not expired, the Address is checked. If there is an error in the Address
(e.g., out of range) then the result is set to 0004h (address failure) and no data is written to the RPMB data
area.

After checking the Address is valid, the controller calculates the MAC (refer to section 8.10.1) and compares
this with the MAC in the request. If the MAC in the request and the calculated MAC are different, then the
controller sets the result to 0002h (authentication failure) and no data is written to the RPMB data area.

If the MAC in the request and the calculated MAC are equal then the controller compares the Write Counter
in the request with the Write Counter stored in the controller. If the counters are different then the controller
sets the result to 03h (counter failure) and no data is written to the RPMB data area.

If the MAC and Write Counter comparisons are successful then the write request is authenticated. The Data
from the request is written to the Address indicated in the request and the Write Counter is incremented by
one.

NVM Express 1.3a

258

If the write fails then the returned result is 0005h (write failure). If another error occurs during the write
procedure then the returned result is 0001h (general failure).

The controller returns a successful completion for the Security Send command when the Authenticated
Data Write operation is completed regardless of whether the Authenticated Data Write was successful or
not.

The success of programming the data should be checked by the host by reading the result register of the
RPMB.

1) The host initiates the Authenticated Data Write verification process by issuing a Security Send
command with delivery of a RPMB data frame containing the Request Message Type = 0005h.

2) The controller returns a successful completion of the Security Send command when the
verification result is ready for retrieval.

3) The host should then retrieve the verification result by issuing a Security Receive command.
4) The controller returns a successful completion of the Security Receive command and returns the

RPMB data frame containing the Response Message Type = 0300h, the incremented counter
value, the data address, the MAC and result of the data programming operation.

NVM Express 1.3a

259

Figure 270: RPMB – Authenticated Data Write Flow
Command Bytes in Command Field Name Value Objective

Security
Send 1

 Data populated by the host and sent to the controller

Program data
request

222-N:00 Stuff Bytes 0…00h

222:222-(N-1) MAC/Key MAC generated by
the host

223 RPMB Target RPMB target to
access

239:224 Nonce 0…00h

243:240 Write Counter Current Write
Counter value

247:244 Address Address in the
RPMB

251:248 Sector Count Number of 512B
blocks

253:252 Result 0000h
255:254 Request/Response 0003h (Request)
(M-1)+256:256 Data Data to be written

Security
Send 2

Data populated by the host and sent to the controller

Request Result
of data
programming

222-N:00 Stuff Bytes 0…00h
222:222-(N-1) MAC/Key 0…00h

223 RPMB Target RPMB target to
access

239:224 Nonce 0…00h
243:240 Write Counter 0000 0000h
247:244 Address 0000 0000h
251:248 Sector Count 0000 0000h
253:252 Result 0000h
255:254 Request/Response 0005h (Request)

Security
Receive 1

Data populated by the controller and returned to the host

Retrieve Result
from data
programming

222-N:00 Stuff Bytes 0…00h

222:222-(N-1) MAC/Key MAC generated by
the controller

223
RPMB Target RPMB target

response was sent
from

239:224 Nonce 0…00h

243:240 Write Counter Incremented Write
Counter value

247:244 Address Address in RPMB
251:248 Sector Count 0000 0000h
253:252 Result Result Code
255:254 Request/Response 0300h (Response)

8.10.2.4 Authenticated Data Read
The Authenticated Data Read sequence is initiated by a Security Send command. The RPMB data frame
delivered from the host to the controller includes the Request Message Type = 0004h, Nonce, Address,
and the Sector Count.

When the controller receives this RPMB Data Frame, it first checks the Address. If there is an error in the
Address then the result is set to 0004h (address failure) and the data read is not valid.

When the host receives a successful completion of the Security Send command from the controller, it
should send a Security Receive command to the controller to retrieve the data. The controller returns an
RPMB Data Frame with Response Message Type (0400h), the Sector Count, a copy of the Nonce received

NVM Express 1.3a

260

in the request, the Address, the Data, the controller calculated MAC, and the Result. Note: It is the
responsibility of the host to verify the MAC returned on an Authenticated Data Read Request.

If the data transfer from the addressed location in the controller fails, the returned Result is 0006h (read
failure). If the Address provided in the Security Send command is not valid, then the returned Result is
0004h (address failure). If another error occurs during the read procedure then the returned Result is 0001h
(general failure).

Figure 271: RPMB – Authenticated Data Read Flow
Command Bytes in Command Field Name Value Objective

Security
Send 1

Data populated by the host and sent to the controller

Read Data
request

222-N:00 Stuff Bytes 0…00h
222:222-(N-1) MAC/Key 0..00h

223 RPMB Target RPMB target to
access

239:224 Nonce Nonce generated by
the host

243:240 Write Counter 0000 0000h
247:244 Address Address in RPMB

251:248 Sector Count Number of 512B
blocks

253:252 Result 0000h
255:254 Request/Response 0004h (Request)

Security
Receive 1

Data populated by the controller and returned to the host

Retrieve result
and data from
read request

222-N:00 Stuff Bytes 0…00h

222:222-(N-1) MAC/Key MAC generated by
the controller

223
RPMB Target RPMB target

response was sent
from

239:224
Nonce Copy of the Nonce

generated by the
host

243:240 Write Counter 0000h
247:244 Address Address in RPMB

251:248 Sector Count Number of 512B
blocks

253:252 Result Result Code
255:254 Request/Response 0400h (Response)

(M-1)+256:256 Data Data read from
RPMB target

8.10.3 Authenticated Device Configuration Block Write
The Authenticated Device Configuration Block Write is initiated by a Security Send command. The RPMB
Data Frame delivered from the host to the controller includes the Request Message Type = 0006h, Sector
Count = 01h, MAC, Write Counter set to the current Write Counter value, and the RPMB Device
Configuration Block data structure (refer to Figure 278). All other fields are cleared to 0h.

If the Write Counter has expired then the controller sets the result to 0085h (write failure, write counter
expired) and no data is written to the Device Configuration Block.

The controller calculates the MAC of Request Type, Block Count, Write Counter, Address and Data, and
compares this with the MAC in the request. If the MAC in the request and the calculated MAC are different,
then the controller sets the result to 0002h (authentication failure) and no data is written to the RPMB Device
Configuration Block.

NVM Express 1.3a

261

If the Data from the RPMB Device Configuration Block attempts to disable Boot Partition Protection, then
the controller sets the result to 08h (Invalid RPMB Device Configuration Block) and no data is written to the
RPMB Device Configuration Block.

If the MAC in the request and the calculated MAC are equal then the write request is authenticated. The
Data from the request is written to the RPMB Device Configuration Block.

If any other error occurs during the write procedure then the returned result is 0001h (general failure).

The controller returns a successful completion for the Security Send command when the Authenticated
Data Write operation is completed regardless of whether the Authenticated Device Configuration Block
Write was successful or not.

When the host receives a successful completion of the Security Send command from the controller, it
should send a Security Receive command to the controller to retrieve the data. The controller returns an
RPMB Data Frame with Response Message Type (0600h), the MAC, and the Result. All other fields are
cleared to 0h.

The Write Counter for the Device Configuration Block is independent of the Write Counter for RPMB target
0. Authenticated Device Configuration Block Writes do not affect the Write Counter for RPMB target 0 since
the data is not part of the RPMB data area. The current value of the Write Counter for the Device
Configuration Block may be read using an Authenticated Device Configuration Block Read (refer to section
8.10.4).

NVM Express 1.3a

262

Figure 272: RPMB – Authenticated Device Configuration Block Write Flow

Command Bytes in Command Field Name Value Objective

Security
Send 1

 Data populated by the host and sent to the controller

Request Device
Configuration
Block Write

222-N:00 Stuff Bytes 0…00h

222:222-(N-1) MAC/Key MAC generated by
the host

223 RPMB Target 00h
239:224 Nonce 0…00h

243:240 Write Counter Current Write
Counter value

247:244 Address 0000 0000h
251:248 Sector Count 0000 0001h
253:252 Result 0000h
255:254 Request/Response 0006h (Request)

767:256
Data RPMB Device

Configuration Block
data structure

Security
Receive 1

Data populated by the controller and returned to the host

Retrieve Device
Configuration
Block Write
Result

222-N:00 Stuff Bytes 0…00h

222:222-(N-1) MAC/Key MAC generated by
the controller

223 RPMB Target 00h
239:224 Nonce 0…00h

243:240 Write Counter Incremented Write
Counter value

247:244 Address 0000 0000h
251:248 Sector Count 0000 0000h
253:252 Result Result Code
255:254 Request/Response 0600h (Response)

8.10.4 Authenticated Device Configuration Block Read
The Authenticated Device Configuration Block Read sequence is initiated by a Security Send command.
The RPMB data frame delivered from the host to the controller includes the Nonce, Request Message Type
= 0007h and the Sector Count = 01h. All other fields are cleared to 0h.

When the host receives a successful completion of the Security Send command from the controller, it
should send a Security Receive command to the controller to retrieve the data. The controller returns an
RPMB Data Frame with Response Message Type (0700h), the Sector Count = 01h, a copy of the Nonce
received in the request, the RPMB Device Configuration Block Data Structure (refer to Figure 269), the
MAC, the Write Counter set to the current Write Counter value, and the Result. All other fields are cleared
to 0h.

The Write Counter for the Device Configuration Block is independent of the Write Counter for RPMB target
0. The controller returns the Device Configuration Block Write Counter as shown in Figure 279.

The MAC is calculated from Response Type, Nonce, Address, Data and Result fields. If the MAC calculation
fails then the returned result is 0002h (authentication failure). If another error occurs during the read
procedure then the returned Result is 0001h (general failure).

NVM Express 1.3a

263

Figure 273: RPMB – Authenticated Device Configuration Block Read Flow

Command Bytes in Command Field Name Value Objective

Security
Send 1

Data populated by the host and sent to the controller

Request Device
Configuration
Block Read

222-N:00 Stuff Bytes 0…00h
222:222-(N-1) MAC/Key 0..00h
223 RPMB Target 00h

239:224 Nonce Nonce generated by
the host

243:240 Write Counter 0000 0000h
247:244 Address 0000 0000h
251:248 Sector Count 0000 0001h
253:252 Result 0000h
255:254 Request/Response 0007h (Request)

Security
Receive 1

Data populated by the controller and returned to the host

Retrieve Device
Configuration
Block Read
Result

222-N:00 Stuff Bytes 0…00h

222:222-(N-1) MAC/Key MAC generated by
the controller

223 RPMB Target 00h

239:224
Nonce Copy of the Nonce

generated by the
host

243:240 Write Counter Current Write
Counter value

247:244 Address 0000 0000h
251:248 Sector Count 0000 0001h
253:252 Result Result Code
255:254 Request/Response 0700h (Response)

767:256
Data RPMB Device

Configuration Block
data structure

8.11 Device Self-test Operations (Optional)
A device self-test operation is a diagnostic testing sequence that tests the integrity and functionality of the
controller and may include testing of the media associated with namespaces. The operation is broken
down in to a series of segments, where each segment is a set of vendor specific tests. The segment
number in the Self-test Result Data Structure (refer to section 5.14.1.6) is used for reporting purposes to
indicate where a test failed, if any. The test performed in each segment may be the same for the short
device self-test operation and the extended device self-test operation.

A device self-test operation is performed in the background allowing concurrent processing of some
commands and requiring suspension of the device self-test operation to process other commands. Which
commands may be processed concurrently versus require suspension of the device self-test operation is
vendor specific.

If the controller receives any command that requires suspension of the device self-test operation to
process and complete, then the controller shall:

1) suspend the device self-test operation,
2) process and complete that command, and
3) resume the device self-test operation.

During a device self-test operation, the performance of the NVM subsystem may be degraded (e.g.,
controllers not performing the device self-test operation may also experience degraded performance.)

The following device self-test operations are defined:

a) short device self-test operation (refer to section 8.11.1)

NVM Express 1.3a

264

b) extended device self-test operation (refer to section 8.11.2).

Figure 280 is an informative example of a device self-test operation with the associated segments and tests
performed in each segment.

Figure 274: Example Device Self-test Operation (Informative)

Segment Test Performed Failure Criteria

1 – RAM Check Write a test pattern to RAM, followed by a read and
compare of the original data.

Any uncorrectable error or
data miscompare

2 – SMART Check Check SMART or health status for Critical Warning bits set
to ‘1’ in SMART / Health Information Log.

Any Critical Warning bit set to
‘1’ fails this segment

3 – Volatile memory
backup

Validate volatile memory backup solution health (e.g.,
measure backup power source charge and/or discharge
time).

Significant degradation in
backup capability

4 – Metadata validation Confirm/validate all copies of metadata. Metadata is corrupt and is not
recoverable

5 – NVM integrity
Write/read/compare to reserved areas of each NVM.
Ensure also that every read/write channel of the controller
is exercised.

Data miscompare

Ex
te

nd
ed

 o
nl

y

6 – Data Integrity

Perform background housekeeping tasks, prioritizing
actions that enhance the integrity of stored data.

Exit this segment in time to complete the remaining
segments and meet the timing requirements for extended
device self-test operation indicated in the Identify Controller
data structure.

Metadata is corrupt and is not
recoverable

7 – Media Check

Perform random reads from every available good physical
block.

Exit this segment in time to complete the remaining
segments. The time to complete is dependent on the type
of device self-test operation.

Inability to access a physical
block

8 – Drive Life End-of-life condition: Assess the drive’s suitability for
continuing write operations.

The Percentage Used is set
to 255 in the SMART / Health
Information Log or an
analysis of internal key
operating parameters
indicates that data is at risk if
writing continues

9 – SMART Check Same as 2 – SMART Check

8.11.1 Short Device Self-Test Operation
A short device self-test operation should complete in two minutes or less. The percentage complete of the
short device self-test operation is indicated in the Current Percentage Complete field in the Device Self-
test Log (refer to section 5.14.1.6).

A short device self-test operation:

a) shall be aborted by any Controller Level Reset;
b) shall be aborted by a Format NVM, if the Namespace Identifier field specified in the Format NVM

command is the same as the Device Self-test command that invoked the device self-test
operation;

c) shall be aborted if a Device Self-test command with the Self-Test Code field set to Fh is
processed; and

d) may be aborted if the specified namespace is removed from the namespace inventory.

NVM Express 1.3a

265

8.11.2 Extended Device Self-Test Operation
An extended device self-test operation should complete in the time indicated in the Extended Device Self-
test Time field in the Identify Controller data structure or less. The percentage complete of the extended
device self-test operation is indicated in the Current Percentage Complete field in the Device Self-test Log
(refer to section 5.14.1.6).

An extended device self-test operation shall persist across any Controller Level Reset, and shall resume
after completion of the reset or any restoration of power, if any. The segment where the extended device
self-test operation resumes is vendor specific, but implementations should only have to perform tests
again within the last segment that was being tested prior to the reset.

An extended device self-test operation:

a) shall be aborted by a Format NVM, if the Namespace Identifier field specified in the Format NVM
command is the same as Device Self-test command the invoked the device self-test operation;

b) shall be aborted if a Device Self-test command with the Self-Test Code field set to Fh is
processed; and

c) may be aborted if the specified namespace is removed from the namespace inventory.

8.12 Namespace Management (Optional)
The Namespace Management command is used to create a namespace or delete a namespace. The
Namespace Attachment command is used to attach and detach controllers from a namespace. Namespace
management is intended for use during manufacturing or by a system administrator.

If Namespace Management is supported, then the controller should support the Namespace Attribute
Changed asynchronous event (refer to Figure 49 and section 5.21.1.11).

If a namespace is detached from a controller, then the NSID that referred to that namespace becomes an
inactive NSID (refer to section 6.1.4) on that controller. If a namespace is deleted from the NVM subsystem,
then the NSID that referred to that namespace becomes an unallocated NSID (refer to section 6.1.3) in the
NVM subsystem. Previously submitted but uncompleted or subsequently submitted commands to the
affected NSID are handled by the controller as if they were issued to an inactive NSID (refer to Figure 11).

The size of a namespace is based on the number of logical blocks requested in a create operation, the
format of the namespace, and any characteristics (e.g., endurance). The controller determines the NVM
capacity allocated for that namespace. Namespaces may be created with different usage characteristics
(e.g., endurance) that utilize differing amounts of NVM capacity. Namespace characteristics and the
mapping of these characteristics to NVM capacity usage are outside the scope of this specification.

The total and unallocated NVM capacity for the NVM subsystem is reported in the Identify Controller data
structure. For each namespace, the NVM capacity used for that namespace is reported in the Identify
Namespace data structure. The controller may allocate NVM capacity in units such that the requested size
for a namespace may be rounded up to the next unit boundary. For example, if host software requests a
namespace of 32 logical blocks with a logical block size of 4KB for a total size of 128KB and the allocation
unit for the implementation is 1MB then the NVM capacity consumed may be rounded up to 1MB. The NVM
capacity fields may not correspond to the logical block size multiplied by the total number of logical blocks.

To create a namespace, host software performs the following actions:
1. Host software requests the Identify Namespace data structure that specifies common namespace

capabilities (Identify with a setting of CDW1.NSID set to FFFFFFFFh and CNS set to 0h).
2. Host software creates the data structure defined in Figure 129. Host software sets the host

software specified fields defined in Figure 126 to the desired values (taking into account the
common namespace capabilities).

3. Host software issues the Namespace Management command specifying the Create operation
and the data structure. On successful completion of the command, the Namespace Identifier of
the new namespace is returned in Dword 0 of the completion queue entry. At this point, the new
namespace is not attached to any controller.

NVM Express 1.3a

266

4. Host software requests the Identify Namespace data structure for the new namespace to
determine all attributes of the namespace.

To attach a namespace, host software performs the following actions:
1. Host software issues the Namespace Attachment command specifying the Controller Attach

operation to attach the new namespace to one or more controllers.
2. If Namespace Attribute Notices are enabled, the controller(s) newly attached to the namespace

report a Namespace Attribute Changed asynchronous event to the host.

To detach a namespace, host software performs the following actions:
1. Host software issues the Namespace Attachment command specifying the Controller Detach

operation to detach the namespace from one or more controllers.
2. If Namespace Attribute Notices are enabled, the controllers that were detached from the

namespace report a Namespace Attribute Changed asynchronous event to the host.

To delete a namespace, host software performs the following actions:
1. Host software should detach the namespace from all controllers.
2. Host software issues the Namespace Management command specifying the Delete operation for

the specified namespace. On successful completion of the command, the namespace has been
deleted.

3. If Namespace Attribute Notices are enabled, any controller(s) that was attached to the
namespace reports a Namespace Attribute Changed asynchronous event to the host.

8.13 Boot Partitions (Optional)
Boot Partitions provide an optional area of NVM storage that may be read without the host initializing queues
or enabling the controller. The simplified interface to access Boot Partitions may be used for platform
initialization code (e.g., a bootloader that is executed from host ROM) to boot to a pre-OS environment
(e.g., UEFI) instead of storing the image on another storage medium (e.g., SPI flash). Refer to section
8.13.1 for the procedure to read the contents of a Boot Partition.

An NVMe controller that supports Boot Partitions has two Boot Partitions of equal size using Boot Partition
identifiers 0h and 1h. The two Boot Partitions allow the host to update one and verify the contents before
marking the Boot Partition active.

The contents of Boot Partitions are only modified using the Firmware Image Download and Firmware
Commit commands (refer to section 8.13.2) and may be secured using Replay Protected Memory Block to
prevent unauthorized modifications (refer to section 8.13.3).

8.13.1 Reading from a Boot Partition
A Boot Partition is a continuous block of data as shown in Figure 281, that the host may read.

NVM Express 1.3a

267

Figure 275: Boot Partition Overview

To read the contents of a Boot Partition, the host allocates a Boot Partition Memory Buffer in host memory
for the controller to copy contents from a Boot Partition. The host initializes the Boot Partition Memory
Buffer Base Address. The host sets the Boot Partition ID, Boot Partition Read Size, and Boot Partition
Read Offset to initiate the Boot Partition read operation. The host may continue reading from the Boot
Partition until the entire Boot Partition has been read.

A portion of the Boot Partition may be read by the host any time the NVM subsystem is powered (i.e.,
whether or not CC.EN is set to ‘1’). The host shall not modify the PCI Express registers (described in
section 2), reset, or shutdown the controller while a Boot Partition read is in progress.

To read data from a Boot Partition, the host follows these steps:

1. Initialize the transport (e.g., PCIe link), if necessary.
2. Determine if Boot Partitions are supported by the controller (CAP.BPS),
3. Determine which Boot Partition is active (BPINFO.ABPID) and the size of the Boot Partition

(BPINFO.BPSZ).
4. Allocate a physically contiguous memory buffer in the host to store the contents of a Boot Partition.
5. Initialize the address (BPMBL.BMBBA) into the memory buffer where the contents should be

copied.
6. Initiate the transfer of data from a Boot Partition by writing to the Boot Partition Read Select

(BPRSEL) register. This includes setting the Boot Partition identifier (BPRSEL.BPID), size of Boot
Partition Read Size (BPRSEL.BPRSZ) and Boot Partition Read Offset (BPRSEL.BPROF). The
controller sets the Boot Read Status field (BPINFO.BRS) while transferring the Boot Partition
contents to indicate a Boot Partition read operation is in progress.

7. Wait for the controller to completely transfer the requested portion of the Boot Partition, indicated
in the status field (BPINFO.BRS). If BPINFO.BRS is set to 2h, the requested Boot Partition data
has been transferred to the Boot Partition Memory Buffer. If BPINFO.BRS is set to 3h, there was
an error transferring the requested Boot Partition data and the host may request the Boot Partition
data again.

In constrained memory environments, the host may read the contents of a Boot Partition with a small Boot
Partition Memory Buffer by reading a small portion of a Boot Partition, moving the data out of the Boot
Memory Buffer to another memory location, and then reading another portion of the Boot Partition until the
entire Boot Partition has been read.

8.13.2 Writing to a Boot Partition
Boot Partition contents may be modified by the host using the Firmware Image Download and Firmware
Commit commands while the controller is enabled (CC.EN set to ‘1’).

The process for updating a Boot Partition is:
1. The host issues a Firmware Image Download command to download the contents of the Boot

Partition to the controller. There may be multiple portions of the Boot Partition to download, thus

NVM Express 1.3a

268

the offset for each portion of the Boot Partition being downloaded is specified in the Firmware Image
Download command. Host software shall send the Boot Partition image in order starting with the
beginning of the Boot Partition.

2. Unlock Boot Partitions for writing (refer to section 8.13.3).
3. The host submits a Firmware Commit command with a Commit Action of 110b which specifies that

the downloaded image replaces the contents of the Boot Partition specified in the Boot Partition ID
field.

4. The controller completes the Firmware Commit command. The following actions are taken in
certain error scenarios:

a. If the firmware activation was not successful because the Boot Partition could not be
written, then the controller reports an error of Boot Partition Write Prohibited.

5. (optional) The host reads the contents of the Boot Partition to verify they are correct (refer to section
8.13.1). Host software updates the active Boot Partition ID by issuing a Firmware Commit
command with a Commit Action of 111b.

6. The host locks Boot Partition access to prevent further modification (refer to section 8.13.3).

If an internal error, reset, or power loss condition occurs while committing the downloaded image to a Boot
Partition, the contents of the Boot Partition may contain the old contents, new contents, or a mixture of both.
Host software should verify the contents of a Boot Partition before marking it active to ensure the active
Boot Partition is stable.

Host software should not read the contents of a Boot Partition while writing to the Boot Partition. The
controller may return a combination of new and old data if the host attempts to perform a Boot Partition
read operation while overwriting the contents.

8.13.3 Boot Partition Protection
A controller that supports Boot Partitions and RPMB shall support Boot Partition Protection. Boot Partition
Protection may be configured using RPMB (refer to section 8.10). Figure 282 shows an overview of Boot
Partition Protection.

Figure 276: Boot Partition Protection Overview

NVM Express 1.3a

269

The default state for all Boot Partitions is the “Unlocked” state. In this state, host software may read and
write a Boot Partition.

All Boot Partitions remain unlocked until Boot Partition Protection is enabled by host software. Host software
enables Boot Partition Protection by setting the Boot Partition Protection Enable bit in the RPMB Device
Configuration Block data structure (refer to section 8.10). Once Boot Partition Protection is enabled, the
controller shall reject Authenticated Device Configuration Block Writes that disable Boot Partition Protection
(i.e., enabling Boot Partition Protection is permanent). Once Boot Partition Protection is enabled, Boot
Partitions may only be modified after unlocking the Boot Partition using RPMB.

After activating Boot Partition Protection, the default state for all Boot Partitions is the “Locked” state. In
this state, host software may read a Boot Partition. In this state, the controller rejects attempts to write to
a Boot Partition using the Firmware Commit command.

Each Boot Partition may be locked or unlocked independently using the corresponding bit in the Device
Configuration Block data structure.

8.14 Telemetry (Optional)
Telemetry enables manufacturers to collect internal data logs to improve the functionality and reliability of
products. The telemetry data collection may be initiated by the host or by the controller. The data is returned
in the Telemetry Host-Initiated log page or the Telemetry Controller-Initiated log page (refer to section
5.14.1.7 and 5.14.1.8). The data captured is vendor specific. The telemetry feature defines the mechanism
to collect the vendor specific data. The controller indicates support for the telemetry log pages in the Log
Page Attributes field in the Identify Controller data structure.

An important aspect to discovering issues by collecting telemetry data is the ability to qualify distinct issues
that are being collected. The ability to create a one to one mapping of issues to data collections is essential.
If a one to one mapping is not established, there is the risk that several payload collections appear distinct
but are actually all caused by the same issue. Conversely, a single payload collection may have payloads
caused by several issues mixed together making it difficult to determine the root cause. Given this, flexibility
in size is desired in the collection of telemetry payloads and a three phase process is typically used.

The first phase establishes that an issue exists and is best accomplished by collecting a minimum set of
data to identify the issue as being distinct from other issues. Once the number of instances of an issue
establish an investigation, another phase may be necessary to collect actionable information. In the second
phase, a targeted collection of more in depth medium size payloads are gathered and analyzed to identify
the source of the problem. For rare issues that are not root caused by a small or medium sized telemetry
data collection, a third phase may be employed to collect the largest and most complete payload to
diagnose the issue.

There are two telemetry data logs (i.e., Host-Initiated log and Controller-Initiated log) defined. Each
telemetry data log is made up of a single set of Telemetry Data Blocks. Each Telemetry Data Block is 512
bytes in size. Telemetry data is returned (refer to section 5.14.1.7 and section 5.14.1.8) in units of Telemetry
Data Blocks. Each telemetry data log is segmented into three Telemetry Data Areas (i.e., small, medium,
and large). All telemetry data areas start at Telemetry Data Block 1. Each Telemetry Data Area shall
represent the controller’s internal state at the time the telemetry data was captured.

Each Telemetry Data Area is intended to capture a richer set of data to aid in resolution of issues. Telemetry
Data Area 1 is intended to have a small size payload (i.e., the first phase), Telemetry Data Area 2 is intended
to have a medium size payload (i.e., the second phase), and Telemetry Data Area 3 is intended to have a
large size payload (i.e., the third phase). The size of each Telemetry Data Area is vendor specific and may
change on each data collection. When possible, the host should retrieve the payload for all three Telemetry
Data Areas to enable the best diagnosis of the issue(s).

The preparation, collection, and submission of telemetry data is similar for host-initiated and controller-
initiated data; the primary difference is the trigger for the collection. The operational model for telemetry is:

1. The host identifies controller support for Telemetry log pages in the Identify Controller data
structure.

NVM Express 1.3a

270

2. The host prepares an area to store telemetry data if needed.
3. To receive notification that controller-initiated telemetry data is available, the host enables

Telemetry Log Notices using the Asynchronous Event Configuration feature (refer to section
5.21.1.11).

4. If the host decides to collect host-initiated telemetry data or the controller signals that controller-
initiated telemetry data is available:

a. The host reads the appropriate blocks of the Telemetry Data Area from the host-initiated
log (refer to section 5.14.1.7) or the controller-initiated log (refer to section 5.14.1.8). If
possible, the host should collect Telemetry Data Area 1, 2, and 3. The host reads the log
in 512 byte Telemetry Data Block units. As part of the last read for a controller-initiated
log, the host clears the Retain Asynchronous Event bit to ‘0’.

b. If it is a controller-initiated log, the host re-reads the header of the log page and ensures
that the Telemetry Controller-Initiated Data Generation Number matches the original
value read. If it does not match, then the data captured is not consistent and needs to be
re-read.

c. When all telemetry data has been saved, the data should be forwarded to the
manufacturer of the controller.

The trigger for the collection for host-initiated data is typically a system crash, but may also be initiated
during normal operation. The host proceeds with a host-initiated data collection by submitting the Get Log
Page command for the Telemetry Host-Initiated log page with the Create Telemetry Host-Initiated Data bit
set to ‘1’. The controller should complete the command quickly (e.g., in less than one second) to avoid a
user rebooting the system prior to completion of the data collection.

The controller notifies the host to collect controller-initiated data through the completion of an Asynchronous
Event Request command with an Asynchronous Event Type of Notice that indicates a Telemetry Log
Changed event. The host may also determine controller-initiated data is available via the Telemetry
Controller-Initiated Data Available field in the Telemetry Host-Initiated or the Telemetry Controller-Initiated
log pages. The host proceeds with a controller-initiated data collection by submitting the Get Log Page
command for the Telemetry Controller-Initiated log page. Once the host has started reading the Telemetry
Controller-Initiated log page, the controller should avoid modifying the controller-initiated data until the host
has finished reading all controller-initiated data.

Since there is only one set of controller-initiated data, the controller is responsible for prioritizing the version
of the controller-initiated data that is available for the host to collect. When the controller replaces the
controller-initiated data with new controller-initiated data it shall increment the Telemetry Controller-Initiated
Data Generation Number field. The host needs to ensure that the Telemetry Controller-Initiated Data
Generation Number field has not changed between the start and completion of the controller-initiated data
collection to ensure the data captured is consistent.

8.14.1 Telemetry Data Collection Examples (Informative)
This section includes several examples of Telemetry Host-Initiated Data Areas for illustration. The same
concepts apply to the Telemetry Controller-Initiated Data Areas.

If a Telemetry Host-Initiated log page has no data for collection then the following fields are all cleared to
0h:

• Telemetry Host-Initiated Data Area 1 Last Block = 0,
• Telemetry Host-Initiated Data Area 2 Last Block = 0,
• Telemetry Host-Initiated Data Area 3 Last Block = 0.

When all three telemetry data areas are populated, then the Telemetry Host-Initiated log page has different
values in each of the Telemetry Host-Initiated Data Area n Last Block fields. For example, the following
values correspond to the layout shown in Figure 283:

• Telemetry Host-Initiated Data Area 1 Last Block = 65,
• Telemetry Host-Initiated Data Area 2 Last Block = 1000,
• Telemetry Host-Initiated Data Area 3 Last Block = 30000.

NVM Express 1.3a

271

As a result of telemetry data areas being made up of a single set of Telemetry Data Blocks starting at
Telemetry Data Block 1, the telemetry data contained in Telemetry Data Block 1 through Telemetry Data
Block 65 of data area 1, data area 2, and data area 3 is the same. In addition, the telemetry data contained
in Telemetry Data Block 66 through Telemetry Data Block 1000 of data area 2 and data area 3 is the same.

Figure 277: Telemetry Log Example – All Data Areas Populated

Block Number Telemetry Host-Initiated Data Areas

1

65

Data Area 1 *

Data Area 2 *

Data Area 3 *

1000

Data Area 2 +
continued

Data Area 3 +
continued

30000

Data Area 3
continued

* Data Area 1, Data Area 2, and Data Area 3 contain the same telemetry data in blocks 1 through 65.
+ Data Area 2 and Data Area 3 contain the same telemetry data in blocks 66 through 1000.

When only the second data areas is populated, then the Telemetry Host-Initiated log page has no data in
Telemetry Data Area 1 shown by having its corresponding last block value cleared to 0h, and no additional
data in Telemetry Data Area 3 shown by having its corresponding last block value set to the same value as
the last block value for Telemetry Data Area 2. For example, the following values correspond to the layout
shown in Figure 284:

• Telemetry Host-Initiated Data Area 1 Last Block = 0,
• Telemetry Host-Initiated Data Area 2 Last Block = 1000,
• Telemetry Host-Initiated Data Area 3 Last Block = 1000.

As a result of telemetry data areas being made up of a single set of Telemetry Data Blocks starting at
Telemetry Data Block 1, the telemetry data contained in Telemetry Data Block 1 through Telemetry Data
Block 1000 of data area of data area 2 and data area 3 is the same.

NVM Express 1.3a

272

Figure 278: Telemetry Log Example – Data Area 2 Populated

Block Number Telemetry Host-Initiated Data Areas

1

1000

Data Area 1

(empty)

Data Area 2 *

Data Area 3 *

* Data Area 2, and Data Area 3 contain the same telemetry data in blocks 1 through 1000.

8.15 Sanitize Operations (Optional)
A sanitize operation alters all user data in the NVM subsystem such that recovery of any previous user data
from any cache, the non-volatile media, or any Controller Memory Buffer is not possible. It is implementation
specific whether Submission Queues and Completion Queues within a Controller Memory Buffer are altered
by a sanitize operation; all other data stored in all Controller Memory Buffers is altered by a sanitize
operation. If a portion of the user data was not altered and the sanitize operation completed successfully,
then the NVM subsystem shall ensure permanent inaccessibility of that portion of the user data for any
future use within the NVM subsystem (e.g., retrieval from NVM media, caches, or any Controller Memory
Buffer) and permanent inaccessibility of that portion of the user data via any interface to the NVM
subsystem, including management interfaces such as NVMe-MI.

The scope of a sanitize operation is all locations in the NVM subsystem that are able to contain user data,
including caches and unallocated or deallocated areas of the media. Sanitize operations do not affect the
Replay Protected Memory Block, boot partitions, or other media and caches that do not contain user data.
A sanitize operation also may alter log pages as necessary (e.g., to prevent derivation of user data from
log page information). Once a sanitize operation is started, it cannot be aborted and continues after a
Controller Level Reset including across power cycles.

The Sanitize command (refer to section 5.24) is used to start a sanitize operation or to recover from a
previously failed sanitize operation. All sanitize operations are performed in the background (i.e.,
completion of the Sanitize command does not indicate completion of the sanitize operation). The
completion of a sanitize operation is indicated in the Sanitize Status log page, and with the Sanitize
Operation Completed asynchronous event (if an Asynchronous Event Request Command is outstanding).

NVM Express 1.3a

273

The Sanitize Capabilities field of the Identify Controller data structure indicates the sanitize operation
types supported.

The sanitize operation types are:

• The Block Erase sanitize operation alters user data with a low-level block erase method that is
specific to the media for all locations on the media within the NVM subsystem in which user data
may be stored.

• The Crypto Erase sanitize operation alters user data by changing the media encryption keys for all
locations on the media within the NVM subsystem in which user data may be stored.

• The Overwrite sanitize operation alters user data by writing a fixed data pattern or related patterns
to all locations on the media within the NVM subsystem in which user data may be stored one or
more times. Figure 285 defines the data pattern or patterns that are written.

The Overwrite sanitize operation is media specific and may not be appropriate for all media types. For
example, if the media is NAND, multiple pass overwrite operations may have an adverse effect on media
endurance.

Figure 279: Sanitize Operations – Overwrite Mechanism

OIPBP1
Overwrite
Pass Count1

Overwrite
Pass Number

Logical Block Data and Non-PI
Metadata2 Protection Information3

‘0’ All All Overwrite Pattern1 FFFFFFFF_FFFFFFFFh

‘1’
Even

First Inversion of Overwrite Pattern1 00000000_00000000h

 Subsequent Inversion of Overwrite Pattern1 from previous pass (i.e., each bit
XORed with ‘1’)

‘1’
Odd

First Overwrite Pattern1 FFFFFFFF_FFFFFFFFh

 Subsequent Inversion of Overwrite Pattern1 from previous pass (i.e., each bit
XORed with ‘1’)

NOTES:
1. Parameters are specified in Command Dword 10 and Command Dword 11 of the corresponding Sanitize

command that started the Overwrite operation. The Overwrite Invert Pattern Between Passes (OIPBP) field
is defined in Command Dword 10. The Overwrite Pass Count is defined in Command Dword 10. The
Overwrite Pattern is defined in Command Dword 11. Refer to section 5.24.

2. If metadata other than Protection Infomation is present.
3. If Protection Information is present within the metadata.

To start a sanitize operation, the host submits a Sanitize command specifying one of the sanitize
operation types (i.e., Block Erase, Overwrite, or Crypto Erase). The host sets command parameters,
including the Allow Unrestricted Sanitize Exit bit and the No Deallocate After Sanitize bit, to the desired
values. After validating the Sanitize command parameters, the controller starts the sanitize operation in
the background, updates the Sanitize Status log page and then completes the Sanitize command with
Successful Completion status. If a Sanitize command is completed with any status other than Successful
Completion, then the controller shall not start the sanitize operation and shall not update the Sanitize
Status log page. The controller ignores Critical Warning(s) in the SMART / Health Information log page
(e.g., read only mode) and attempts to complete the sanitize operation requested. While a sanitize
operation is in progress, all controllers shall abort any commands not listed in Figure 287 with a status of
Sanitize In Progress (refer to section 8.15.1).

The user data values that result from a successful sanitize operation are specified in Figure 286. If the
controller deallocates user data after successful completion of a sanitize operation, then values read from
deallocated logical blocks are described in section 6.7.1.1. The host may specify that sanitized logical
blocks not be deallocated by setting the No Deallocate After Sanitize bit to ‘1’ in the Sanitize command.

NVM Express 1.3a

274

Figure 280: Sanitize Operations – User Data Values

Sanitize Operation Logical Blocks Non-PI Metadata1 Protection Information2
Block Erase Vendor specific value Vendor specific value Vendor specific value
Crypto Erase Indeterminate Indeterminate Indeterminate

Overwrite Refer to Figure 285 Refer to Figure 285 Refer to Figure 285
NOTES:
1. If metadata other than Protection Information is present.
2. If Protection Information is present within the metadata.

The Sanitize Status log page (refer to section 5.14.1.9.2) contains estimated times for sanitize operations
and a consistent snapshot of information about the most recently started sanitize operation, including
whether a sanitize operation is in progress, the sanitize operation parameters and the status of the most
recent sanitize operation. If a sanitize operation is not in progress, then the Global Data Erased bit in the
log page indicates whether the NVM subsystem may contain any user data (i.e., has not been written to
since the most recent successful sanitize operation).

The Sanitize Status log page shall be updated as described:

• Initialize before any controller in the NVM subsystem is ready.
• Update before a Sanitize command that starts a sanitize operation is completed (i.e., prior to the

completion queue entry being posted for the Sanitize command).
• Update when a sanitize operation is complete (e.g., immediately prior to the completion queue

entry being posted for the Sanitize Operation Completed asynchronous event).

The Sanitize Status log page should be updated periodically during a sanitize operation to make progress
information available to hosts.

During a sanitize operation, the host may periodically examine the Sanitize Status log page to check for
progress, however, the host should limit this polling (e.g., to at most once every several minutes) to avoid
interfering with the progress of the sanitize operation itself.

On completion of a sanitize operation:

• If the sanitize operation is successful, then the Global Data Erased bit shall be set to ‘1’.
• The Sanitize Status log page is updated.
• The controller to which the Sanitize command was submitted completes an Asynchronous Event

Request command (if one is outstanding) with the following information:
o The Log Page Identifier field is set to 81h (i.e., Sanitize Status).
o The Asynchronous Event Information field is set to Sanitize Operation Completed.
o The Asynchronous Event Type field is set to 6h (i.e., I/O Command Set specific status).

• All controllers in the NVM subsystem may resume any power management that was suspended
when the sanitize operation started.

The host should read the Sanitize Status log page upon completion of a sanitize operation (which clears
the asynchronous event, if one was generated).

If a sanitize operation fails, all controllers in the NVM subsystem shall abort any command not allowed
during a sanitize operation with a status of Sanitize Failed (refer to section 8.15.1) until a subsequent
sanitize operation is started or successful recovery from the failed sanitize operation occurs. A subsequent
successful sanitize operation or the Exit Failure Mode action may be used to recover from a failed sanitize
operation. Refer to section 5.24 for recovery details.

If the Sanitize command is supported, then the NVM subsystem and all controllers shall:

• Support the Sanitize Status log page;
• Support the Sanitize Operation Completed asynchronous event and enable the event by default;
• Support the Exit Failure Mode action for a Sanitize command;

NVM Express 1.3a

275

• Support at least one of the following sanitize operation types: Block Erase, Overwrite, or Crypto
Erase; and

• Indicate support for all supported sanitize operation types in the Sanitize Capabilities field in the
Identify Controller data structure.

8.15.1 Command Restrictions
While performing a sanitize operation and while a failed sanitize operation has occurred but successful
recovery from that failure has not occurred, all enabled controllers and namespaces in the NVM
subsystem are restricted to performing only a limited set of actions.

While a sanitize operation is in progress:

• All controllers in the NVM subsystem shall only process the Admin commands listed in Figure 287
subject to the additional restrictions stated in that figure;

• All I/O Commands shall be aborted with a status of Sanitize In Progress; and
• Any command or command option that is not explicitly permitted in Figure 287 shall be aborted

with a status of Sanitize in Progress if fetched by any controller in the NVM subsystem.

While a failed sanitize operation has occurred, a subsequent sanitize operation has not started and
successful recovery from the failed sanitize operation has not occurred:

• All controllers in the NVM subsystem shall only process the Sanitize command (refer to section
5.24) and the Admin commands listed in Figure 287 subject to the additional restrictions noted in
that figure;

• All I/O Commands are shall be aborted with a status of Sanitize Failed;
• The Sanitize command is permitted with action restrictions (refer to section 5.24); and
• Aside from the Sanitize command, any other command or command option that is not explicitly

permitted in Figure 287 shall be aborted with a status of Sanitize Failed if fetched by any
controller in the NVM subsystem.

NVM Express 1.3a

276

Figure 281: Sanitize Operations – Admin Commands Allowed
Admin Command Additional Restrictions

Abort
Asynchronous Event Request
Create I/O Completion Queue
Create I/O Submission Queue
Delete I/O Completion Queue
Delete I/O Submission Queue
Get Features

Get Log Page

The log pages allowed are listed below.

Log Pages Additional Restrictions
Error Information Return zeros in the LBA field.
SMART / Health Information
Changed Namespace List
Reservation Notification
Sanitize Status

Identify
Keep Alive
NVMe-MI Receive Prohibited unless explicitly allowed in the NVM Express Management

Interface Specification. NVMe-MI Send
Set Features

Opcode 7Fh

The Fabric Commands allowed are listed below. Refer to the NVMe
over Fabrics specification.

Fabrics Commands Additional Restrictions
Property Set
Connect
Property Get
Authentication Send
Authentication Receive

Vendor Specific Commands are allowed that do not
affect or retrieve user data.

Vendor Specific Commands are allowed that do not affect or retrieve user data.

NVM Express 1.3a

277

9 Directives
Directives is a mechanism to enable host and NVM subsystem or controller information exchange. The
Directive Receive command is used to transfer data related to a specific Directive Type from the controller
to the host. The Directive Send command is used to transfer data related to a specific Directive Type from
the host to the controller. Other commands may include a Directive Specific value specific for a given
Directive Type (e.g., the Write command in the NVM command set).

Support for Directives is optional and is indicated in the Optional Admin Command Support (OACS) field in
the Identify Controller data structure.

If a controller supports Directives, then the controller shall:
• Indicate support for Directives in the Optional Admin Command Support (OACS) field in the

Identify Controller data structure;
• Support the Directive Receive command;
• Support the Directive Send command; and
• Support the Identify Directive (i.e., Type 00h).

The Directive Types that may be supported by a controller (refer to Figure 288) are the Identify Directive
(refer to section 9.2), and the Streams Directive (refer to section 9.3). The Directive Specific field and
Directive Operation field are dependent on the Directive Type specified in the command (e.g., Directive
Send, Directive Receive, or I/O command).

Figure 282: Directive Types
Directive Directive Type Value Definition I/O Command Directive

Identify 00h Section 9.2 No
Streams 01h Section 9.3 Yes

If a Directive is not supported or is supported and disabled, then all Directive Send commands and Directive
Receive commands with that Directive Type shall be aborted with a status of Invalid Field in Command.

Support for a specific directive type is indicated using the Return Parameters operation of the Identify
Directive. A specific directive may be enabled or disabled using the Enable operation of the Identify
Directive. Before using a specific directive, the host should determine if that directive is supported and
should enable that directive using the Identify Directive.

9.1 Directive Use in I/O Commands
I/O Command Directives are the subset of Directive Types that may be used as part of I/O commands. For
example, a Write command in the NVM command set may specify a Directive Type and an associated
Directive Specific value. I/O Command Directives shall have a Directive Type value that is less than or
equal to 0Fh due to the size of the Directive Type field in I/O commands. When a Directive Type is specified
in an I/O command, the upper four bits are assumed to be zero. A Directive Type of 00h in an I/O command
specifies that the I/O command is not using Directives.

The only I/O command that supports use of directives in this version of this specification is the Write
command.

In an I/O command, if the Directive Type (DTYPE) field is set to an I/O Command Directive, then the
Directive Specific (DSPEC) field includes additional information for the associated I/O command (refer to
Figure 289).

NVM Express 1.3a

278

Figure 283: Directive Specific Field Interpretation

Directive Type Value Directive Specific Field Definition
00h (Directives not in use) Field not used.
01h (Streams) Specifies the identifier of the stream associated with the data.
02h – 0Fh Reserved

In an I/O command:
• if no I/O Command Directive is enabled or the DTYPE field is cleared to 00h, then the DTYPE

field and the DSPEC field are ignored; and
• if one or more I/O Command Directives is enabled and the DTYPE field is set to a value that is

not supported or not enabled, then the controller shall abort the command with a status of Invalid
Field in Command.

For the Streams Directive (i.e., DTYPE field set to 01h), if the DSPEC field is cleared to 0000h in a Write
command, then that Write command shall be processed as a normal write operation (i.e., as if DTYPE field
is cleared to 00h).

9.2 Identify (Directive Type 00h)
The Identify Directive is used to determine the Directive Types that the controller supports and to enable
use of the supported Directives. If Directives are supported, then this Directive Type shall be supported.

The Directive operations that shall be supported for the Identify Directive are listed in Figure 290.

Figure 284: Identify Directive – Directive Operations

Directive Command Directive Operation Name Directive Operation Value Definition

Directive Receive Return Parameters 01h Section 9.2.1.1
Reserved All others

Directive Send Enable Directive 01h Section 9.2.2.1
Reserved All others

9.2.1 Directive Receive
This section defines operations used with the Directive Receive command for the Identify Directive.

9.2.1.1 Return Parameters (Directive Operation 01h)
This operation returns a data structure that contains a bit vector specifying the Directive Types supported
by the controller and a bit vector specifying the Directive Types enabled for the namespace. The data
structure returned is defined in Figure 291. If an NSID value of FFFFFFFFh is specified, then then the
controller shall abort the command with a status of Invalid Field in Command. The DSPEC field in command
Dword 11 is not used for this operation.

NVM Express 1.3a

279

Figure 285: Identify Directive – Return Parameters Data Structure

Bytes Bit Description
 Directives Supported

31:00

255:02 Reserved

01 Streams Directive: This bit is set to 1b if the Streams Directive is supported. This bit is
cleared to 0b if the Streams Directive is not supported.

00 Identify Directive: This bit shall be set to 1b to indicate that the Identify Directive is
supported.

 Directives Enabled

63:32

255:02 Reserved

01 Streams Directive: This bit is set to 1b if the Streams Directive is enabled. This bit is
cleared to 0b if the Streams Directive is not enabled.

00 Identify Directive: This bit shall be set to 1b to indicate that the Identify Directive is
enabled.

4095:64 n/a Reserved

9.2.2 Directive Send
This section defines operations used with the Directive Send command for the Identify Directive.

9.2.2.1 Enable Directive (Directive Operation 01h)
The Enable Directive operation is used to enable a specific Directive for use within a namespace by all
controllers that are associated with the same Host Identifier. The DSPEC field in command Dword 11 is not
used for this operation. The Identify Directive is always enabled. The enable state of each Directive on each
shared namespace attached to enabled controllers associated with the same non-zero Host Identifier is the
same. If an NSID value of FFFFFFFFh is specified, then the Enable Directive operation applies to the NVM
subsystem (i.e., all namespaces and all controllers associated with the NVM subsystem). On an NVM
Subsystem Reset, all Directives other than the Identify Directive are disabled for the entire NVM subsystem.
On any other type of Controller Level Reset:

• all Directives other than the Identify Directive are disabled for that controller; and
• if there is an enabled controller associated with the Host Identifier for the controller that was reset,

then for namespaces attached to enabled controllers associated with that Host Identifier,
Directives are not disabled.

If a host sets the Host Identifier of a controller to the same non-zero Host Identifier as one or more other
controllers in the NVM subsystem, then setting that Host Identifier shall result in each shared namespace
attached to that controller having the same enable state for each Directive as the enable state for each
Directive for that namespace attached to other controllers associated with that Host Identifier.

If a host enables a controller that has the same non-zero Host Identifier as one or more other controllers in
the NVM subsystem, then enabling that controller shall result in each shared namespace attached to that
controller having the same enable state for each Directive as the enable state for each Directive for that
namespace attached to other controllers associated with that Host Identifier.

For all controllers in an NVM subsystem that have the same non-zero Host Identifier, if a host changes the
enable state of any Directive for a shared namespace attached to a controller, then that change shall be
made to the enable state of that Directive for that namespace attached to any other controller associated
with that Host Identifier.

NVM Express 1.3a

280

Figure 286: Enable Directive – Command Dword 12

Bit Description
31:16 Reserved

15:08
Directive Type (DTYPE): This field specifies the Directive Type to enable or disable. If this field
specifies the Identify Directive (i.e., 00h), then a status of Invalid Field in Command shall be
returned.

07:01 Reserved

00
Enable Directive (ENDIR): If set to ‘1’ and the Directive Type is supported, then the Directive is
enabled. If cleared to ‘0’, then the Directive is disabled. If this field is set to ‘1’ for a Directive that
is not supported, then a status of Invalid Field in Command shall be returned.

9.3 Streams (Directive Type 01h, Optional)
The Streams Directive enables the host to indicate (i.e., by using the stream identifier) to the controller that
the specified logical blocks in a write command are part of one group of associated data. This information
may be used by the controller to store related data in associated locations or for other performance
enhancements.

The controller provides information in response to the Return Parameters operation about the configuration
of the controller that indicates Stream Write Size, Stream Granularity Size, and stream resources at the
NVM subsystem and namespace levels.

Data that is aligned to and in multiples of the Stream Write Size (SWS) provides optimal performance of
the write commands to the controller. The Stream Granularity Size indicates the size of the media that is
prepared as a unit for future allocation for write commands and is a multiple of the Stream Write Size. The
controller may allocate and group together a stream in Stream Granularity Size (SGS) units. Refer to Figure
293.

Figure 287: Directive Streams – Stream Alignment and Granularity

If the host issues a Dataset Management command to deallocate logical blocks that are associated with a
stream, it should specify a starting LBA and length that is aligned to and in multiples of the Stream
Granularity Size. This provides optimal performance and endurance of the media.

Stream resources are the resources in the NVM subsystem that are necessary to track operations
associated with a specified stream identifier. There are a maximum number of stream resources that are
available in an NVM subsystem as indicated by the Max Stream Limit (MSL) field in the Return Parameters
data structure.

Available NVM subsystem stream resources are stream resources that are not allocated for exclusive use
in any namespace. Available NVM subsystem stream resources are reported in the NVM Subsystem
Streams Available (NSSA) field and may be used by any host in any namespace that has the Streams
Directive enabled and has not been allocated exclusive stream resources by that host. Each time stream
resources are allocated for exclusive use in a specified namespace, the available NVM subsystem stream
resources reported in the NSSA field are reduced.

For a given namespace:

NVM Express 1.3a

281

a) a host allocates stream resources to that namespace for the exclusive use of that host by issuing
the Allocate Resources operation;

b) other hosts may concurrently allocate stream resources to that namespace for their exclusive use;
and

c) hosts which have not allocated stream resources to that namespace may use available NVM
subsystem stream resources for access to that namespace.

The Directive operations that shall be supported if the Streams Directive is supported are listed in Figure
294. The Directive Specific field in a command is referred to as the stream identifier when the Directive
Type field is set to the Streams Directive.

Figure 288: Streams – Directive Operations

Directive Command Directive Operation
Name Directive Operation Value Definition

Directive Receive

Return Parameters 01h Section 9.3.1.1
Get Status 02h Section 9.3.1.2
Allocate Resources 03h Section 9.3.1.3
Reserved All others

Directive Send
Release Identifier 01h Section 9.3.2.1
Release Resources 02h Section 9.3.2.2
Reserved All others

Stream identifiers are assigned by the host and may be in the range 0001h to FFFFh. The host may specify
a sparse set of stream identifiers (i.e., there is no requirement for the host to use Stream Identifiers in any
particular order).

The host may be accessing a namespace through multiple controllers in the NVM subsystem. The
controllers in an NVM subsystem distinguish if the stream identifier has the same meaning for a particular
namespace by the Host Identifier. If more than one Host Identifier has the same non-zero value, then that
value represents a single host that is accessing the namespace through multiple controllers and the stream
identifier is used across controllers to access the same stream on the namespace. If a Host Identifier is
zero or has a unique value, then that value represents a unique host that is accessing the namespace and
the stream identifier does not have the same meaning for a particular namespace.

The controller(s) recognized by the NVM subsystem as being associated with a specific host and attached
to a specific namespace either:

• utilizes a number of stream resources allocated for exclusive use of that namespace as returned
in response to an Allocate Resources operation; or

• utilizes resources from the NVM subsystem stream resources.
The value of Namespace Streams Allocated (NSA) indicates how many resources for individual stream
identifiers have been allocated for exclusive use for the specified namespace by the associated controllers.
This indicates the maximum number of stream identifiers that may be open at any given time in the specified
namespace by the associated controllers. To request a different number of resources than are currently
allocated for exclusive use by the associated controllers for a specific namespace, all currently allocated
resources are first required to be released using the Release Resources operation. There is no mechanism
to incrementally increase or decrease the number of allocated resources for a given namespace.

Streams are opened by the controller when the host issues a Write command that specifies a stream
identifier that is not currently open. While a stream is open the controller maintains context for that stream
(e.g., buffers for associated data). The host may determine the streams that are open using the Get Status
operation.

For a namespace that has a non-zero value of Namespace Streams Allocated (NSA), if the host submits a
Write command specifying a stream identifier not currently in use and stream resources are exhausted,

NVM Express 1.3a

282

then an arbitrary stream identifier for that namespace is released by the controller to free the stream
resources associated with that stream identifier for the new stream. The host may ensure the number of
open streams does not exceed the allocated stream resources for the namespace by explicitly releasing
stream identifiers as necessary using the Release Identifier operation.

For a namespace that has zero namespace stream resources allocated, if the host submits a Write
command specifying a stream identifier not currently in use and:

• NVM subsystem streams available are exhausted, then an arbitrary stream identifier for an
arbitrary namespace that is using NVM subsystem stream resources is released by the NVM
subsystem to free the stream resources associated with that stream identifier for the new stream;
or

• all NVM subsystem stream resources have been allocated for exclusive use for specific
namespaces, then the Write command is treated as a normal Write command that does not
specify a stream identifier.

The host determines parameters associated with stream resources using the Return Parameters operation.
The host may get a list of open stream identifiers using the Get Status operation.

If the Streams Directive becomes disabled for a host in a namespace, then all stream resources and stream
identifiers are released for the host in that namespace. If the host issues a Format NVM command, or
deletes a namespace, then all stream identifiers for all open streams for affected namespaces are released.

Streams Directive defines the command specific status values specified in Figure 295.

Figure 289: Streams Directive – Command Specific Status Values

Value Description

7Fh
Stream Resource Allocation Failed: The controller was not able to allocate stream resources
for exclusive use of the specified namespace and no NVM subsystem stream resources are
available.

9.3.1 Directive Receive
This section defines operations used with the Directive Receive command for the Streams Directive.

9.3.1.1 Return Parameters (Directive Operation 01h)
The Return Parameter operation returns a data structure that specifies the features and capabilities
supported by the Streams Directive, including namespace specific values. The DSPEC field in command
Dword 11 is not used for this operation. The data structure returned is defined in Figure 296. If an NSID
value of FFFFFFFFh is specified then the controller returns the NVM subsystem specific values, may
return any namespace specific values that are the same for all namespaces (e.g., SWS), and clears all
other namespace specific fields to zero.

NVM Express 1.3a

283

Figure 290: Streams Directive– Return Parameters Data Structure

Bytes Description
 NVM Subsystem Specific Fields

1:0
Max Streams Limit (MSL): This field indicates the maximum number of concurrently open
streams that the NVM subsystem supports. This field returns the same value independent of
specified namespace.

3:2

NVM Subsystem Streams Available (NSSA): This field indicates the number of NVM subsystem
stream resources available. These are the stream resources that are not allocated for the
exclusive use by a host in any specific namespace. This field returns the same value independent
of specified namespace.

5:4

NVM Subsystem Streams Open (NSSO): This field indicates the number of open streams in the
NVM subsystem that are not associated with a namespace for which resources were allocated
using an Allocate Resources operation. This field returns the same value independent of specified
namespace.

15:6 Reserved
 Namespace Specific Fields

19:16

Stream Write Size (SWS): This field indicates the alignment and size of the optimal stream write
as a number of logical blocks for the specified namespace. The size indicated should be less than
or equal to Maximum Data Transfer Size (MDTS) that is specified in units of minimum memory
page size. SWS may change if the namespace is reformatted with a different LBA format. If the
NSID value is set to FFFFFFFFh then this field may be cleared to 0h if a single logical block size
cannot be indicated.

21:20
Stream Granularity Size (SGS): This field indicates the stream granularity size for the specified
namespace in Stream Write Size (SWS) units. If the NSID value is set to FFFFFFFFh then this
field may be cleared to 0h.

 Namespace and Host Identifier Specific Fields

23:22

Namespace Streams Allocated (NSA): This field indicates the number of stream resources
allocated for exclusive use of the specified namespace by the controller processing the Return
Parameters operation and by all other controllers which share the same non-zero Host Identifier
and which are attached to the specified namespace. If this value is non-zero, then the namespace
may have up to NSA number of concurrently open streams. If this field is cleared to zero, then no
stream resources are currently allocated to this namespace and the namespace may have up to
NSSA number of concurrently open streams.

25:24

Namespace Streams Open (NSO): This field indicates the number of open streams in the
specified namespace that were opened by the controller processing the Return Parameters
operation and by all other controllers which share the same non-zero Host Identifier and which are
attached to this namespace.

NOTE: It is not possible for a host to retrieve the number of open streams using resources
allocated to the specified namespace by other hosts.

31:26 Reserved

9.3.1.2 Get Status (Directive Operation 02h)
The Get Status operation returns information about the status of currently open streams for the specified
namespace and the host issuing the Get Status operation. The DSPEC field in command Dword 11 is not
used for this operation. If an NSID value of FFFFFFFFh is specified, then the controller shall return
information about the status of currently open streams in the NVM subsystem that use resources which are
not allocated for the exclusive use of any namespace.

Stream Identifier 1 (i.e., returned at offset 03:02) contains the value of the open stream of lowest numerical
value. Each subsequent field contains the value of the next numerically greater stream identifier of an open
stream.

The data structure returned is defined in Figure 297. All fields are specific to the namespace specified.

NVM Express 1.3a

284

Figure 291: Streams Directive – Get Status Data Structure

Bytes Description
01:00 Open Stream Count: This field specifies the number of streams that are currently open.

03:02 Stream Identifier 1: This field specifies the stream identifier of the first (numerically lowest) open
stream.

05:04 Stream Identifier 2: This field specifies the stream identifier of the second open stream.
… …

131071:
131070 Stream Identifier 65535: This field specifies the stream identifier of the 65535 open stream.

9.3.1.3 Allocate Resources (Directive Operation 03h)
The Allocate Resources operation indicates the number of streams that the host requests for the exclusive
use by the host for the specified namespace. The DSPEC field in command Dword 11 is not used for this
operation. The operation returns the number of streams allocated in Dword 0 of the completion queue entry.
The value allocated may be less than or equal to the number requested. The allocated resources shall be
reflected in the Namespace Streams Allocated field of the Return Parameters data structure.

If the controller is unable to allocate any stream resources for the exclusive use by the host for the specified
namespace, then the controller shall:

• return a status value of Stream Resource Allocation Failed; or
• if NVM subsystem stream resources are available, then set NSA to 0000h in the completion

queue entry to indicate that the host may use stream resources from the NVM subsystem for this
namespace.

If the specified namespace already has stream resources allocated for the exclusive use of the host issuing
the Allocate Resources operation, then the controller shall return a status value of Invalid Field in
Command. To allocate additional streams resources, the host should release resources and then request
a complete set of resources.

No data transfer occurs.

Figure 292: Allocate Resources – Command Dword 12

Bit Description
31:16 Reserved

15:00 Namespace Streams Requested (NSR): This field specifies the number of stream resources the
host is requesting be allocated for exclusive use by the namespace specified.

Figure 293: Allocate Resources – Dword 0 of command completion queue entry

Bit Description
31:16 Reserved

15:00
Namespace Streams Allocated (NSA): This field indicates the number of streams resources that
have been allocated for exclusive use by the namespace specified. The allocated resources are
available to all controllers associated with that host.

9.3.2 Directive Send
This section defines operations used with the Directive Send command for the Streams Directive.

NVM Express 1.3a

285

9.3.2.1 Release Identifier (Directive Operation 01h)
The Release Identifier operation specifies that the stream identifier specified in the DSPEC field in
command Dword 11 is no longer in use by the host. Specifically, if the host uses the stream identifier in a
future operation then it is referring to a different stream. If the specified identifier does not correspond to an
open stream for the specified namespace, then the command completes successfully. If there are stream
resources allocated for the specified namespace, then the stream resources remain allocated for this
namespace, and may be re-used in a subsequent write command. If there are no stream resources
allocated for the specified namespace, then the stream resources are returned to the NVM subsystem
stream resources for future use by a namespace without allocated stream resources. If an NSID value of
FFFFFFFFh is specified, then the controller shall abort the command with a status of Invalid Field in
Command.

No data transfer occurs.

9.3.2.2 Release Resources (Directive Operation 02h)
The Release Resources operation is used to release all streams resources allocated for the namespace
attached to all controllers associated with the same non-zero Host Identifier of the controller that processed
the operation. On successful completion of this command, the allocated stream resources are cleared to
0h for the specified namespace. If this command is issued when no streams resources are allocated for the
namespace, the command shall complete successfully.

No data transfer occurs.

NVM Express 1.3a

286

10 Error Reporting and Recovery
10.1 Command and Queue Error Handling
In the case of serious error conditions, like Completion Queue Invalid, the operation of the associated
Submission Queue or Completion Queue may be compromised. In this case, host software should delete
the associated Completion Queue and/or Submission Queue. The delete of a Submission Queue aborts
all outstanding commands, and deletion of either queue type releases resources associated with that
queue. Host software should recreate the Completion Queue and/or Submission Queue to then continue
with operation.

In the case of serious error conditions for Admin commands, the entire controller should be reset using a
Controller Level Reset. The entire controller should also be reset if a completion is not received for the
deletion of a Submission Queue or Completion Queue.

For most command errors, there is not an issue with the Submission Queue and/or Completion Queue
itself. Thus, host software and the controller should continue to process commands. It is at the discretion
of host software whether to retry the failed command; the Retry bit in the Completion Queue Entry indicates
whether a retry of the failed command may succeed.

10.2 Media and Data Error Handling
In the event that the requested operation could not be performed to the NVM media, the particular command
is completed with a media error indicating the type of failure using the appropriate status code.

If a read error occurs during the processing of a command, (e.g. End-to-end Guard Check Error,
Unrecovered Read Error), the controller may either stop the DMA transfer into the memory or transfer the
erroneous data to the memory. The host shall ignore the data in the memory locations for commands that
complete with such error conditions.

If a write error occurs during the processing of a command, (e.g., an internal error, End-to-end Guard Check
Error, End-to-end Application Tag Check Error), the controller may either stop or complete the DMA
transfer. If the write size is less than or equal to the Atomic Write Unit Power Fail size, then subsequent
reads for the associated logical blocks shall return data from the previous successful write operation. If the
write size is larger than the Atomic Write Unit Power Fail size, then subsequent reads for the associated
logical blocks may return data from the previous successful write operation or this failed write operation.

Based on the value of the Limited Retry bit, the controller may apply all available error recovery means to
complete the command.

10.3 Memory Error Handling
Memory errors such as target abort, master abort, and parity may cause the controller to stop processing
the currently executing command. These are serious errors that cannot be recovered from without host
software intervention.

A master/target abort error occurs when host software has given a pointer to the host controller that does
not exist in memory. When this occurs, the host controller aborts the command with a Data Transfer Error
status code.

10.4 Internal Controller Error Handling
Errors such as a DRAM failure or power loss notification indicate that a controller level failure has occurred
during the processing of a command. The status code of the completion queue entry should indicate an
Internal Error status code (if multiple error conditions exist, the lowest numerical value is returned). Host
software shall ignore any data transfer associated with the command. The host may choose to re-submit
the command or indicate an error to the higher level software.

NVM Express 1.3a

287

10.5 Controller Fatal Status Condition
If the controller has a serious error condition and is unable to communicate with host software via
completion queue entries in the Admin or I/O Completion Queues, then the controller may set the Controller
Fatal Status (CSTS.CFS) field to ‘1’. This indicates to host software that a serious error condition has
occurred. When this condition occurs, host software should reset and then re-initialize the controller.

The Controller Fatal Status condition is not indicated with an interrupt. If host software experiences timeout
conditions and/or repeated errors, then host software should consult the Controller Fatal Status
(CSTS.CFS) field to determine if a more serious error has occurred.

	1 Introduction
	1.1 Overview
	1.1.1 NVMe over PCIe and NVMe over Fabrics

	1.2 Scope
	1.3 Outside of Scope
	1.4 Theory of Operation
	1.4.1 Multi-Path I/O and Namespace Sharing

	1.5 Conventions
	1.6 Definitions
	1.6.1 Admin Queue
	1.6.2 arbitration burst
	1.6.3 arbitration mechanism
	1.6.4 cache
	1.6.5 candidate command
	1.6.6 command completion
	1.6.7 command submission
	1.6.8 controller
	1.6.9 directive
	1.6.10 emulated controller
	1.6.11 extended LBA
	1.6.12 firmware slot
	1.6.13 I/O command
	1.6.14 I/O Completion Queue
	1.6.15 I/O Submission Queue
	1.6.16 LBA range
	1.6.17 logical block
	1.6.18 logical block address (LBA)
	1.6.19 metadata
	1.6.20 namespace
	1.6.21 Namespace ID (NSID)
	1.6.22 NVM
	1.6.23 NVM subsystem
	1.6.24 primary controller
	1.6.25 private namespace
	1.6.26 privileged actions
	1.6.27 Runtime D3 (Power Removed)
	1.6.28 sanitize operation
	1.6.29 secondary controller
	1.6.30 shared namespace
	1.6.31 user data

	1.7 Keywords
	1.7.1 mandatory
	1.7.2 may
	1.7.3 optional
	1.7.4 R
	1.7.5 reserved
	1.7.6 shall
	1.7.7 should

	1.8 Byte, word and Dword Relationships
	1.9 References
	1.10 References Under Development

	2 System Bus (PCI Express) Registers
	2.1 PCI Header
	2.1.1 Offset 00h: ID - Identifiers
	2.1.2 Offset 04h: CMD - Command
	2.1.3 Offset 06h: STS - Device Status
	2.1.4 Offset 08h: RID - Revision ID
	2.1.5 Offset 09h: CC - Class Code
	2.1.6 Offset 0Ch: CLS – Cache Line Size
	2.1.7 Offset 0Dh: MLT – Master Latency Timer
	2.1.8 Offset 0Eh: HTYPE – Header Type
	2.1.9 Offset 0Fh: BIST – Built In Self Test (Optional)
	2.1.10 Offset 10h: MLBAR (BAR0) – Memory Register Base Address, lower 32-bits
	2.1.11 Offset 14h: MUBAR (BAR1) – Memory Register Base Address, upper 32-bits
	2.1.12 Offset 18h: BAR2 – Index/Data Pair Register Base Address or Vendor Specific (Optional)
	2.1.13 Offset 1Ch – 20h: BAR3 – Vendor Specific
	2.1.14 Offset 20h – 23h: BAR4 – Vendor Specific
	2.1.15 Offset 24h – 27h: BAR5 – Vendor Specific
	2.1.16 Offset 28h: CCPTR – CardBus CIS Pointer
	2.1.17 Offset 2Ch: SS - Sub System Identifiers
	2.1.18 Offset 30h: EROM – Expansion ROM (Optional)
	2.1.19 Offset 34h: CAP – Capabilities Pointer
	2.1.20 Offset 3Ch: INTR - Interrupt Information
	2.1.21 Offset 3Eh: MGNT – Minimum Grant
	2.1.22 Offset 3Fh: MLAT – Maximum Latency

	2.2 PCI Power Management Capabilities
	2.2.1 Offset PMCAP: PID - PCI Power Management Capability ID
	2.2.2 Offset PMCAP + 2h: PC – PCI Power Management Capabilities
	2.2.3 Offset PMCAP + 4h: PMCS – PCI Power Management Control and Status

	2.3 Message Signaled Interrupt Capability (Optional)
	2.3.1 Offset MSICAP: MID – Message Signaled Interrupt Identifiers
	2.3.2 Offset MSICAP + 2h: MC – Message Signaled Interrupt Message Control
	2.3.3 Offset MSICAP + 4h: MA – Message Signaled Interrupt Message Address
	2.3.4 Offset MSICAP + 8h: MUA – Message Signaled Interrupt Upper Address
	2.3.5 Offset MSICAP + Ch: MD – Message Signaled Interrupt Message Data
	2.3.6 Offset MSICAP + 10h: MMASK – Message Signaled Interrupt Mask Bits (Optional)
	2.3.7 Offset MSICAP + 14h: MPEND – Message Signaled Interrupt Pending Bits (Optional)

	2.4 MSI-X Capability (Optional)
	2.4.1 Offset MSIXCAP: MXID – MSI-X Identifiers
	2.4.2 Offset MSIXCAP + 2h: MXC – MSI-X Message Control
	2.4.3 Offset MSIXCAP + 4h: MTAB – MSI-X Table Offset / Table BIR
	2.4.4 Offset MSIXCAP + 8h: MPBA – MSI-X PBA Offset / PBA BIR

	2.5 PCI Express Capability
	2.5.1 Offset PXCAP: PXID – PCI Express Capability ID
	2.5.2 Offset PXCAP + 2h: PXCAP – PCI Express Capabilities
	2.5.3 Offset PXCAP + 4h: PXDCAP – PCI Express Device Capabilities
	2.5.4 Offset PXCAP + 8h: PXDC – PCI Express Device Control
	2.5.5 Offset PXCAP + Ah: PXDS – PCI Express Device Status
	2.5.6 Offset PXCAP + Ch: PXLCAP – PCI Express Link Capabilities
	2.5.7 Offset PXCAP + 10h: PXLC – PCI Express Link Control
	2.5.8 Offset PXCAP + 12h: PXLS – PCI Express Link Status
	2.5.9 Offset PXCAP + 24h: PXDCAP2 – PCI Express Device Capabilities 2
	2.5.10 Offset PXCAP + 28h: PXDC2 – PCI Express Device Control 2

	2.6 Advanced Error Reporting Capability (Optional)
	2.6.1 Offset AERCAP: AERID – AER Capability ID
	2.6.2 Offset AERCAP + 4: AERUCES – AER Uncorrectable Error Status Register
	2.6.3 Offset AERCAP + 8: AERUCEM – AER Uncorrectable Error Mask Register
	2.6.4 Offset AERCAP + Ch: AERUCESEV – AER Uncorrectable Error Severity Register
	2.6.5 Offset AERCAP + 10h: AERCS – AER Correctable Error Status Register
	2.6.6 Offset AERCAP + 14h: AERCEM – AER Correctable Error Mask Register
	2.6.7 Offset AERCAP + 18h: AERCC – AER Capabilities and Control Register
	2.6.8 Offset AERCAP + 1Ch: AERHL – AER Header Log Register
	2.6.9 Offset AERCAP + 38h: AERTLP – AER TLP Prefix Log Register (Optional)

	2.7 Other Capability Pointers

	3 Controller Registers
	3.1 Register Definition
	3.1.1 Offset 00h: CAP – Controller Capabilities
	3.1.2 Offset 08h: VS – Version
	3.1.2.1 VS Value for 1.0 Compliant Controllers
	3.1.2.2 VS Value for 1.1 Compliant Controllers
	3.1.2.3 VS Value for 1.2 Compliant Controllers
	3.1.2.4 VS Value for 1.2.1 Compliant Controllers
	3.1.2.5 VS Value for 1.3 Compliant Controllers

	3.1.3 Offset 0Ch: INTMS – Interrupt Mask Set
	3.1.4 Offset 10h: INTMC – Interrupt Mask Clear
	3.1.5 Offset 14h: CC – Controller Configuration
	3.1.6 Offset 1Ch: CSTS – Controller Status
	3.1.7 Offset 20h: NSSR – NVM Subsystem Reset
	3.1.8 Offset 24h: AQA – Admin Queue Attributes
	3.1.9 Offset 28h: ASQ – Admin Submission Queue Base Address
	3.1.10 Offset 30h: ACQ – Admin Completion Queue Base Address
	3.1.11 Offset 38h: CMBLOC – Controller Memory Buffer Location
	3.1.12 Offset 3Ch: CMBSZ – Controller Memory Buffer Size
	3.1.13 Offset 40h: BPINFO – Boot Partition Information
	3.1.14 Offset 44h: BPRSEL – Boot Partition Read Select
	3.1.15 Offset 48h: BPMBL – Boot Partition Memory Buffer Location (Optional)
	3.1.16 Offset (1000h + ((2y) * (4 << CAP.DSTRD))): SQyTDBL – Submission Queue y Tail Doorbell
	3.1.17 Offset (1000h + ((2y + 1) * (4 << CAP.DSTRD))): CQyHDBL – Completion Queue y Head Doorbell

	3.2 Index/Data Pair registers (Optional)
	3.2.1 Restrictions
	3.2.2 Register Definition
	3.2.3 Offset 00h: IDX – Index Register
	3.2.4 Offset 04h: DAT – Data Register

	4 Data Structures
	4.1 Submission Queue & Completion Queue Definition
	4.1.1 Empty Queue
	4.1.2 Full Queue
	4.1.3 Queue Size
	4.1.4 Queue Identifier
	4.1.5 Queue Priority

	4.2 Submission Queue Entry – Command Format
	4.3 Physical Region Page Entry and List
	4.4 Scatter Gather List (SGL)
	4.4.1 SGL Example

	4.5 Metadata Region (MR)
	4.6 Completion Queue Entry
	4.6.1 Status Field Definition
	4.6.1.1 Status Code Type (SCT)
	4.6.1.2 Status Code (SC)
	4.6.1.2.1 Generic Command Status Definition
	4.6.1.2.2 Command Specific Errors Definition
	4.6.1.2.3 Media and Data Integrity Errors Definition

	4.7 Controller Memory Buffer
	4.8 Namespace List
	4.9 Controller List
	4.10 Fused Operations
	4.11 Command Arbitration
	4.11.1 Round Robin Arbitration
	4.11.2 Weighted Round Robin with Urgent Priority Class Arbitration
	4.11.3 Vendor Specific Arbitration

	5 Admin Command Set
	5.1 Abort command
	5.1.1 Command Completion

	5.2 Asynchronous Event Request command
	5.2.1 Command Completion

	5.3 Create I/O Completion Queue command
	5.3.1 Command Completion

	5.4 Create I/O Submission Queue command
	5.4.1 Command Completion

	5.5 Delete I/O Completion Queue command
	5.5.1 Command Completion

	5.6 Delete I/O Submission Queue command
	5.6.1 Command Completion

	5.7 Doorbell Buffer Config command
	5.7.1 Command Completion

	5.8 Device Self-test command
	5.8.1 Command Completion

	5.9 Directive Receive command
	5.9.1 Command Completion

	5.10 Directive Send command
	5.10.1 Command Completion

	5.11 Firmware Commit command
	5.11.1 Command Completion

	5.12 Firmware Image Download command
	5.12.1 Command Completion

	5.13 Get Features command
	5.13.1 Select field
	5.13.2 Command Completion

	5.14 Get Log Page command
	5.14.1 Log Specific Information
	5.14.1.1 Error Information (Log Identifier 01h)
	5.14.1.2 SMART / Health Information (Log Identifier 02h)
	5.14.1.3 Firmware Slot Information (Log Identifier 03h)
	5.14.1.4 Changed Namespace List (Log Identifier 04h)
	5.14.1.5 Commands Supported and Effects (Log Identifier 05h)
	5.14.1.6 Device Self-test (Log Identifier 06h)
	5.14.1.7 Telemetry Host-Initiated (Log Identifier 07h)
	5.14.1.8 Telemetry Controller-Initiated (Log Identifier 08h)
	5.14.1.9 NVM Command Set Specific Log Page Identifiers
	5.14.1.9.1 Reservation Notification (Log Identifier 80h)
	5.14.1.9.2 Sanitize Status (Log Identifier 81h)

	5.14.2 Command Completion

	5.15 Identify command
	5.15.1 Command Completion

	5.16 Keep Alive command
	5.16.1 Command Completion

	5.17 NVMe-MI Receive command
	5.18 NVMe-MI Send command
	5.19 Namespace Attachment command
	5.19.1 Command Completion

	5.20 Namespace Management command
	5.20.1 Command Completion

	5.21 Set Features command
	5.21.1 Feature Specific Information
	5.21.1.1 Arbitration (Feature Identifier 01h)
	5.21.1.2 Power Management (Feature Identifier 02h)
	5.21.1.3 LBA Range Type (Feature Identifier 03h), (Optional)
	5.21.1.4 Temperature Threshold (Feature Identifier 04h)
	5.21.1.5 Error Recovery (Feature Identifier 05h)
	5.21.1.6 Volatile Write Cache (Feature Identifier 06h), (Optional)
	5.21.1.7 Number of Queues (Feature Identifier 07h)
	5.21.1.8 Interrupt Coalescing (Feature Identifier 08h)
	5.21.1.9 Interrupt Vector Configuration (Feature Identifier 09h)
	5.21.1.10 Write Atomicity Normal (Feature Identifier 0Ah)
	5.21.1.11 Asynchronous Event Configuration (Feature Identifier 0Bh)
	5.21.1.12 Autonomous Power State Transition (Feature Identifier 0Ch), (Optional)
	5.21.1.13 Host Memory Buffer (Feature Identifier 0Dh), (Optional)
	5.21.1.14 Timestamp (Feature Identifier 0Eh), (Optional)
	5.21.1.15 Keep Alive Timer (Feature Identifier 0Fh)
	5.21.1.16 Host Controlled Thermal Management (Feature Identifier 10h), (Optional)
	5.21.1.17 Non-Operational Power State Config (Feature Identifier 11h), (Optional)
	5.21.1.18 Software Progress Marker (Feature Identifier 80h), (Optional) – NVM Command Set Specific
	5.21.1.19 Host Identifier (Feature Identifier 81h), (Optional0F)
	5.21.1.19.1 NVMe over PCIe
	5.21.1.19.2 NVMe over Fabrics

	5.21.1.20 Reservation Notification Mask (Feature Identifier 82h), (Optional1F)
	5.21.1.21 Reservation Persistence (Feature Identifier 83h), (Optional2F)

	5.21.2 Command Completion

	5.22 Virtualization Management command
	5.22.1 Command Completion

	5.23 Format NVM command – NVM Command Set Specific
	5.23.1 Command Completion

	5.24 Sanitize command – NVM Command Set Specific
	5.24.1 Command Completion

	5.25 Security Receive command – NVM Command Set Specific
	5.25.1 Command Completion
	5.25.2 Security Protocol 00h
	5.25.3 Security Protocol EAh

	5.26 Security Send command – NVM Command Set Specific
	5.26.1 Command Completion

	6 NVM Command Set
	6.1 Namespaces
	6.1.1 Namespace Overview
	6.1.2 Valid and Invalid NSIDs
	6.1.3 Allocated and Unallocated NSID Types
	6.1.4 Active and Inactive NSID Types
	6.1.5 NSID and Namespace Relationships
	6.1.6 NSID and Namespace Usage

	6.2 Fused Operations
	6.2.1 Compare and Write

	6.3 Command Ordering Requirements
	6.4 Atomic Operations
	6.4.1 AWUN/NAWUN
	6.4.1.1 AWUN/NAWUN Example (Informative)

	6.4.2 AWUPF/NAWUPF
	6.4.2.1 AWUPF/NAWUPF Example (Informative)

	6.4.3 Atomic Boundaries

	6.5 End-to-end Protection Information
	6.6 Compare command
	6.6.1 Command Completion

	6.7 Dataset Management command
	6.7.1 Context Attributes
	6.7.1.1 Deallocate

	6.7.2 Command Completion

	6.8 Flush command
	6.8.1 Command Completion

	6.9 Read command
	6.9.1 Command Completion

	6.10 Reservation Acquire command
	6.10.1 Command Completion

	6.11 Reservation Register command
	6.11.1 Command Completion

	6.12 Reservation Release command
	6.12.1 Command Completion

	6.13 Reservation Report command
	6.13.1 Command Completion

	6.14 Write command
	6.14.1 Command Completion

	6.15 Write Uncorrectable command
	6.15.1 Command Completion

	6.16 Write Zeroes command
	6.16.1 Command Completion

	7 Controller Architecture
	7.1 Introduction
	7.2 Command Submission and Completion Mechanism (Informative)
	7.2.1 Command Processing
	7.2.2 Basic Steps when Building a Command
	7.2.3 Processing Completed Commands
	7.2.4 Command Related Resource Retirement
	7.2.5 Command Examples
	7.2.5.1 Creating an I/O Submission Queue
	7.2.5.2 Executing a Fused Operation

	7.3 Resets
	7.3.1 NVM Subsystem Reset
	7.3.2 Controller Level Reset
	7.3.3 Queue Level

	7.4 Queue Management
	7.4.1 Queue Setup and Initialization
	7.4.2 Queue Coordination
	7.4.3 Queue Abort

	7.5 Interrupts
	7.5.1 Pin Based, Single MSI, and Multiple MSI Behavior
	7.5.1.1 Host Software Interrupt Handling
	7.5.1.1.1 Interrupt Example (Informative)

	7.5.1.2 Differences Between Pin Based and MSI Interrupts

	7.5.2 MSI-X Based Behavior

	7.6 Controller Initialization and Shutdown Processing
	7.6.1 Initialization
	7.6.1.1 Software Progress Marker

	7.6.2 Shutdown

	7.7 Asynchronous Event Request Host Software Recommendations (Informative)
	7.8 Feature Values
	7.9 NVMe Qualified Names
	7.10 Identifier Format and Layout (Informative)
	7.10.1 PCI Vendor ID (VID) and PCI Subsystem Vendor ID (SSVID)
	7.10.2 Serial Number (SN) and Model Number (MN)
	7.10.3 IEEE OUI Identifier (IEEE)
	7.10.4 IEEE Extended Unique Identifier (EUI64)
	7.10.5 Namespace Globally Unique Identifier (NGUID)

	7.11 Unique Identifier
	7.12 Keep Alive
	7.12.1 NVMe over PCIe

	7.13 Updating Controller Doorbell Registers using a Shadow Doorbell Buffer
	7.13.1 Shadow Doorbell Buffer Overview
	7.13.2 Example Algorithm for Controller Doorbell Register Updates (Informative)

	8 Features
	8.1 Firmware Update Process
	8.2 Metadata Handling
	8.3 End-to-end Data Protection (Optional)
	8.3.1 The PRACT Bit
	8.3.1.1 Protection Information and Write Commands
	8.3.1.2 The PRACT Bit and Read Commands
	8.3.1.3 Protection Information for Fused Operations
	8.3.1.4 Protection Checking with the Compare command
	8.3.1.5 Control of Protection Information Checking - PRCHK

	8.4 Power Management
	8.4.1 Non-Operational Power States
	8.4.2 Autonomous Power State Transitions
	8.4.3 NVM Subsystem Workloads
	8.4.4 Runtime D3 Transitions
	8.4.5 Host Controlled Thermal Management

	8.5 Virtualization Enhancements (Optional)
	8.5.1 VQ Resource Definition
	8.5.2 VI Resource Definition
	8.5.3 Secondary Controller States and Resource Configuration
	8.5.4 Single Root I/O Virtualization and Sharing (SR-IOV)

	8.6 Doorbell Stride for Software Emulation
	8.7 Standard Vendor Specific Command Format
	8.8 Reservations (Optional)
	8.8.1 Reservation Notifications
	8.8.2 Registering
	8.8.3 Reservation Types
	8.8.4 Unregistering
	8.8.5 Acquiring a Reservation
	8.8.6 Releasing a Reservation
	8.8.7 Preempting a Reservation or Registration
	8.8.8 Clearing a Reservation
	8.8.9 Reporting Reservation Status

	8.9 Host Memory Buffer (Optional)
	8.10 Replay Protected Memory Block (Optional)
	8.10.1 Authentication Method
	8.10.2 RPMB Operations
	8.10.2.1 Authentication Key Programming
	8.10.2.2 Read Write Counter Value
	8.10.2.3 Authenticated Data Write
	8.10.2.4 Authenticated Data Read

	8.10.3 Authenticated Device Configuration Block Write
	8.10.4 Authenticated Device Configuration Block Read

	8.11 Device Self-test Operations (Optional)
	8.11.1 Short Device Self-Test Operation
	8.11.2 Extended Device Self-Test Operation

	8.12 Namespace Management (Optional)
	8.13 Boot Partitions (Optional)
	8.13.1 Reading from a Boot Partition
	8.13.2 Writing to a Boot Partition
	8.13.3 Boot Partition Protection

	8.14 Telemetry (Optional)
	8.14.1 Telemetry Data Collection Examples (Informative)

	8.15 Sanitize Operations (Optional)
	8.15.1 Command Restrictions

	9 Directives
	9.1 Directive Use in I/O Commands
	9.2 Identify (Directive Type 00h)
	9.2.1 Directive Receive
	9.2.1.1 Return Parameters (Directive Operation 01h)

	9.2.2 Directive Send
	9.2.2.1 Enable Directive (Directive Operation 01h)

	9.3 Streams (Directive Type 01h, Optional)
	9.3.1 Directive Receive
	9.3.1.1 Return Parameters (Directive Operation 01h)
	9.3.1.2 Get Status (Directive Operation 02h)
	9.3.1.3 Allocate Resources (Directive Operation 03h)

	9.3.2 Directive Send
	9.3.2.1 Release Identifier (Directive Operation 01h)
	9.3.2.2 Release Resources (Directive Operation 02h)

	10 Error Reporting and Recovery
	10.1 Command and Queue Error Handling
	10.2 Media and Data Error Handling
	10.3 Memory Error Handling
	10.4 Internal Controller Error Handling
	10.5 Controller Fatal Status Condition

